欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • LTC5585IUF#TRPBF
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • LTC5585IUF#TRPBF图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • LTC5585IUF#TRPBF 现货库存
  • 数量
  • 厂家ADI 
  • 封装24-Lead QFN (4mm x 4mm x 0.75mm w/ EP) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • LTC5585IUF#TRPBF图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • LTC5585IUF#TRPBF 现货库存
  • 数量125000 
  • 厂家ADI/亚德诺 
  • 封装QFN-24 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • LTC5585IUF#TRPBF图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • LTC5585IUF#TRPBF 现货库存
  • 数量8888 
  • 厂家ADI 
  • 封装原封装 
  • 批号新批次 
  • 全球渠道、原厂正品、信誉保障、闪电发货
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • LTC5585IUF#TRPBF图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • LTC5585IUF#TRPBF
  • 数量69800 
  • 厂家LINEAR/凌特 
  • 封装QFN 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • LTC5585IUF#TRPBF图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • LTC5585IUF#TRPBF
  • 数量5419 
  • 厂家LINEAR/凌特 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • LTC5585IUF#TRPBF图
  • 集好芯城

     该会员已使用本站13年以上
  • LTC5585IUF#TRPBF
  • 数量12586 
  • 厂家ADI 
  • 封装24-Lead QFN (4mm x 4mm x 0.75mm w/ EP) 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • LTC5585IUF#TRPBF图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • LTC5585IUF#TRPBF
  • 数量865000 
  • 厂家LINEAR/凌特 
  • 封装QFN24 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • LTC5585IUF#TRPBF图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • LTC5585IUF#TRPBF
  • 数量13880 
  • 厂家ADI/亚德诺 
  • 封装QFN 
  • 批号21+ 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • LTC5585IUF#TRPBF图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • LTC5585IUF#TRPBF
  • 数量2368 
  • 厂家ADI-亚德诺 
  • 封装QFN-24 
  • 批号▉▉:2年内 
  • ▉▉¥113元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • LTC5585IUF#TRPBF图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • LTC5585IUF#TRPBF
  • 数量2500 
  • 厂家LINEAR 
  • 封装QFN24 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507168QQ:2355507168 复制
    QQ:2355507169QQ:2355507169 复制
  • 86-755-83219286 QQ:2355507168QQ:2355507169
  • LTC5585IUF#TRPBF图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • LTC5585IUF#TRPBF
  • 数量168 
  • 厂家LINEAR/凌特 
  • 封装QFN-244x4 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • LTC5585IUF#TRPBF图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • LTC5585IUF#TRPBF
  • 数量
  • 厂家ADI 
  • 封装24-Lead QFN (4mm x 4mm x 0.75mm w/ EP) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • LTC5585IUF#TRPBF图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • LTC5585IUF#TRPBF
  • 数量16200 
  • 厂家LTNEAR 
  • 封装QFN24 
  • 批号23+ 
  • 全新原装正品现货低价
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • LTC5585IUF#TRPBF图
  • 深圳市华兴微电子有限公司

     该会员已使用本站16年以上
  • LTC5585IUF#TRPBF
  • 数量5000 
  • 厂家LINEAR TECHNOLOGY 
  • 封装N/A 
  • 批号23+ 
  • 只做进口原装QQ询价,专营射频微波十五年。
  • QQ:604502381QQ:604502381 复制
  • 0755-83002105 QQ:604502381
  • LTC5585IUF#TRPBF图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • LTC5585IUF#TRPBF
  • 数量125000 
  • 厂家ADI/亚德诺 
  • 封装QFN-24 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • LTC5585IUF#TRPBF图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • LTC5585IUF#TRPBF
  • 数量255 
  • 厂家LINEAR 
  • 封装QFN-24 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!单价:165元
  • QQ:1415691092QQ:1415691092 复制
  • 133-5299-5145(微信同号) QQ:1415691092
  • LTC5585IUF#TRPBF图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • LTC5585IUF#TRPBF
  • 数量
  • 厂家ADI 
  • 封装24-Lead QFN (4mm x 4mm x 0.75mm w/ EP) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • LTC5585IUF#TRPBF图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • LTC5585IUF#TRPBF
  • 数量98622 
  • 厂家ADI/亚德诺 
  • 封装QFN-24 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • LTC5585IUF#TRPBF图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • LTC5585IUF#TRPBF
  • 数量9500 
  • 厂家ADI(亚德诺) 
  • 封装24-WFQFN 
  • 批号24+ 
  • 绝对原装正品,可开专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • LTC5585IUF#TRPBF图
  • 深圳市恒意创鑫电子有限公司

     该会员已使用本站10年以上
  • LTC5585IUF#TRPBF
  • 数量9000 
  • 厂家LINEAR/凌特 
  • 封装QFN 
  • 批号22+ 
  • 全新原装公司现货,支持实单
  • QQ:1493457560QQ:1493457560 复制
  • 0755-83235429 QQ:1493457560
  • LTC5585IUF#TRPBF图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • LTC5585IUF#TRPBF
  • 数量85000 
  • 厂家LINEAR/凌特 
  • 封装QFN24 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • LTC5585IUF#TRPBF图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • LTC5585IUF#TRPBF
  • 数量7800 
  • 厂家LINEAR/凌特 
  • 封装QFN 
  • 批号20+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • LTC5585IUF#TRPBF图
  • 深圳市恒佳微电子有限公司

     该会员已使用本站12年以上
  • LTC5585IUF#TRPBF
  • 数量
  • 厂家2600 
  • 封装QFN24 
  • 批号 
  • 正品原装 支持最低价
  • QQ:864187665QQ:864187665 复制
    QQ:1807086236QQ:1807086236 复制
  • 755-82533156 QQ:864187665QQ:1807086236
  • LTC5585IUF#TRPBF图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • LTC5585IUF#TRPBF
  • 数量63213 
  • 厂家 
  • 封装 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • LTC5585IUF#TRPBF图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • LTC5585IUF#TRPBF
  • 数量98500 
  • 厂家LINEAR/凌特 
  • 封装QFN 
  • 批号23+ 
  • 真实库存全新原装正品!专业配单
  • QQ:308365177QQ:308365177 复制
  • 0755-13418564337 QQ:308365177

产品型号LTC5585IUF#TRPBF的概述

LTC5585IUFTRPBF 概述 LTC5585IUF#TRPBF 是一款由 Linear Technology(现为 Analog Devices 公司的一部分)设计和制造的射频(RF)混频器。该芯片作为一种高性能、低成本的解决方案,在各种无线通信应用中找到了广泛的应用。LTC5585 的主要功能是将射频信号与本振信号进行混频,产生中频(IF)信号,这对接收器的信号处理至关重要。 该芯片具有高线性度、低噪声系数和较宽的频率范围,使其在无线电、卫星通信、雷达、图像传输及其他多种应用中表现出色。其广泛的应用性和较强的性能使其在众多射频电路设计中成为了一个重要的组成部分。 LTC5585IUFTRPBF 的详细参数 1. 工作频率范围:LTC5585 的射频输入范围通常为 100 MHz 到 6 GHz。经过适当的电路设计,其可覆盖多种无线通信标准,如 4G、5G 和其他高频通信协议。...

产品型号LTC5586IUH#PBF的Datasheet PDF文件预览

LTC5586  
6GHz High Linearity  
I/Q Demodulator with  
Wideband IF Amplifier  
FeaTures  
DescripTion  
n
300MHz to 6GHz Operating Frequency  
The LTC®5586 is a direct conversion quadrature demod-  
ulator optimized for high linearity zero-IF and low IF  
receiver applications in the 300MHz to 6GHz frequency  
range. The very wide IF bandwidth of more than 1GHz  
makes the LTC5586 particularly suited for demodulation  
of very wideband signals, especially in digital predistor-  
tion (DPD) applications. The outstanding dynamic range  
of the LTC5586 makes the device suitable for demanding  
infrastructure direct conversion applications. Proprietary  
technology inside the LTC5586 provides the capability  
to optimize OIP2 to 80dBm, and achieve image rejection  
better than 60dB. The DC offset control function allows  
nulling of the DC offset at the A/D converter input, thereby  
optimizing the dynamic range of true zero-IF receivers  
that use DC coupled IF signal paths. The wideband RF  
and LO input ports make it possible to cover all the major  
wireless infrastructure frequency bands using a single  
device. The IF outputs of the LTC5586 are designed to  
interface directly with most common A/D converter input  
interfaces. The high OIP3 and high conversion gain of the  
device eliminate the need for additional amplifiers in the  
IF signal path.  
n
Wide IF Bandwidth: DC to 1GHz (–1dB Bandwidth)  
n
High Mixer IIP3: 30dBm at 1.9GHz  
n
High Total OIP3: 40dBm at 1.9GHz  
n
High Total OIP2: 74dBm at 1.9GHz  
n
User Adjustable OIP2 to 80dBm  
n
User Adjustable Image Rejection to 60dB  
n
User Adjustable DC Offset Null  
Serial Interface  
n
n
Power Conversion Gain: 7.7dB at 1.9GHz  
n
31dB RF Attenuator with 1dB Step Size  
n
RF Switch with 40dB Isolation at 1.9GHz  
n
Single-Ended RF Inputs with On-Chip Transformer  
n
IF Amplifier Gain Adjustable in 8 Steps  
n
Operating Temperature Range (T ): –40°C to 105°C  
C
n
32-Lead 5mm × 5mm QFN Package  
applicaTions  
n
4G and 5G Base Station Receivers  
n
Wideband DPD Receivers  
n
Point-To-Point Broadband Radios  
n
High Linearity Direct Conversion I/Q Receivers  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Analog  
Devices, Inc. All other trademarks are the property of their respective owners.  
n
Image Rejection Receivers  
Typical applicaTion  
Gain, OIP3 and OIP2 vs Temperature (TC)  
(Unoptimized)  
Dual Band Transmitter with DPD Receiver  
90  
OIP2  
80  
RF  
1
PA  
1
70  
60  
50  
LTC5586  
IFIP  
OIP3  
ADC  
40  
30  
20  
10  
0
RFA  
IFIM  
8 STEPS  
RFB  
0º  
GAIN  
f
LO  
90º  
RFSW  
8 STEPS  
IFQP  
ATTEN  
0dB – 31dB  
-10  
0
1
2
3
4
5
6
SPI  
ADC  
RF FREQUENCY (GHz)  
IFQM  
5586 G01  
I, 105°C  
I, 85°C  
I, 25°C  
I, –40°C  
Q, 105°C  
Q, 85°C  
Q, 25°C  
Q, –40°C  
RF  
2
PA  
2
5586 TA01  
5586fa  
1
For more information www.linear.com/LTC5586  
LTC5586  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
TOP VIEW  
(Note 1)  
VCC, VCCN Supply Voltage (Note 21) ....... –0.3V to 5.5V  
OVDD, SDO Voltage (Note 18)................... –0.3V to 3.8V  
RFA, RFB DC Voltage ...................................1.5V to 2.0V  
LOP, LOM DC Voltage ..................................2.1V to 2.8V  
IFIM, IFIP, IFQP, IFQM DC Voltage............. –0.3V to 3.5V  
AIM, AIP, AQM, AQP  
32 31 30 29 28 27 26 25  
GND  
RFA  
1
2
3
4
5
6
7
8
24 OVDD  
SCK  
SDI  
23  
22  
TEMP  
RFSW  
VCCN  
VCM  
RFB  
21 SDO  
20 LOM  
19 LOP  
33  
GND  
DC Voltage........................... V – 1.7V to V – 1.2V  
CC  
CC  
MIM, MIP, MQM, MQP  
18  
17  
VCC  
CSB  
DC Voltage........................... V – 1.7V to V – 1.2V  
CC  
CC  
GND  
Voltage on Any Other Pin.......................... –0.3V to 5.5V  
LOP, LOM, RFA, RFB Input Power (Note 17) ......+20dBm  
Output Short Circuit Duration (Notes 14, 17)... Indefinite  
9
10 11 12 13 14 15 16  
UH PACKAGE  
Maximum Junction Temperature (T  
)............. 150°C  
JMAX  
32-LEAD (5mm × 5mm) PLASTIC QFN  
Case Operating Temperature Range (T )–40°C to 105°C  
T
JMAX  
= 150°C, θ = 7.7°C/W  
C
JC  
EXPOSED PAD (PIN 33) IS GND, MUST BE SOLDERED TO PCB  
Storage Temperature Range .................. –65°C to 150°C  
orDer inForMaTion http://www.linear.com/product/LTC5586#orderinfo  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC5586IUH#PBF  
LTC5586IUH#TRPBF  
5586  
32-Lead (5mm x 5mm) Plastic QFN  
–40°C to 105°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
5586fa  
2
For more information www.linear.com/LTC5586  
LTC5586  
elecTrical characTerisTics TC = 25°C, VCC = VCCN = 5V, OVDD = CSB = RFSW = 3.3V, SDI = SCK = 0V,  
VCM = 0.9V, PIF = 1.5dBm (–1.5dBm/tone for 2-tone tests), PLO = 6dBm, all registers at default values unless otherwise noted.  
(Notes 2, 3, 6, 9, 19, 22)  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 12)  
MIN  
TYP  
MAX  
UNITS  
GHz  
f
f
RF Input Frequency Range  
LO Input Frequency Range  
RF Input Return Loss  
0.3 to 6.0  
0.3 to 6.0  
RF(RANGE)  
LO(RANGE)  
(Note 12)  
GHz  
RL  
f
f
= 300MHz to 500MHz (Note 5)  
= 500MHz to 6.0GHz  
>10  
>10  
dB  
dB  
RF  
RF  
RF  
RL  
LO Input Return Loss  
LO Input Power Range  
f
= 300MHz to 6.0GHz  
>10  
dB  
LO  
LO  
P
(Note 12)  
–6 to 12  
dBm  
LO(RANGE)  
G
Maximum Power Conversion Gain  
ATT = 0x00, AMPG = 0x06,  
LOAD  
f
RF  
f
RF  
f
RF  
f
RF  
f
RF  
f
RF  
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
7.4  
9.2  
7.7  
7.1  
4.3  
0.7  
dB  
dB  
dB  
dB  
dB  
dB  
P(MAX)  
R
= 100Ω Differential (Note 8)  
G
Power Conversion Gain at Maximum  
Attenuation. ATT = 0x1F, AMPG = 0x06,  
LOAD  
f
RF  
f
RF  
f
RF  
f
RF  
f
RF  
f
RF  
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
–23.3  
–21.3  
–21.8  
–23.5  
–24.0  
–23.9  
dB  
dB  
dB  
dB  
dB  
dB  
P(MIN)  
R
= 100Ω, Differential (Note 8)  
Attenuation Step Size  
Attenuation Step Accuracy  
RFA, RFB Gain Error  
1.0  
0.2  
dB  
dB  
dB  
ns  
0.05  
100  
RFA, RFB Switching Time  
RFA, RFB Isolation  
AB  
NF  
f
f
f
f
f
f
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
49  
48  
40  
42  
38  
25  
dB  
dB  
dB  
dB  
dB  
dB  
ISO  
RF  
RF  
RF  
RF  
RF  
RF  
Noise Figure, Double Side Band (Note 4)  
f
f
f
f
f
f
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
19.0  
17.8  
19.5  
21.1  
23.2  
31.0  
dB  
dB  
dB  
dB  
dB  
dB  
RF  
RF  
RF  
RF  
RF  
RF  
NF  
Noise Figure Under Blocking Conditions  
f
RF  
f
RF  
f
RF  
f
RF  
f
RF  
f
RF  
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
19.7  
18.9  
20.8  
22.5  
24.8  
30.2  
dB  
dB  
dB  
dB  
dB  
dB  
BLOCKING  
Double Side Band, P ,  
= 1.5dBm  
IF BLOCKER  
(Note 7)  
OIP3  
OIP2  
Output 3rd Order Intercept  
Unadjusted/Adjusted  
f
f
f
f
f
f
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
41/44  
42/43  
40/42  
38/40  
35/36  
32/33  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
RF  
RF  
RF  
RF  
RF  
RF  
Output 2nd Order Intercept  
Unadjusted/Adjusted  
f
f
f
f
f
f
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
75/80  
75/80  
74/80  
65/80  
60/70  
49/56  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
RF  
RF  
RF  
RF  
RF  
RF  
5586fa  
3
For more information www.linear.com/LTC5586  
LTC5586  
elecTrical characTerisTics TC = 25°C, VCC = VCCN = 5V, OVDD = CSB = RFSW = 3.3V, SDI = SCK = 0V,  
VCM = 0.9V, PIF = 1.5dBm (–1.5dBm/tone for 2-tone tests), PLO = 6dBm, all registers at default values unless otherwise noted.  
(Notes 2, 3, 6, 9, 19, 22)  
SYMBOL  
IIP3  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input 3rd Order Intercept Without Amplifier  
Unadjusted  
f
f
f
f
f
f
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
31  
29  
30  
30  
30  
32  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
DEMOD  
RF  
RF  
RF  
RF  
RF  
RF  
OIP3  
HD2  
HD3  
Output 3rd Order Intercept, Amplifier Only  
(Note 15)  
f
f
f
f
f
f
= 10MHz  
42  
41  
38  
37  
35  
30  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
AMP  
IF  
IF  
IF  
IF  
IF  
IF  
= 100MHz  
= 200MHz  
= 300MHz  
= 500MHz  
= 1000MHz  
2nd Order Harmonic Distortion  
Unadjusted/Adjusted  
f
f
f
f
f
f
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
–63/–85  
–62/–90  
–63/–90  
–61/–90  
–64/–85  
–52/–74  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
RF  
RF  
RF  
RF  
RF  
RF  
3rd Order Harmonic Distortion  
Unadjusted/Adjusted  
f
f
f
f
f
f
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
–83/–84  
–80/–81  
–80/–81  
–80/–80  
–79/–78  
–69/–73  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
RF  
RF  
RF  
RF  
RF  
RF  
P1dB  
Output 1dB Compression Point  
DC Offset, Unadjusted (Note 13)  
f
f
f
f
f
f
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
10.5  
13  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
RF  
RF  
RF  
RF  
RF  
RF  
13  
13  
13  
12.5  
DC  
f
f
f
f
f
f
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
20  
21  
22  
25  
35  
45  
mV  
mV  
mV  
mV  
mV  
mV  
OFFSET  
RF  
RF  
RF  
RF  
RF  
RF  
DC  
DC  
∆G  
DC Offset Adjustment Range  
DC Offset Step Size  
DCOI, DCOQ = 0x00 to 0xFF  
–75 to 75  
640  
mV  
µV  
OFF(RANGE)  
OFF(STEP)  
I/Q Gain Mismatch, Unadjusted  
f
f
f
f
f
f
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
0.04  
0.05  
0.06  
0.06  
0.07  
0.10  
dB  
dB  
dB  
dB  
dB  
dB  
RF  
RF  
RF  
RF  
RF  
RF  
∆G  
I/Q Gain Mismatch Adjustment Range  
I/Q Gain Mismatch Adjustment Step Size  
I/Q Phase Mismatch, Unadjusted  
GERR = 0x00 to 0x3F  
–0.5 to 0.5  
0.016  
dB  
dB  
(RANGE)  
∆G(STEP)  
φ  
f
f
f
f
f
f
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
0.4  
1.1  
1.1  
2.3  
3.2  
0.3  
Deg  
Deg  
Deg  
Deg  
Deg  
Deg  
RF  
RF  
RF  
RF  
RF  
RF  
φ  
(RANGE)  
I/Q Phase Mismatch Adjustment Range  
PHA = 0x000 to 0x1FF  
–2.5 to 2.5  
Deg  
5586fa  
4
For more information www.linear.com/LTC5586  
LTC5586  
elecTrical characTerisTics TC = 25°C, VCC = VCCN = 5V, OVDD = CSB = RFSW = 3.3V, SDI = SCK = 0V,  
VCM = 0.9V, PIF = 1.5dBm (–1.5dBm/tone for 2-tone tests), PLO = 6dBm, all registers at default values unless otherwise noted.  
(Notes 2, 3, 6, 9, 19, 22)  
SYMBOL  
φ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I/Q Phase Mismatch Adjustment Step Size  
0.05  
Deg  
(STEP)  
IRR  
Image Rejection Ratio  
Unadjusted/Adjusted  
(Note 10)  
f
f
f
f
f
f
= 400MHz  
= 700MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
51/68  
44/70  
45/68  
39/69  
33/70  
39/70  
dB  
dB  
dB  
dB  
dB  
dB  
RF  
RF  
RF  
RF  
RF  
RF  
LR  
RL  
LO to RF Leakage  
f
f
f
f
f
f
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
–67  
–63  
–56  
–55  
–45  
–47  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
LEAK  
LO  
LO  
LO  
LO  
LO  
LO  
RF to LO Isolation  
f
f
f
f
f
f
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
59  
65  
66  
62  
57  
52  
dB  
dB  
dB  
dB  
dB  
dB  
ISO  
RF  
RF  
RF  
RF  
RF  
RF  
RI  
RF to IF Isolation (Note 16)  
LO to IF Leakage (Note 16)  
f
f
f
f
f
f
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
70  
65  
50  
53  
48  
47  
dB  
dB  
dB  
dB  
dB  
dB  
ISO  
RF  
RF  
RF  
RF  
RF  
RF  
LI  
f
f
f
f
f
f
= 400MHz  
= 900MHz  
= 1900MHz  
= 2600MHz  
= 3500MHz  
= 5800MHz  
–37  
–36  
–34  
–33  
–42  
–36  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
LEAK  
LO  
LO  
LO  
LO  
LO  
LO  
Power Supply and Other Parameters  
V
, V  
Supply Voltage  
4.75  
430  
5.0  
440  
5.25  
470  
V
mA  
µA  
CC CCN  
I
I
Supply Current  
CC  
VCCN  
Supply Current to VCCN Pin  
Digital I/O Supply Voltage  
RFSW Input High Voltage (On)  
RFSW Input Low Voltage (Off)  
RFSW Pin Input Current  
700  
OV  
1.2 to 3.3  
V
DD  
V
V
0.7 OV  
V
DH  
DD  
0.3 OV  
V
DL  
DD  
I
RFSW = 3.3V  
1
μA  
RFSW  
V
TEMP Diode Bias Voltage  
TEMP Diode Temperature Slope  
Mixer Output Impedance  
I
I
= 100μA into TEMP pin  
= 100μA into TEMP pin  
0.774  
V
TEMP  
TEMP  
TEMP  
–1.52  
mV/°C  
Ω||pF  
V
Z
Differential  
100||0.6  
3.6  
MIX(OUT)  
V
Mixer Output DC Voltage  
Common-Mode  
Differential  
MIX(OUT)  
AMP(IN)  
Z
Amplifier Input Impedance  
Amplifier DC Input Voltage  
Amplifier Output Impedance  
Amplifier DC Output Short Circuit Current  
VCM Pin Voltage Range (Notes 11, 12)  
200||0.2  
3.0 to 4.0  
4||0.5  
Ω||pF  
V
V
Common-Mode  
Differential  
AMP(IN)  
AMP(OUT)  
AMP(SC)  
Z
kΩ||pF  
mA  
V
I
IFIP = IFIM = IFQP = IFQM = 0V  
100  
V
0.5 to 2.0  
CM(RANGE)  
5586fa  
5
For more information www.linear.com/LTC5586  
LTC5586  
elecTrical characTerisTics TC = 25°C, VCC = VCCN = 5V, OVDD = CSB = RFSW = 3.3V, SDI = SCK = 0V,  
VCM = 0.9V, PIF = 1.5dBm (–1.5dBm/tone for 2-tone tests), PLO = 6dBm, all registers at default values unless otherwise noted.  
(Notes 2, 3, 6, 9, 19, 22)  
SYMBOL  
BW  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IF Output Bandwidth  
–1dB Corner Frequency (Note 20)  
1.0  
GHz  
IF  
Serial Interface Pins  
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Hysteresis Voltage  
Input Current  
CSB, SDI, SCK  
0.7 OV  
V
V
IH  
DD  
CSB, SDI, SCK  
0.3 OV  
30  
IL  
DD  
CSB, SDI, SCK  
250  
mV  
μA  
V
IHYS  
IN(SER)  
I
CSB, SDI, SCK (Note 17)  
SDO, 10mA Current Sink  
SDO, 10mA Current Source  
V
V
High Level Output Voltage  
Low Level Output Voltage  
0.7 OV  
OH  
DD  
0.3 OV  
V
OL  
DD  
Serial Interface Timing  
t
t
t
t
t
t
t
SCK High Time  
25  
25  
10  
10  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
CKL  
CSS  
CSH  
DS  
SCK Low Time  
CSB Setup Time  
CSB High Time  
SDI to SCK Setup Time  
SDI to SCK Hold Time  
SCK to SDO Time  
6
DH  
To V /V /Hi-Z with 30pF Load  
16  
DO  
IH IL  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may  
cause permanent damage to the device. Exposure to any Absolute Maximum  
Rating condition for extended periods may affect device reliability and  
Note 9: Input P adjusted so that P = –1.5dBm/tone at the amplifier  
RF IF  
output. RF tone spacing set at 4MHz with high-side LO, f = f + 30MHz.  
LO  
RF  
Note 10: Image rejection is measured at f = 12MHz and calculated from  
IF  
lifetime. The voltage on all pins should not exceed V + 0.3V or be less than  
CC  
the measured gain error and phase error.  
Note 11: If the VCM pin is left floating, it will self bias to a nominal 0.9V.  
Note 12: This is the recommended operating range, operation outside the  
listed range is possible with degraded performance to some parameters.  
Note 13: DC offset measured differentially between IFIP and IFIM and  
between IFQP and IFQM. The reported value is the mean of the absolute  
values of the characterization data distribution.  
Note 14: IF outputs shorted to ground.  
Note 15: IF tone spacing set at 1MHz.  
–0.3V, otherwise damage to the ESD diodes may occur.  
Note 2: Tests are performed with the test circuit of Figure 1.  
Note 3: The LTC5586 is guaranteed to be functional over the –40°C to  
105°C case temperature operating range.  
Note 4: DSB noise figure is measured at the baseband frequency of 15MHz  
with a small-signal noise source without any filtering on the RF input and  
no other RF signal applied.  
Note 5: A 4.7pF shunt capacitor is used on the RF inputs for 300MHz to  
500MHz. 0.3pF is used for 500MHz to 6GHz.  
Note 16: Worst case leakage or isolation measured to each IF single-ended  
port.  
Note 17: Guaranteed by design characterization, not tested in production.  
Note 6: The differential amplifier outputs (IFIP, IFIM and IFQP, IFQM) are  
combined using a 180° combiner.  
Note 7: Noise figure under blocking conditions (NF  
) is measured  
BLOCKING  
Note 18: The voltage on the OVDD pin must never exceed V + 0.3V,  
CC  
at an output frequency of 60MHz with RF input signal at f + 1MHz. Both  
LO  
otherwise damage to the ESD diodes may occur.  
Note 19: Refer to Appendix for register definition and default values.  
Note 20: Mixer outputs directly connected to amplifier inputs. Bandwidth  
measured on single amplifier output, I or Q.  
RF and LO input signals are appropriately filtered, as well as the baseband  
output.  
Note 8: Power conversion gain is defined from the RFA (or RFB) input  
to the I or Q output. Power conversion gain is measured with a 100Ω  
differential load impedance on the I and Q outputs. Any losses due to IF  
combiner and spectrum analyzer termination have been de-embedded.  
Note 21: V should be ramped up slower than 5V/ms to prevent damage.  
CC  
Note 22: P measured at amplifier differential outputs.  
IF  
5586fa  
6
For more information www.linear.com/LTC5586  
LTC5586  
VCC = VCCN = 5V, TC = 25°C, PLO = 6dBm, HSLO, RF  
Typical perForMance characTerisTics  
tone spacing = 4MHz, fIF = 30MHz, PIF = –1.5dBm per tone, and register defaults. DC Blocks, 50terminations, and MACOM H9 180°  
combiner at amplifier outputs de-embedded from measurement unless otherwise noted. Test circuit shown in Figure 1 with 500MHz  
interstage filter.  
TEMP Diode Voltage  
vs Temperature (TC)  
Noise Figure and Conversion  
Gain vs Temperature (TC)  
Supply Current vs Supply Voltage  
500  
490  
480  
470  
460  
450  
440  
430  
420  
410  
400  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
40  
35  
30  
25  
20  
15  
10  
5
T
T
T
T
= 105°C  
= 85°C  
= 25°C  
= –40°C  
105°C  
85°C  
C
C
C
C
NF  
25°C  
–40°C  
GAIN  
0
–5  
–10  
4.75  
5.00  
SUPPLY VOLTAGE (V)  
5.25  
-40 -20  
0
20 40 60 80 100 120  
0
1
2
3
4
5
6
TEMPERATURE (°C)  
RF FREQUENCY (GHz)  
5586 G02  
5586 G03  
5586 G04  
Noise Figure and Conversion  
Gain vs LO Power  
Gain vs IF Frequency for Various  
Fixed LO Frequencies  
Conversion Gain vs ATT Setting  
45  
40  
35  
30  
25  
20  
15  
10  
5
10  
5
20  
15  
HSLO  
–6dBm  
ATT = 0  
0dBm  
6dBm  
12dBm  
NF  
10  
0
5
–5  
0
–10  
–15  
–20  
–25  
–30  
–5  
–10  
–15  
–20  
–25  
–30  
I, 400MHz  
I, 900MHz  
I, 1900MHz  
I, 2600MHz  
I, 3500MHz  
I, 5800MHz  
Q, 400MHz  
Q, 900MHz  
Q, 1900MHz  
Q, 2600MHz  
Q, 3500MHz  
Q, 5800MHz  
GAIN  
0
ATT = 31  
–5  
–10  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
5586 G05  
5586 G06  
5586 G07  
Gain vs IF Frequency for Various  
Fixed LO Frequencies  
Gain vs AMPG Register Value  
Noise Figure vs ATT Setting  
20  
15  
15  
10  
5
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
LSLO  
f
= 1900MHz  
RF  
ATT = 31  
10  
5
0
–5  
0
–10  
–15  
–20  
–25  
–30  
–5  
–10  
–15  
I, 400MHz  
I, 900MHz  
I, 1900MHz  
I, 2600MHz  
I, 3500MHz  
Q, 400MHz  
Q, 900MHz  
Q, 1900MHz  
Q, 2600MHz  
Q, 3500MHz  
0
1
2
3
4
5
6
7
ATT = 0  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
0
1
2
3
4
5
6
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
5586 G08  
5586 G09  
5586 G10  
5586fa  
7
For more information www.linear.com/LTC5586  
LTC5586  
V
CC = VCCN = 5V, TC = 25°C, PLO = 6dBm, HSLO, RF  
Typical perForMance characTerisTics  
tone spacing = 4MHz, fIF = 30MHz, PIF = –1.5dBm per tone, and register defaults. DC Blocks, 50terminations, and MACOM H9 180°  
combiner at amplifier outputs de-embedded from measurement unless otherwise noted. Test circuit shown in Figure 1 with 500MHz  
interstage filter.  
RFA to RFB Isolation vs RFSW  
Output Referred P1dB  
OIP3 vs IF Frequency  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
50  
45  
40  
35  
30  
25  
20  
15  
RFSW = 1  
RFSW = 0  
RFA  
RFB  
I, 30MHz  
Q, 30MHz  
I, 100MHz  
I, 200MHz  
I, 300MHz  
I, 500MHz  
Q, 100MHz  
Q, 200MHz  
Q, 300MHz  
Q, 500MHz  
8
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
0
1
2
3
4
5
6
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
5586 G11  
5586 G12  
5586 G13  
OIP3 vs IF Frequency for LSLO  
OIP3 vs Temperature (TC)  
OIP3 vs Supply Voltage (VCC)  
50  
45  
40  
35  
30  
25  
20  
15  
50  
45  
40  
35  
30  
25  
20  
15  
50  
45  
40  
35  
30  
25  
20  
15  
LSLO  
I, 30MHz  
Q, 30MHz  
I, 100MHz  
I, 200MHz  
I, 300MHz  
I, 500MHz  
Q, 100MHz  
Q, 200MHz  
Q, 300MHz  
Q, 500MHz  
I, 105°C  
I, 85°C  
I, 25°C  
I, –40°C  
Q, 105°C  
Q, 85°C  
Q, 25°C  
Q, –40°C  
I, 4.75V  
I, 5V  
I, 5.25V  
Q, 4.75V  
Q, 5V  
Q, 5.25V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
5586 G14  
5586 G15  
5586 G16  
Optimized OIP3  
vs Temperature (TC)  
OIP3 vs LO Power  
OIP3 vs IF Tone Power  
50  
45  
40  
35  
30  
25  
20  
15  
50  
45  
40  
35  
30  
25  
20  
15  
50  
45  
40  
35  
30  
25  
20  
15  
OPTIMIZED AT 25°C  
I, –6dBm  
I, 0dBm  
I, 6dBm  
I, 12dBm  
Q, –6dBm  
Q, 0dBm  
Q, 6dBm  
Q, 12dBm  
I, 105°C  
I, 85°C  
I, 25°C  
I, –40°C  
Q, 105°C  
Q, 85°C  
Q, 25°C  
Q, –40°C  
I, –4.5dBm  
I, –1.5dBm  
I, 1.5dBm  
Q, –4.5dBm  
Q, –1.5dBm  
Q, 1.5dBm  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
5586 G17  
5586 G18  
5586 G19  
5586fa  
8
For more information www.linear.com/LTC5586  
LTC5586  
V
CC = VCCN = 5V, TC = 25°C, PLO = 6dBm, HSLO, RF  
Typical perForMance characTerisTics  
tone spacing = 4MHz, fIF = 30MHz, PIF = –1.5dBm per tone, and register defaults. DC Blocks, 50terminations, and MACOM H9 180°  
combiner at amplifier outputs de-embedded from measurement unless otherwise noted. Test circuit shown in Figure 1 with 500MHz  
interstage filter.  
OIP3 vs Temperature (TC) and  
Register Value, I-Channel  
OIP3 vs Temperature (TC) and  
Register Value, Q-Channel  
OIP3 vs IP3CC Register Value  
50  
45  
40  
35  
30  
25  
20  
15  
50  
45  
40  
35  
30  
25  
20  
15  
50  
45  
40  
35  
30  
25  
20  
15  
I-CHANNEL  
fRF = 1900MHz  
Q-CHANNEL  
fRF = 1900MHz  
I, 0  
I, 1  
I, 2  
I, 3  
Q, 0  
Q, 1  
Q, 2  
Q, 3  
IM3IY, 105°C  
IM3IY, 85°C  
IM3IY, 25°C  
IM3IY, 40°C  
IM3IX, 105°C  
IM3IX, 85°C  
IM3IX, 25°C  
IM3IX, –40°C  
IM3QY, 105°C  
IM3QY, 85°C  
IM3QY, 25°C  
IM3QY, 40°C  
IM3QX, 105°C  
IM3QX, 85°C  
IM3QX, 25°C  
IM3QX, –40°C  
0
32 64 96 128 160 192 224 256  
0
32 64 96 128 160 192 224 256  
0
1
2
3
4
5
6
REGISTER VALUE (INTEGER)  
REGISTER VALUE (INTEGER)  
RF FREQUENCY (GHz)  
5586 G20  
5586 G21  
5586 G22  
OIP3 vs IP3IC Register Value  
OIP3 vs LVCM Register Value  
OIP2 vs Temperature (TC)  
50  
45  
40  
35  
30  
25  
20  
15  
50  
45  
40  
35  
30  
25  
20  
15  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I, 0  
I, 1  
I, 2  
I, 3  
I, 4  
I, 5  
I, 6  
I, 7  
Q, 0  
Q, 1  
Q, 2  
Q, 3  
Q, 4  
Q, 5  
Q, 6  
Q, 7  
I, 0  
I, 1  
I, 2  
I, 3  
I, 4  
I, 5  
I, 6  
I, 7  
Q, 0  
Q, 1  
Q, 2  
Q, 3  
Q, 4  
Q, 5  
Q, 6  
Q, 7  
I, 105°C  
I, 85°C  
I, 25°C  
I, –40°C  
Q, 105°C  
Q, 85°C  
Q, 25°C  
Q, –40°C  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
5586 G23  
5586 G24  
5586 G25  
Optimized OIP2  
vs Temperature (TC)  
OIP2 vs Temperature (TC) and  
Register Value, I-Channel  
OIP2 vs LO Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
OPTIMIZED AT 25°C  
I-CHANNEL  
fRF = 1900MHz  
I, 105°C  
I, 85°C  
I, 25°C  
I, –40°C  
Q, 105°C  
Q, 85°C  
Q, 25°C  
Q, –40°C  
IM2IX, 105°C  
I, –6dBm  
I, 0dBm  
I, 6dBm  
I, 12dBm  
Q, –6dBm  
Q, 0dBm  
Q, 6dBm  
Q, 12dBm  
IM2IX, 85°C  
IM2IX, 25°C  
IM2IX, –40°C  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
32 64 96 128 160 192 224 256  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
REGISTER VALUE (INTEGER)  
5586 G26  
5586 G27  
5586 G28  
5586fa  
9
For more information www.linear.com/LTC5586  
LTC5586  
V
CC = VCCN = 5V, TC = 25°C, PLO = 6dBm, HSLO, RF  
Typical perForMance characTerisTics  
tone spacing = 4MHz, fIF = 30MHz, PIF = –1.5dBm per tone, and register defaults. DC Blocks, 50terminations, and MACOM H9 180°  
combiner at amplifier outputs de-embedded from measurement unless otherwise noted. Test circuit shown in Figure 1 with 500MHz  
interstage filter.  
OIP2 vs Temperature (TC)  
and Register Value, Q-Channel  
HD2 vs Temperature (TC)  
HD2 vs LO Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
Q-CHANNEL  
fRF = 1900MHz  
I, –6dBm  
I, 0dBm  
I, 6dBm  
I, 12dBm  
Q, –6dBm  
Q, 0dBm  
Q, 6dBm  
Q, 12dBm  
I, 105°C  
I, 85°C  
I, 25°C  
I, –40°C  
Q, 105°C  
Q, 85°C  
Q, 25°C  
Q, –40°C  
IM2QX, 105°C  
IM2QX, 85°C  
IM2QX, 25°C  
IM2QX, –40°C  
0
32 64 96 128 160 192 224 256  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
REGISTER VALUE (INTEGER)  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
5586 G29  
5586 G30  
5586 G31  
Optimized HD2  
vs Temperature (TC)  
HD2 vs Temperature (TC)  
and Register Value, I-Channel  
HD2 vs Temperature (TC)  
and Register Value, Q-Channel  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
Q-CHANNEL  
fRF = 1900MHz  
I-CHANNEL  
fRF = 1900MHz  
OPTIMIZED AT 25°C  
I, 105°C  
I, 85°C  
I, 25°C  
I, –40°C  
Q, 105°C  
Q, 85°C  
Q, 25°C  
Q, –40°C  
HD2QY, 105°C  
HD2QY, 85°C  
HD2QY, 25°C  
HD2QY, 40°C  
HD2QX, 105°C  
HD2QX, 85°C  
HD2QX, 25°C  
HD2QX, –40°C  
HD2IY, 105°C  
HD2IY, 85°C  
HD2IY, 25°C  
HD2IY, 40°C  
HD2IX, 105°C  
HD2IX, 85°C  
HD2IX, 25°C  
HD2IX, –40°C  
0
1
2
3
4
5
6
0
32 64 96 128 160 192 224 256  
0
32 64 96 128 160 192 224 256  
RF FREQUENCY (GHz)  
REGISTER VALUE (INTEGER)  
REGISTER VALUE (INTEGER)  
5586 G32  
5586 G33  
5586 G34  
Optimized HD3  
vs Temperature (TC)  
HD3 vs Temperature (TC)  
HD3 vs LO Power  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
OPTIMIZED AT 25°C  
I, –6dBm  
I, 0dBm  
I, 6dBm  
I, 12dBm  
Q, –6dBm  
Q, 0dBm  
Q, 6dBm  
Q, 12dBm  
I, 105°C  
I, 85°C  
I, 25°C  
I, –40°C  
Q, 105°C  
Q, 85°C  
Q, 25°C  
Q, –40°C  
I, 105°C  
I, 85°C  
I, 25°C  
I, –40°C  
Q, 105°C  
Q, 85°C  
Q, 25°C  
Q, –40°C  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
5586 G35  
5586 G36  
5586 G37  
5586fa  
10  
For more information www.linear.com/LTC5586  
LTC5586  
V
CC = VCCN = 5V, TC = 25°C, PLO = 6dBm, HSLO, RF  
Typical perForMance characTerisTics  
tone spacing = 4MHz, fIF = 30MHz, PIF = –1.5dBm per tone, and register defaults. DC Blocks, 50terminations, and MACOM H9 180°  
combiner at amplifier outputs de-embedded from measurement unless otherwise noted. Test circuit shown in Figure 1 with 500MHz  
interstage filter.  
HD3 vs Temperature (TC)  
and Register Value, I-Channel  
HD3 vs Temperature (TC)  
and Register Value, Q-Channel  
Image Rejection  
vs Temperature (TC)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
105°C  
85°C  
HD3IY, 105°C  
HD3IY, 85°C  
HD3IY, 25°C  
HD3IY, 40°C  
HD3IX, 105°C  
HD3IX, 85°C  
HD3IX, 25°C  
HD3IX, –40°C  
HD3QY, 105°C  
HD3QY, 85°C  
HD3QY, 25°C  
HD3QY, 40°C  
HD3QX, 105°C  
HD3QX, 85°C  
HD3QX, 25°C  
HD3QX, –40°C  
25°C  
–40°C  
I-CHANNEL  
fRF = 1900MHz  
Q-CHANNEL  
fRF = 1900MHz  
0
32 64 96 128 160 192 224 256  
0
32 64 96 128 160 192 224 256  
0
1
2
3
4
5
6
REGISTER VALUE (INTEGER)  
REGISTER VALUE (INTEGER)  
LO FREQUENCY (GHz)  
5586 G38  
5586 G39  
5586 G40  
Optimized Image Rejection  
vs Temperature (TC)  
Gain Error vs Temperature (TC)  
and GERR Register Value  
Phase Error vs Temperature (TC)  
and PHA Register Value  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1.0  
0.8  
3
2
105°C  
85°C  
OPTIMIZED AT 25°C  
fRF = 1900MHz  
fRF = 1900MHz  
25°C  
0.6  
–40°C  
1
0.4  
0
0.2  
0
–1  
–2  
–3  
–4  
–5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
105°C  
105°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
0
1
2
3
4
5
6
0
8
16 24 32 40 48 56 64  
0
64 128 192 256 320 384 448 512  
RF FREQUENCY (GHz)  
REGISTER VALUE (INTEGER)  
REGISTER VALUE (INTEGER)  
5586 G41  
5586 G43  
5586 G42  
Optimized DC Offset vs  
Temperature (TC)  
DC Offset vs Temperature (TC)  
DC Offset vs LO Power  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
105°C  
85°C  
25°C  
–40°C  
OPTIMIZED AT 25°C  
20  
15  
10  
10  
5
5
0
0
–5  
–5  
–10  
–15  
–20  
–25  
–30  
0
–10  
–15  
–20  
105°C  
85°C  
25°C  
–40°C  
–6dBm  
0dBm  
6dBm  
12dBm  
–5  
–10  
–15  
–20  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
5586 G44  
5586 G45  
5586 G46  
5586fa  
11  
For more information www.linear.com/LTC5586  
LTC5586  
V
CC = VCCN = 5V, TC = 25°C, PLO = 6dBm, HSLO, RF  
Typical perForMance characTerisTics  
tone spacing = 4MHz, fIF = 30MHz, PIF = –1.5dBm per tone, and register defaults. DC Blocks, 50terminations, and MACOM H9 180°  
combiner at amplifier outputs de-embedded from measurement unless otherwise noted. Test circuit shown in Figure 1 with 500MHz  
interstage filter.  
DC Offset vs Temperature (TC)  
and Register Value  
Blocking Noise Figure  
vs LO Power  
RFSW Transient Response  
100  
80  
40  
35  
30  
25  
20  
15  
10  
2.0  
1.5  
1.0  
0.5  
0
20  
15  
10  
5
fLO = 1900MHz  
fLO = 1900MHz  
fRF, BLOCK = 1960MHz  
fIF, NOISE = 30MHz  
fRF = 2.1GHz  
fLO = 2.102GHz  
RFSW  
IFIP  
–6dBm  
0dBm  
IFIM  
6dBm  
60  
12dBm  
40  
20  
0
–20  
–40  
–60  
–80  
–100  
105°C  
85°C  
25°C  
–40°C  
0
0
32 64 96 128 160 192 224 256  
–30  
–25  
–20  
–15  
–10  
–5  
0
0
1
2
3
4
5
6
7
8
9
10  
DC OFFSET DAC (INTEGER)  
RF INPUT POWER (dBm)  
TIME (µs)  
5586 G47  
5586 G48  
5586 G49  
Gain, IIP3 and IIP2 for Mixer Only  
RF to LO Isolation  
LO to RF Leakage  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–30  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
RFA  
RFB  
RFA  
RFB  
I
Q
IIP2  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
IIP3  
GAIN  
–10  
–20  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
5586 G50  
5586 G51  
5586 G52  
RF to IF Isolation  
LO to IF Isolation  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
TC = 25°C  
RFSW = 1  
RFA INPUT  
T
= 25°C  
IFQP  
IFQM  
IFIM  
IFIP  
IFQP  
IFQM  
IFIM  
IFIP  
C
BAND = 1  
CF = 0  
LF1 = 0  
CF2 = 0  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
RF FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
5586 G53  
5586 G54  
5586fa  
12  
For more information www.linear.com/LTC5586  
LTC5586  
V
CC = VCCN = 5V, TC = 25°C, PLO = 6dBm, HSLO, RF  
Typical perForMance characTerisTics  
tone spacing = 4MHz, fIF = 30MHz, PIF = –1.5dBm per tone, and register defaults. DC Blocks, 50terminations, and MACOM H9 180°  
combiner at amplifier outputs de-embedded from measurement unless otherwise noted. Test circuit shown in Figure 1 with 500MHz  
interstage filter.  
OIP3 Distribution  
vs Temperature (TC)  
OIP2 Distribution  
vs Temperature (TC)  
Conversion Gain Distribution  
vs Temperature (TC)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
fRF = 2GHz  
fRF = 2GHz  
fRF = 2GHz  
I, 105°C  
I, 85°C  
I, 25°C  
I, –40°C  
Q, 105°C  
Q, 85°C  
Q, 25°C  
Q, –40°C  
I, 105°C  
I, 85°C  
I, 25°C  
I, –40°C  
Q, 105°C  
Q, 85°C  
Q, 25°C  
Q, –40°C  
105°C  
85°C  
25°C  
–40°C  
30  
32  
34  
36  
38  
40  
42  
30  
40  
50  
60  
70  
80  
90 100  
5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0  
OIP3 (dBm)  
OIP2 (dBm)  
GAIN (dB)  
5586 G55  
5586 G56  
5586 G57  
Noise Figure Distribution  
vs Temperature (TC)  
Gain Error Distribution  
vs Temperature (TC)  
Phase Error Distribution  
vs Temperature (TC)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
100  
fRF = 2GHz  
fRF = 2GHz  
fRF = 2GHz  
80  
60  
40  
20  
0
I, 105°C  
I, 85°C  
I, 25°C  
I, –40°C  
Q, 105°C  
Q, 85°C  
Q, 25°C  
Q, –40°C  
105°C  
85°C  
25°C  
–40°C  
105°C  
85°C  
25°C  
–40°C  
10  
12  
14  
16  
18  
20  
22  
24  
–0.20  
–0.15  
–0.10  
–0.05  
0
0
0.5  
1.0  
1.5  
2.0  
NF (dB)  
GAIN ERROR (dB)  
PHASE ERROR (dB)  
5586 G58  
5586 G59  
5586 G60  
Image Rejection Distribution  
vs Temperature (TC)  
Optimized Image Rejection  
vs IF Frequency  
100  
0
OPTIMIZED AT f = 1750MHz  
TC = 55°C  
fRF = 2GHz  
RF  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
FIXED f = 1900MHz  
LO  
WITHOUT INTERSTAGE FILTER  
80  
60  
40  
20  
0
105°C  
85°C  
25°C  
–40°C  
HSLO, DEFAULT  
LSLO, DEFAULT  
HSLO, OPTIMIZED  
LSLO, OPTIMIZED  
–50  
–45  
–40  
–35  
–30  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
–IMAGE REJECTION (dB)  
IF FREQUENCY (GHz)  
5586 G61  
5586 G62  
5586fa  
13  
For more information www.linear.com/LTC5586  
LTC5586  
pin FuncTions  
RFA (Pin 2): 50Ω switched RF input. The pin should  
be DC-blocked with coupling capacitor; 1000pF is  
recommended.  
IFQM, IFQP, IFIP, IFIM (Pins 15, 16, 25, 26): IF amplifier  
output pins. The current used by the output amplifiers  
is set by a resistance of 25Ω to 200Ω from each pin to  
ground and the VCM control voltage.  
TEMP (Pin 3): Temperature monitoring diode. The diode  
to ground at this pin can be used to measure the die  
temperature. A forward bias current of 100µA can be  
used into this pin and the forward voltage drop can be  
measured as a function of die temperature.  
CSB (Pin 17): Chip Select Bar. When CSB is low, the serial  
interface is enabled. It can be driven with 1.2V to 3.3V  
logic levels.  
VCC (Pin 18): Positive supply pin. This pin should be  
bypassed with a 1000pF and 4.7µF capacitor to ground.  
RFSW (Pin 4): RF channel select. The state of the RF  
switch is the logical AND of the RFSW pin and the RFSW  
register value. (See Appendix). This pin should not be left  
floating. Either tie high or low.  
LOP, LOM (Pins 19, 20): LO inputs. External matching  
is not needed. Can be driven 50Ω single-ended or 100Ω  
differentially. The LO pins should be DC-blocked with cou-  
pling capacitor; 1000pF is recommended. When driven  
single-ended, the unused pin should be terminated with  
50Ω in series with the DC-blocking capacitor.  
VCCN (Pin 5): Positive Supply Pin. This pin must be tied  
to the VCC pin.  
VCM (Pin 6): IF amplifier common-mode output voltage  
adjust. Source resistance should be 1kΩ or lower. If this  
pin is left unconnected, it will internally self-bias to 0.9V.  
SDO (Pin 21): Serial Data Output. This output can accom-  
modate logic levels from 1.2V to 3.3V. During read-mode,  
data is read out MSB first.  
RFB (Pin 7): 50Ω switched RF input. The pin should  
be DC-blocked with coupling capacitor; 1000pF is  
recommended.  
SDI (Pins 22): Serial Data Input. Data is clocked MSB first  
into the mode-control registers on the rising edge of SCK.  
SDI can be driven with 1.2V to 3.3V logic levels.  
MQP, MQM, MIM, MIP (Pins 9, 10, 31, 32): Mixer dif-  
ferential output pins. When connected to the amplifier  
SCK (Pin 23): Serial Clock Input. SDI can be driven with  
1.2V to 3.3V logic levels.  
input pins, the DC bias point is V – 1.4V for each pin. A  
CC  
low-pass filter is typically used between the MQM(P) or  
MIM(P) pins and the AQM(P) or AIM(P) pins to suppress  
the high frequency mixing products. See the Applications  
section for more information.  
OVDD (Pin 24): Positive digital interface supply pin. This  
pin sets the logic levels for the digital interface. 1.2V to  
3.3V can be used. This pin should be bypassed with a  
1µF capacitor to ground. The VCC supply must be applied  
before the OVDD supply to prevent damage to the ESD  
diodes.  
DNC (Pins 11, 14, 27, 30): DO NOT CONNECT. No con-  
nection should be made to these pins.  
AQM, AQP, AIP, AIM (Pins 12, 13, 28, 29): Amplifier  
GND (Pins 1, 8, Exposed Pad Pin 33): Ground. These  
pins must be soldered to the circuit board RF ground  
plane. The backside exposed pad ground connection  
should have a low-inductance connection and good ther-  
mal contact to the printed circuit board ground plane  
using many through-hole vias. See layout information.  
differential input pins. When connected to the mixer out-  
put pins, the DC bias point is V – 1.4V for each pin. A  
CC  
low-pass filter is typically used between the AQM(P) or  
AIM(P) pins and the MQM(P) or MIM(P) pins to suppress  
the high frequency mixing products. See the Applications  
section for more information.  
5586fa  
14  
For more information www.linear.com/LTC5586  
LTC5586  
block DiagraM  
18  
VCC  
32 31  
29  
28  
MIP MIM  
AIM AIP  
VCCN  
FINE GAIN/DC OFFSET/  
DISTORTION ADJUST  
BIAS  
5
VCM  
IFIP  
TEMP  
6
3
+
25  
26  
IFIM  
8 STEPS  
RFA  
2
LOM  
LOP  
RFB  
20  
19  
0º  
LO MATCH  
ADJUST  
7
90º  
RFSW  
4
ATTEN  
0dB TO 31dB  
+
IFQM  
IFQP  
15  
16  
SCK  
23  
SDI  
22  
ADJUST  
REGISTERS  
8 STEPS  
SPI  
SDO  
21  
CSB  
GND  
GND  
17  
1
8
FINE GAIN/DC OFFSET/  
DISTORTION ADJUST  
EXPOSED  
PAD  
OVDD  
24  
MQP  
MQM  
10  
AQM AQP  
12 13  
9
33  
5586 BD01  
5586fa  
15  
For more information www.linear.com/LTC5586  
LTC5586  
TiMing DiagraMs  
SPI Port Timing (Readback Mode)  
t
t
DO  
t
AUTO-INCREMENT  
t
CKL  
AUTO-INCREMENT  
CSS  
CKH  
CSB  
SCK  
SDI  
t
CSH  
t
t
DH  
DS  
R/W A6 A5 A4 A3 A2 A1 A0 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX  
HIGH-Z  
HIGH-Z  
SDO  
A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7  
(SDO_MODE=1)  
HIGH-Z  
HIGH-Z  
SDO  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7  
(SDO_MODE=0)  
5586 TD01  
SPI Port Timing (Write Mode)  
t
t
DO  
t
AUTO-INCREMENT  
t
CKL  
AUTO-INCREMENT  
CSS  
CKH  
CSB  
SCK  
SDI  
t
CSH  
t
t
DH  
DS  
R/W A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
HIGH-Z  
HIGH-Z  
SDO  
A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7  
(SDO_MODE=1)  
HIGH-Z  
HIGH-Z  
SDO  
(SDO_MODE=0)  
5586 TD02  
5586fa  
16  
For more information www.linear.com/LTC5586  
LTC5586  
TesT circuiT  
RF  
C10  
C9  
C12  
0.015"  
0.062"  
IFIM  
OUTPUT  
GND  
DC  
GND  
NELCO N4000-13  
R3  
R4  
0.015"  
R5  
L1  
L2  
C11  
IFIP  
OUTPUT  
32  
31  
30  
29  
28  
27  
26  
25  
OV  
DD  
MIP MIM DNC AIM AIP DNC IFIM IFIP  
1
2
24  
GND  
OVDD  
SCK  
SDI  
23 SCK  
22 SDI  
21 SDO  
20  
C1  
C3  
C40  
RFA  
RFA  
TEMP 3  
RFSW 4  
INPUT  
C6  
R1  
C2  
C4  
TEMP  
RFSW  
VCCN  
VCM  
RFB  
SDO  
LOM  
LO  
INPUT  
V
CC  
5
C5  
U1  
VCM 6  
LTC5586IUH  
7
8
33  
19  
RFB  
INPUT  
LOP  
C7  
C8  
GND  
GND  
18  
17 CSB  
V
CC  
VCC  
CSB  
4.75V TO 5.25V  
C42  
C43  
V
CC  
MQP MQM DNC AQM AQP DNC IFQM IFQP  
10 11 12 13 14 15 16  
C15  
9
IFQP  
OUTPUT  
C13  
R20  
R11  
R13  
TEMP  
L3  
L4  
C16  
C14  
R12  
IFQM  
OUTPUT  
5586 F01  
REF DES  
C1, C3, C6, C8, C42  
C2, C4, C5, C7  
C9-C16  
VALUE  
SIZE  
VENDOR  
Murata  
Murata  
Murata  
Murata  
Murata  
REF DES  
VALUE  
22nH  
SIZE  
VENDOR  
Coilcraft  
1000pF  
0.3pF  
3.0pF  
1μF  
0402  
0402  
0201  
0603  
0805  
L1-L4  
0805  
0402  
0402  
0402  
R1, R3, R4, R11, R12  
49.9Ω  
0Ω  
R5, R13  
R20  
C40  
40.2kΩ  
C43  
4.7μF  
Figure 1. Test Circuit Schematic  
5586fa  
17  
For more information www.linear.com/LTC5586  
LTC5586  
TesT circuiT  
Figure 2. Component Side of Evaluation Board  
Figure 3. Bottom Side of Evaluation Board  
5586fa  
18  
For more information www.linear.com/LTC5586  
LTC5586  
applicaTions inForMaTion  
The LTC5586 is an IQ demodulator designed for high  
dynamic range receiver applications. It consists of RF  
switches, a step attenuator, I/Q mixers, quadrature LO  
amplifiers, IF amplifiers, and correction circuitry for DC  
offset, image rejection, and non-linearity.  
a resolution of about 0.016dB in order to compensate  
for gain mismatches in the IF signal path, either caused  
internally by the device or by external amplifiers and fil-  
ters. The DC offset in both IF channels can be adjusted in  
order to minimize the accumulated DC offset at the A/D  
converter input.  
Operation  
The RF switch state, attenuation, IF gain, gain error and  
phase error adjust, DC offset adjust, and non-linearity  
adjust registers are digitally controlled through a 4-wire  
SPI interface. The register map is detailed in the Appendix.  
As shown in the Block Diagram for the LTC5586, the RF  
inputs, RFA and RFB, are selected by an internal switch.  
The RF signal is then converted to a differential signal by  
the on-chip balun transformer covering the 300MHz to  
6GHz band. A differential 0 to 31dB step attenuator then  
scales the RF input level to the I and Q channel mixers.  
RF Input Ports  
Figure 4 shows a simplified schematic of the demodula-  
tor’s RF inputs (the RFA input is identical to RFB input)  
which consist of an RF switch, balun transformer, and  
step-attenuator. External DC voltage should not be applied  
to the RF input pins. DC current flowing into the pins may  
cause damage to the chip. Series DC blocking capacitors  
should be used to couple the RF input pins to the RF sig-  
nal sources. The RF switch can be selected by the RFSW  
pin, and by the RFSW register 0x17 bit[0]. The RFA input  
is selected when the logical AND of the value of RFSW in  
register 0x17 and the logic level of the RFSW pin is 1 (see  
digital input pins section and register map). The switch  
state is detailed in Table 1.  
The LO inputs are impedance matched using a program-  
mable network, and then accurately shifted in phase by  
90° by an internal precision phase shifter. This phase  
shifter maintains the accurate quadrature relation over  
the full LO input range from 300MHz to 6GHz. In addi-  
tion, the phase shifter allows fine tuning of the phase  
difference between the I- and Q-channel LO with a resolu-  
tion of around 0.05 degrees to compensate for any phase  
mismatch between the mixers and phase mismatch intro-  
duced into the IF path by any filter component mismatch.  
The differential mixer IF output signals are filtered off-chip  
to remove the f + f signal and other high frequency  
RF  
LO  
Table 1. RF Switch State vs Logic Levels  
mixing products before being applied to the on-chip IF  
amplifiers. The IF amplifiers have adjustable gain and  
common-mode output voltage to allow for direct interfac-  
ing with A/D converters. The gain balance between both  
IF output channels of the LTC5586 can be fine tuned with  
RFSW  
RFSW Pin  
Register  
0
1
0
1
RFB  
RFB  
RFB  
RFA  
V
CC  
LTC5586  
C1  
1000pF  
RFA  
RFA  
RFB  
INPUT  
(MATCHED)  
C2  
0.3pF  
5586 F04  
GND  
RFSW  
Figure 4. Simplified Schematic of the RF Input with External Matching Components  
5586fa  
19  
For more information www.linear.com/LTC5586  
 
LTC5586  
applicaTions inForMaTion  
5
0
As shown in Figure 5, the RF input ports are well matched  
with return loss greater than 10dB over the frequency  
range of 500MHz to 6GHz with a 0.3pF capacitor on C2.  
The RF pins can be externally matched over the 300MHz  
to 500MHz frequency range by changing C2 to 4.7pF.  
Figure 6 shows the RF input return loss with C2 set to  
4.7pF. Table 2 shows the impedance and input reflec-  
tion coefficient for the RF input with C2 = 0.3pF. The  
input transmission line length is de-embedded from the  
measurement.  
C2 = 0.3pF  
TC = 25°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
RFA, RFA SELECTED  
RFB, RFB SELECTED  
RFA, RFB SELECTED  
RFB, RFA SELECTED  
0
1
2
3
4
5
6
7
8
Table 2. RF Input Impedance  
RF FREQUENCY (GHz)  
5586 F05  
S11  
FREQUENCY  
Figure 5. RF Input Return Loss  
(MHz)  
300  
INPUT IMPEDANCE (Ω)  
24.9 + j27.6  
39.1 + j37.3  
60.1 + j36.9  
77.4 – j1.9  
MAG  
0.468  
0.403  
0.330  
0.215  
0.211  
0.297  
0.310  
0.303  
0.228  
0.185  
0.120  
0.202  
0.259  
0.188  
0.138  
ANGLE (°)  
112.0  
83.5  
5
400  
C2 = 4.7pF  
TC = 25°C  
RFA, RFA SELECTED  
500  
56.2  
0
–5  
700  
–3.2  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
4500  
5000  
5500  
6000  
43.7 – j19.2  
27.2 – j2.1  
–96.7  
–173.2  
134.4  
96.0  
–10  
–15  
–20  
–25  
–30  
29.6 + j14.5  
39.3 + j26.0  
48.9 + j23.1  
52.4 + j19.2  
60.5 + j8.2  
79.9  
72.3  
33.8  
69.2 + j15.0  
82.4 + j11.5  
71.2 – j8.6  
30.8  
0
1
2
3
4
5
6
7
8
RF FREQUENCY (GHz)  
14.6  
5586 F06  
–18.0  
–96.1  
Figure 6. RF Input Return Loss with C2 = 4.7pF  
46.8 – j13.1  
LO Input Port  
V
CC  
The demodulator’s LO input interface is shown in Figure 7.  
The input consists of a programmable input match and a  
high precision quadrature phase shifter which generates  
0° and 90° phase shifted LO signals for the LO buffer  
amplifiers to drive the I/Q mixers. DC blocking capacitors  
are required on the LOP and LOM inputs. When using a  
LTC5586  
C6  
1000pF  
LO  
INPUT  
(MATCHED)  
LOM  
C5  
0.3pF  
LO  
MATCH  
ADJUST  
0º  
R1  
49.9Ω  
90º  
LOP  
C8  
1000pF  
C7  
0.3pF  
5586 F07  
GND  
Figure 7. Simplified Schematic of the LO Inputs  
with Single-Ended Drive  
5586fa  
20  
For more information www.linear.com/LTC5586  
 
 
 
LTC5586  
applicaTions inForMaTion  
single-ended LO input, it is necessary to terminate the  
unused LO input (LOP in Figure 7) into 50Ω.  
The LO inputs can also be driven differentially. Figure 10  
compares the uncalibrated OIP2 performance of single  
ended versus differential LO drive using the ANAREN  
B4859A53 balun as shown in the schematic of Figure 9.  
The programmable input match adjust is controlled by  
the BAND, CF1, LF1, and CF2 registers as detailed in the  
5
V
CC  
TC = 25°C  
0
–5  
LTC5586  
C6  
ANAREN  
1000pF  
LO  
INPUT  
(MATCHED)  
B4859A53  
LOM  
–10  
–15  
–20  
–25  
–30  
–35  
C5  
0.3pF  
LO  
MATCH  
ADJUST  
0º  
C8  
1000pF  
90º  
LOP  
C7  
0.3pF  
5586 F09  
GND  
0
1
2
3
4
5
6
7
8
Figure 9. Simplified Schematic of the LO Inputs  
Using a Balun for Differential Drive  
LO FREQUENCY (GHz)  
0, 31, 3, 31  
0, 17, 2, 31  
0, 14, 1, 27  
1, 21, 3, 28  
1, 15, 1, 31  
1, 2, 1, 10  
1, 1, 0, 19  
1, 0, 0, 0  
5586 F08  
100  
TC = 25°C  
90  
Figure 8. Single-Ended LO Input Return Loss vs  
BAND, CF1, LF1, and CF2  
80  
70  
60  
50  
40  
register map shown in Table 3. The return loss for the  
register setting in Table 3 is shown in Figure 8.  
Table 3. Register Settings for Single-Ended LO Matching  
30  
I, SINGLE-ENDED  
LO FREQUENCY (MHz)  
BAND  
CF1  
31  
21  
14  
17  
10  
15  
14  
8
LF1  
CF2  
31  
24  
23  
31  
23  
31  
27  
21  
31  
28  
26  
31  
3
20  
10  
0
Q, SINGLE-ENDED  
I, DIFFERENTIAL  
Q, DIFFERENTIAL  
300 - 339  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
3
339 - 398  
3
0
1
2
3
4
5
6
398 - 419  
3
RF FREQUENCY (GHz)  
419 - 556  
2
5586 F10  
556 - 625  
2
Figure 10. OIP2 vs Single-Ended and Differential LO Input  
625 - 801  
1
801 - 831  
1
831 - 1046  
1046 - 1242  
1242 - 1411  
1411 - 1696  
1696 - 2070  
Default  
1
31  
21  
17  
15  
8
3
3
2
1
3
2070 - 2470  
2470 - 2980  
2980 - 3500  
3500 - 6000  
8
1
21  
10  
19  
0
2
1
1
0
0
0
5586fa  
21  
For more information www.linear.com/LTC5586  
 
 
 
LTC5586  
applicaTions inForMaTion  
Interstage Filter  
lengths on the amplifier inputs can lead to instability. As  
shown in Figure 12, a 50Ω common-mode termination  
resistor can be used to better ensure stability with long  
line lengths and/or higher order filtering. The placement  
of C9 and C11 should be as close as possible to the mixer  
An interstage IF filter should be used between the MIP  
(MIM) and AIP (AIM) pins and the MQP (MQM) and AQP  
(AQM) pins to suppress the large f + f and other mix-  
RF LO  
ing products from the mixer outputs. Without the filter, the  
linearity of the amplifier can be degraded for the desired  
signal. Figure 11 shows a recommended lowpass filter.  
Table 4 shows typical values used for a lowpass response  
of various bandwidths.  
outputs for effective filtering of the 2xLO, f + f , and  
RF  
LO  
other mixing products.  
MIP  
MIM  
C11  
C9  
Table 4. Component Values for Interstage Lowpass Filter  
1dB BW (MHz)  
L1, L2 (nH)  
C9, C11 (pF)  
C10, C12 (pF)  
L2  
C12  
L1  
C10  
20  
50  
330  
150  
68  
33  
22  
8
39  
15  
120  
47  
AIM  
AIP  
100  
300  
500  
1000  
10  
22  
5586 F12  
4.7  
3.0  
0.5  
6.8  
3.0  
1.0  
50Ω  
Figure 12. Interstage IF Filter with Common-Mode Termination  
It is important that the placement of C10 and C12 be  
as close as possible to the amplifier inputs. Long line  
By adjusting the values of the capacitors in the filter, it  
is possible to add or remove frequency slope of the IF  
V
CC  
LTC5586  
PACKAGE  
PARASITICS  
1pF 50Ω  
50Ω  
1pF  
1.5nH  
2k  
MIP  
0.2pF  
1.5nH  
MIM  
0.2pF  
C11  
C9  
42mA  
42mA  
AC CURRENT  
SOURCE  
L2  
L1  
VCC  
PACKAGE  
PARASITICS  
1.5nH  
100Ω  
100Ω  
C12  
C10  
AIM  
0.2pF  
1.5nH  
AIP  
0.2pF  
0.6pF  
50Ω  
0.6pF  
50Ω  
5586 F11  
GND  
Figure 11. Simplified Schematic of the Mixer Output and IF Amplifier Input with Interstage Filter  
5586fa  
22  
For more information www.linear.com/LTC5586  
 
 
LTC5586  
applicaTions inForMaTion  
response. The RF input has a frequency slope above 2GHz  
of approximately –2dB/GHz. If a high-side LO (HSLO) is  
used the resulting IF slope will be 2dB/GHz. If a low-side  
LO (LSLO) is used the resulting IF slope will be –2dB/GHz.  
The IF filter component values can be adjusted so that  
approximately 1dB of peaking or roll-off can be achieved  
over the filter bandwidth to give an overall flat IF response  
for the HSLO or LSLO case.  
45  
40  
35  
30  
25  
20  
15  
IF TONESPACING = 1MHz  
P
T
= –1.5dB/TONE  
= 55°C  
IF  
C
0.5V  
0.7V  
0.9V  
1.2V  
1.5V  
1.8V  
2.0V  
I-Channel and Q-Channel Outputs  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
The phase relationship between the I-channel output sig-  
nal and the Q-channel output signal is fixed. When the  
LO input frequency is higher (or lower) than the RF input  
frequency, the Q-channel outputs (IFQP, IFQM) lead (or  
lag) the I-channel outputs (IFIP, IFIM) by 90°.  
IF Frequency (GHz)  
5586 F13  
Figure 13. OIP3 of Amplifier Only vs Output  
Common-Mode Voltage (VCM)  
Figure 14 shows a simplified schematic of the IF amplifier  
outputs. The current-mode outputs require a terminating  
resistance to establish a common-mode voltage level. The  
optimum operating current is 18mA per output. A 50Ω ter-  
mination to ground is recommended on each output for a  
0.9V common-mode voltage. Operation at higher or lower  
common-mode voltages is possible with the addition of  
a common-mode termination. For example, to operate  
at 1.8V, an additional common-mode resistance of 25Ω  
(R5 = 66.5Ω and R6 = 0Ω, or R5 = R6 = 43.2Ω) would be  
used to maintain an output current of 18mA. Alternatively,  
a 100Ω termination to ground on each output can be used  
for 1.8V common-mode voltage with 6dB more conver-  
sion gain. To operate at lower common-mode voltages, a  
lower termination resistance can be used on each output  
at the expense of conversion gain, or a negative supply  
can be used at the connection of the termination resis-  
tors. Figure 13 shows the OIP3 of the amplifier alone with  
various common-mode voltages.  
The amplifier gain can be adjusted in 8 steps of roughly  
1dB from 8dB to 15dB using the AMPG register. Setting  
AMPG = 0x7 sets the gain at about 15dB and setting  
AMPG = 0x0 sets the gain to about 8dB.  
V
CC  
LTC5586  
5TH ORDER  
ANTI-ALIAS  
FILTER  
L5  
L7  
C20  
0.9V  
VCM  
PACKAGE  
PARASITICS  
1.5nH  
2k  
2k  
R3  
R7  
C23  
C17  
68.1Ω  
200Ω  
IFIP  
AC CURRENT  
SOURCE  
R5  
R6  
0Ω  
0.2pF  
R2  
24.9Ω  
R9  
0Ω  
24.9Ω  
1.5nH  
IFIM  
R4  
R8  
200Ω  
0.2pF  
C24  
Z
= 100Ω  
OUT  
C18  
68.1Ω  
L6  
L8  
C21  
0.9V  
5586 F14  
GND  
Figure 14. Simplified Schematic of the IF Amplifier Output with Anti-Alias Filter  
5586fa  
23  
For more information www.linear.com/LTC5586  
 
 
LTC5586  
applicaTions inForMaTion  
A typical anti-alias filter is shown in Figure 14 for inter-  
face with an ADC. The parallel combinations R3||R7 and  
R4||R8 set the differential impedance for the ADC. The  
input and output of the filter contain a common-mode ter-  
mination for high frequencies. These are formed by C17,  
C18 and 24.9Ω at the input and C23, C24 and 24.9Ω at  
the output. The common-mode termination at the ampli-  
fier output ensures stability and the common-mode ter-  
mination at the ADC input provides a termination for the  
high-frequency kickback from the sampling capacitors in  
the ADC. Table 5 shows some typical values vs 1dB cutoff  
frequency for the anti-alias filter. To optimize the flatness  
and ripple of the IF band, both the IF interstage filter and  
the anti-alias filter can be designed together in a simulator  
including package parasitics. The additional slope due to  
RF slope and HSLO or LSLO can be compensated by using  
this method. The layout of the anti-alias filter should be  
done so that the amplifier outputs and ADC inputs are as  
close as possible. This is to prevent long line lengths from  
introducing additional parasitics.  
Table 6. IF Amplifier S-Parameters (Differential-Mode)  
IF  
S
11  
S
S
S
22  
21  
12  
MAG ANG MAG ANG MAG ANG MAG ANG  
(MHz)  
0.001 0.204 –179.9 2.129 180.0 1.8e-4 164.8 0.014 178.5  
100 0.203 176.0 2.154 171.9 5.4e-4 118.0 0.026 –120.9  
200 0.205 172.2 2.170 163.7 1.0e-4 102.8 0.050 –112.0  
300 0.207 168.5 2.197 155.6 1.7e-4 92.8 0.079 –113.5  
400 0.210 164.8 2.239 147.3 2.8e-4 93.7 0.111 –118.3  
500 0.215 160.9 2.292 138.8 3.2e-4 95.4 0.147 –125.0  
600 0.221 157.0 2.363 130.1 4.0e-4 92.0 0.186 –132.1  
700 0.227 153.0 2.445 121.2 5.0e-4 92.1 0.230 –140.0  
800 0.235 149.0 2.535 112.0 5.5e-4 86.2 0.279 –148.1  
900 0.242 144.6 2.642 102.0 6.9e-4 93.2 0.334 –157.0  
1000 0.251 140.6 2.770 92.3 7.9e-4 92.7 0.396 –166.2  
1500 0.303 117.6 3.420 32.3 0.003 92.6 0.738 134.4  
2000 0.365 90.2 3.318 –45.5 0.005 33.2 0.828 70.0  
2500 0.385 56.1 2.232 –105.2 0.005 –3.1 0.666 13.1  
3000 0.365 16.6 2.620 –160.2 0.005 –34.2 0.488 –38.4  
3500 0.319 –28.2 1.021 157.4 0.005 –61.9 0.418 –94.7  
4000 0.307 –83.4 0.742 113.3 0.005 –79.5 0.409 –150.6  
Table 7. IF Amplifier S-Parameters (Common-Mode)  
Table 5. Component Values for Anti-Alias Lowpass Filter  
IF  
S
11  
S
S
S
22  
21  
12  
1dB BW  
(MHz)  
L5 – L8  
(nH)  
C17, C18  
(pF)  
C20, C21  
(pF)  
C23, C24  
(pF)  
MAG ANG MAG ANG MAG ANG MAG ANG  
(MHz)  
0.001 0.184 –138.7 9.2e-4 –112.8 0.037 –65.3 0.985 179.8  
100 0.186 172.5 0.085 –118.9 0.013 –68.6 0.152 126.7  
200 0.188 166.6 0.173 –134.7 0.007 –91.8 0.125 116.7  
300 0.191 160.2 0.237 –150.0 0.004 –113.1 0.097 97.3  
400 0.196 154.4 0.291 –163.8 0.002 –145.4 0.067 75.2  
500 0.202 148.4 0.340 –176.8 0.002 170.2 0.037 43.6  
600 0.210 142.8 0.387 170.9 0.002 137.0 0.023 –38.0  
700 0.219 137.2 0.436 159.1 0.003 118.1 0.051 –97.8  
800 0.230 132.0 0.488 147.1 0.003 107.8 0.094 –121.5  
900 0.243 126.5 0.550 134.9 0.004 106.6 0.148 –137.0  
1000 0.252 120.9 0.612 122.2 0.006 104.8 0.211 –151.3  
1500 0.325 96.7 0.981 43.4 0.020 80.4 0.749 136.1  
2000 0.438 72.1 0.776 –46.1 0.036 18.6 1.000 55.9  
20  
50  
560  
240  
120  
33  
56  
22  
180  
68  
82  
33  
100  
300  
500  
1000  
12  
39  
22  
3.9  
1.8  
1.0  
8.2  
6.8  
3.3  
6.8  
3.3  
1.8  
22  
8
Tables 6 and 7 show the differential and common-mode  
S-parameters for the amplifier by itself with 50Ω termina-  
tions on all ports. In addition, common-mode termina-  
tions were used on the input and output ports having a  
value of 2pF in series with 50Ω.  
2500 0.549 40.1 0.496 –97.1 0.041 –21.9 0.873  
2.9  
3000 0.601 6.9 0.397 –143.2 0.042 –52.2 0.764 –37.3  
3500 0.618 –27.5 0.281 –175.7 0.044 –80.3 0.668 –72.7  
4000 0.595 –60.3 0.254 147.3 0.046 –101.2 0.620 –107.0  
5586fa  
24  
For more information www.linear.com/LTC5586  
LTC5586  
applicaTions inForMaTion  
The common-mode feedback amplifier holds the com-  
mon-mode output voltage within about 20mV of the VCM  
pin voltage. The VCM pin interface is shown in Figure 15.  
The VCM pin should be driven by a voltage source with an  
output impedance lower than 1kΩ. When the VCM pin is  
unbiased, the output common-mode voltage will be held  
at a nominal 0.9V given by the internal voltage divider  
formed by the 40kΩ and 8kΩ resistors. Connecting the  
VCM pin to an ADC common-mode reference pin allows  
the output common-mode voltage of the IF amplifier to  
track the ADC common-mode.  
Digital Input Pins  
Figure 17 show the simplified schematics for the digital  
input pins, SCK, CSB, SDI, and RFSW. These pins should  
not be left floating, since there is no internal pull-down  
or pull-up.  
V
CC  
LTC5586  
2k  
DIGITAL  
INPUT  
V
CC  
LTC5586  
40k  
20k  
5586 F17  
GND  
250Ω  
V
CM  
Figure 17. Simplified Schematic of the Digital Input Pins  
(SCK, CSB, SDI, RFSW)  
8k  
6.5pF  
OVDD Interface  
5586 F15  
GND  
Figure 18 shows the simplified schematic of the OVDD  
interface. The OVDD pin supplies the voltage for the digital  
inputs and SDO pin. By setting the pin at 1.2V to 3.3V, the  
serial port can function with 1.2V to 3.3V logic levels. It is  
important that when sequencing the supply voltages for  
the chip that the VCC supply be brought up first before the  
OVDD supply. This is to prevent the ESD diode connected  
between OVDD and VCC from getting damaged.  
Figure 15. Simplified Schematic of the VCM Input Pin  
Temperature Diode  
A schematic of the TEMP pin is shown in Figure 16. The  
temperature diode can be used to directly measure the  
die temperature. A 40kΩ resistor is recommended to V  
CC  
to generate a 100µA current source for the diode readout.  
V
CC  
The temperature slope is about –1.52mV/°C.  
LTC5586  
V
V
CC  
CC  
LTC5586  
SDO  
R20  
40.2k  
100Ω  
OV  
DD  
TEMP  
V
TEMP  
DIGITAL  
INPUTS  
5586 F18  
5586 F16  
GND  
GND  
Figure 16. Schematic of the TEMP Pin  
Figure 18. Simplified Schematic of the OVDD Pin Interface  
5586fa  
25  
For more information www.linear.com/LTC5586  
 
 
 
 
LTC5586  
applicaTions inForMaTion  
SERIAL PORT  
SDO_MODE Control Bit  
The SPI-compatible serial port provides control and moni  
toring functionality.  
-
The SDO output has two modes of operation as shown  
in the timing diagram. When register 0x16 control bit  
SDO_MODE = 0, the SDO pin functions as a normal output  
which is High-Z during a write command. If SDO_MODE  
= 1, the SDO output is put into a serial repeater mode  
where SDO echoes the command written to SDI before  
readback of register contents either in read or write mode.  
This can be used in high bus noise environments where  
it is necessary to perform error-checking on commands  
sent to the serial port.  
Communication Sequence  
The serial bus is comprised of CSB, SCK, SDI and SDO.  
Data transfers to the part are accomplished by the  
serial bus master device first taking CSB low to enable  
the LTC5586’s port. Input data applied on SDI is clocked  
on the rising edge of SCK, with all transfers MSB first.  
The communication burst is terminated by the serial bus  
master returning CSB high. See the timing diagrams for  
details.  
A simplified schematic of the SDO output is shown in  
Figure 19. The OVDD supply sets the logic level of the out-  
put, and a 25Ω series resistor limits the output current.  
Data is read from the part during a communication burst  
using SDO. Readback may be multidrop (more than one  
LTC5586 or other serial device connected in parallel on  
the serial bus), as SDO is high impedance (Hi-Z) when  
CSB = 1.  
OV  
V
CC  
DD  
LTC5586  
Single Byte Transfers  
25Ω  
The serial port is arranged as a simple memory map, with  
status and control available in 23 registers as shown in  
the appendix. All data bursts are comprised of at least  
two 8-bit bytes. The most significant bit of the first byte  
is the read/write bit. Setting this bit to 1 puts the serial  
port into read mode. The next 7 bits of the first byte are  
address bits and can be set from 0x00 to 0x17. The subse-  
quent byte, or bytes, is data from/to the specified register  
address. See the timing diagrams for details. Note that the  
written data is transferred to the internal register at the  
SDO  
5586 F19  
GND  
Figure 19. Simplified Schematic of the SDO Pin Interface  
th  
falling edge of the 16 clock cycle (parallel load).  
Register Defaults  
Multiple Byte Transfers  
The register map and defaults are given in Tables 8 and 9  
in the appendix. When the device is powered up, the reg-  
isters may not be reset to their default values. By writing  
a 1 to the SRST bit (bit[3]) of register 0x16, the device  
will go into soft reset and the registers will be reset to  
their default values.  
More efficient data transfer of multiple bytes is accom-  
plished by using the LTC5586’s register address auto-  
increment feature as shown in the timing diagram. The  
serial port master sends the destination register address  
in the first byte and reads or writes data in the second  
byte as before, but on the third byte the address pointer is  
auto-incremented by 1 and the serial port master can read  
or write to subsequent registers. If the register address  
pointer attempts to increment past 23 (0x17), it is auto-  
matically reset to 0.  
5586fa  
26  
For more information www.linear.com/LTC5586  
 
LTC5586  
applicaTions inForMaTion  
Impairment Minimization  
In the DSP, a complex-FFT can be used to extract gain  
error and phase error for image rejection optimization,  
while the FFT of each channel can be used to optimize  
DC offset and nonlinearities independently. One possible  
general optimization method would be to sequentially  
apply a 1-D minimization algorithm to each impairment. A  
simple bisection method or more complicated (but faster  
converging) Brent’s method[1] could be used for the 1-D  
minimization.  
The LTC5586 contains circuitry for minimizing receiver  
impairments such as DC offset, Phase and Gain Error,  
and non-linearity. An example block diagram of a DPD  
transmitter application is shown in Figure 20. A DSP is  
used to implement a 2-tone source and minimization algo-  
rithms for calibration of impairments. To setup the DSP  
for impairment calibration, the DATA ENCODER would  
be configured to produce symbols for two tones in the  
band of interest. The tones would be modulated up to  
the carrier frequency of fLO before being applied to the  
LTC5586 RFA input. The tones are then down-converted  
to baseband for the DSP.  
Figure 21 shows the non-optimized spectrum and  
Figure 22 shows the optimized spectrum for a 2-tone  
test signal at 2GHz. The Upper Sideband spectrum is the  
desired signal while the Lower Sideband is the image  
signal.  
[1] Saul Teukolsky, William T. Vetterling, William H. Press, and Brian P. Flannery, “Numerical  
Recipes in C: The Art of Scientific Computing,” p. 352, 1988.  
LTC5588-1  
LTC2000-14  
DSP  
I
DAC  
0º  
COMPLEX GAIN  
PREDISTORTER  
DATA  
INPUT  
PA  
90º  
LTC2000-14  
Q
DAC  
DATA  
ENCODER  
LTC6946  
ADAPTIVE  
LUT  
f
LO  
LTC2158-14  
LTC5586  
FEEDBACK  
SIGNAL  
PROCESSING  
I
ADC  
RFA  
RFB  
LINEARITY  
DC OFFSET  
IMAGE  
0º  
FFT  
90º  
ADJUST  
RFSW  
Q
EXTRACT  
FFT BIN  
ADC  
SPI  
IMPAIRMENT  
MINIMIZATION  
SPI  
5586 F20  
Figure 20. Example Block Diagram of a DPD Transmitter with DSP for Impairment Minimization  
5586fa  
27  
For more information www.linear.com/LTC5586  
 
LTC5586  
applicaTions inForMaTion  
Figure 21. Non-Optimized 2-Tone Spectrum at 2GHz with 100MHz Anti-Alias Filter  
5586fa  
28  
For more information www.linear.com/LTC5586  
 
LTC5586  
applicaTions inForMaTion  
Figure 22. Optimized 2-Tone Spectrum at 2GHz with 100MHz Anti-Alias Filter  
5586fa  
29  
For more information www.linear.com/LTC5586  
 
LTC5586  
appenDix  
Table 8. Serial Port Register Contents  
ADDR  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
MSB  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
LSB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DEFAULT  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x04  
0x82  
0x48  
0xE3  
0x80  
0x6A  
0xF0  
0x01  
IM3QY[7]  
IM3QX[7]  
IM3IY[7]  
IM3IX[7]  
IM2QX[7]  
IM2IX[7]  
IM3QY[6]  
IM3QX[6]  
IM3IY[6]  
IM3IX[6]  
IM2QX[6]  
IM2IX[6]  
IM3QY[5]  
IM3QX[5]  
IM3IY[5]  
IM3IX[5]  
IM2QX[5]  
IM2IX[5]  
IM3QY[4]  
IM3QX[4]  
IM3IY[4]  
IM3IX[4]  
IM2QX[4]  
IM2IX[4]  
IM3QY[3]  
IM3QX[3]  
IM3IY[3]  
IM3IX[3]  
IM2QX[3]  
IM2IX[3]  
IM3QY[2]  
IM3QX[2]  
IM3IY[2]  
IM3IX[2]  
IM2QX[2]  
IM2IX[2]  
IM3QY[1]  
IM3QX[1]  
IM3IY[1]  
IM3IX[1]  
IM2QX[1]  
IM2IX[1]  
IM3QY[0]  
IM3QX[0]  
IM3IY[0]  
IM3IX[0]  
IM2QX[0]  
IM2IX[0]  
HD3QY[7] HD3QY[6] HD3QY[5]  
HD3QX[7] HD3QX[6] HD3QX[5]  
HD3QY[4] HD3QY[3] HD3QY[2] HD3QY[1] HD3QY[0]  
HD3QX[4] HD3QX[3] HD3QX[2] HD3QX[1] HD3QX[0]  
HD3IY[7]  
HD3IX[7]  
HD3IY[6]  
HD3IX[6]  
HD3IY[5]  
HD3IX[5]  
HD3IY[4]  
HD3IX[4]  
HD3IY[3]  
HD3IX[3]  
HD3IY[2]  
HD3IX[2]  
HD3IY[1]  
HD3IX[1]  
HD3IY[0]  
HD3IX[0]  
HD2QY[7] HD2QY[6] HD2QY[5]  
HD2QX[7] HD2QX[6] HD2QX[5]  
HD2QY[4] HD2QY[3] HD2QY[2] HD2QY[1] HD2QY[0]  
HD2QX[4] HD2QX[3] HD2QX[2] HD2QX[1] HD2QX[0]  
HD2IY[7]  
HD2IX[7]  
DCOI[7]  
DCOQ[7]  
ATT[4]  
HD2IY[6]  
HD2IX[6]  
DCOI[6]  
DCOQ[6]  
ATT[3]  
HD2IY[5]  
HD2IX[5]  
DCOI[5]  
DCOQ[5]  
ATT[2]  
GERR[3]  
LVCM[0]  
LF1[0]  
HD2IY[4]  
HD2IX[4]  
DCOI[4]  
DCOQ[4]  
ATT[1]  
GERR[2]  
CF1[4]  
CF2[4]  
PHA[5]  
AMPG[0]  
1*  
HD2IY[3]  
HD2IX[3]  
DCOI[3]  
DCOQ[3]  
ATT[0]  
HD2IY[2]  
HD2IX[2]  
DCOI[2]  
DCOQ[2]  
IP3IC[2]  
GERR[0]  
CF1[2]  
HD2IY[1]  
HD2IX[1]  
DCOI[1]  
DCOQ[1]  
IP3IC[1]  
IP3CC[1]  
CF1[1]  
HD2IY[0]  
HD2IX[0]  
DCOI[0]  
DCOQ[0]  
IP3IC[0]  
IP3CC[0]  
CF1[0]  
GERR[5]  
LVCM[2]  
BAND  
GERR[4]  
LVCM[1]  
LF1[1]  
GERR[1]  
CF1[3]  
CF2[3]  
CF2[2]  
CF2[1]  
CF2[0]  
PHA[8]  
PHA[0]  
1*  
PHA[7]  
AMPG[2]  
1*  
PHA[6]  
AMPG[1]  
1*  
PHA[4]  
PHA[3]  
PHA[2]  
AMPIC[1]  
0*  
PHA[1]  
AMPIC[0]  
0*  
AMPCC[1] AMPCC[0]  
SRST  
0*  
SDO_MODE  
0*  
CHIPID[1] CHIPID[0]  
0*  
0*  
0*  
RFSW  
*Unused, do not change default value.  
5586fa  
30  
For more information www.linear.com/LTC5586  
LTC5586  
appenDix  
Table 9. Serial Port Register Bit Field Summary  
BITS  
FUNCTION  
DESCRIPTION  
VALID VALUES  
DEFAULT  
0x02  
0x02  
0x06  
0x00  
1
AMPCC[1:0]  
AMPIC[1:0]  
AMPG[2:0]  
ATT[4:0]  
BAND  
IF Amplifier IM3 CC Adjust  
IF Amplifier IM3 IC Adjust  
IF Amplifier Gain Adjust  
Step Attenuator Control  
LO Band Select  
Used to optimize the IF amplifier IM3.  
Used to optimize the IF amplifier IM3.  
Adjusts the amplifier gain from 8dB to 15dB.  
Controls the step attenuator from 0dB to 31dB attenuation.  
0x00 to 0x03  
0x00 to 0x03  
0x00 to 0x07  
0x00 to 0x1F  
0, 1  
Selects which LO matching band is used. BAND = 1 for high band. BAND  
= 0 for low band.  
CF1[5:0]  
LO Matching Capacitor CF1 Controls the CF1 capacitor in the LO matching network.  
LO Matching Capacitor CF2 Controls the CF2 capacitor in the LO matching network.  
0x00 to 0x1F  
0x00 to 0x1F  
0x00 to 0x03  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0x3F  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0x03  
0x00 to 0x07  
0x00 to 0x03  
0x00 to 0x07  
0x000 to 0x1FF  
0x08  
0x03  
0x00  
0x80  
0x80  
0x20  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x02  
0x04  
0x03  
0x02  
0x100  
CF2[5:0]  
CHIPID  
Chip Identification Bits  
I-Channel DC Offset  
Factory set to default value.  
DCOI[7:0]  
DCOQ[7:0]  
GERR[5:0]  
HD2IX[7:0]  
HD2IY[7:0]  
HD2QX[7:0]  
HD2QY[7:0]  
HD3IX[7:0]  
HD3IY[7:0]  
HD3QX[7:0]  
HD3QY[7:0]  
IM2IX[7:0]  
IM2QX[7:0]  
IM3IX[7:0]  
IM3IY[7:0]  
IM3QX[7:0]  
IM3QY[7:0]  
IP3CC[1:0]  
IP3IC[2:0]  
LF1[1:0]  
Controls the I-channel DC offset over a range from –200mV to 200mV.  
Controls the Q-channel DC offset over a range from –200mV to 200mV.  
Controls the IQ gain error over a range from –0.5dB to 0.5dB.  
Controls the I-channel HD2 X-vector adjustment.  
Controls the I-channel HD2 Y-vector adjustment.  
Controls the Q-channel HD2 X-vector adjustment.  
Controls the Q-channel HD2 Y-vector adjustment.  
Controls the I-channel HD3 X-vector adjustment.  
Controls the I-channel HD3 Y-vector adjustment.  
Controls the Q-channel HD3 X-vector adjustment.  
Controls the Q-channel HD3 Y-vector adjustment.  
Controls the I-channel IM2 X-vector adjustment.  
Controls the Q-channel IM2 X-vector adjustment.  
Controls the I-channel IM3 X-vector adjustment.  
Controls the I-channel IM3 Y-vector adjustment.  
Controls the Q-channel IM3 X-vector adjustment.  
Controls the Q-channel IM3 Y-vector adjustment.  
Used to optimize the RF input IP3.  
Q-Channel DC Offset  
IQ Gain Error Adjust  
HD2 I-Channel X-Vector  
HD2 I-Channel Y-Vector  
HD2 Q-Channel X-Vector  
HD2 Q-Channel Y-Vector  
HD3 I-Channel X-Vector  
HD3 I-Channel Y-Vector  
HD3 Q-Channel X-Vector  
HD3 Q-Channel Y-Vector  
IM2 I-Channel X-Vector  
IM2 Q-Channel X-Vector  
IM3 I-Channel X-Vector  
IM3 I-Channel Y-Vector  
IM3 Q-Channel X-Vector  
IM3 Q-Channel Y-Vector  
RF Input IP3 CC Adjust  
RF Input IP3 IC Adjust  
LO Matching Inductor LF1  
LO Bias Adjust  
Used to optimize the RF input IP3.  
Controls the LF1 inductor in the LO matching network.  
Used to optimize mixer IP3.  
LVCM[2:0]  
PHA[8:0]  
IQ Phase Error Adjust  
Controls the IQ phase error over a range from –2.5 Degrees to 2.5  
Degrees.  
RFSW  
RF Switch Input Select  
SDO Readback Mode  
Soft Reset  
Controls the RF switch state with a logical AND of the RFSW pin.  
Enables the SDO readback mode if SDO_MODE = 1.  
0, 1  
0, 1  
0, 1  
1
0
0
SDO_MODE  
SRST  
Writing 1 to this bit resets all registers to their default values.  
5586fa  
31  
For more information www.linear.com/LTC5586  
LTC5586  
package DescripTion  
Please refer to http://www.linear.com/product/LTC5586#packaging for the most recent package drawings.  
UH Package  
32-Lead Plastic QFN (5mm × 5mm)  
(Reference LTC DWG # 05-08-1693 Rev D)  
0.70 ±0.05  
5.50 ±0.05  
4.10 ±0.05  
3.45 ±0.05  
3.50 REF  
(4 SIDES)  
3.45 ±0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.30 TYP  
OR 0.35 × 45° CHAMFER  
R = 0.05  
TYP  
0.00 – 0.05  
R = 0.115  
TYP  
0.75 ±0.05  
5.00 ±0.10  
(4 SIDES)  
31 32  
0.40 ±0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
3.45 ±0.10  
3.50 REF  
(4-SIDES)  
3.45 ±0.10  
(UH32) QFN 0406 REV D  
0.200 REF  
0.25 ±0.05  
0.50 BSC  
NOTE:  
1. DRAWING PROPOSED TO BE A JEDEC PACKAGE OUTLINE  
M0-220 VARIATION WHHD-(X) (TO BE APPROVED)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5586fa  
32  
For more information www.linear.com/LTC5586  
LTC5586  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
08/17 Various corrections.  
5, 7, 14, 21, 23, 32  
5586fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
33  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTC5586  
Typical applicaTion  
Simplified Schematic of a 0.3GHz to 6.0GHz Receiver, (Only I-Channel Is Shown)  
L1, 68nH  
C9  
10pF  
C10  
22pF  
L2, 68nH  
C11 C12  
10pF 22pF  
ANTI-ALIAS  
FILTER  
MIP MIM  
AIM AIP  
LTC5586  
L5, 120nH  
L7, 120nH  
C20  
RF INPUT  
0.3 - 6.0GHz  
C17  
R3  
R7  
C23  
LTC2158-14  
39pF  
12pF 68Ω  
200Ω  
22pF  
+
C1  
DA12_13  
A
IFIP  
IN  
1000pF  
RFA  
DDR  
LVDS  
-
R2  
25Ω  
R9  
25Ω  
ADC  
A
IN  
C2  
0.3pF  
R4  
68Ω  
L6, 120nH  
R8  
200Ω  
IFIM  
DA0_1  
C18  
12pF  
C24  
22pF  
VCM  
L8, 120nH  
LOM  
LOP  
VCM  
C21  
39pF  
C6  
1000pF  
C8  
1000pF  
R1  
49.9Ω  
C47  
0.01µF  
C45  
0.01µF  
LO INPUT  
0.3 - 6.0GHz  
R32, 10Ω  
5586 TA02  
relaTeD parTs  
PART NUMBER DESCRIPTION  
Infrastructure  
COMMENTS  
LTC5569  
300MHz to 4GHz Dual Active Downconverting  
Mixer  
2dB Gain, 26.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/180mA Supply  
LTC6409  
LTC5549  
10GHz GBW Differential Amplifier  
DC-Coupled, 48dBm OIP3 at 140MHz, 1.1nV/√Hz Input Noise Density  
2GHz to 14GHz Mixer with Integrated LO Doubler Ultra-Wideband Bidirectional Up-, or Down-Conversion Mixer, +22.8dBm IIP3 at  
12GHz, 0dBm LO Drive, 500MHz to 6GHz IF Bandwidth  
LTC5548  
2GHz to 14GHz Mixer with IF Frequency Extending Ultra-Wideband Bidirectional Up-, or Down-Conversion Mixer, +18.7dBm IIP3 at  
to DC  
12GHz, 0dBm LO Drive with On-Chip Frequency Doubler, DC to 6GHz IF Bandwidth  
LTC5588-1  
200MHz to 6GHz Quadrature Modulator  
+31dBm OIP3, –160dBm/Hz Output Noise Floor, Excellent ACPR Performance  
RF PLL/Synthesizer with VCO  
LTC6946-3  
Low Noise, Low Spurious Integer-N PLL with  
Integrated VCO  
640MHz to 5.79GHz, –157dBc/Hz WB Phase Noise Floor, 100dBc/Hz Closed-Loop  
Phase Noise  
LTC6948  
Ultralow Noise Fractional-N Synthesizer with  
Integrated VCO  
370MHz to 6.39GHz PLL, No Delta-Sigma Modulator Spurs, 18-Bit Fractional  
Denominator, 226dBc/Hz Normalized In-Band Phase Noise Floor  
ADCs  
LTC2145-14  
LTC2185  
LTC2158-14  
14-Bit, 125Msps 1.8V Dual ADC  
16-Bit, 125Msps 1.8V Dual ADC  
73.1dB SNR, 90dB SFDR, 95mW/Ch Power Consumption  
76.8dB SNR, 90dB SFDR, 185mW/Channel Power Consumption  
14-Bit, 310Msps 1.8V Dual ADC, 1.25GHz Full-  
Power Bandwidth  
68.8dB SNR, 88dB SFDR, 362mW/Ch Power Consumption, 1.32V Input Range  
P-P  
5586fa  
LT 0817 REV A • PRINTED IN USA  
www.linear.com/LTC5586  
34  
LINEAR TECHNOLOGY CORPORATION 2017