欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • LTC2365HS6#TRMPBF
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • LTC2365HS6#TRMPBF图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • LTC2365HS6#TRMPBF 现货库存
  • 数量8888 
  • 厂家ADI 
  • 封装原封装 
  • 批号新批次 
  • 全球渠道、原厂正品、信誉保障、闪电发货
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • LTC2365HS6#TRMPBF图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • LTC2365HS6#TRMPBF
  • 数量65000 
  • 厂家 
  • 封装原厂封装 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • LTC2365HS6#TRMPBF图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • LTC2365HS6#TRMPBF
  • 数量13880 
  • 厂家Linear 
  • 封装TSOT236 
  • 批号21+ 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • LTC2365HS6#TRMPBF图
  • 集好芯城

     该会员已使用本站13年以上
  • LTC2365HS6#TRMPBF
  • 数量26097 
  • 厂家ADI 
  • 封装6-Lead TSOT-23 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • LTC2365HS6#TRMPBF图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • LTC2365HS6#TRMPBF
  • 数量6000 
  • 厂家LT 
  • 封装TSOT-23-6 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • LTC2365HS6#TRMPBF图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • LTC2365HS6#TRMPBF
  • 数量5000 
  • 厂家LINEAR 
  • 封装 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104891 QQ:857273081QQ:1594462451
  • LTC2365HS6#TRMPBF图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • LTC2365HS6#TRMPBF
  • 数量3489 
  • 厂家LT 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • LTC2365HS6#TRMPBF图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • LTC2365HS6#TRMPBF
  • 数量865000 
  • 厂家LT 
  • 封装SOT23-6 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • LTC2365HS6#TRMPBF图
  • 深圳市恒意法科技有限公司

     该会员已使用本站17年以上
  • LTC2365HS6#TRMPBF
  • 数量3275 
  • 厂家Analog Devices Inc. 
  • 封装TSOT-23-6 
  • 批号21+ 
  • 正规渠道/品质保证/原装正品现货
  • QQ:2881514372QQ:2881514372 复制
  • 0755-83247729 QQ:2881514372
  • LTC2365HS6#TRMPBF图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • LTC2365HS6#TRMPBF
  • 数量6328 
  • 厂家ADI-亚德诺 
  • 封装SOT-23-6 
  • 批号▉▉:2年内 
  • ▉▉¥50.6元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • LTC2365HS6#TRMPBF图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站6年以上
  • LTC2365HS6#TRMPBF
  • 数量15300 
  • 厂家Analog Devices Inc. 
  • 封装TSOT-23-6 
  • 批号24+ 
  • 只做原装★真实库存★含13点增值税票!
  • QQ:2885134615QQ:2885134615 复制
    QQ:2353549508QQ:2353549508 复制
  • 0755-83201583 QQ:2885134615QQ:2353549508
  • LTC2365HS6#TRMPBF图
  • 深圳市恒佳微电子有限公司

     该会员已使用本站12年以上
  • LTC2365HS6#TRMPBF
  • 数量
  • 厂家22600 
  • 封装SOT-23 
  • 批号 
  • 正品原装 支持最低价
  • QQ:864187665QQ:864187665 复制
    QQ:1807086236QQ:1807086236 复制
  • 755-82533156 QQ:864187665QQ:1807086236
  • LTC2365HS6#TRMPBF图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • LTC2365HS6#TRMPBF
  • 数量75200 
  • 厂家ADI/亚德诺 
  • 封装N/A 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • LTC2365HS6#TRMPBF图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • LTC2365HS6#TRMPBF
  • 数量3785 
  • 厂家ADI/LT 
  • 封装TSOT-23-6 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • LTC2365HS6#TRMPBF图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • LTC2365HS6#TRMPBF
  • 数量3785 
  • 厂家ADI/LT 
  • 封装TSOT-23-6 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • LTC2365HS6#TRMPBF图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • LTC2365HS6#TRMPBF
  • 数量18500 
  • 厂家ADI(亚德诺) 
  • 封装 
  • 批号22+ 
  • 全网低价,原装正品
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • LTC2365HS6#TRMPBF图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • LTC2365HS6#TRMPBF
  • 数量12500 
  • 厂家ADI/亚德诺 
  • 封装SOT23-6 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • LTC2365HS6#TRMPBF图
  • 深圳市华兴微电子有限公司

     该会员已使用本站16年以上
  • LTC2365HS6#TRMPBF
  • 数量5000 
  • 厂家LINEAR TECHNOLOGY 
  • 封装N/A 
  • 批号23+ 
  • 只做进口原装QQ询价,专营射频微波十五年。
  • QQ:604502381QQ:604502381 复制
  • 0755-83002105 QQ:604502381
  • LTC2365HS6#TRMPBF图
  • 深圳市原力达电子有限公司

     该会员已使用本站8年以上
  • LTC2365HS6#TRMPBF
  • 数量5000 
  • 厂家Linear Technology 
  • 封装原装 
  • 批号14+ 
  • 热卖库存 最低报价
  • QQ:3007518847QQ:3007518847 复制
    QQ:3007518731QQ:3007518731 复制
  • 0755-28194352 QQ:3007518847QQ:3007518731
  • LTC2365HS6#TRMPBF图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • LTC2365HS6#TRMPBF
  • 数量932 
  • 厂家ADI/LT 
  • 封装SOT-23-6 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!单价:68元
  • QQ:1415691092QQ:1415691092 复制
  • 133-5299-5145(微信同号) QQ:1415691092
  • LTC2365HS6#TRMPBF图
  • 深圳亿景融荣科技有限公司

     该会员已使用本站2年以上
  • LTC2365HS6#TRMPBF
  • 数量22500 
  • 厂家AD 
  • 封装6-Lead TSOT-23 
  • 批号24+ 
  • QQ:1958522749QQ:1958522749 复制
    QQ:2560388062QQ:2560388062 复制
  • 86-0755-27742156 QQ:1958522749QQ:2560388062
  • LTC2365HS6#TRMPBF图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • LTC2365HS6#TRMPBF
  • 数量10000 
  • 厂家ADI(亚德诺) 
  • 封装SOT-23-6 细型,TSOT-23-6 
  • 批号24+ 
  • 绝对原装正品,可开专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • LTC2365HS6#TRMPBF图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • LTC2365HS6#TRMPBF
  • 数量7800 
  • 厂家LINEAR/凌特 
  • 封装SOT-23 
  • 批号20+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • LTC2365HS6#TRMPBF图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • LTC2365HS6#TRMPBF
  • 数量9081 
  • 厂家Linear Technology/Analog Devices 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号LTC2365HS6#TRMPBF的概述

LTC2365HS6TRMPBF概述 LTC2365HS6#TRMPBF是一款由Linear Technology(现为Analog Devices的一部分)生产的高性能模数转换器(ADC),采用5V的工作电压并提供高分辨率数据采集,适用于多种应用场景,如医疗、工业监测、仪器仪表和消费电子等。该芯片以其高精度、高速和低噪声特性,在需要高达16位分辨率的系统中广泛应用。 详细参数 LTC2365HS6TRMPBF的主要特性包括: 1. 分辨率:16位 2. 采样率:最高可达1 MSPS(每秒百万次采样) 3. 输入范围:0V到Vref(通常为2.5V或5V) 4. 动态范围:98 dB 5. 功耗:在1MSPS采样速率下,功耗约为35 mW 6. INL(积分非线性):±1 LSB 7. DNL(微分非线性):±0.5 LSB 8. 转换时间:在1 MSPS下,转换时间为1 µs 9. ...

产品型号LTC2365HS6-TRMPBF的Datasheet PDF文件预览

LTC2365/LTC2366  
1Msps/3Msps, 12-Bit Serial  
Sampling ADCs in TSOT  
FEATURES  
DESCRIPTION  
The LTC®2365/LTC2366 are 1Msps/3Msps, 12-bit, sam-  
pling A/D converters that draw only 2mA and 2.6mA, re-  
spectively,fromasingle3Vsupply.Thesehighperformance  
devices include a high dynamic range sample-and-hold  
and a high speed serial interface. The full scale input is  
n
12-Bit Resolution  
n
1Msps/3Msps Sampling Rates  
n
Low Noise: 73dB SNR  
Low Power Dissipation: 6mW  
Single Supply 2.35V to 3.6V Operation  
No Data Latency  
n
n
n
0V to V or V . Outstanding AC performance includes  
DD  
REF  
n
Sleep Mode with 0.1μA Typical Supply Current  
72dB SINAD and –80dB THD at sample rates of 3Msps.  
The serial interface provides flexible power management  
and allows maximum power efficiency at low throughput  
rates. These devices are available in tiny 6- and 8-lead  
TSOT-23 packages.  
n
Dedicated External Reference (TSOT23-8)  
n
1V to 3.6V Digital Output Supply (TSOT23-8)  
SPI/MICROWIRECompatible Serial I/O  
n
n
Guaranteed Operation from –40°C to 125°C  
6- and 8-Lead TSOT-23 Packages  
n
The serial interface, tiny TSOT-23 package and extremely  
highsamplerate-to-powerratiomaketheLTC2365/LTC2366  
ideal for compact, low power, high speed systems.  
APPLICATIONS  
n
Communication Systems  
The high impedance single-ended analog input and the  
ability to operate with reduced spans (down to 1.4V full  
scale)allowdirectconnectiontosensorsandtransducersin  
many applications, eliminating the need for gain stages.  
n
Data Acquisition Systems  
n
Handheld Terminal Interface  
n
Medical Imaging  
n
Uninterrupted Power Supplies  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners. Protected by U.S.  
n
Battery Operated Systems  
n
Automotive  
TYPICAL APPLICATION  
12-Bit TSOT23-6/-8 ADC Family  
DATA OUTPUT RATE  
3Msps  
1Msps  
500ksps  
250ksps  
100ksps  
Part Number  
LTC2366 LTC2365 LTC2362 LTC2361 LTC2360  
1MHz Sine Wave 8192 FFT Plot  
0
–20  
Single 3V Supply, 3Msps, 12-Bit Sampling ADC  
V
= 3V  
DD  
f
f
= 3Msps  
SMPL  
IN  
= 994kHz  
3V  
SINAD = 72dB  
THD = –80.3dB  
–40  
10μF  
LTC2366  
V
V
CS  
SDO  
SCK  
DD  
–60  
SERIAL DATA LINK TO  
ASIC, PLD, MPU, DSP  
OR SHIFT REGISTERS  
REF  
–80  
GND  
ANALOG INPUT  
0V TO 3V  
DIGITAL OUTPUT SUPPLY  
1V TO 3.6V  
–100  
–120  
–140  
A
OV  
DD  
IN  
4.7μF  
23656 TA01  
1000  
INPUT FREQUENCY (kHz)  
1500  
0
250  
500  
750  
1250  
23656 TA01b  
23656f  
1
LTC2365/LTC2366  
ABSOLUTE MAXIMUM RATINGS  
(Notes 1, 2)  
Operating Temperature Range  
Supply Voltage (V , OV ).....................................4.0V  
LTC2365C/LTC2366C ............................... 0°C to 70°C  
LTC2365I/LTC2366I.............................. –40°C to 85°C  
LTC2365H/LTC2366H (Note 13)......... –40°C to 125°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
DD  
DD  
V
REF  
and Analog Input Voltage  
(Note 3).........................................–0.3V to (V + 0.3V)  
DD  
Digital Input Voltage......................–0.3V to (V + 0.3V)  
DD  
Digital Output Voltage ...................–0.3V to (V + 0.3V)  
DD  
Power Dissipation...............................................100mW  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
V
1
2
8 CS  
7 SCK  
6 SDO  
DD  
V
1
6 CS  
DD  
V
REF  
GND 2  
5 SDO  
4 SCK  
GND 3  
A
A
3
IN  
4
5 OV  
DD  
IN  
TS8 PACKAGE  
8-LEAD PLASTIC TSOT-23  
= 150°C, θ = 250°C/W  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
T = 150°C, θ = 250°C/W  
JMAX  
T
JMAX  
JA  
JA  
ORDER INFORMATION  
Lead Free Finish  
TAPE AND REEL (MINI)  
LTC2366CTS8#TRMPBF  
LTC2366ITS8#TRMPBF  
LTC2366HTS8#TRMPBF  
LTC2366CS6#TRMPBF  
LTC2366IS6#TRMPBF  
LTC2366HS6#TRMPBF  
LTC2365CTS8#TRMPBF  
LTC2365ITS8#TRMPBF  
LTC2365HTS8#TRMPBF  
LTC2365CS6#TRMPBF  
LTC2365IS6#TRMPBF  
LTC2365HS6#TRMPBF  
TAPE AND REEL  
PART MARKING*  
LTCYZ  
PACKAGE DESCRIPTION  
8-lead Plastic TSOT-23  
8-lead Plastic TSOT-23  
8-lead Plastic TSOT-23  
6-lead Plastic TSOT-23  
6-lead Plastic TSOT-23  
6-lead Plastic TSOT-23  
8-lead Plastic TSOT-23  
8-lead Plastic TSOT-23  
8-lead Plastic TSOT-23  
6-lead Plastic TSOT-23  
6-lead Plastic TSOT-23  
6-lead Plastic TSOT-23  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2366CTS8#TRPBF  
LTC2366ITS8#TRPBF  
LTC2366HTS8#TRPBF  
LTC2366CS6#TRPBF  
LTC2366IS6#TRPBF  
LTC2366HS6#TRPBF  
LTC2365CTS8#TRPBF  
LTC2365ITS8#TRPBF  
LTC2365HTS8#TRPBF  
LTC2365CS6#TRPBF  
LTC2365IS6#TRPBF  
LTC2365HS6#TRPBF  
LTCYZ  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTCYZ  
LTCXK  
LTCXK  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTCXK  
LTDCB  
LTDCB  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTDCB  
LTDCC  
LTDCC  
–40°C to 85°C  
–40°C to 125°C  
LTDCC  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
23656f  
2
LTC2365/LTC2366  
CONVERTER CHARACTERISTICS  
The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
LTC2365  
TYP  
LTC2366  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Bits  
l
l
l
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Transition Noise  
12  
12  
(Note 5, 6)  
(Note 6)  
(Note 7)  
(Note 6)  
(Note 6)  
0.25  
0.25  
0.34  
2
1
1
0.25  
0.25  
0.34  
2
1
1
LSB  
LSB  
LSB  
RMS  
l
l
Offset Error  
3.5  
2
3.5  
2
LSB  
Gain Error  
1
1
LSB  
l
l
Total Unadjusted Error  
S6 Package (Note 6)  
TS8 Package (Note 6)  
2
3
3.5  
4.5  
2
3
3.5  
4.5  
LSB  
LSB  
The l denotes the specifications which apply over the full operating temperature range, otherwise  
ANALOG INPUTS  
specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
+ 0.05  
DD  
UNITS  
l
l
V
Analog Input Voltage  
S6 Package  
TS8 Package  
–0.05  
–0.05  
V
V
V
V
IN  
+ 0.05  
REF  
l
I
Analog Input Leakage Current  
Analog Input Capacitance  
CS = High  
1
μA  
IN  
C
Between Conversions  
During Conversions  
20  
4
pF  
pF  
IN  
l
l
V
Reference Input Voltage  
TS8 Package  
TS8 Package  
TS8 Package  
1.4  
V
+ 0.05  
1
V
μA  
pF  
ns  
ns  
REF  
REF  
DD  
I
Reference Input Leakage Current  
Reference Input Capacitance  
C
REF  
4
1
t
t
Sample-and-Hold Aperture Delay Time  
Sample-and-Hold Aperture Delay Time Jitter  
AP  
JITTER  
0.3  
The l denotes the specifications which apply over the full operating temperature range,  
DYNAMIC ACCURACY  
otherwise specifications are at TA = 25°C. (Note 4)  
LTC2365  
LTC2366  
SYMBOL PARAMETER  
CONDITIONS  
MIN TYP MAX MIN TYP MAX UNITS  
l
l
l
SINAD  
SNR  
Signal-to-(Noise + Distortion) Ratio  
f
f
f
f
= 1MHz  
= 1MHz  
= 1MHz  
= 1MHz  
68  
70  
72  
68  
69  
71  
dB  
dB  
dB  
IN  
IN  
IN  
IN  
Signal-to-Noise Ratio  
73  
72  
THD  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
Intermodulation Distortion  
–86 –72  
87  
–80 –72  
82  
SFDR  
IMD  
f
IN1  
f
IN1  
= 0.97MHz, f = 1MHz for LTC2366  
= 97kHz, f = 100kHz for LTC2365  
–71.5  
dB  
IN2  
IN2  
–76  
Full Power Bandwidth  
Full Linear Bandwidth  
At 3dB  
30  
5
50  
8
MHz  
MHz  
At 0.1dB  
SINAD ≥ 68dB  
2
2.5  
MHz  
23656f  
3
LTC2365/LTC2366  
The l denotes the specifications which apply over the full  
DIGITAL INPUTS AND DIGITAL OUTPUTS  
operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
2.7V < V ≤ 3.6V  
MIN  
TYP  
MAX  
UNITS  
l
l
V
High Level Input Voltage  
2
1.7  
V
V
IH  
IL  
DD  
2.35V ≤ V ≤ 2.7V  
DD  
l
l
V
Low Level Input Voltage  
2.7V < V ≤ 3.6V  
0.8  
0.7  
V
V
DD  
2.35V ≤ V ≤ 2.7V  
DD  
l
l
I
I
High Level Input Current  
Low Level Input Current  
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage  
V
V
= V  
DD  
2.5  
μA  
μA  
pF  
V
IH  
IL  
IN  
IN  
= 0V  
–2.5  
C
V
V
2
IN  
l
l
l
V
V
= 2.35V to 3.6V, I  
= 2.35V to 3.6V, I  
= 200μA  
V
DD  
–0.2  
OH  
OL  
DD  
SOURCE  
= 200μA  
0.2  
3
V
DD  
SINK  
I
CS = V  
CS = V  
μA  
pF  
mA  
mA  
OZ  
DD  
DD  
C
Hi-Z Output Capacitance  
Output Source Current  
Output Sink Current  
4
OZ  
I
V
V
= 0V  
–10  
10  
SOURCE  
SINK  
OUT  
OUT  
I
= V  
DD  
POWER REQUIREMENT  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
2.35  
1
TYP  
MAX  
3.6  
UNITS  
l
l
V
Supply Voltage  
3.0  
V
V
DD  
O
Digital Output Supply Voltage  
3.6  
VDD  
I
Supply Current, Static Mode  
Operational Mode, LTC2366  
Operational Mode, LTC2365  
Sleep Mode  
CS = 0V, SCK = 0V or V  
SMPL  
SMPL  
–40°C to +85°C  
+85°C to +125°C  
1
mA  
mA  
mA  
μA  
DD  
DD  
DD  
l
l
l
l
f
f
= 3Msps  
= 1Msps  
2.6  
2
4
3.5  
2
0.1  
Sleep Mode  
5
μA  
P
Power Dissipation, Static Mode  
Operational Mode, LTC2366  
Operational Mode, LTC2365  
Sleep Mode  
CS = 0V, SCK = 0V or V  
3.6  
14.4  
12.6  
7.2  
mW  
mW  
mW  
μW  
μW  
D
l
l
l
l
f
f
= 3Msps  
= 1Msps  
7.8  
6
0.3  
SMPL  
SMPL  
–40°C to +85°C  
+85°C to +125°C  
Sleep Mode  
18  
23656f  
4
LTC2365/LTC2366  
The l denotes the specifications which apply over the full operating temperature  
TIMING CHARACTERISTICS  
range, otherwise specifications are at TA = 25°C. (Note 4)  
LTC2365  
TYP  
LTC2366  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
(Notes 8, 9)  
MIN  
1
MAX MIN  
MAX UNITS  
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
f
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Shift Clock Frequency  
Shift Clock Period  
3
MHz  
SMPL(MAX)  
(Notes 8, 9, 10)  
0.5  
62.5  
16  
0.5  
48  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK  
2000 20.8  
2000  
333  
SCK  
Minimum Throughput Time, t  
Acquisition Time  
+ t  
CONV  
1000  
56  
THROUGHPUT  
ACQ  
181.5  
ACQ  
Conversion Time  
818.5  
277  
4
CONV  
SDO Hi-Z State to CS ↓  
(Notes 8, 9)  
4
4
6
QUIET  
Minimum Positive or Negative CS Pulse Width (Notes 8)  
4
1
SCKSetup Time After CS ↓  
SDO Enabled Time After CS ↓  
SDO Data Valid Access Time After SCK↓  
SCK Low Time  
(Notes 8)  
2000  
4
6
2000  
4
2
(Notes 9, 11, 12)  
(Notes 8, 9, 11)  
3
15  
15  
4
40%  
40%  
5
40%  
40%  
5
t
t
5
SCK  
SCK High Time  
6
SCK  
SDO Data Valid Hold Time After SCK↓  
SDO Into Hi-Z State Time After SCK↓  
SDO Into Hi-Z State Time After CS ↑  
Power-up Time from Sleep Mode  
(Notes 8, 9, 11)  
(Notes 9, 12)  
ns  
7
5
30  
4.2  
5
14  
4.2  
333  
ns  
ns  
ns  
8
(Notes 9, 12)  
9
See Sleep Mode section  
1000  
POWER-UP  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: Linearity, offset and gain specifications apply for a single-ended  
input with respect to GND.  
Note 7: Typical RMS noise at code transitions.  
A
IN  
Note 8: Guaranteed by characterization. All input signals are specified with  
Note 2: All voltage values are with respect to GND.  
t = t = 2ns (10% to 90% of V ) and timed from a voltage level of 1.6V.  
r
f
DD  
Note 3: When this pin, A , is taken below GND or above V , it will be  
IN  
DD  
Note 9: All timing specifications given are with a 10pF capacitance load.  
With a capacitance load greater than this value, a digital buffer or latch  
must be used.  
clamped by internal diodes. These products can handle input currents  
greater than 100mA below GND or above V without latchup.  
DD  
Note 4: V = OV = V = 2.35V to 3.6V, f  
SCK(MAX)  
= f  
and f  
=
DD  
DD  
REF  
SMPL  
SMPL(MAX)  
SCK  
Note 10: Minimum f  
at which specifications are guaranteed.  
SCK  
f
unless otherwise specified.  
Note 11: The time required for the output to cross the V or V voltage.  
IH  
IL  
Note 5: Integral linearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve. The  
deviation is measured from the center of the quantization band.  
Note 12: Guaranteed by design, not subject to test.  
Note 13: High temperatures degrade operating lifetimes. Operating lifetime  
is derated at temperatures greater than 105°C.  
23656f  
5
LTC2365/LTC2366  
TA = 25°C, VDD = OVDD = VREF (LTC2365, Note 4)  
TYPICAL PERFORMANCE CHARACTERISTICS  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
Integral and Differential  
Nonlinearity vs Supply Voltage  
1.0  
1.0  
0.8  
1.0  
0.8  
V
= 3V  
V
= 3V  
DD  
DD  
0.8  
0.6  
0.6  
0.6  
MAX INL  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
MAX DNL  
0
0
MIN DNL  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
MIN INL  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
OUTPUT CODE  
OUTPUT CODE  
SUPPLY VOLTAGE (V)  
23656 G01  
23656 G02  
23656 G03  
Histogram for 16384 Conversions  
SNR vs Input Frequency  
SINAD vs Input Frequency  
10000  
8000  
6000  
4000  
73.5  
73.3  
73.1  
72.9  
72.7  
72.5  
73.2  
73.0  
V
DD  
= 3V  
V
= 3.6V  
DD  
V
= 3.6V  
DD  
72.8  
72.6  
V
= 3V  
DD  
V
= 3V  
DD  
V
= 2.35V  
DD  
72.4  
72.2  
72.0  
V
= 2.35V  
DD  
2000  
0
2045  
2047 2048 2049 2050  
CODE  
2046  
100  
1000  
100  
1000  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
23656 G04  
23656 G05  
23656 G06  
THD vs Input Resistance  
461kHz Sine Wave 8192 FFT Plot  
THD vs Input Frequency  
–81  
–82  
–83  
–78  
–79  
–80  
–81  
–82  
–83  
0
R
SMPL  
= 10Ω  
IN  
V
= 3V  
V
= 3V  
DD  
DD  
f
= 1Msps  
f
f
= 1Msps  
f
= 1Msps  
SMPL  
SMPL  
IN  
–20  
= 1MHz  
f
= 461kHz  
IN  
SINAD = 72.8dB  
THD = –86.1dB  
–40  
–60  
–84  
–85  
–86  
–87  
–88  
V
= 3V  
DD  
–80  
V
= 2.35V  
DD  
–100  
–120  
–140  
V
= 3.6V  
DD  
100  
1000  
0
25  
50  
75  
100  
100  
200  
300  
500  
0
400  
INPUT FREQUENCY (kHz)  
INPUT RESISTANCE (Ω)  
INPUT FREQUENCY (kHz)  
23656 G07  
23656 G08  
23656 G09  
23656f  
6
LTC2365/LTC2366  
TA = 25°C, VDD = OVDD = VREF (LTC2366, Note 4)  
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Nonlinearity  
vs Output Code  
Integral and Differential  
Nonlinearity vs Supply Voltage  
1.0  
Integral Nonlinearity  
vs Output Code  
1.0  
0.8  
1.0  
0.8  
V
= 3V  
V
= 3V  
DD  
DD  
0.8  
0.6  
0.6  
MAX INL  
0.6  
0.4  
0.4  
0.4  
MAX DNL  
0.2  
0.2  
0.2  
0
0
0
MIN INL  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
MIN DNL  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
OUTPUT CODE  
OUTPUT CODE  
SUPPLY VOLTAGE (V)  
23656 G10  
23656 G11  
23656 G12  
Histogram for 16384 Conversions  
SNR vs Input Frequency  
SINAD vs Input Frequency  
73.0  
72.5  
10000  
8000  
6000  
4000  
73.2  
73.0  
72.8  
72.6  
72.4  
72.2  
V
= 3V  
DD  
V
= 3.6V  
DD  
V
= 3.6V  
DD  
V
= 2.35V  
DD  
72.0  
71.5  
V
= 3V  
DD  
V
= 3V  
DD  
71.0  
70.5  
70.0  
V
= 2.35V  
DD  
2000  
0
100  
1000 1500  
2045  
2047 2048 2049 2050  
CODE  
2046  
100  
1000 1500  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
23656 G15  
23656 G13  
23656 G14  
THD vs Input Resistance  
1MHz Sine Wave 8192 FFT Plot  
THD vs Input Frequency  
0
–20  
–72  
–74  
-76  
–64  
–66  
–68  
R
f
= 10Ω  
= 3Msps  
V
f
= 3V  
SMPL  
f = 994kHz  
IN  
IN  
V
f
= 3V  
DD  
DD  
= 3Msps  
SMPL  
= 3Msps  
SMPL  
IN  
f
= 1.5MHz  
SINAD = 72dB  
THD = –80.3dB  
–40  
–78  
–80  
–82  
–84  
–86  
–88  
–60  
–70  
–72  
–74  
–76  
–78  
V
= 3.6V  
–80  
DD  
–100  
–120  
–140  
V
= 3V  
DD  
V
= 2.35V  
DD  
1000  
INPUT FREQUENCY (kHz)  
1500  
0
250  
500  
750  
1250  
100  
1000 1500  
25  
50  
100  
0
75  
INPUT FREQUENCY (kHz)  
INPUT RESISTANCE (Ω)  
23656 G18  
23656 G16  
23656 G17  
23656f  
7
LTC2365/LTC2366  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = OVDD = VREF  
(LTC2365/LTC2366, Note 4)  
Integral and Differential  
Nonlinearity vs Reference  
Voltage (TS8 Package)  
Reference Current vs SCK  
Frequency (TS8 Package)  
Supply Current vs SCK Frequency  
3.0  
2.5  
1.0  
0.8  
250  
200  
150  
16 SCKS PER CONVERSION  
LTC2365, V = 3.6V  
DD  
V
= 3.6V  
0.6  
DD  
MAX DNL  
MAX INL  
0.4  
2.0  
1.5  
0.2  
MIN DNL  
V
= 3V  
0
DD  
V
= 3V  
DD  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
100  
50  
0
V
= 2.35V  
DD  
V
= 3.6V  
DD  
1.0  
0.5  
0
MIN INL  
V
= 2.35V  
DD  
0
10  
20  
30  
40  
50  
0.6  
1.2  
1.8  
2.4  
3.0  
3.6  
0
5
10 15 20 25 30 35 40 45 50  
SCK FREQUENCY (MHz)  
23656 G20  
SCK FREQUENCY (MHz)  
REFERENCE VOLTAGE (V)  
23656 G19  
23656 G21  
Integral and Differential  
Nonlinearity vs Reference  
Voltage (TS8 Package)  
Input Power Bandwidth  
2
0
1.0  
0.8  
V
= 3V  
LTC2366, V = 3.6V  
DD  
DD  
0.6  
LTC2366  
0.4  
–2  
–4  
MAX DNL  
MAX INL  
0.2  
0
LTC2365  
MIN DNL  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–6  
–8  
MIN INL  
–10  
1
10  
INPUT FREQUENCY (MHz)  
100  
0.6  
1.2  
1.8  
2.4  
3.0  
3.6  
REFERENCE VOLTAGE (V)  
23656 G23  
23656 G22  
23656f  
8
LTC2365/LTC2366  
PIN FUNCTIONS  
LTC2365/LTC2366 (S6 Package)  
LTC2365/LTC2366 (TS8 Package)  
V (Pin 1): Positive Supply. The V range is 2.35V to  
DD  
3.6V. Bypass to GND and to a solid ground plane with a  
10μF ceramic capacitor (or 10μF tantalum in parallel with  
0.1μF ceramic).  
V
(Pin 1): Positive Supply. The V range is 2.35V to  
DD  
DD  
DD  
3.6V. V also defines the input span of the ADC, 0V to  
DD  
V . Bypass to GND and to a solid ground plane with a  
DD  
10μF ceramic capacitor (or 10μF tantalum in parallel with  
0.1μF ceramic).  
V
(Pin 2): Reference Input. V  
defines the input  
REF  
REF  
and the V  
GND (Pin 2): Ground. The GND pin must be tied directly  
to a solid ground plane.  
span of the ADC, 0V to V  
range is 1.4V  
REF  
REF  
to V . Bypass to GND and to a solid ground plane with  
DD  
a 4.7μF ceramic capacitor (or 4.7μF tantalum in parallel  
A (Pin 3): Analog Input. A is a single-ended input with  
IN  
IN  
with 0.1μF ceramic).  
respect to GND with a range from 0V to V .  
DD  
GND (Pin 3): Ground. The GND pin must be tied directly  
to a solid ground plane.  
SCK (Pin 4): Shift Clock Input. The SCK serial clock ad-  
vances the conversion process. SDO data transitions on  
the falling edge of SCK.  
A (Pin 4): Analog Input. A is a single-ended input with  
IN  
IN  
respect to GND with a range from 0V to V  
.
REF  
SDO (Pin 5): Three-state Serial Data Output. The A/D  
conversion result is shifted out on SDO as a serial data  
stream with MSB first. The data stream consists of two  
leading zeros followed by 12 bits of conversion data and  
two trailing zeros.  
OV (Pin 5): Output Driver Supply for SDO. The OV  
DD  
DD  
range is 1V to 3.6V. Bypass to GND and to a solid ground  
plane with a 4.7μF ceramic capacitor (or 4.7μF tantalum  
in parallel with 0.1μF ceramic).  
CS (Pin 6): Chip Select Input. This active low signal starts  
a conversion on the falling edge and frames the serial  
data transfer.  
SDO (Pin 6): Three-state Serial Data Output. The A/D  
conversion result is shifted out on SDO as a serial data  
stream with MSB first. The data stream consists of two  
leading zeros followed by 12 bits of conversion data and  
two trailing zeros.  
SCK (Pin 7): Shift Clock Input. The SCK serial clock ad-  
vances the conversion process. SDO data transitions on  
the falling edge of SCK.  
CS (Pin 8): Chip Select Input. This active low signal starts  
a conversion on the falling edge and frames the serial  
data transfer.  
23656f  
9
LTC2365/LTC2366  
BLOCK DIAGRAM  
10μF  
4.7μF  
+
+
V
OV  
DD  
DD  
1
5
A
IN  
ANALOG  
THREE-  
STATE  
4
+
INPUT RANGE  
OV TO V  
REF  
12-BIT ADC  
SDO  
S & H  
6
SERIAL  
OUTPUT  
PORT  
V
REF  
2
3
7
8
SCK  
+
TIMING  
LOGIC  
4.7μF  
GND  
CS  
TS8 PACKAGE  
23656 BD  
TIMING DIAGRAMS  
t
8
SCK  
1.6V  
Hi-Z  
SDO  
23656 TD01  
Figure 1. SDO Into Hi-Z State After SCK Falling Edge  
t
7
SCK  
SDO  
1.6V  
V
IH  
V
IL  
23656 TD02  
Figure 2. SDO Data Valid Hold Time After SCK Falling Edge  
t
4
SCK  
SDO  
1.6V  
V
V
OH  
OL  
23656 TD03  
Figure 3. SDO Data Valid Access Time After SCK Falling Edge  
23656f  
10  
LTC2365/LTC2366  
APPLICATIONS INFORMATION  
DC PERFORMANCE  
DYNAMIC PERFORMANCE  
TheLTC2365/LTC2366haveexcellenthighspeedsampling  
capability. Fast fourier transform (FFT) test techniques are  
used to test the ADC’s frequency response, distortion and  
noise at the rated throughput. By applying a low distortion  
sine wave and analyzing the digital output using an FFT  
algorithm, the ADC’s spectral content can be examined for  
frequenciesoutsidethefundamental.Figures5and6show  
typical LTC2365 and LTC2366 FFT plots respectively.  
The noise of an ADC can be evaluated in two ways: signal-  
to-noiseratio(SNR)inthefrequencydomainandhistogram  
in the time domain. The LTC2365/LTC2366 excel in both.  
Figures 5 and 6 demonstrate that the LTC2365/LTC2366  
have an SNR of over 72dB. The noise in the time domain  
histogram is the transition noise associated with a 12-bit  
resolutionADCwhichcanbemeasuredwithaxedDCsignal  
appliedtotheinputoftheADC. Theresultingoutputcodes  
are collected over a large number of conversions. The  
shape of the distribution of codes will give an indication  
of the magnitude of the transition noise. In Figure 4, the  
distribution of output codes is shown for a DC input that  
has been digitized 16384 times. The distribution is Gaus-  
sian and the RMS code transition is about 0.34LSB. This  
corresponds to a noise level of 72.7dB relative to a full  
scale of 3V.  
0
V
= 3V  
DD  
f
f
= 1Msps  
SMPL  
IN  
SINAD = 72.8dB  
THD = –86.1dB  
–20  
= 461kHz  
–40  
–60  
–80  
–100  
–120  
–140  
100  
200  
300  
500  
0
400  
INPUT FREQUENCY (kHz)  
23656 F05  
Figure 5. LTC2365 FFT Plot  
0
–20  
10000  
V
= 3V  
V
= 3V  
DD  
DD  
f
f
= 3Msps  
SMPL  
IN  
SINAD = 72dB  
THD = –80.3dB  
= 994kHz  
8000  
6000  
4000  
–40  
–60  
–80  
–100  
–120  
–140  
2000  
0
1000  
INPUT FREQUENCY (kHz)  
1500  
0
250  
500  
750  
1250  
2045  
2047 2048 2049 2050  
CODE  
2046  
23656 F06  
23656 F04  
Figure 4. Histogram for 16384 Conversions  
Figure 6. LTC2366 FFT Plot  
23656f  
11  
LTC2365/LTC2366  
APPLICATIONS INFORMATION  
Signal-to-Noise plus Distortion Ratio  
sampling rate of 3MHz, the LTC2366 maintains ENOB  
above 11 bits up to the Nyquist input frequency of 1.5MHz  
(refer to Figure 7).  
The signal-to-noise plus distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 6 shows a typical FFT with a 3MHz sam-  
pling rate and a 1MHz input. The dynamic performance  
is excellent for input frequencies up to and beyond the  
Nyquist frequency of 1.5MHz.  
Total Harmonic Distortion  
Thetotalharmonicdistortion(THD)istheratiooftheRMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half the sampling frequency. THD  
is expressed as:  
2
2
2
2
V2 + V3 + V4 +...Vn  
Effective Number of Bits  
THD= 20log  
V1  
The effective number of bits (ENOB) is a measurement  
of the resolution of an ADC and is directly related to  
SINAD by the equation:  
where V is the RMS amplitude of the fundamental  
frequency and V through V are the amplitudes of the  
second through nth harmonics. THD versus Input Fre-  
quency is shown in Figure 8. The LTC2366 has excellent  
distortion performance up to the Nyquist frequency and  
beyond.  
1
2
n
ENOB = (SINAD – 1.76)/6.02  
where ENOB is the effective number of bits of resolu-  
tion and SINAD is expressed in dB. At the maximum  
73.0  
11.83  
11.67  
11.50  
11.34  
–72  
R
= 10Ω  
IN  
V
= 3.6V  
DD  
–74  
–76  
–78  
–80  
–82  
–84  
–86  
–88  
72.5  
V
= 2.35V  
DD  
72.0  
71.5  
V
= 3V  
DD  
V
= 3.6V  
DD  
71.0  
70.5  
70.0  
V
= 3V  
DD  
V
= 2.35V  
DD  
100  
1000 1500  
100  
1000 1500  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
23656 F07  
23656 F08  
Figure 7. LTC2366 ENOB and SINAD vs Input Frequency  
Figure 8. LTC2366 Distortion vs Input Frequency  
23656f  
12  
LTC2365/LTC2366  
APPLICATIONS INFORMATION  
Intermodulation Distortion  
Peak Harmonic or Spurious Noise  
If the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermoduation distortion (IMD) in addition to  
THD. IMD is the change in one sinusoidal input caused  
by the presence of another sinusoidal input at a different  
frequency.  
Thepeakharmonicorspuriousnoiseisthelargestspectral  
component excluding the input signal and DC. This value  
is expressed in decibels relative to the RMS value of a  
full-scale input signal.  
Full-Power and Full-Linear Bandwidth  
The full-power bandwidth is that input frequency at which  
the amplitude of reconstructed fundamental is reduced by  
3dB for full-scale input signal.  
If two pure sine waves of frequencies f and f are applied  
a
b
totheADCinput,nonlinearitiesintheADCtransferfunction  
can create distortion products at the sum and difference  
frequencies of mf nf , where m and n = 0, 1, 2, 3, etc.  
a
b
The full-linear bandwidth is the input frequency at which  
the SINAD has dropped to 68dB (11 effective bits). The  
LTC2365/LTC2366 have been designed to optimize input  
bandwidth, allowing the ADC to undersample input sig-  
nals with frequencies above the converter’s Nyquist Fre-  
quency. Thenoiseoorstaysverylowathighfrequencies;  
SINAD becomes dominated by distortion at frequencies  
far beyond Nyquist.  
For example, the 2nd order IMD terms include (f f ).  
a
b
If the two input sine waves are equal in magnitude, the  
value (in decibels) of the 2nd order IMD products can be  
expressed by the following formula:  
Amplitude at (fa ± fb)  
IMD(fa ± fb)= 20log  
Amplitude at fa  
The LTC2365/LTC2366 have good IMD as shown in Figure  
9a and Figure 9b respectively.  
0
0
V
= 3V  
V
= 3V  
DD  
DD  
f
f
f
= 1Msps  
f
f
f
= 3Msps  
SMPL  
b
b
SMPL  
a
b
–20  
–20  
= 396kHz  
= 424kHz  
= 935kHz  
= 1.045kHz  
–40 IMD = –71.5dB  
–40 IMD = –73.5dB  
–60  
–80  
–60  
–80  
–100  
–100  
–120  
–140  
–120  
–140  
1000  
INPUT FREQUENCY (kHz)  
1500  
0
250  
500  
750  
1250  
0
50 100 150 200 250 300 350 400 450 500  
INPUT FREQUENCY (kHz)  
23656 F09b  
23656 F09a  
Figure 9a. LTC2365 Intermodulation Distortion Plot  
Figure 9b. LTC2366 Intermodulation Distortion Plot  
23656f  
13  
LTC2365/LTC2366  
APPLICATIONS INFORMATION  
OVERVIEW  
Figures11and12detailthetimingdiagramsofconversion  
cycles in 14 and 16 SCK cycles respectively.  
The LTC2365/LTC2366 use a successive approximation  
algorithmandinternalsample-and-holdcircuittoconvertan  
analogsignaltoa12-bitserialoutput.Bothdevicesoperate  
from a single 2.35V to 3.6V supply. The LTC2366 samples  
at a rate of 3Msps with a 48MHz clock while the LTC2365  
samples at a rate of 1Msps with a 16MHz clock.  
Data Transfer  
A falling CS edge starts a conversion and frames the se-  
rial data transfer. SCK provides the conversion clock and  
controls the data transfer during the conversion.  
CS going low clocks out the first leading zero and sub-  
sequent SCK falling edges clock out the remaining data,  
beginning with the second leading zero. (Therefore, the  
first SCK falling edge captures the first leading zero and  
clocks out the second leading zero). The timing diagram  
in Figure 12 shows that the final bit in the data transfer is  
valid on the 16th falling edge, since it is clocked out on  
the previous 15th falling edge.  
TheLTC2365/LTC2366containa12-bit,switched-capacitor  
ADC, a sample-and-hold, and a serial interface (see Block  
Diagram) and are available in tiny 6- and 8-lead TSOT-23  
packages.Thedevicesprovidesleepmodecontrolthrough  
the serial interface to save power during inactive periods  
(see the SLEEP MODE section).  
The S6 package of the LTC2365/LTC2366 uses V as the  
DD  
reference and has an analog input range of 0V to V . The  
DD  
In applications with a slower SCK, it is possible to capture  
data on each SCK rising edge. In such cases, the first fall-  
ing edge of SCK clocks out the second leading zero and  
can be captured on the first rising edge. However, the first  
leading zero clocked out when CS goes low is missed as  
shown in Figures 11 and 12. In Figure 12, the 15th falling  
edge of SCK clocks out the last bit and can be captured  
on the 15th rising SCK edge.  
ADC samples the analog input with respect to GND and  
outputs the result through the serial interface.  
TheTS8packageprovidestwoadditionalpins:areference  
input pin, V , and an output supply pin, OV . The ADC  
REF  
DD  
can operate with reduced spans down to 1.4V and achieve  
342μV resolution. OV controls the output swing of the  
DD  
digital output pin, SDO, and allows the device to com-  
municate with 1.8V, 2.5V or 3V digital systems.  
If CS goes low while SCK is low, then CS clocks out the  
first leading zero and can be captured on the SCK rising  
edge. The next SCK falling edge clocks out the second  
leading zero and can be captured on the following rising  
edge as shown in in Figure 10.  
SERIAL INTERFACE  
TheLTC2365/LTC2366communicatewithmicrocontrollers,  
DSPs and other external circuitry via a 3-wire interface.  
Figure 10 shows the serial interface timing diagram, while  
t
1
CS  
t
CONV  
t
2
t
6
SCK  
SDO  
1
2
3
4
5
13  
14  
15  
16  
t
5
t
8
t
t
7
t
4
3
t
QUIET  
ZERO  
ZERO  
B11  
B10  
B9  
13t  
B1  
B0  
ZERO  
ZERO  
Hi-Z STATE  
(MSB)  
t
SCK  
ACQ  
t
THROUGHPUT  
23656 F10  
Figure 10. LTC2365/LTC2366 Serial Interface Timing Diagram  
23656f  
14  
LTC2365/LTC2366  
APPLICATIONS INFORMATION  
Achieving 3Msps Sample Rate with LTC2366  
Serial Data Output (SDO)  
CS going low places the sample-and-hold into hold mode  
and starts a conversion. The LTC2365/LTC2366 require  
at least 14 SCK cycles to finish the conversion. The  
conversion terminates after the 13th falling SCK edge,  
which clocks out B0. The 14th falling SCK edge places  
the sample-and-hold back into sample mode.  
TheSDOoutputremainsinthehighimpedancestatewhile  
CS is high. The falling edge of CS starts the conversion  
and enables SDO. The A/D conversion result is shifted out  
on the SDO pin as a serial data stream with the MSB first.  
The data stream consists of two leading zeros followed  
by 12 bits of conversion data and two trailing zeros. The  
SDO output returns to the high impedance state at the  
16th falling edge of SCK or sooner by bringing CS high  
before the 16th falling edge of SCK.  
Ignoring the last two trailing zeros, the user can bring CS  
high after the 14th falling SCK edge. The user can also  
keep the last two trailing zeros by bringing CS high right  
after the 16th falling SCK. In both cases, a sample rate  
of 3Msps can be achieved by using a 48MHz SCK clock  
The output swing on the SDO pin is controlled by the V  
DD  
pin voltage in the S6 package and by the OV pin voltage  
DD  
on the LTC2366, where t  
is 333ns.  
in the TS8 package.  
THROUGHPUT  
t
1
CS  
t
t
ACQ  
CONV  
t
t
6
2
SCK  
SDO  
1
2
3
4
5
13  
14  
t
5
t
t
7
t
t
4
9
3
t
QUIET  
Z
ZERO  
B11  
B10  
B9  
B1  
B0  
Hi-Z STATE  
(MSB)  
t
THROUGHPUT  
23656 F11  
Figure 11. LTC2365/LTC2366 Serial Interface Timing Diagram for 14 SCK Cycles  
t
1
CS  
t
t
ACQ  
CONV  
t
t
6
2
SCK  
SDO  
1
2
3
4
5
13  
14  
15  
16  
t
5
t OR t  
8 9  
t
t
7
t
4
3
t
QUIET  
Z
ZERO  
B11  
B10  
B9  
B1  
B0  
ZERO  
ZERO  
Hi-Z STATE  
(MSB)  
t
THROUGHPUT  
23656 F12  
Figure 12. LTC2365/LTC2366 Serial Interface Timing Diagram for 16 SCK Cycles  
23656f  
15  
LTC2365/LTC2366  
APPLICATIONS INFORMATION  
SLEEP MODE  
Entering Sleep Mode  
The LTC2365/LTC2366 provide a sleep mode to conserve  
power during inactive periods. Upon power-up, holding  
CS high initializes the ADC to sleep mode. In sleep mode,  
all bias circuitry is shut down and only leakage currents  
remain (0.1μA typ).  
The ADC achieves the fastest sampling rate in operational  
mode(fullpower-up).Thedevicecanalsobeputintosleep  
mode for power savings during inactive periods. To force  
the LTC2365/LTC2366 into sleep mode, the user can inter-  
rupt the conversion process by bringing CS high between  
the 2nd and 10th falling edges of SCK (see Figures 13 and  
14). If CS is brought high after the 10th falling edge and  
before the 16th falling edge, the device remains powered  
up, but the conversion is terminated and SDO returns to  
the high impedance state.  
CS  
1
2
10  
12  
14  
16  
SCK  
SDO  
VALID DATA  
23656 F13  
Figure 13. LTC2365/LTC2366 Operational Mode  
CS  
1
2
10  
12  
14  
16  
SCK  
SDO  
Hi-Z STATE  
23656 F14  
Figure 14. LTC2365/LTC2366 Entering Sleep Mode  
23656f  
16  
LTC2365/LTC2366  
APPLICATIONS INFORMATION  
Exiting Sleep Mode and Power-Up Time  
POWER VERSUS SAMPLING RATE  
To exit sleep mode, pull CS low and perform a dummy  
conversion. The LTC2365/LTC2366 device power up com-  
pletely after the 16th falling edge of SCK. After powering  
up, the ADC can continuously acquire an input signal  
and perform conversions as described in the SERIAL  
INTERFACE section (see Figure 15). The wake-up time is  
333ns for the LTC2366 with a 48MHz SCK and 1μs for the  
LTC2365 with a 16MHz SCK.  
Figure 16 shows the power consumption of the LTC2365/  
LTC2366inoperationalmode.BytakingtheADCintosleep  
mode when not performing a conversion, the average  
powerconsumptionoftheADCdecreasesasthesampling  
rate decreases. Figure 17 shows the power consumption  
versus sampling rate with the device in sleep mode when  
not performing a conversion.  
The sample-and-hold is in hold mode while the device is in  
sleep mode. The ADC returns to sample mode after the 1st  
falling edge of SCK during power-up (see Figure 15).  
THE DEVICE BEGINS  
TO POWER UP  
THE DEVICE BEGINS  
TO ACQUIRE INPUT  
THE DEVICE IS FULLY  
POWERED UP AND READY  
TO PERFORM CONVERSION  
t
POWER-UP  
CS  
1
2
10  
12  
14  
16  
1
2
10  
12  
14  
16  
SCK  
SDO  
INVALID DATA  
VALID DATA  
23656 F15  
Figure 15. LTC2365/LTC2366 Exiting Sleep Mode  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
8
V
f
= 3V  
V
f
= 3V  
DD  
SCK  
DD  
SCK  
= VARIABLE  
= 48MHz  
7
6
5
4
3
2
1
0
16 SCKS PER CONVERSION  
3.0  
500  
0
250  
750  
1000  
0
500 1000 1500  
SAMPLE RATE (ksps)  
3000  
2000 2500  
SAMPLE RATE (ksps)  
23656 F17  
23656 F16  
Figure 16. Power Consumption vs Sample Rate while  
the Device Remains Powered Up Continuously  
Figure 17. Power Consumption vs Sample Rate while the Device  
Enters Sleep Mode when not Performing Conversions  
23656f  
17  
LTC2365/LTC2366  
APPLICATIONS INFORMATION  
SINGLE-ENDED ANALOG INPUT  
Choosing an Input Amplifier  
Choosing an input amplifier is easy if a few requirements  
are taken into consideration. First, to limit the magnitude  
of the voltage spike seen by amplifier from charging the  
sampling capacitor, choose an amplifier that has a low  
output impedance (<100Ω) at the closed-loop bandwidth  
frequency. For example, if an amplifier is used in a gain  
of 1 and has a unitygain bandwidth of 50MHz, then the  
output impedance at 50MHz must be less than 100Ω. The  
secondrequirementisthattheclosed-loopbandwidthmust  
be greater than 40MHz to ensure adequate small signal  
settling for full throughput rate. If slower op amps are  
used, more time for settling can be provided by increas-  
ing the time between conversions. The best choice for an  
op amp to drive the LTC2365/LTC2366 will depend on the  
application.Generally,applicationsfallintotwocategories:  
AC applications where dynamic specifications are most  
critical and time domain applications where DC accuracy  
and settling time are most critical. The following list is a  
summary of the op amps that are suitable for driving the  
LTC2365/LTC2366.(Moredetailedinformationisavailable  
on the Linear Technology website at www.linear.com.)  
Driving the Analog Input  
The analog input of the LTC2365/LTC2366 is easy to drive.  
The input draws only one small current spike while charg-  
ing the sample-and-hold capacitor at the end of conver-  
sion. During the conversion, the analog input draws only  
a small leakage current. If the source impedance of the  
drivingcircuitislow,thentheinputoftheLTC2365/LT2366  
can be driven directly. As source impedance increases,  
so will acquisition time. For minimum acquisition time  
with high source impedance, a buffer amplifier should be  
used. The main requirement is that the amplifier driving  
the analog input must settle after the small current spike  
before the next conversion starts (settling time must be  
less than 56ns for full throughput rate). While choosing  
an input amplifier, also keep in mind the amount of noise  
and harmonic distortion the amplifier contributes.  
23656f  
18  
LTC2365/LTC2366  
APPLICATIONS INFORMATION  
LTC1566-1: Low Noise 2.3MHz Continuous Time Low-  
Pass Filter.  
Input Filtering and Source Impedance  
Thenoiseandthedistortionoftheinputamplifierandother  
circuitry must be considered since they will add to the  
LTC2365/LTC2366 noise and distortion. The small-signal  
bandwidth of the sample-and-hold circuit is 50MHz. Any  
noise or distortion products that are present at the analog  
inputs will be summed over this entire bandwidth. Noisy  
input circuitry should be filtered prior to the analog inputs  
tominimizenoise. Asimple1-poleRClterissufficientfor  
many applications. For example, Figure 18 shows a 47pF  
LT1630:Dual30MHzRail-to-RailVoltageFeedbackAmpli-  
fier. 2.7V to 15V supplies. Very high A , 500μV offset  
VOL  
and520nssettlingto0.5LSBfora4Vswing.THDandnoise  
are –93dB to 40kHz and below 1LSB to 320kHz (A = 1,  
V
2V into 1k, V = 5V), making the part excellent for AC  
P-P  
S
applications(to1/3Nyquist)whererail-to-railperformance  
is desired. Quad version is available as LT1631.  
LT1632:Dual45MHzRail-to-RailVoltageFeedbackAmpli-  
capacitor from A to ground and a 51Ω source resistor to  
IN  
fier. 2.7V to 15V supplies. Very high A , 1.5mV offset  
VOL  
limittheinputbandwidthto47MHz.The47pFcapacitoralso  
acts as a charge reservoir for the input sample-and-hold  
and isolates the ADC input from sampling-glitch sensitive  
circuitry. High quality capacitors and resistors should be  
used since these components can add distortion. NPO  
and silvermica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metallmsurfacemountresistors  
are much less susceptible to both problems. When high  
amplitude unwanted signals are close in frequency to the  
desired signal frequency, a multiple pole filter is required.  
Highexternalsourceresistance,combinedwiththe20pFof  
input capacitance, will reduce the rated 50MHz bandwidth  
and increase acquisition time beyond 56ns.  
and 400ns settling to 0.5LSB for a 4V swing. It is suitable  
for applications with a single 5V supply. THD and noise  
are –93dB to 40kHz and below 1LSB to 800kHz (A = 1,  
V
2V into 1k, V = 5V), making the part excellent for AC  
P-P  
S
applications where rail-to-rail performance is desired.  
Quad version is available as LT1633.  
LT1813: Dual 100MHz 750V/μs 3mA Voltage Feedback  
Amplifier. 5V to 5V supplies. Distortion is –86dB to  
100kHz and –77dB to 1MHz with 5V supplies (2V  
P-P  
into 500). Excellent part for fast AC applications with 5V  
supplies.  
LT1801: 180MHz GBWP, 75dBc at 500kHz, 2mA/Ampli-  
fier, 8.5nV/√Hz.  
LT1806/LT1807: 325MHz GBWP, 80dBc Distortion at  
5MHz, Unity-Gain Stable, R-R In and Out, 10mA/Ampli-  
fier, 3.5nV/√Hz.  
LTC2366  
1
6
5
4
V
CS  
SD0  
SCK  
DD  
10μF  
LT1810: 180MHz GBWP, 90dBc Distortion at 5MHz,  
Unity-Gain Stable, R-R In and Out, 15mA/Amplifier,  
16nV/√Hz.  
2
3
GND  
47pF  
51Ω  
A
IN  
23656 F18  
LT1818/LT1819: 400MHz, 2500V/μs, 9mA, Single/Dual  
Voltage Mode Operational Amplifier.  
Figure 18. RC Input Filter  
LT6200: 165MHz GBWP, 85dBc Distortion at 1MHz,  
Unity-Gain Stable, R-R In and Out, 15mA/Amplifier,  
0.95nV/√Hz.  
LT6203: 100MHz GBWP, 80dBc Distortion at 1MHz,  
Unity-Gain Stable, R-R In and Out, 3mA/Amplifier,  
1.9nV√Hz.  
LinearView is a trademark of Linear Technology Corpration  
23656f  
19  
LTC2365/LTC2366  
APPLICATIONS INFORMATION  
Reference Input  
Figure 19 shows the ideal input/output characteristics for  
the LTC2365/LTC2366. The code transitions occur mid-  
way between successive integer LSB values (i.e. 0.5LSB,  
1.5LSB, 2.5LSB, …, FS –1.5LSB). The output code is  
On the TS8 package of the LTC2365/LTC2366, the voltage  
ontheV pindefinesthefull-scalerangeoftheADC. The  
REF  
reference voltage can range from V down to 1.4V.  
DD  
straight binary with 1LSB = V /4096 for the S6 package  
DD  
Input Range  
and 1LSB = V /4096 for the TS8 package.  
REF  
TheanaloginputoftheLTC2365/LTC2366isdrivensingle-  
ended with respect to GND from a single supply. The input  
BOARD LAYOUT AND BYPASSING  
may swing up to V for the S6 package and to V for  
DD  
REF  
Wire wrap boards are not recommended for high resolu-  
tion and/or high speed A/D converters. To obtain the best  
performance from the LTC2365/LTC2366, a printed circuit  
boardwithgroundplaneisrequired. Layoutfortheprinted  
circuit board should ensure that digital and analog signal  
lines are separated as much as possible. In particular, care  
should be taken not to run any digital track alongside an  
analog signal track or underneath the ADC. The analog  
input should be screened by the ground plane.  
the TS8 package. The 0V to 2.5V range is also ideally  
suited for single-ended input use with V or V = 2.5V  
DD  
REF  
for single supply applications. If the difference between  
the A input and GND exceeds V for the S6 package or  
IN  
DD  
V
REF  
for the TS8 package, the output code will stay fixed  
at all ones, and if this difference goes below 0V, the output  
code will stay fixed at all zeros.  
111...111  
111...110  
000...001  
000...000  
0 1LSB  
FS – 1LSB  
INPUT VOLTAGE (V)  
23656 F19  
Figure 19. LTC2365/LTC2366 Transfer Characteristics  
23656f  
20  
LTC2365/LTC2366  
APPLICATIONS INFORMATION  
High quality tantalum and ceramic bypass capacitors  
Figure 20 shows the recommended system ground con-  
nections.Allanalogcircuitrygroundsshouldbeterminated  
at the LTC2365/LTC2366. The ground return from the  
LTC2365/LTC2366 to the power supply should be low  
impedancefornoisefreeoperation.Digitalcircuitrygrounds  
must be connected to the digital supply common.  
should be used at the V and V pins as shown in the  
DD  
REF  
Typical Application circuit on the first page of this data  
sheet. For optimum performance, a 10μF surface mount  
AVX capacitor with a 0.1μF ceramic is recommended for  
the V pin and a 4.7μF surface mount AVX capacitor  
DD  
with a 0.1μF ceramic is recommended for the V  
and  
REF  
InapplicationswheretheADCdataoutputsandcontrolsig-  
nalsareconnectedtoacontinuouslyactivemicroprocessor  
bus, it is possible to get errors in the conversion results.  
These errors are due to feedthrough from the micropro-  
cessor to the successive approximation comparator. The  
problem can be eliminated by forcing the microprocessor  
into a Wait state during conversion or by using three-state  
buffers to isolate the ADC data bus.  
OV pins. Alternatively, 4.7μF and 10μF ceramic chip  
DD  
capacitors such as Murata GRM235Y5V106Z016 may  
be used. The capacitors must be located as close to the  
pins as possible. The traces connecting the pins and the  
bypass capacitors must be kept short and should be made  
as wide as possible.  
CV  
DD  
+
10μF  
PIN 1  
V
CS  
DD  
GND  
SDO  
SCK  
CA  
IN  
A
IN  
VIAS TO GROUND PLANE  
23656 F20  
Figure 20. Power Supply Ground Practice  
23656f  
21  
LTC2365/LTC2366  
PACKAGE DESCRIPTION  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
3. DIMENSIONS ARE INCLUSIVE OF PLATING 6. JEDEC PACKAGE REFERENCE IS MO-193  
23656f  
22  
LTC2365/LTC2366  
PACKAGE DESCRIPTION  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637)  
2.90 BSC  
(NOTE 4)  
0.52  
MAX  
0.65  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
0.09 – 0.20  
(NOTE 3)  
TS8 TSOT-23 0802  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
3. DIMENSIONS ARE INCLUSIVE OF PLATING 6. JEDEC PACKAGE REFERENCE IS MO-193  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23656f  
23  
LTC2365/LTC2366  
TYPICAL APPLICATION  
Low-Jitter Clock Timing with RF Sine Generator Using Clock  
Squaring/Level Shifting Circuit and Re-Timing Flip-Flop  
V
CC  
1k  
NC7SVU04P5X  
0.1μF  
MASTER CLOCK  
CC  
V
50Ω  
1k  
PRE  
CLR  
CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
D
Q
CONV  
Q
CONVERT ENABLE  
NL17SZ74  
CONV  
LTC2366  
SCK  
NC7SVU04P5X  
100Ω  
SDO  
2365/2366 TA02  
RELATED PARTS  
PART NUMBER  
ADCs  
DESCRIPTION  
COMMENTS  
LTC1402  
12-Bit, 2.2Msps Serial ADC  
12-/14-Bit, 2.8Msps Serial Sampling ADC  
5V or 5V Supply, 4.096V or 2.5V Span  
3V, Differential Input, 12mW, MSOP Package  
LTC1403/LTC1403A  
LTC1407/LTC1407A  
LTC1860  
12-/14-Bit, 3Msps Simultaneous Sampling ADC 3V, 2-Channel Differential, 14mW, MSOP Package  
12-Bit, 250ksps Serial ADC  
5V Supply, 1-Channel, 4.3mW, MSOP-8 Package  
LTC1860L  
12-Bit, 150ksps Serial ADC  
3V Supply, 1-Channel, 1.3mW, MSOP-8 Package  
LTC1861  
12-Bit, 250ksps Serial ADC  
5V Supply, 2-Channel, 4.3mW, MSOP-8 Package  
LTC1861L  
12-Bit, 150ksps Serial ADC  
3V Supply, 2-Channel, 1.3mW, MSOP-8 Package  
LTC1863  
12-Bit, 200ksps Serial ADC 8-Channel ADC  
12-Bit, 250ksps Serial ADC 8-Channel ADC  
16-Bit, 250ksps Serial ADC  
5V Supply, 6.5mW, SSOP-16 Package, Pin Compatible to LTC1863L, LTC1867  
5V Supply, 2.2mW, SSOP-16 Package, Pin Compatible to LTC1863, LTC1867L  
5V Supply, 1 and 2 Channel, 4.3mW, MSOP Package  
LTC1863L  
LTC1864/LTC1865  
LTC1867  
16-Bit, 200ksps Serial ADC 8-Channel ADC  
16-Bit, 175ksps Serial ADC 8-Channel ADC  
12-/14-Bit, 3.5Msps Serial ADC  
5V Supply, 6.5mW, SSOP-16 Package, Pin Compatible to LTC1863, LTC1867L  
3V Supply, 2.2mW, SSOP-16 Package, Pin Compatible to LTC1863L, LTC1867  
3.3V Supply, Differential Input, 18mW, MSOP Package  
LTC1867L  
LTC2355/LTC2356  
LTC2360/LTC2361/LTC2362 12-Bit, 100/250/500ksps Serial ADC in TSOT  
3V Supply, Pin- and Software-Compatible to LTC2365/LTC2366  
DACs  
LTC1592  
16-Bit, Serial SoftSpanI  
DAC  
1LSB INL/DNL, Software Selectable Spans  
87dB SFDR, 20ns Settling Time  
OUT  
LTC1666/LTC1667/LTC1668 12-/14-/16-Bit, 50Msps DACs  
LTC2630  
12-/10-/8-Bit Single V  
DACs  
SC70 6-Pin Package, Internal Reference, 1LSB INL (12 Bits)  
OUT  
References  
LT1460-2.5  
LT1461-2.5  
LT1790-2.5  
LT6660  
Micropower Series Voltage Reference  
Precision Voltage Reference  
0.1% Initial Accuracy, 10ppm Drift  
0.05% Initial Accuracy, 3ppm Drift  
Micropower Series Reference in SOT-23  
Ultra-Tiny Micropower Series Reference  
0.05% Initial Accuracy, 10ppm Drift  
2mm × 2mm DFN Package, 0.2% Initial Accuracy, 10ppm Drift  
SoftSpan is a trademark of Linear Technology Corporation.  
23656f  
LT 0408 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
配单直通车
LTC2365HS6#TRMPBF产品参数
型号:LTC2365HS6#TRMPBF
Brand Name:Analog Devices Inc
是否无铅: 含铅
是否Rohs认证: 符合
生命周期:Active
IHS 制造商:ANALOG DEVICES INC
包装说明:VSSOP,
针数:6
制造商包装代码:05-08-1636
Reach Compliance Code:compliant
风险等级:4.32
最大模拟输入电压:3.65 V
最小模拟输入电压:-0.05 V
转换器类型:ADC, PROPRIETARY METHOD
JESD-30 代码:R-PDSO-G6
JESD-609代码:e3
长度:2.9 mm
最大线性误差 (EL):0.0244%
湿度敏感等级:1
模拟输入通道数量:1
位数:12
功能数量:1
端子数量:6
最高工作温度:125 °C
最低工作温度:-40 °C
输出位码:BINARY
输出格式:SERIAL
封装主体材料:PLASTIC/EPOXY
封装代码:VSSOP
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, VERY THIN PROFILE, SHRINK PITCH
峰值回流温度(摄氏度):260
认证状态:Not Qualified
采样速率:1 MHz
采样并保持/跟踪并保持:SAMPLE
座面最大高度:1 mm
标称供电电压:3 V
表面贴装:YES
技术:CMOS
温度等级:AUTOMOTIVE
端子面层:MATTE TIN
端子形式:GULL WING
端子节距:0.95 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:30
宽度:1.625 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!