欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • MAX191ACWG+T
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • MAX191ACWG+T图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • MAX191ACWG+T
  • 数量9125 
  • 厂家ADI(亚德诺)/MAXIM(美信) 
  • 封装SOP-24-300mil 
  • 批号23+ 
  • 原厂直销,现货供应,账期支持!
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • MAX191ACWG+T图
  • 集好芯城

     该会员已使用本站13年以上
  • MAX191ACWG+T
  • 数量26977 
  • 厂家ADI 
  • 封装Small-Outline IC, Wide (0.3in) 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • MAX191ACWG+T图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • MAX191ACWG+T
  • 数量12300 
  • 厂家MAXIM/美信 
  • 封装SOP24 
  • 批号24+ 
  • ★原装真实库存★13点税!
  • QQ:2353549508QQ:2353549508 复制
    QQ:2885134615QQ:2885134615 复制
  • 0755-83201583 QQ:2353549508QQ:2885134615
  • MAX191ACWG+T图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • MAX191ACWG+T
  • 数量2368 
  • 厂家MAXIM-美信 
  • 封装SOP-24 
  • 批号▉▉:2年内 
  • ▉▉¥116元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • MAX191ACWG+T图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • MAX191ACWG+T
  • 数量16851 
  • 厂家MAXIM/美信 
  • 封装MA-2019 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • MAX191ACWG+T图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • MAX191ACWG+T
  • 数量3265 
  • 厂家MAXIM 
  • 封装24-SOIC 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • MAX191ACWG+T图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • MAX191ACWG+T
  • 数量4675 
  • 厂家ADI/MAXIM 
  • 封装24-SOIC 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • MAX191ACWG+T图
  • 深圳市富莱微科技有限公司

     该会员已使用本站6年以上
  • MAX191ACWG+T
  • 数量7127 
  • 厂家Maxim Integrated 
  • 封装24-SOIC 
  • 批号20+ 
  • 进口原装,公司现货
  • QQ:1968343307QQ:1968343307 复制
    QQ:2885835292QQ:2885835292 复制
  • 0755-83210149 QQ:1968343307QQ:2885835292
  • MAX191ACWG+T图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • MAX191ACWG+T
  • 数量660000 
  • 厂家Maxim Integrated 
  • 封装W.SO 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • MAX191ACWG+T图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • MAX191ACWG+T
  • 数量9500 
  • 厂家Maxim(美信) 
  • 封装24-SOIC(0.295,7.50mm 宽) 
  • 批号24+ 
  • 绝对原装正品,可开专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • MAX191ACWG+T图
  • 深圳市一线半导体有限公司

     该会员已使用本站15年以上
  • MAX191ACWG+T
  • 数量15000 
  • 厂家Maxim Integrated 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • MAX191ACWG+T图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • MAX191ACWG+T
  • 数量1000 
  • 厂家MAXIM 
  • 封装SOP-24 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!单价:326元
  • QQ:97877807QQ:97877807 复制
  • 171-4755-1968(微信同号) QQ:97877807

产品型号MAX191ACWG+T的概述

芯片MAX191ACWG+T的概述 MAX191ACWG+T是一款由美国Maxim Integrated公司生产的高性能模数转换器(ADC)。该芯片广泛应用于测量和控制系统、工业自动化、以及消费电子等领域,以其高精度、低功耗和快速的转换速度而受到青睐。MAX191ACWG+T采用了单通道的设计,能够提供高达12位的分辨率,适用于需要高信号质量的应用。 该芯片的核心优势在于其卓越的线性度和低失真性能,能够有效地将模拟信号转换为数字信号。这使得工程师们在设计信号处理电路时,能够确保数据的准确性和可靠性。此外,MAX191ACWG+T具备多种工作模式和灵活的配置选项,适应不同的需求场景。 芯片MAX191ACWG+T的详细参数 MAX191ACWG+T的主要参数包括: - 输入电压范围:-0.3V到+6V - 分辨率:12位 - 采样率:最大1MHz - 转换时间:典型为2.5µs - 供电...

产品型号MAX191ACWG+T的Datasheet PDF文件预览

19-4506; Rev 4; 2/97  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
12-Bit Resolution, 1/2LSB Linearity  
+5V or ±5V Operation  
Built-In Track/Hold  
Internal Reference with Adjustment Capability  
The MAX191 is a monolithic, CMOS, 12-bit analog-to-  
digital converter (ADC) featuring differential inputs,  
track/hold (T/H), internal voltage reference, internal or  
external clock, and parallel or serial µP interface. The  
MAX191 has a 7.5µs conversion time, a 2µs acquisition  
time, and a guaranteed 100ksps sample rate.  
Low Power: 3mA Operating Mode  
20µA Power-Down Mode  
The MAX191 operates from a single +5V supply or from  
dual ±5V supplies, allowing ground-referenced bipolar  
input signals. The device features a logic power-down  
input, which reduces the 3mA VDD supply current to  
50µA max, including the internal-reference current.  
100ksps Tested Sampling Rate  
Serial and 8-Bit Parallel µP Interface  
24-Pin Narrow DIP and Wide SO Packages  
Ord e rin g In fo rm a t io n  
Decoupling capacitors are the only external compo-  
nents needed for the power supply and reference. This  
ADC operates with either an external reference, or an  
internal reference that features an adjustment input for  
trimming system gain errors.  
ERROR  
(LSB)  
PART  
TEMP. RANGE  
PIN-PACKAGE  
MAX191ACNG  
MAX191BCNG  
MAX191ACWG  
MAX191BCWG  
MAX191BC/D  
MAX191AENG  
MAX191BENG  
0°C to +70°C 24 Narrow Plastic DIP ±1/2  
0°C to +70°C 24 Narrow Plastic DIP ±1  
The MAX191 provides three interface modes: two 8-bit  
parallel modes, and a serial interface mode that is com-  
patible with SPITM, QSPITM, and MICROWIRETM serial-  
interface standards.  
0°C to +70°C 24 Wide SO  
0°C to +70°C 24 Wide SO  
0°C to +70°C Dice*  
±1/2  
±1  
±1  
-40°C to +85°C 24 Narrow Plastic DIP ±1/2  
-40°C to +85°C 24 Narrow Plastic DIP ±1  
________________________Ap p lic a t io n s  
Battery-Powered Data Logging  
PC Pen Digitizers  
MAX191AEWG -40°C to +85°C 24 Wide SO  
MAX191BEWG -40°C to +85°C 24 Wide SO  
±1/2  
±1  
MAX191AMRG  
MAX191BMRG  
-55°C to +125°C 24 Narrow CERDIP** ±1/2  
-55°C to +125°C 24 Narrow CERDIP** ±1  
High-Accuracy Process Control  
Electromechanical Systems  
Data-Acquisition Boards for PCs  
Automatic Testing Systems  
* Dice are specified at T = +25°C, DC parameters only.  
** Contact factory for availability and processing to MIL-STD-883.  
A
Telecommunications  
Digital Signal Processing (DSP)  
P in Co n fig u ra t io n  
TOP VIEW  
Fu n c t io n a l Dia g ra m  
PD  
V
1
2
DD  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
V
DD  
24  
CLK/SCLK  
23  
V
SS  
CLK/SCLK  
PAR  
18  
17  
16  
15  
14  
13  
11  
10  
5
6
AIN+  
D7/DOUT  
D6/SCLK  
3
VREF  
OSC  
3-STATE  
OUTPUT  
REFADJ  
OUT  
AIN-  
HBEN  
4
D5/SSTRB  
D4  
MAX191  
VREF  
REFADJ  
AGND  
BIP  
CS  
5
8-BIT  
BUS  
AND  
SERIAL  
I/O  
D3/D11  
D2/D10  
D1/D9  
D0/D8  
RD  
6
2.46V  
REF  
D7/DOUT  
D6/SCLK  
7
12  
8
OUT  
3
4
AIN +  
AIN -  
BUSY  
D0/D8  
D1/D9  
DGND  
D5/SSTRB  
D4  
9
20  
CS  
RD  
BUSY  
HBEN  
10  
11  
12  
IN REF OUT  
19  
9
21  
CONTROL  
LOGIC  
12-BIT  
D3/D11  
D2/D10  
MAX191  
SAR ADC  
1
PD  
7
12  
AGND DGND  
2
V
SS  
22  
8
BIP  
PAR  
DIP/SO  
SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
ABSOLUTE MAXIMUM RATINGS  
V
to DGND............................................................-0.3V to +7V  
Operating Temperature Ranges  
DD  
V
to AGND ............................................................-7V to +0.3V  
to V ..............................................................................12V  
SS  
MAX191_C_ _ ................................................................0°C to +70°C  
MAX191_E_ _ .............................................................-40°C to +85°C  
MAX191_M_ _ ..........................................................-55°C to +125°C  
Storage Temperature Range.....................................-65°C to +160°C  
Lead Temperature (soldering, 10sec).....................................+300°C  
SS  
V
DD  
AGND, VREF, REFADJ to DGND................-0.3V to (V + 0.3V)  
AIN+, AIN-, PD to V .................................-0.3V to (V + 0.3V)  
CS, RD, CLK, BIP, HBEN, PAR, to DGND....-0.3V to (V + 0.3V)  
DD  
SS  
DD  
DD  
BUSY, D0–D7 to DGND..............................-0.3V to (V + 0.3V)  
DD  
MAX91  
Continuous Power Dissipation (T = +70°C)  
A
Narrow Plastic DIP (derate 13.33mW/°C above +70°C)....1067mW  
Wide SO (derate 11.76mW/°C above +70°C) ......................941mW  
Narrow CERDIP (derate 12.50mW/°C above +70°C) ........1000mW  
Stresses beyond those listed under Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 5V ±5%, V = 0V or -5V ±5%, f = 1.6MHz, 50% duty cycle, AIN- = AGND, BIP = 0V, slow-memory mode, internal-reference  
DD  
SS  
CLK  
mode, reference compensation mode—external, synchronous operation, Figure 6, T = T  
to T  
, unless otherwise noted.) (Note 1)  
A
MIN  
MAX  
PARAMETER  
DC ACCURACY (Note 2)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
12  
Bits  
MAX191A  
MAX191B  
±1/2  
LSB  
±1  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
No missing codes over temperature  
MAX191A  
±1  
±1  
±2  
±2  
±3  
LSB  
LSB  
MAX191B  
MAX191A  
Gain Error (Note 3)  
LSB  
MAX191B  
Gain-Error Tempco (Note 4)  
Excludes internal-reference drift  
±0.2  
ppm/°C  
DYNAMIC ACCURACY (sample rate = 100kHz, V = 4Vp-p)  
IN  
Signal-to-Noise plus Distortion  
Ratio  
1kHz input signal, T = +25°C  
SINAD  
70  
80  
dB  
A
Total Harmonic Distortion  
(up to the 5th Harmonic)  
1kHz input signal, T = +25°C  
THD  
-80  
dB  
dB  
A
1kHz input signal, T = +25°C  
Spurious-Free Dynamic Range  
SFDR  
A
CONVERSION RATE  
Synchronous CLK (12 to 13 CLKs)  
7.50  
6
8.125  
18  
t
Conversion Time (Note 5)  
µs  
CONV  
Internal CLK, C = 120pF  
12  
L
Track/Hold Acquisition Time  
Aperture Delay  
2
µs  
ns  
ps  
25  
50  
Aperture Jitter  
External Clock Frequency  
Range (Note 6)  
f
0.1  
1.6  
MHz  
CLK  
2
_______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V ±5%, V = 0V or -5V ±5%, f = 1.6MHz, 50% duty cycle, AIN- = AGND, BIP = 0V, slow-memory mode, internal-reference  
DD  
SS  
CLK  
mode, reference compensation mode—external, synchronous operation, Figure 6, T = T  
to T  
, unless otherwise noted.) (Note 1)  
A
MIN  
MAX  
PARAMETER  
ANALOG INPUT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Input Voltage Range (Note 7)  
Input Leakage Current  
V
µA  
SS  
DD  
V
= V to V  
±10  
80  
IN  
SS  
DD  
Input Capacitance (Note 6)  
Small-Signal Bandwidth  
INTERNAL REFERENCE  
VREF Output Voltage  
45  
2
pF  
MHz  
T
= +25°C  
4.076  
4.096  
4.116  
50  
60  
80  
2
V
A
MAX191_C  
MAX191_E  
MAX191_M  
VREF Output Tempco (Note 8)  
ppm/°C  
T
= +25°C  
Output Current Capability (Note 9)  
Load Regulation  
mA  
mV  
mA  
µF  
A
T
= +25°C, I  
= 0mA to 2mA  
4
A
OUT  
Output Short-Circuit Current  
Capacitive Load Required  
Power-Supply Rejection  
18  
Reference compensation mode—external  
= ±5%, V = ±5%  
4.7  
V
±300  
µV  
DD  
SS  
REFADJ Input Adjustment Range  
(Note 10)  
-60  
4.5  
30  
60  
mV  
REFADJ Disable Threshold  
REFADJ Output Voltage  
REFADJ Input Current  
REFERENCE INPUT  
Input Voltage Range  
Input Current  
V
V
2.4  
10  
REFADJ = 5V  
µA  
External-reference mode  
External-reference = 5V  
External-reference mode  
2.5  
5
5.0  
1
V
mA  
k  
Input Resistance  
LOGIC INPUTS  
V
Input Low Voltage  
0.8  
V
V
CS, RD, CLK, HBEN, PAR, BIP  
CS, RD, CLK, HBEN, PAR, BIP  
IL  
V
Input High Voltage  
Input Current  
2.4  
IH  
I
V = 0V to V  
IN DD  
±10  
µA  
IN  
±200  
PD = high/float  
PD = low  
I
Input Current CLK  
µA  
IN  
±0.1  
C
Input Capacitance (Note 6)  
PD Input Low Voltage  
PD Input High Voltage  
PD Input Current  
10  
pF  
V
IN  
V
0.5  
IL  
V
4.5  
V
IH  
I
PD = 0V to V (Note 11)  
±20  
µA  
IN  
DD  
PD External Leakage for Float  
State (Note 12)  
Maximum current allowed for floating state”  
Reference compensation mode—external  
±100  
nA  
V
V
2.8  
PD Floating-State Voltage  
FLT  
_______________________________________________________________________________________  
3
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V ±5%, V = 0V or -5V ±5%, f = 1.6MHz, 50% duty cycle, AIN- = AGND, BIP = 0V, slow-memory mode, internal-reference  
DD  
SS  
CLK  
mode, reference compensation mode—external, synchronous operation, Figure 6, T = T  
to T  
, unless otherwise noted.) (Note 1)  
A
MIN  
MAX  
PARAMETER  
LOGIC OUTPUTS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Low Voltage  
V
I
= 1.6mA  
0.4  
V
V
OL  
OUT  
MAX91  
Output High Voltage  
V
OH  
I
= -200µA  
4.0  
OUT  
Three-State Leakage Current  
I
D0/D8-D7/DOUT  
±10  
15  
µA  
L
Three-State Output  
Capacitance (Note 6)  
C
pF  
OUT  
POWER REQUIREMENTS  
Positive Supply Voltage  
Negative Supply Voltage  
V
4.75  
5.25  
0
V
V
DD  
V
SS  
-5.25  
3
20  
20  
1
5
mA  
µA  
CS = RD = V  
AIN = 5V, D0/D8–D7/  
DOUT = 0V or V  
,
PD = high/float  
DD  
Positive Supply Current  
Negative Supply Current  
I
DD  
50  
PD = low  
,
DD  
100  
20  
PD = high/float  
PD = low  
HBEN = PAR = BIP  
= 0V or V  
I
SS  
µA  
DD  
Positive Supply Rejection (Note 13)  
Negative Supply Rejection (Note 13)  
FS change, V = 5V ±5%  
±1/2  
±1/2  
LSB  
LSB  
DD  
FS change, V = -5V ±5%  
SS  
TIMING CHARACTERISTICS (Figures 6–10)  
(V =5V ±5%, V = 0V or -5V ±5%, T = T  
to T  
, unless otherwise noted.) (Note 14)  
DD  
SS  
A
MIN  
MAX  
T
= +25°C  
MAX191C/E  
MIN TYP MAX  
MAX191M  
MIN TYP MAX  
A
PARAMETER  
SYMBOL CONDITIONS  
UNITS  
MIN TYP MAX  
t
0
0
0
ns  
ns  
ns  
ns  
ns  
CS to RD Setup Time  
RD to BUSY Delay  
1
t
t
t
t
C
C
= 50pF  
120  
120  
150  
0
140  
140  
150  
0
160  
160  
150  
0
2
3
4
5
L
L
Data Access Time (Note 15)  
RD Pulse Width  
= 100pF  
CS to RD Hold Time  
Data Setup Time After  
BUSY (Note 15)  
t
80  
100  
120  
ns  
6
Bus-Relinquish Time (Note 16)  
HBEN to RD Setup Time  
HBEN to RD Hold Time  
t
t
t
100  
110  
120  
ns  
ns  
ns  
7
8
9
80  
0
100  
0
120  
0
Delay Between Read  
Operations (Note 6)  
t
200  
200  
2
200  
2
ns  
10  
Delay Between Conversions  
Aperture Delay  
t
t
t
2
µs  
ns  
ns  
11  
12  
13  
Jitter < 50ps  
25  
200  
230  
130  
260  
150  
CLK to BUSY Delay (Note 6)  
SCLK  
to SSTRB  
OUT  
t
t
100  
100  
ns  
ns  
14  
15  
Rise Delay  
SCLK  
to SSTRB  
OUT  
130  
150  
Fall Delay  
4
_______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
TIMING CHARACTERISTICS (Figures 6–10) (continued)  
(V =5V ±5%, V = 0V or -5V ±5%, T = T  
to T  
, unless otherwise noted.) (Note 14)  
DD  
SS  
A
MIN  
MAX  
T
= +25°C  
MAX191C/E  
MIN TYP MAX  
MAX191M  
MIN TYP MAX  
A
PARAMETER  
SYMBOL CONDITIONS  
UNITS  
MIN TYP MAX  
t
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS or RD Hold Time  
CS or RD Setup Time  
CS to DOUT Three-State  
16  
t
150  
100  
160  
100  
240  
260  
150  
110  
180  
130  
260  
310  
150  
120  
200  
150  
280  
350  
17  
t
19  
SCLK to SCLK  
Delay  
t
t
t
t
OUT  
20  
21  
22  
23  
SCLK  
to DOUT Delay  
OUT  
SCLK to DOUT Delay  
SCLK to SSTRB Delay  
Note 1: Performance at power-supply tolerance limits guaranteed by power-supply rejection test.  
Note 2: = 5V, V = 0V, FS = VREF.  
Note 3: FS = VREF, offset nulled, ideal last-code transition = FS - 3/2 LSB.  
Note 4: Gain-Error Tempco = GE is the gain-error change from T = +25°C to T  
V
DD  
SS  
or T .  
MAX  
A
MIN  
Note 5: Conversion time defined as the number of clock cycles times the clock period; clock has a 50% duty cycle.  
Note 6: Guaranteed by design, not production tested.  
Note 7: AIN+, AIN- must not exceed supplies for specified accuracy.  
Note 8: VREF TC = T, where VREF is reference-voltage change from T = +25°C to T  
or T  
.
A
MIN  
MAX  
Note 9: Output current should not change during conversion. This current is in addition to the current required by the internal DAC.  
Note 10: REFADJ adjustment range is defined as the allowed voltage excursion on REFADJ relative to its unadjusted value of 2.4V.  
This will typically result in a 1.7 times larger change in the REF output (Figure 19a).  
Note 11: This current is included in the PD supply current specification.  
Note 12: Floating the PD pin guarantees external compensation mode.  
Note 13: V  
= 4.096V, external reference.  
REF  
Note 14: All input control signals are specified with t = t = 5ns (10% to 90% of 5V) and timed from a voltage level of 1.6V.  
r
f
Note 15: t and t are measured with the load circuits of Figure 1 and defined as the time required for an output to cross 0.8V or 2.4V.  
3
6
Note 16: t is defined as the time required for the data lines to change 0.5V when loaded with the circuits of Figure 2.  
7
_______________________________________________________________________________________  
5
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
CLOCK FREQUENCY  
vs. TIMING CAPACITOR  
NEGATIVE SUPPLY CURRENT  
vs. TEMPERATURE  
POWER-DOWN SUPPLY CURRENT  
vs. TEMPERATURE  
25  
20  
25  
20  
10  
SEE FIGURE 5  
T = +25˚C  
A
MAX91  
I
DD  
1
15  
10  
15  
10  
V
= +5V  
= -5V  
DD  
V
SS  
0.1  
PD = 0V  
5
0
5
0
I
SS  
0.01  
-60 -30  
0
30 60  
90  
120 150  
0.1  
1
10  
-60 -30  
0
30 60  
90  
120 150  
TEMPERATURE (°C)  
TIMING CAPACITOR (nF)  
TEMPERATURE (°C)  
POSITIVE SUPPLY CURRENT  
vs. TEMPERATURE  
10kHz FFT PLOT  
1kHz FFT PLOT  
0
-20  
-40  
0
3.5  
3.0  
f
IN  
= 10kHz  
f
IN  
= 1kHz  
-20  
f = 100kHz  
S
f = 100kHz  
S
SNR = 71.2dB  
T = +25˚C  
A
SNR = 72dB  
T = +25˚C  
A
2.5  
2.0  
1.5  
1.0  
-40  
-60  
-60  
-86.0dB -90.8dB  
-80  
-100  
-120  
-80  
-94.3dB -96.1dB-98.0dB -93.8dB  
-100  
-120  
0.5  
0
-140  
-140  
-60  
-30  
0
30  
60 90 120 150  
0
1
2
3
4
5
6
0
5
10 15 20 25 30 35 40  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
6
_______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
P in De s c rip t io n  
FUNCTION  
PIN  
NAME  
Power-Down Input. A logic low at PD deactivates the ADC—only the bandgap reference is active. A logic  
high selects normal operation, internal-reference compensation mode. An open-circuit condition selects  
normal operation, external-reference compensation mode.  
1
PD  
2
3
4
V
Negative Supply, 0V to -5.25V  
SS  
AIN+  
AIN-  
Sampled Analog Input  
Analog Input Return. Pseudo-differential (see Gain and Offset Adjustment section).  
Reference-Buffer Output for Internal Reference. Input for external reference when REFADJ is connected to  
5
VREF  
V
.
DD  
6
7
REFADJ  
AGND  
Reference Adjust. Connect to V to use an extended reference at VREF.  
DD  
Analog Ground  
BIP = low selects unipolar mode  
BIP = high selects bipolar mode (see Gain and Offset Adjustment section)  
8
BIP  
9
BUSY  
D0/D8  
D1/D9  
DGND  
D2/D10  
D3/D11  
D4  
BUSY Output is low during a conversion.  
Three-State Data Outputs: LSB = D0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Three-State Data Outputs  
Digital Ground  
Three-State Data Outputs  
Three-State Data Outputs: MSB = D11  
Three-State Data Output  
D5/SSTRB  
Three-State Data Output/Serial Strobe Output in serial mode  
Three-State Data Output/Serial Clock Output in serial mode  
Three-State Data Output/Data Output in serial mode  
Read Input. In parallel mode, a low signal starts a conversion when CS and HBEN are low (memory  
D6/SCLK  
OUT  
D7/DOUT  
19  
20  
RD  
mode). RD also enables the outputs when CS is low. In serial mode, RD = low enables SCLK  
and  
OUT  
SSTRB when CS is low. RD = high forces SCLK  
and SSTRB into a high-impedance state.  
OUT  
Chip-Select Input must be low for the ADC to recognize RD and HBEN inputs in parallel mode. The falling  
CS  
edge of CS starts a conversion in serial mode. CS = high in serial mode forces SCLK  
, SSTRB, and  
OUT  
DOUT into a high-impedance state.  
High-Byte Enable Input. In parallel mode, HBEN = high multiplexes the 4 MSBs of the conversion result  
into the lower bit outputs. HBEN = high also disables conversion starts. HBEN = low places the 8 LSBs  
21  
HBEN  
onto the data bus. In serial mode, HBEN = low enables SCLK  
to operate during the conversion only,  
OUT  
HBEN = high enables SCLK  
to operate continuously, provided CS is low.  
OUT  
22  
23  
24  
PAR  
Sets the output mode. PAR = high selects parallel output mode. PAR = low selects serial output mode.  
Clock Input/Serial Clock Input in serial mode. An external TTL-/CMOS-compatible clock may be applied to  
this pin, or a capacitor (120pF nominal) may be connected between CLK and DGND to operate the internal  
oscillator.  
CLK/SCLK  
V
DD  
Positive Supply, +5V ±5%  
_______________________________________________________________________________________  
7
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
+5V  
24  
3k  
1
PD  
+5V  
V
DD  
OPEN  
DN  
23 C1  
DN  
CLK/SCLK  
PAR  
22  
3
4
AIN+  
AIN-  
SERIAL/PARALLEL  
INTERFACE MODE  
21  
20  
19  
C
C
L
3k  
L
HBEN  
CS  
MAX91  
5
6
7
µP CONTROL  
INPUTS  
VREF  
MAX191  
4.7µF  
0.1µF  
DGND  
DGND  
a. High-Z to V and V to V  
RD  
REFADJ  
AGND  
BIP  
18  
17  
16  
15  
14  
13  
D7/DOUT  
b. High-Z to V and V to V  
OL  
OH  
OL  
OH  
OL  
OH  
0.1µF  
8
D6/SCLK  
OUT  
9
OUTPUT  
STATUS  
Figure 1. Load Circuits for Access Time  
BUSY  
DO/DB  
D1/D9  
DGND  
D5/SSTRB  
10  
11  
12  
D4  
D3/D11  
D2/D10  
+5V  
3k  
V
SS  
DN  
DN  
2
0V TO -5V  
µP DATA BUS  
10pF  
10pF  
3k  
DGND  
DGND  
a. V to High-Z  
NOTE: C1 120pF GENERATES 1MHz NOMINAL CLOCK.  
b. V to High-Z  
OH  
OL  
Figure 3. Operational Diagram  
Figure 2. Load Circuits for Bus-Relinquish Time  
disconnects from the input during the conversion. In  
unb uffe re d a p p lic a tions , a n inp ut filte r c a p a c itor  
reduces conversion noise, but also may limit input  
bandwidth.  
_______________De t a ile d De s c rip t io n  
The MAX191 uses successive approximation and input  
track/hold (T/H) circuitry to convert an analog input sig-  
nal to a 12-bit digital output. Flexible control logic pro-  
vides easy interface to microprocessors (µPs), so most  
applications require only the addition of passive com-  
ponents. No external hold capacitor is required for the  
T/H. Figure 3 shows the MAX191 in its simplest opera-  
tional configuration.  
When converting a single-ended input signal, AIN-  
should be connected to AGND. If a differential signal is  
connected, consider that the configuration is pseudo  
differential—only the signal side to the input channel is  
held by the T/H. The return side (AIN-) must remain sta-  
b le within ± 0.5LSB (± 0.1LSB for b e s t re s ults ) with  
respect to AGND during a conversion. Accomplish this  
by connecting a 0.1µF capacitor from AIN- to AGND.  
P s e u d o -Diffe re n t ia l In p u t  
The sampling architecture of the ADCs analog com-  
parator is illustrated in the Equivalent Input Circuit  
(Figure 4). A capacitor switching between the AIN+  
and AIN- inputs acquires the signal at the ADCs ana-  
log input. At the end of the conversion, the capacitor  
reconnects to AIN+ and charges to the input signal.  
An external input buffer is usually not needed for low-  
bandwidth input signals (<100Hz) because the ADC  
An a lo g In p u t —Tra c k /Ho ld  
The T/H enters its tracking mode when the ADC is des-  
elected (CS pin is held high and BUSY pin is high).  
Hold mode starts approximately 25ns after a conver-  
sion is initiated. The variation in this delay from one  
conversion to the next (aperture jitter) is about 50ps.  
Figures 6–10 detail the T/H and interface timing for the  
8
_______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
AIN +  
TRACK  
COMPARATOR  
C
HOLD  
MAX191  
+1.6V  
HOLD  
32pF  
R
IN  
C
CLK  
C
SWITCH  
10pF  
PACKAGE  
5pF  
HOLD  
CLOCK  
C
EXT  
AIN -  
DGND  
12-BIT DAC  
NOTE: C = 120pF GENERATES 1MHz NOMINAL CLOCK  
EXT  
Figure 4. Equivalent Input Circuit  
various interface modes.  
Figure 5. Internal Clock Circuit  
tection diodes are even slightly forward biased.  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens and more time must be  
allowed between conversions. Acquisition time is cal-  
culated by: tACQ = 10(RS + RIN)CHOLD (but never less  
than 2µs), where RIN = 2k, RS = source impedance of  
the input signal, and CHOLD = 32pF (see Figure 4).  
Dig it a l In t e rfa c e  
S t a rt in g a Co n ve rs io n  
In parallel mode, the ADC is controlled by the CS, RD,  
a nd HBEN inp uts , a s s hown in Fig ure 6. The T/H  
enters hold mode and a conversion starts at the falling  
edge of CS and RD while HBEN (not shown) is low.  
BUSY goes low as soon as the conversion starts. On  
the falling edge of the 13th input clock pulse after the  
conversion starts, BUSY goes high and the conversion  
result is latched into three-state output buffers. In seri-  
al mode, the falling edge of CS initiates a conversion,  
and the T/H enters hold mode. Data is shifted out seri-  
ally as the conversion proceeds (Figure 10). See the  
Parallel Digital-Interface Mode and Serial-Interface  
Mode sections for details.  
In p u t Ba n d w id t h  
The ADCs input tracking circuitry has a 1MHz typical  
large-signal bandwidth characteristic, and a 30V/µs  
slew rate. It is possible to digitize high-speed transients  
and measure periodic signals with bandwidths exceed-  
ing the ADCs sample rate of 100ksps by using under-  
sampling techniques. Note that if undersampling is  
used to measure high-frequency signals, special care  
must be taken to avoid aliasing errors. Without ade-  
quate input bandpass filtering, out-of-band signals and  
noise may be aliased into the measurement band.  
In t e rn a l/Ex t e rn a l Clo c k  
Figure 5 shows the MAX191 clock circuitry. The ADC  
includes internal circuitry to generate a clock with an  
e xte rna l c a p a c itor. As ind ic a te d in the Typ ic a l  
Operating Characteristics , a 120pF capacitor con-  
nected between the CLK and DGND pins generates  
a 1MHz nominal clock frequency (Figure 5).  
In p u t P ro t e c t io n  
Internal protection diodes, which clamp the analog input  
to VDD and VSS , allow AIN+ to swing from (V - 0.3V) to  
SS  
(VDD + 0.3V) with no ris k of d a ma g e to the ADC.  
However, for accurate conversions near full scale, AIN+  
should not exceed the power supplies by more than  
50mV because ADC accuracy is affected when the pro-  
Alternatively, an external clock (between 100kHz and  
1.6MHz) can be applied to CLK. When using an exter-  
nal clock source, acceptable clock duty cycles are  
_______________________________________________________________________________________  
9
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
CLK  
t
16  
t
17  
CS + RD  
BUSY  
t
13  
t
2
MAX91  
t
CONV  
t
t
2
CONV  
Figure 6. CS, RD, and CLK Synchronous Operation  
between 45% and 55%.  
restarted. BUSY remains low during the entire conver-  
sion cycle.  
Clo c k a n d Co n t ro l S yn c h ro n iza t io n  
The timing diagrams of Figures 7–10 outline two paral-  
lel-interface modes and one serial mode.  
For best analog performance on the MAX191, the clock  
should be synchronized to the conversion start signals  
(CS and RD) as shown in Figure 6. A conversion should  
not be started in the 50ns before a clock edge nor in  
the 100ns after it. This ensures that CLK transitions are  
not coupled to the analog input and sampled by the  
T/H. The magnitude of this feedthrough can be a few  
millivolts. When the clock and conversion start signals  
are synchronized, small end-point errors (offset and  
full-scale) are the most that can be generated by clock  
feedthrough. Even these errors (which can be trimmed  
out) can be avoided by ensuring that the start of a con-  
version (RD or CS falling edge) does not occur close to  
a clock transition (Figure 6), as described above.  
S lo w -Me m o ry Mo d e  
In slow-memory mode, the device appears to the µP as  
a slow peripheral or memory. Conversion is initiated  
with a read instruction (see Figure 7 and Table 2). Set  
the PAR pin high for parallel interface mode. Beginning  
with HBEN low, taking CS and RD low starts the con-  
version. The analog input is sampled on the falling  
edge of RD. BUSY remains low while the conversion is  
in progress. The previous conversion result appears at  
the digital outputs until the end of conversion, when  
BUSY returns high. The output latches are then updat-  
ed with the newest results of the 8 LSBs on D7–D0. A  
second read operation with HBEN high places the 4  
MSBs, with 4 leading 0s, on data outputs D7–D0. The  
second read operation does not start a new conversion  
because HBEN is high.  
P a ra lle l Dig it a l-In t e rfa c e Mo d e  
Output-Data Format  
The data output from the MAX191 is straight binary in  
the unipolar mode. In the bipolar mode, the MSB is  
inverted (see Figure 22). The 12 data bits can be out-  
put either in two 8-bit bytes or as a serial output. Table  
1 shows the data-bus output format.  
ROM Mo d e  
As in slow-memory mode, D7–D0 are used for 2-byte  
reads. A conversion starts with a read instruction with  
HBEN and CS low. The T/H samples the input on the  
falling edge of RD (see Figure 8 and Table 3). PAR is set  
high. At this point the data outputs contain the 8 LSBs  
from the previous conversion. Two more read operations  
are needed to access the conversion result. The first  
occurs with HBEN high, where the 4 MSBs with 4 leading  
0s are accessed. The second read, with HBEN low, out-  
puts the 8 LSBs and also starts a new conversion.  
A 2-byte read uses outputs D7–D0. Byte selection is  
controlled by HBEN. When HBEN is low, the lower 8  
bits appear at the data outputs. When HBEN is high,  
the upper 4 bits appear at D0-D3 with the leading 4 bits  
low in locations D4–D7.  
Timing and Control  
Conversion-start and data-read operations are con-  
trolled by the HBEN, CS, and RD digital inputs. A logic  
low is required on all three inputs to start a conversion,  
and once the conversion is in progress it cannot be  
Figure 9 and Table 4 show how to read output data  
within one conversion cycle without starting another  
conversion. Trigger the falling edge of a read on the ris-  
10 ______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
HBEN  
CS  
t
8
t
9
t
8
t
9
t
1
t
5
t
1
t
4
t
5
RD  
t
t
10  
t
10  
t
2
CONV  
BUSY  
t
11  
t
3
t
6
t
7
t
3
t
7
OLD DATA  
D7D0  
NEW DATA  
D7D0  
NEW DATA  
D11–D8  
DATA  
t
12  
t
12  
HOLD*  
TRACK  
*INTERNAL SIGNAL. TRACKING INPUT SIGNAL WHEN HOLD = Low, HOLDING WHEN HOLD = High.  
Figure 7. Slow-Memory Mode Timing  
HBEN  
t
8
t
9
t
8
t
9
t
8
t
9
CS  
RD  
t
1
t
4
t
5
t
1
t
4
t
5
t
1
t
4
t
5
t
2
t
t
10  
t
2
CONV  
BUSY  
DATA  
t
11  
t
3
t
7
t
3
t
7
t
3
t
7
OLD DATA  
D7D0  
NEW DATA  
D11–D8  
NEW DATA  
D7D0  
t
12  
t
12  
HOLD*  
TRACK  
*INTERNAL SIGNAL. TRACKING INPUT SIGNAL WHEN HOLD = Low, HOLDING WHEN HOLD = High.  
Figure 8. ROM Mode Timing  
______________________________________________________________________________________ 11  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
HBEN  
t
8
t
9
t
8
CLK  
CS  
MAX91  
t
1
t
4
t
5
RD  
t
10  
t
2
t
CONV  
BUSY  
DATA  
t
7
t
3
t
7
t
3
t
7
t
3
OLD DATA  
D7D0  
NEW DATA  
D7D0  
NEW DATA  
D11–D8  
t
12  
HOLD*  
TRACK  
*INTERNAL SIGNAL. TRACKING INPUT SIGNAL WHEN HOLD = Low, HOLDING WHEN HOLD = High  
Figure 9. ROM Mode Timing, Reading Data without Starting a Conversion  
SCLK  
t
22  
t
20  
t
20  
THREE STATE  
THREE STATE  
SCLK  
OUT  
t
17  
t
16  
CS  
t
23  
t
23  
THREE STATE  
THREE STATE  
SSTRB  
DOUT  
t
15  
t
14  
t
21  
t
12  
t
22  
t
19  
HOLD  
TRACK  
12 SCLK CYCLES  
Figure 10. Serial-Interface Mode Timing Diagram (RD = low)  
12 ______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
Table 1. Data-Bus Output, CS = RD = Low  
PIN NAME  
D7/DOUT D6/SCLK  
D5/SSTRB  
D4  
D3/D11  
D2/D10  
D1/D9  
D0/D8  
OUT  
HBEN = 0, PAR = 1,  
PARALLEL MODE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HBEN = 1, PAR = 1,  
PARALLEL MODE  
Low  
Low  
Low  
Low  
Low  
Low  
D11  
Low  
Low  
D10  
Low  
Low  
D9  
D8  
HBEN = X, PAR = 0,  
SERIAL MODE, RD = 0  
HBEN = X, PAR = 0,  
SERIAL MODE, RD = 1  
DOUT  
DOUT  
SCLK  
SSTRB  
Low  
Low  
Low  
Low  
OUT  
Three-  
Stated  
Three-  
Stated  
Note: D7/DOUT–D0/D8 are the ADC data output pins.  
D11–D0 are the 12-bit conversion results. D11 is the MSB.  
DOUT = Three-state data output. Data output in serial mode.  
SCLK  
= Three-state data output. Clock output in serial mode.  
OUT  
SSTRB = Three-state data output. Strobe output in serial mode.  
Table 2. Slow-Memory Mode, 2-Byte Read Data-Bus Status  
PIN NAME  
D7/DOUT D6/SCLK  
D5/SSTRB  
D4  
D3/D11  
D2/D10  
D1/D9  
D0/D8  
OUT  
FIRST READ (New Data)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SECOND READ (New Data)  
Low  
Low  
Low  
Low  
D11  
D10  
D9  
D8  
Table 3. ROM Mode, 2-Byte Read Data-Bus Status  
PIN NAME  
D7/DOUT D6/SCLK  
D5/SSTRB  
D4  
D3/D11  
D2/D10  
D1/D9  
D0/D8  
OUT  
FIRST READ (Old Data)  
D7  
Low  
D7  
D6  
Low  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SECOND READ (New Data)  
THIRD READ (New Data)  
Low  
D5  
Low  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D8  
D0  
Table 4. ROM Mode, 2-Byte Read Data-Bus Status without Starting a Conversion Cycle  
PIN NAME  
D7/DOUT D6/SCLK  
D5/SSTRB  
D4  
D3/D11  
D2/D10  
D1/D9  
D0/D8  
OUT  
FIRST READ (Old Data)  
D7  
D7  
D6  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SECOND READ (New Data)  
THIRD READ (New Data)  
D5  
D4  
D3  
D2  
D1  
D9  
D0  
D8  
Low  
Low  
Low  
Low  
D11  
D10  
______________________________________________________________________________________ 13  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
+5V  
+5V  
3
4
23  
20  
19  
Q
A
SCLK  
CS  
1
2
8
Q
B
A
18  
17  
5
Q
C
DOUT  
B
RD  
74HC164  
6
Q
D
SCLK  
MAX191  
CLOCK  
OUT  
MAX91  
10  
11  
12  
13  
21  
Q
E
HBEN  
Q
F
Q
G
16  
9
Q
H
SSTRB  
CLEAR  
3
4
Q
A
1
2
8
+5V  
Q
B
A
5
6
Q
C
B
74HC164  
Q
D
CLOCK  
10  
11  
Q
E
Q
F
12  
13  
Q
G
9
Q
H
CLEAR  
LOGIC INPUT  
CS  
SCLK  
SCLK  
OUT  
t
19  
DOUT  
DO  
D11  
SSTRB  
NOTE: USE SSTRB TO GATE PARALLEL DATA TRANSFER FROM SHIFT REGISTER, OR TO CLEAR SHIFT REGISTERS IF DESIRED.  
Figure 11. Simple Serial-to-Parallel Interface  
14 ______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
ing edge of the first clock cycle after conversion end  
c ontinuous s e ria l c loc k. If CS a nd HBEN a re low,  
SCLK is output only during the conversion cycle,  
while the converter internal clock runs continuously.  
This is useful for creating a simple serial-to-parallel  
interface without shift-register overflow (Figure 11).  
(when BUSY goes high). As mentioned previously, two  
more re a d op e ra tions (a fte r BUSY g oe s hig h) a re  
needed to access the conversion results. The only dif-  
ference is that now the low byte can be read first. This  
happens by allowing the first read operation to occur  
with HBEN low, where the 8 LSBs are accessed. The  
second read, with HBEN high, accesses the 4 MSBs  
with 4 leading 0s.  
OUT  
Maximum Clock Rate in Serial Mode  
The maximum SCLK rate depends on the minimum  
setup time required at the serial data input to the µP  
and the ADCs DOUT to SCLK delay (t22) (see Figure  
S e ria l-In t e rfa c e Mo d e  
12). The maximum f  
is as follows:  
SCLK  
The serial mode is compatible with Microwire, SPI and  
QSPI serial interfaces. In addition, a framing signal  
(SSTRB) is provided that allows the devices to interface  
with the TMS320 family of DSPs. Set PAR low for serial  
mode. A falling edge on CS causes the T/H to sample  
the input (Figure 10). Conversion always begins on the  
next falling edge of SCLK, regardless of where CS  
occurs. The DOUT line remains high-impedance until a  
conversion begins. During the MSB decision, DOUT  
remains low (leading 0), while SSTRB goes high to indi-  
cate that a data frame is beginning. The data is avail-  
able at DOUT on the rising edge of SCLK (SCLKOUT  
when using an internal clock) and transitions on the  
falling edge. DOUT remains low after all data bits have  
been shifted out, inserting trailing 0s in the data stream  
until CS returns high. The SCLKOUT signal is synchro-  
nous with the internal or external clock.  
CS  
I/O  
SCLK  
DOUT  
SCK  
MISO  
+5V  
MAX191  
SS  
a. SPI  
CS  
CS  
SCK  
SCLK  
DOUT  
MISO  
+5V  
MAX191  
For interface flexibility, DOUT, SCLKOUT and SSTRB  
signals enter a high-impedance state when CS is high.  
When CS is low, RD controls the status of SCLKOUT and  
SSTRB outputs. A logic low RD enables SCLKOUT and  
SSTRB, while a logic high forces both outputs into a  
high-impedance state. Also, with CS low and HBEN  
high, SCLKOUT drives continuously, regardless of con-  
version status. This is useful with µPs that require a  
SS  
b. QSPI  
I/O  
CS  
SK  
SI  
SCLK  
DOUT  
MAX191  
SCLK  
c. MICROWIRE  
t
22  
I/O  
CS  
DOUT  
1
CLKX  
SCLK  
MAX191  
t
(MIN)  
SETUP  
1
CLKR  
f
(MAX) =  –––––––––  
SCLK  
)
(
t (M) + t  
SU 22  
2
DOUT  
DR  
t
(M) IS THE SETUP TIME REQUIRED AT THE SERIAL DATA INPUT TO THE µP.  
IS THE MAXIMUM SCLK TO DOUT DELAY.  
SU  
SSTRB  
FSR  
t
22  
d. TMS320 SERIAL INTERFACE  
Figure 12. f  
the serial data input to the µP.  
(MAX) is limited by the setup time required by  
SCLK  
Figure 13. Common Serial-Interface Connections to the MAX191  
______________________________________________________________________________________ 15  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
fSCLK(MAX) = (1/2) x 1/ (t (M) + t  
)
SPI (CPOL=1, CPHA=1)  
su  
22  
whe re ts u(M) is the minimum d a ta -s e tup time re -  
quired at the serial data input to the µP. For example,  
Motorolas MC68HC11A8 data book specifies a 100ns  
minimum data-setup time. Using the worst case for a  
milita ry g ra d e p a rt of t22 = 280ns (s e e Timing  
Characteristics) and substituting in the above equation  
indicates a maximum SCLK frequency of 1.3MHz.  
Setting CPOL = 1 and CPHA = 1 starts the clock high  
during a read instruction. The MAX191 will shift out a  
leading 0 followed by the 12 data bits and three trailing  
0s (Figure 14b).  
QSPI  
Unlike SPI, which requires two 1-byte reads to acquire  
the 12 bits of data from the ADC, QSPI allows the mini-  
mum number of clock cycles required to clock in the  
data (Figure 15).  
MAX91  
Us in g t h e MAX1 9 1 w it h S P I, QS P I a n d  
MICROWIRE S e ria l In t e rfa c e s  
Figure 13 shows interface connections to the MAX191  
for common serial-interface standards.  
TMS320 Serial Interface  
Figure 13d shows the pin connections to interface the  
MAX191 to the TMS320. Since the MAX191 makes data  
available on the rising edge of SCLK and the TMS320  
shifts data in on the falling edge of CLKR, use CLKX of the  
DSP to drive SCLK, and CLKX to drive the DSPs CLKR  
input. The inverters propagation delay also provides more  
data-setup time at the DSP. For example, with no inverter  
delay, and using t22 = 280ns and fSCLK = 1.6MHz, the  
available setup time before the SCLK transition is:  
SPI and MICROWIRE (CPOL=0, CPHA=0)  
The MAX191 is c omp a tib le with SPI, QSPI a nd  
MICROWIRE serial-interface standards. When using SPI  
or QSPI, two modes are available to interface with the  
MAX191. You can set CPOL = 0 and CPHA = 0 (Figure  
14a), or set CPOL = 1 and CPHA = 1 (Figure 14b). When  
using CPOL = 0 and CPHA = 0, the conversion begins  
on the first falling edge of SCLK following CS going low.  
Data is available from DOUT on the rising edge of SCLK,  
and transitions on the falling edge. Two consecutive  
1-byte reads are required to get the full 12 bits from the  
ADC. The first byte contains the following, in this order: a  
leading unknown bit (DOUT will still be high-impedance  
on the first bit), a 0, and the six MSBs. The second byte  
contains the remaining six LSBs and two trailing 0s.  
setup time = 1/ (2 x fSCLK) - t22 = 1/ (2 x 1.6E6) - 280ns = 32ns  
This still exceeds the 13ns minimum DR setup time before  
the CLKR goes low (tsu(DR)), however, a generic 74HC04  
provides an additional 20ns setup time (see Figure 13d).  
Figure 16 shows the DSP interface timing characteris-  
tics. The DSP begins clocking data in on the falling  
e d g e of CLKR a fte r the fa lling e d g e of SSTRB.  
2ND BYTE READ  
1ST BYTE READ  
SCLK  
CS  
HIGH-Z  
HIGH-Z  
DOUT  
LEADING MSB  
ZERO  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LSB  
a. CPOL = 0, CPHA = 0  
SCLK  
CS  
HIGH-Z  
DOUT  
HIGH-Z  
LEADING MSB  
ZERO  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LSB  
b. CPOL = 1, CPHA = 1  
Figure 14. SPI/MICROWIRE Serial-Interface Timing  
16 ______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
SCLK  
CS  
HIGH-Z  
HIGH-Z  
DOUT  
MSB  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LSB  
a. CPOL = 0, CPHA = 0  
SCLK  
CS  
HIGH-Z  
HIGH-Z  
DOUT  
MSB  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LSB  
b. CPOL = 1, CPHA = 1  
Figure 15. QSPI Serial-Interface Timing  
SCLK  
CLKR  
CS  
HIGH-Z  
SSTRB  
HIGH-Z  
HIGH-Z  
HIGH-Z  
DOUT  
MSB  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LSB  
Figure 16. TMS320 Interface Timing  
______________________________________________________________________________________ 17  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
Following the data transfer, the DSP receive shift regis-  
ter (RSR) contains a 16-bit word consisting of the 12  
data bits, MSB first, followed by four trailing 0s.  
nal reference compensation, drive PD between V  
DD  
a nd DGND with a µP I/O p in or othe r log ic d e vic e  
(Fig ure 17a ). For e xte rna l-re fe re nc e c omp e ns a tion  
mode, use the circuit in Figure 17b to drive PD between  
DGND and the floating voltage of PD. An alternative is  
to drive PD with three-state logic or a switch, provided  
the off leakage does not exceed 100nA.  
Ap p lic a t io n s In fo rm a t io n  
P o w e r-On In it ia liza t io n  
Whe n the +5V p owe r s up p ly is firs t a p p lie d to the  
MAX191, perform a single conversion to initialize the  
ADC (the BUSY signal status is undefined at power-on).  
Disregard the data outputs.  
MAX91  
In t e rn a l Re fe re n c e  
The internal 4.096V reference is available at VREF and  
mus t b e b yp a s s e d to AGND with a 4.7µF low-ESR  
capacitor (less than 1/2) in parallel with a 0.1µF capaci-  
tor, unless internal-reference compensation mode is  
used (see the Internal Reference Compensation section).  
This minimizes noise and maintains a low reference  
impedance at high frequencies. The reference output  
P o w e r-Do w n Mo d e  
In some battery-powered systems, it is desirable to  
power down or remove power from the ADC during  
inactive periods. To power down the MAX191, drive PD  
low. In this mode, all internal ADC circuitry is off except  
the reference, and the ADC consumes less than 50µA  
max (assuming all signals CS, RD, CLK, and HBEN are  
static and within 200mV of the supplies). Figure 17  
shows a practical way to drive the PD pin. If using inter-  
can be disabled by connecting REFADJ to V  
when  
DD  
using an external reference.  
Re fe re n c e -Co m p e n s a t io n Mo d e s  
Power-down performance can be optimized for a given  
conversion rate by selecting either internal or external  
reference compensation.  
Internal Compensation  
The connection for internal compensation is shown in  
Figure 18a. In this mode, the reference stabilizes quick-  
ly enough so that a conversion typically starts within  
35µs after the ADC is reactivated (PD pulled high). In  
this compensation mode, the reference buffer requires  
longer recovery time from SAR transients, therefore  
requiring a slower clock (and conversion time). With  
internal reference compensation, the typical conversion  
time rises to 25µs (Figure 18b). Figure 18c illustrates  
the typical average supply current vs. conversion rate,  
MAX191  
1
PD  
a. INTERNAL-REFERENCE COMPENSATION MODE  
+5V  
1
PD  
MAX191  
MAX191  
5
VREF  
6
REFADJ  
1
PD  
0.1µF  
OPEN-DRAIN  
BUFFER  
b. EXTERNAL-REFERENCE COMPENSATION MODE  
Figure 17. Drive Circuits for PD Pin  
Figure 18a. Internal-Compensation Mode Circuit  
18 ______________________________________________________________________________________  
Lo w -P o w e r, 1 2 -Bit S a m p lin g ADC  
w it h In t e rn a l Re fe re n c e a n d P o w e r-Do w n  
MAX91  
10,000  
1
0
PD  
1000  
100  
VREF  
RD  
15µs  
20µs  
25µs  
10  
10  
50  
200  
1k  
5k  
20k 100k  
CONVERSIONS PER SECOND  
Figure 18c. Average Supply Current vs. Conversion Rate,  
Powering Down Between Conversions  
Figure 18b. Low Average-Power Mode Operation (Internal  
Compensation)  
which can be achieved using power-down between  
conversions.  
1
PD  
External Compensation  
Figure 19a shows the connection for external compensa-  
tion with reference adjustment. In this mode, an external  
4.7µF c a p a c itor c ompe nsa te s the re fe re nc e output  
amplifier, allowing for maximum conversion speed and  
lowest conversion noise. However, when reactivating the  
ADC after power-down, the reference takes typically 2ms  
to fully charge the 4.7µF capacitor, so more time is  
required before a conversion can start (Figure 19b).  
Thus, the average current consumed in power-up/power-  
down operations is higher in external compensation  
mode than in internal compensation mode.  
5
VREF  
11k  
MAX191  
100k