欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • MAX536BEPE图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • MAX536BEPE
  • 数量65000 
  • 厂家MAXIM 
  • 封装原厂封装 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • MAX536BEPE+图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • MAX536BEPE+
  • 数量13880 
  • 厂家MAXIM/美信 
  • 封装PDIP-16 
  • 批号21+ 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • MAX536BEPE+图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • MAX536BEPE+
  • 数量9125 
  • 厂家ADI(亚德诺)/MAXIM(美信) 
  • 封装PDIP-16 
  • 批号23+ 
  • 原厂直销,现货供应,账期支持!
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • MAX536BEPE+图
  • 深圳市金嘉锐电子有限公司

     该会员已使用本站14年以上
  • MAX536BEPE+
  • 数量28620 
  • 厂家Maxim 
  • 封装16-PDIP 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:2643490444QQ:2643490444 复制
  • 0755-22929859 QQ:2643490444
  • MAX536BEPE+图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • MAX536BEPE+
  • 数量12000 
  • 厂家Maxim 
  • 封装PDIP N 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • MAX536BEPE图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • MAX536BEPE
  • 数量660000 
  • 厂家Maxim Integrated 
  • 封装PDIP 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • MAX536BEPE图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • MAX536BEPE
  • 数量10000 
  • 厂家MAXIM 
  • 封装 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • MAX536BEPE图
  • 绿盛电子(香港)有限公司

     该会员已使用本站12年以上
  • MAX536BEPE
  • 数量2015 
  • 厂家MAXIM 
  • 封装SOP/DIP 
  • 批号19889 
  • ★一级代理原装现货,特价热卖!
  • QQ:2752732883QQ:2752732883 复制
    QQ:240616963QQ:240616963 复制
  • 0755-25165869 QQ:2752732883QQ:240616963
  • MAX536BEPE图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • MAX536BEPE
  • 数量19759 
  • 厂家MAXIM 
  • 封装原厂封装 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • MAX536BEPE图
  • 深圳市恒意法科技有限公司

     该会员已使用本站17年以上
  • MAX536BEPE
  • 数量4223 
  • 厂家Analog Devices Inc./Maxim Integrated 
  • 封装16-PDIP 
  • 批号21+ 
  • 正规渠道/品质保证/原装正品现货
  • QQ:2881514372QQ:2881514372 复制
  • 0755-83247729 QQ:2881514372
  • MAX536BEPE图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • MAX536BEPE
  • 数量865000 
  • 厂家MAXIM 
  • 封装原厂封装 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • MAX536BEPE图
  • 深圳市富莱微科技有限公司

     该会员已使用本站6年以上
  • MAX536BEPE
  • 数量6297 
  • 厂家Maxim Integrated 
  • 封装16-DIP 
  • 批号20+ 
  • 进口原装,公司现货
  • QQ:1968343307QQ:1968343307 复制
    QQ:2885835292QQ:2885835292 复制
  • 0755-83210149 QQ:1968343307QQ:2885835292
  • MAX536BEPE图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • MAX536BEPE
  • 数量3550 
  • 厂家ADI/MAXIM 
  • 封装16-PDIP 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • MAX536BEPE图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • MAX536BEPE
  • 数量3550 
  • 厂家ADI/MAXIM 
  • 封装16-PDIP 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • MAX536BEPE图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • MAX536BEPE
  • 数量20123 
  • 厂家MAXIM 
  • 封装原厂特价 
  • 批号2020+ 
  • 全新原装现货库存特价热卖
  • QQ:1220223788QQ:1220223788 复制
    QQ:1327510916QQ:1327510916 复制
  • 86-0755-28767101 QQ:1220223788QQ:1327510916
  • MAX536BEPE图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • MAX536BEPE
  • 数量26495 
  • 厂家MAXIM 
  • 封装 
  • 批号2020+ 
  • 全新原装进口现货特价热卖,长期供货
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • MAX536BEPE图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • MAX536BEPE
  • 数量9500 
  • 厂家Maxim(美信) 
  • 封装16-DIP(0.300,7.62mm) 
  • 批号24+ 
  • 绝对原装正品,可开专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • MAX536BEPE图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • MAX536BEPE
  • 数量9800 
  • 厂家MAX 
  • 封装原厂原封装 
  • 批号24+ 
  • 原厂渠道,全新原装现货,欢迎查询!
  • QQ:97877807QQ:97877807 复制
  • 171-4755-1968(微信同号) QQ:97877807
  • MAX536BEPE+图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • MAX536BEPE+
  • 数量15000 
  • 厂家Maxim Integrated 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • MAX536BEPE图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • MAX536BEPE
  • 数量15000 
  • 厂家Maxim Integrated 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • MAX536BEPE图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • MAX536BEPE
  • 数量1001 
  • 厂家MAXIM 
  • 封装DIP-16 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:97877807QQ:97877807 复制
  • 171-4755-1968(微信同号) QQ:97877807

产品型号MAX536BEPE的概述

MAX536BEPE芯片概述 MAX536BEPE是一款由Analog Devices公司(原Maxim Integrated)设计和制造的高性能数模转换器(DAC)。作为一种16位精度的DAC,MAX536BEPE广泛应用于多种数字信号处理场合,包括音频设备、工业控制系统和测量仪器等。它能够将数字信号转化为模拟信号,并具备较高的转换速度和优越的线性度,是现代电子设备中不可或缺的组件之一。 MAX536BEPE凭借其高精度、低功耗特性以及友好的接口设计,成为了很多高端应用的首选。它所支持的全电源范围使得其适用于多种电源配置,满足不同系统的需求。优秀的温度稳定性和动态性能,使得它在高温和严酷环境下依然能够稳定工作。 MAX536BEPE的详细参数 在深入了解MAX536BEPE之前,有必要先了解其详细参数: - 分辨率:16位 - 参考电压范围:2.5V至5V - 转换时间:500ns(...

产品型号MAX536BEPE的Datasheet PDF文件预览

19-0230; Rev 2a; 1/97  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Four 12-Bit DACs with Output Buffers  
The MAX536/MAX537 combine four 12-bit, voltage-output  
digital-to-analog converters (DACs) and four precision  
output amplifiers in a space-saving 16-pin package.  
Offset, gain, and linearity are factory calibrated to provide  
the MAX536s ±1LSB total unadjusted error. The MAX537  
operates with ±5V supplies, while the MAX536 uses -5V  
and +12V to +15V supplies.  
Simultaneous or Independent Control of Four  
DACs via a 3-Wire Serial Interface  
Power-On Reset  
SPI/QSPI and Microwire Compatible  
±1LSB Total Unadjusted Error (MAX536)  
Full 12-Bit Performance without Adjustments  
±5V Supply Operation (MAX537)  
Double-Buffered Digital Inputs  
Buffered Voltage Output  
Each DAC has a double-buffered input, organized as  
an input register followed by a DAC register. A 16-bit  
serial word is used to load data into each input/DAC  
register. The serial interface is compatible with either  
SPI/QSPI™ or Microwire, and allows the input and  
DAC registers to be updated independently or simulta-  
neously with a single software command. The DAC reg-  
isters can be simultaneously updated with a hardware  
LDAC pin. All logic inputs are TTL/CMOS compatible.  
16-Pin DIP/SO Packages  
______________Ord e rin g In fo rm a t io n  
INL  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
1
MAX536ACPE  
MAX536BCPE  
MAX536ACWE  
MAX536BCWE  
MAX536BC/D  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
16 Plastic DIP  
16 Plastic DIP  
16 Wide SO  
16 Wide SO  
Dice*  
± ⁄  
2
________________________Ap p lic a t io n s  
±1  
1
Industrial Process Controls  
Automatic Test Equipment  
Digital Offset and Gain Adjustment  
Motion Control Devices  
± ⁄  
2
±1  
±1  
1
MAX536AEPE -40°C to +85°C  
MAX536BEPE -40°C to +85°C  
MAX536AEWE -40°C to +85°C  
MAX536BEWE -40°C to +85°C  
16 Plastic DIP  
16 Plastic DIP  
16 Wide SO  
16 Wide SO  
± ⁄  
2
±1  
1
Remote Industrial Controls  
Microprocessor-Controlled Systems  
± ⁄  
2
±1  
1
MAX536AMDE -55°C to +125°C 16 Ceramic SB** ± ⁄  
2
MAX536BMDE -55°C to +125°C 16 Ceramic SB**  
±1  
________________Fu n c t io n a l Dia g ra m  
Ordering Information continued at end of data sheet.  
* Contact factory for dice specifications.  
** Contact factory for availability and processing to MIL-STD-883.  
__________________P in Co n fig u ra t io n  
TOP VIEW  
V
DGND  
AGND  
DD  
TP  
V
SS  
SDO LDAC  
REFAB  
DECODE  
CONTROL  
MAX536/MAX537  
OUTA  
OUTB  
OUTC  
OUTD  
INPUT  
REG A  
DAC  
REG A  
DAC A  
OUTB  
OUTA  
OUTC  
OUTD  
V
1
2
3
4
5
6
7
8
16  
15  
INPUT  
REG B  
DAC  
REG B  
DAC B  
DAC C  
DAC D  
16-BIT  
SHIFT  
REGISTER  
V
SS  
14 DD  
INPUT  
REG C  
DAC  
REG C  
MAX536  
MAX537  
AGND  
TP  
13  
REFAB  
DGND  
LDAC  
SDI  
REFCD  
12  
11  
10  
9
INPUT  
REG D  
DAC  
REG D  
SDO  
SCK  
CS  
SR  
CONTROL  
SCK  
REFCD  
CS  
SDI  
DIP/SO  
SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to AGND or DGND  
Continuous Power Dissipation (T = +70°C)  
A
MAX536 ..................................................................-0.3V, +17V  
MAX537 ....................................................................-0.3V, +7V  
Plastic DIP (derate 10.53mW/°C above +70°C) .................842mW  
Wide SO (derate 9.52mW/°C above +70°C).................762mW  
Ceramic SB (derate 10.53mW/°C above +70°C)..................842mW  
Operating Temperature Ranges  
V
to AGND or DGND ...............................................-7V, +0.3V  
SS  
SDI, SCK, CS, LDAC, TP, SDO  
to AGND or DGND.....................................-0.3V, (V  
+ 0.3V)  
+ 0.3V)  
DD SS  
MAX53_AC_E/BC_E.............................................0°C to +70°C  
MAX53_AE_E/BE_E ..........................................-40°C to +85°C  
MAX53_AMDE/BMDE .....................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
REFAB, REFCD to AGND or DGND .............-0.3V, (V  
DD  
OUT_ to AGND or DGND .............................................V , V  
Maximum Current into Any Pin............................................50mA  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX536  
6/MAX537  
(V = +15V, V = -5V, REFAB/REFCD = 10V, AGND = DGND = 0V, R = 5k, C = 100pF, T = T  
to T , unless  
MAX  
DD  
SS  
L
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
12  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE—ANALOG SECTION  
Resolution  
N
Bits  
MAX536A  
±1.0  
±2.0  
±2.0  
±3.0  
±2.5  
±3.5  
±3.0  
±4.0  
T
= +25°C  
A
MAX536B  
MAX536AC  
MAX536BC  
MAX536AE  
MAX536BE  
MAX536AM  
MAX536BM  
Total Unadjusted Error  
(Note 1)  
TUE  
LSB  
T
A
= T to T  
MIN MAX  
MAX536A  
MAX536B  
±0.15 ±0.50  
±1  
Integral Nonlinearity  
INL  
LSB  
LSB  
Differential Nonlinearity  
DNL  
Guaranteed monotonic  
±1  
MAX536A  
±2.5  
T
A
= +25°C  
MAX536B  
±5.0  
MAX536AC  
MAX536BC  
MAX536AE  
MAX536BE  
MAX536AM  
MAX536BM  
±5.0  
±7.5  
Offset Error  
mV  
±6.1  
T
A
= T to T  
MIN MAX  
±8.5  
±7.5  
±10.0  
R = ∞  
-0.1  
-0.6  
±1.0  
±1.5  
±2.0  
L
Gain Error  
LSB  
MAX536_C/E  
MAX536_M  
R = 5k  
L
V
Power-Supply  
DD  
PSRR  
PSRR  
T
±0.02 ±0.125  
±0.03 ±0.30  
LSB/V  
LSB/V  
A
= +25°C, 10.8V < V < 16.5V  
DD  
Rejection Ratio  
V
Power-Supply  
SS  
T
= +25°C, -5.5V < V < -4.5V  
SS  
A
Rejection Ratio  
2
_______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
ELECTRICAL CHARACTERISTICS—MAX536 (continued)  
(V = +15V, V = -5V, REFAB/REFCD = 10V, AGND = DGND = 0V, R = 5k, C = 100pF, T = T  
to T , unless  
MAX  
DD  
SS  
L
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MATCHING PERFORMANCE (T = +25°C)  
A
MAX536A  
MAX536B  
±1.0  
±2.0  
±1.0  
±2.5  
±5.0  
±1.0  
Total Unadjusted Error  
Gain Error  
TUE  
INL  
LSB  
LSB  
mV  
±0.1  
±1.2  
±1.2  
±0.2  
MAX536A  
MAX536B  
Offset Error  
Integral Nonlinearity  
LSB  
REFERENCE INPUT  
Reference Input Range  
Reference Input Resistance  
REF  
0.0  
5
V
DD  
– 4  
V
kΩ  
RREF  
Code dependent, minimum at code 555 hex  
MULTIPLYING-MODE PERFORMANCE  
Reference 3dB Bandwidth  
Reference Feedthrough  
V
= 2Vp-p  
700  
kHz  
dB  
REF  
V
= 10Vp-p  
REF  
-100  
at 400Hz  
Input code = all 0s  
V
= 10Vp-p  
REF  
-82  
at 4kHz  
Total Harmonic Distortion  
Plus Noise  
THD + N  
V
REF  
= 2.0Vp-p at 50kHz  
0.012  
%
DIGITAL INPUTS (SDI, SCK, CS, LDAC)  
Input High Voltage  
V
2.4  
V
V
IH  
Input Low Voltage  
V
IL  
0.8  
1.0  
10  
µA  
pF  
Input Leakage Current  
Input Capacitance (Note 2)  
V
= 0V or V  
IN DD  
DIGITAL OUTPUT (SDO)  
Output Low Voltage  
V
OL  
SDO sinking 5mA  
SDO = 0V to V  
0.18  
0.40  
±10  
V
µA  
Output Leakage Current  
DD  
DYNAMIC PERFORMANCE (R = 5k, C = 100pF)  
L
L
V/µs  
µs  
Voltage-Output Slew Rate  
Output Settling Time  
5
3
5
8
1
To ± ⁄ LSB of full scale  
2
Digital Feedthrough  
nV-s  
nV-s  
Digital Crosstalk (Note 3)  
V
= 5V  
REF  
POWER SUPPLIES  
Positive Supply Range  
Negative Supply Range  
V
10.8  
-4.5  
16.5  
-5.5  
18  
V
V
DD  
V
SS  
T
= +25°C  
8
A
Positive Supply Current  
(Note 4)  
I
DD  
mA  
mA  
T
A
= T  
to T  
25  
MIN  
MAX  
T
A
= +25°C  
-6  
-16  
-23  
Negative Supply Current  
(Note 4)  
I
SS  
T
A
= T  
to T  
MIN  
MAX  
_______________________________________________________________________________________  
3
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
ELECTRICAL CHARACTERISTICS—MAX536 (continued)  
(V = +15V, V = -5V, REFAB/REFCD = 10V, AGND = DGND = 0V, R = 5k, C = 100pF, T = T  
to T , unless  
MAX  
DD  
SS  
L
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING CHARACTERISTICS (Note 5)  
Internal Power-On Reset  
Pulse Width (Note 2)  
µs  
t
20  
POR  
SCK Clock Period  
t
100  
30  
ns  
ns  
ns  
CP  
SCK Pulse Width High  
SCK Pulse Width Low  
t
CH  
t
30  
CL  
CS Fall to SCK Rise  
Setup Time  
t
20  
10  
ns  
ns  
CSS  
SCK Rise to CS Rise  
Hold Time  
t
CSH  
6/MAX537  
SDI Setup Time  
SDI Hold Time  
t
40  
0
26  
ns  
ns  
DS  
t
DH  
SDO high  
78  
50  
81  
53  
105  
80  
1kpull-up on SDO  
to V  
SCK Rise to SDO Valid  
Propagation Delay (Note 6)  
t
ns  
DO1  
DO2  
=
DD,  
C
50pF  
1kpull-up on SDO  
to V  
SDO low  
SDO high  
SDO low  
LOAD  
110  
85  
SCK Fall to SDO Valid  
Propagation Delay (Note 7)  
t
ns  
ns  
ns  
=
DD,  
C
50pF  
OAD  
L
CS Fall to SDO Enable  
(Note 8)  
t
27  
40  
45  
60  
DV  
CS Rise to SDO Disable  
(Note 9)  
t
TR  
t
Continuous SCK, SCK edge ignored  
SCK edge ignored  
20  
20  
ns  
ns  
SCK Rise to CS Fall Delay  
CS0  
CS1  
CS Rise to SCK Rise  
Hold Time  
t
t
30  
40  
ns  
ns  
LDAC Pulse Width Low  
CS Pulse Width High  
LDAC  
t
CSW  
Note 1: TUE is specified with no resistive load.  
Note 2: Guaranteed by design.  
Note 3: Crosstalk is defined as the glitch energy at any DAC output in response to a full-scale step change on any other DAC  
.
Note 4: Digital inputs at 2.4V; with digital inputs at CMOS levels, I  
DD decreases slightly.  
Note 5: All input signals are specified with t  
= t 5ns. Logic input swing is 0V to 5V.  
R
F
Note 6: Serial data clocked out of SDO on SCK’s falling edge. (SDO is an open-drain output for the MAX536. The MAX537s SDO  
pin has an internal active pull-up.)  
Note 7: Serial data clocked out of SDO on SCK’s rising edge.  
Note 8: SDO changes from High-Z state to 90% of final value.  
Note 9: SDO rises 10% toward High-Z state.  
4
_______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
ELECTRICAL CHARACTERISTICS—MAX537  
(V = +5V, V = -5V, REFAB/REFCD = 2.5V, AGND = DGND = 0V, R = 5k, C = 100pF, T = T  
to T , unless  
MAX  
DD  
SS  
L
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE—ANALOG SECTION  
Resolution  
N
12  
Bits  
LSB  
LSB  
MAX537A  
MAX537B  
±0.15  
±0.50  
±1  
Integral Nonlinearity  
Differential Nonlinearity  
INL  
DNL  
Guaranteed monotonic  
±1  
MAX537A  
±3.0  
±6.0  
±6.0  
±9.0  
±7.0  
±11.0  
±9.0  
±15.0  
±1.5  
±3.0  
T
= +25°C  
A
MAX537B  
MAX537AC  
MAX537BC  
MAX537AE  
MAX537BE  
MAX537AM  
MAX537BM  
Offset Error  
mV  
T
A
= T to T  
MIN MAX  
R = ∞  
-0.3  
-0.8  
L
Gain Error  
LSB  
R = 5kΩ  
L
V
Power-Supply  
DD  
T
= +25°C, 4.5V V 5.5V  
PSRR  
PSRR  
A
±0.01  
±0.02  
±0.5  
±0.7  
LSB/V  
LSB/V  
DD  
Rejection Ratio  
V
Power-Supply  
SS  
T
A
= +25°C, -5.5V V -4.5V  
SS  
Rejection Ratio  
MATCHING PERFORMANCE (T = +25°C)  
A
Gain Error  
±0.1  
±0.3  
±1.25  
±3.0  
±6.0  
±1.0  
LSB  
mV  
MAX537A  
MAX537B  
Offset Error  
±0.3  
Integral Nonlinearity  
INL  
±0.35  
LSB  
REFERENCE INPUT  
Reference Input Range  
Reference Input Resistance  
REF  
0.0  
5
V
DD  
- 2.2  
V
kΩ  
RREF  
Code dependent, minimum at code 555 hex  
MULTIPLYING-MODE PERFORMANCE  
Reference 3dB Bandwidth  
V
= 2Vp-p  
700  
-100  
-82  
kHz  
dB  
REF  
V
= 10V  
p-p  
REF  
at 400Hz  
Reference Feedthrough  
Input code = all 0s  
V
REF  
= 10Vp-p at 4kHz  
Total Harmonic Distortion  
Plus Noise  
THD + N  
V
REF  
= 850mVp-p at 100kHz  
0.024  
%
DIGITAL INPUTS (SDI, SCK, CS, LDAC)  
Input High Voltage  
V
2.4  
V
V
IH  
Input Low Voltage  
V
IL  
0.8  
µA  
pF  
Input Leakage Current  
Input Capacitance (Note 2)  
V
IN  
= 0V or V  
1.0  
10  
DD  
_______________________________________________________________________________________  
5
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
ELECTRICAL CHARACTERISTICS—MAX537 (continued)  
(V = +5V, V = -5V, REFAB/REFCD = 2.5V, AGND = DGND = 0V, R = 5k, C = 100pF, T = T  
to T , unless  
MAX  
DD  
SS  
L
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
DIGITAL OUTPUT (SDO)  
Output High Voltage  
Output Low Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OH  
SDO sourcing 2mA  
SDO sinking 2mA  
V
– 0.5  
V – 0.25  
DD  
V
V
DD  
V
OL  
0.13  
0.40  
DYNAMIC PERFORMANCE (R = 5k, C = 100pF)  
L
L
V/µs  
µs  
Voltage-Output Slew Rate  
Output Settling Time  
5
5
5
5
1
To ± ⁄ LSB of full scale  
2
Digital Feedthrough  
nV-s  
nV-s  
Digital Crosstalk (Note 3)  
POWER SUPPLIES  
6/MAX537  
Positive Supply Range  
Negative Supply Range  
V
4.5  
5.5  
-5.5  
12  
V
V
DD  
V
SS  
-4.5  
T
= +25°C  
5.5  
A
Positive Supply Current  
(Note 4)  
I
DD  
mA  
mA  
T
A
= T  
to T  
16  
MIN  
MAX  
T
A
= +25°C  
-4.7  
-10  
-14  
Negative Supply Current  
(Note 4)  
I
SS  
T
A
= T  
to T  
MIN  
MAX  
TIMING CHARACTERISTICS (Note 5)  
Internal Power-On Reset  
Pulse Width (Note 2)  
µs  
ns  
ns  
t
50  
POR  
SCK Clock Period  
t
CP  
100  
35  
40  
35  
40  
40  
50  
MAX537_C/E  
MAX537_M  
MAX537_C/E  
MAX537_M  
MAX537_C/E  
MAX537_M  
SCK Pulse Width High  
SCK Pulse Width Low  
t
CH  
t
ns  
CL  
CS Fall to SCK Rise  
Setup Time  
t
ns  
ns  
CSS  
CSH  
SCK Rise to CS Rise  
Hold Time  
t
0
MAX537_C/E  
MAX537_M  
40  
50  
0
24  
SDI Setup Time  
SDI Hold Time  
t
ns  
ns  
ns  
DS  
t
DH  
MAX537_C/E  
MAX537_M  
MAX537_C/E  
MAX537_M  
116  
123  
200  
230  
210  
250  
SCK Rise to SDO Valid  
Propagation Delay (Note 6)  
t
t
C
C
= 50pF  
DO1  
DO2  
LOAD  
LOAD  
SCK Fall to SDO Valid  
Propagation Delay (Note 7)  
= 50pF  
ns  
6
_______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
ELECTRICAL CHARACTERISTICS—MAX537 (continued)  
(V = +5V, V = -5V, REFAB/REFCD = 2.5V, AGND = DGND = 0V, R = 5k, C = 100pF, T = T  
to T , unless  
MAX  
DD  
SS  
L
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAX537_C/E  
MAX537_M  
MAX537_C/E  
MAX537_M  
MAX537_C/E  
MAX537_M  
MAX537_C/E  
MAX537_M  
75  
140  
170  
130  
165  
t
C
C
= 50pF  
= 50pF  
ns  
CS Fall to SDO Enable  
DV  
LOAD  
LOAD  
70  
CS Rise to SDO Disable  
(Note 10)  
t
ns  
ns  
ns  
ns  
ns  
TR  
35  
40  
Continuous SCK,  
SCK edge ignored  
t
t
SCK Rise to CS Fall Delay  
CS0  
CS1  
35  
CS Rise to SCK Rise  
Hold Time  
SCK edge ignored  
40  
MAX537_C/E  
MAX537_M  
MAX537_C/E  
MAX537_M  
50  
t
LDAC Pulse Width High  
CS Pulse Width High  
LDAC  
70  
100  
125  
t
CSW  
Note 2: Guaranteed by design.  
Note 3: Crosstalk is defined as the glitch energy at any DAC output in response to a full-scale step change on any other DAC  
.
Note 4: Digital inputs at 2.4V; with digital inputs at CMOS levels, I  
DD decreases slightly.  
Note 5: All input signals are specified with t  
= t 5ns. Logic input swing is 0V to 5V.  
R
F
Note 6: Serial data clocked out of SDO on SCK’s falling edge. (SDO is an open-drain output for the MAX536. The MAX537s SDO  
pin has an internal active pull-up.)  
Note 7: Serial data clocked out of SDO on SCK’s rising edge.  
Note 10: When disabled, SDO is internally pulled high.  
_______________________________________________________________________________________  
7
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
MAX5 3 6  
MAX536  
MAX536  
MAX536  
REFERENCE VOLTAGE INPUT  
FREQUENCY RESPONSE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. REFERENCE FREQUENCY  
INTEGRAL NONLINEARITY  
ERROR vs. REFERENCE VOLTAGE  
1.0  
20  
10  
0.200  
REFAB SWEPT 2Vp-p  
MONITORED  
V
= -5V  
DAC CODE = ALL 1s  
REFAB = 10Vp-p  
SS  
V
OUTA  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
0.6  
0.2  
0
R = 10k, C = 100pF  
L
L
V
= +15V  
DD  
-10  
R = NO LOAD, C = 0pF  
L
-20  
-30  
L
-0.2  
V
= +12V  
DD  
--0.6  
-40  
-50  
6/MAX537  
-1.0  
1k  
10k  
100k  
1M  
10M  
0
4
8
12  
16  
10  
100  
200  
FREQUENCY (Hz)  
REFERENCE VOLTAGE (V)  
FREQUENCY (kHz)  
MAX536  
MAX536  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. REFERENCE FREQUENCY  
MAX536  
FULL-SCALE ERROR vs. LOAD  
SUPPLY CURRENT vs. TEMPERATURE  
10  
6
0.200  
1
0
DAC CODE = ALL 1s  
REFAB = 5Vp-p  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
I
DD  
V
V
SS  
= +15V  
= -5V  
DD  
-1  
-2  
-3  
2
R = 10k, C = 100pF  
L
L
-2  
R = NO LOAD, C = 0pF  
L
L
I
SS  
-6  
-4  
-5  
-10  
100  
10  
100  
200  
0.1  
1
10  
100  
1000  
60  
20  
TEMPERATURE (°C)  
140  
-60  
-20  
FREQUENCY (kHz)  
LOAD (k)  
MAX536  
MAX536  
REFERENCE FEEDTHROUGH AT 400Hz  
REFERENCE FEEDTHROUGH AT 4kHz  
REFAB,  
5V/div  
REFAB,  
5V/div  
0V  
0V  
OUTA,  
100µV/div  
OUTA,  
200µV/div  
500µs/div  
50µs/div  
INPUT CODE = ALL 0s  
INPUT CODE = ALL 0s  
8
_______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
MAX5 3 6  
MAX536  
MAX536  
NEGATIVE FULL-SCALE SETTLING TIME  
(ALL BITS ON TO ALL BITS OFF)  
DYNAMIC RESPONSE (ALL BITS ON, OFF, ON)  
CS,  
5V/div  
CS,  
5V/div  
OUTA,  
5V/div  
OUTA,  
2V/div  
OUTA,  
5mV/div  
5µs/div  
1µs/div  
V
= +15V, V = -5V, REFAB = 5V, C = 100pF, R = 10kΩ  
V
= +15V, V = -5V, REFAB = 10V, C = 100pF, R = 10kΩ  
DD  
SS  
L
L
DD  
SS  
L
L
MAX536  
MAX536  
DIGITAL FEEDTHROUGH  
POSITIVE FULL-SCALE SETTLING TIME  
(ALL BITS OFF TO ALL BITS ON)  
CS,  
5V/div  
SCK,  
5V/div  
OUTA,  
5V/div  
OUTA,  
-10V OFFSET  
5mV/div  
OUTA,  
AC-COUPLED,  
10mV/div  
1µs/div  
V
= +15V, V = -5V, REFAB = 10V, CS = HIGH,  
SS  
V
= +15V, V = -5V, REFAB = 10V, C = 100pF, R = 10kΩ  
DD  
DD  
SS  
L
L
1
DIN TOGGLING AT ⁄ THE CLOCK RATE,  
2
OUTA = 5V  
_______________________________________________________________________________________  
9
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
MAX5 3 7  
MAX537  
INTEGRAL NONLINEARITY  
ERROR vs. REFERENCE VOLTAGE  
2.0  
MAX537  
MAX537  
REFERENCE VOLTAGE INPUT  
FREQUENCY RESPONSE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
20  
10  
0.200  
REFAB SWEPT 2Vp-p  
REFAB = 2.5Vp-p  
V
= +5V  
= -5V  
DD  
V
OUTA  
MONITORED  
1.5  
1.0  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
V
SS  
0
0.5  
0
-10  
R = 10k, C = 100pF  
L
L
-20  
-30  
-0.5  
-1.0  
-1.5  
-2.0  
R = NO LOAD, C = 0pF  
L
L
-40  
-50  
6/MAX537  
1k  
10k  
100k  
1M  
10M  
10  
100  
200  
0
1
2
3
4
5
FREQUENCY (Hz)  
FREQUENCY (kHz)  
V
REF  
(V)  
MAX537  
MAX537  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
MAX537  
FULL-SCALE ERROR vs. LOAD  
SUPPLY CURRENT vs. TEMPERATURE  
2
1
5
3
0.200  
REFAB = 1Vp-p  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
I
DD  
V
V
SS  
= +5V  
= -5V  
DD  
0
1
-1  
R = 10k, C = 100pF  
L
L
-1  
-2  
-3  
-4  
I
SS  
-3  
-5  
R = NO LOAD, C = 0pF  
L
L
100  
60  
20  
TEMPERATURE (°C)  
140  
10  
100  
200  
0.1  
1
10  
100  
1000  
-60  
-20  
FREQUENCY (kHz)  
LOAD (k)  
MAX537  
MAX537  
REFERENCE FEEDTHROUGH AT 4kHz  
REFERENCE FEEDTHROUGH AT 400Hz  
REFAB,  
1V/div  
REFAB,  
1V/div  
0V  
0V  
OUTA,  
OUTA,  
AC-COUPLED,  
100µV/div  
AC-COUPLED,  
100µV/div  
50µs/div  
500µs/div  
INPUT CODE = ALL 0s  
INPUT CODE = ALL 0s  
10 ______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
MAX5 3 7  
MAX537  
NEGATIVE FULL-SCALE SETTLING TIME  
(ALL BITS ON TO ALL BITS OFF)  
MAX537  
DYNAMIC RESPONSE (ALL BITS ON, OFF, ON)  
CS,  
5V/div  
CS,  
5V/div  
OUTA,  
5mV/div  
OUTA,  
1V/div  
1µs/div  
5µs/div  
V
= +5V, V = -5V, REFAB = 2.5V, C = 100pF, R = 10kΩ  
V
= +5V, V = -5V, REFAB = 2.5V, C = 100pF, R = 10kΩ  
DD  
SS  
L
L
DD  
SS  
L
L
MAX537  
MAX537  
DIGITAL FEEDTHROUGH  
POSITIVE FULL-SCALE SETTLING TIME  
(ALL BITS OFF TO ALL BITS ON)  
CS,  
5V/div  
SCK,  
5V/div  
OUTA,  
OUTA,  
AC-COUPLED,  
20mV/div  
5mV/div  
100ns/div  
1µs/div  
V
= +5V, V = -5V, REFAB = 2.5V, CS = HIGH,  
SS  
V
= +5V, V = -5V, REFAB = 2.5V, C = 100pF, R = 10kΩ  
DD  
DD  
SS  
L
L
1
DIN TOGGLING AT ⁄ THE CLOCK RATE,  
2
OUTA = 1.25V  
______________________________________________________________________________________ 11  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
______________________________________________________________P in De s c rip t io n  
PIN  
1
NAME  
OUTB  
OUTA  
FUNCTION  
DAC B Output Voltage  
DAC A Output Voltage  
Negative Power Supply  
Analog Ground  
2
3
V
SS  
4
AGND  
REFAB  
DGND  
5
Reference Voltage Input for DAC A and DAC B  
Digital Ground  
6
Load DAC Input (active low). Driving this asynchronous input low transfers the contents of all input  
registers to their respective DAC registers.  
7
8
LDAC  
SDI  
Serial Data Input. Data is shifted into an internal 16-bit shift register on SCK's rising edge.  
Chip-Select Input (active low). A low level on CS enables the input shift register and SDO.  
On CSs rising edge, data is latched into the appropriate register(s).  
6/MAX537  
9
CS  
10  
11  
SCK  
SDO  
Shift Register Clock Input  
Serial Data Output. SDO is the output of the internal shift register. SDO is enabled when CS is low.  
For the MAX536, SDO is an open-drain output. For the MAX537, SDO has an active pull-up to V  
.
DD  
12  
13  
14  
15  
16  
REFCD  
TP  
Reference Voltage Input for DAC C and DAC D  
Test Pin. Connect to V for proper operation.  
DD  
V
DD  
Positive Power Supply  
DAC D Output Voltage  
DAC C Output Voltage  
OUTD  
OUTC  
_______________De t a ile d De s c rip t io n  
The MAX536/MAX537 contain four 12-bit voltage-output  
DACs that are easily addressed using a simple 3-wire  
serial interface. They include a 16-bit data-in/data-out  
shift register, and each DAC has a double-buffered  
input composed of an input register and a DAC register  
(see the Functional Diagram on the front page).  
R
R
R
V
OUT  
2R  
2R  
2R  
D9  
2R  
2R  
D11  
D0  
D10  
The DACs are “inverted” R-2R ladder networks that  
convert 12-bit digital inputs into equivalent analog out-  
put voltages in proportion to the applied reference-volt-  
age inputs. DAC A and DAC B share the REFAB refer-  
ence input, while DAC C and DAC D share the REFCD  
reference input. The two reference inputs allow different  
full-scale output voltage ranges for each pair of DACs.  
Figure 1 shows a simplified circuit diagram of one of  
the four DACs.  
REF  
AGND  
SHOWN FOR ALL 1s ON DAC  
Figure 1. Simplified DAC Circuit Diagram  
Re fe re n c e In p u t s  
The two reference inputs accept positive DC and AC  
s ig na ls . The volta g e a t e a c h re fe re nc e inp ut s e ts  
the full-scale output voltage for its two correspond-  
ing DACs. The REFAB/REFCD voltage range is 0V to  
a digitally programmable voltage source as:  
= N (V / 4096  
V
OUT_  
B
REF)  
where N is the numeric value of the DACs binary input  
B
(V - 4V) for the MAX536 and 0V to (V - 2.2V) for the  
DD  
DD  
code (0 to 4095) and V  
is the reference voltage.  
REF  
MAX537. The output voltages V _ are represented by  
OUT  
12 ______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
The input impedance at each reference input is code  
dependent, ranging from a low value of typically 6kΩ  
(with an input code of 0101 0101 0101) to a high value  
of 60k(with an input code of 0000 0000 0000). Since  
the input impe d a nc e a t the re fe re nc e p ins is c ode  
dependent, load regulation of the reference source is  
important.  
Ou t p u t Bu ffe r Am p lifie rs  
All MAX536/MAX537 volta g e outp uts a re inte rna lly  
buffered by precision unity-gain followers with a typical  
slew rate of 5V/µs for the MAX536 and 3V/µs for the  
MAX537.  
With a full-scale transition at the MAX536 output (0V to  
10V or 10V to 0V), the typical settling time to ±1/2LSB is  
3µs when loaded with 5kin parallel with 100pF (loads  
less than 5kdegrade performance).  
The REFAB and REFCD reference inputs have a 5kΩ  
guaranteed minimum input impedance. When the two  
reference inputs are driven from the same source, the  
effective minimum impedance becomes 2.5k. A volt-  
age reference with a load regulation of 0.001%/mA,  
s uc h a s the MAX674, would typ ic a lly d e via te b y  
0.164LSB (0.328LSB worst case) when simultaneously  
driving both MAX536 reference inputs at 10V.  
With a full-scale transition at the MAX537 output (0V to  
2.5V or 2.5V to 0V), the typical settling time to ±1/2LSB  
is 5µs when loaded with 5kin parallel with 100pF  
(loads less than 5kdegrade performance).  
Output dynamic responses and settling performances  
of the MAX536/MAX537 output amplifier are shown in  
the Typical Operating Characteristics.  
An op amp, such as the MAX400 or OP07, can be used  
to buffer the reference to increase reference accuracy.  
The op amps closed-loop output impedance should be  
ke p t b e low 0.05to e ns ure a n e rror of le s s tha n  
0.08LSB. Reference accuracy is also improved by driv-  
ing the REFAB and REFCD pins separately, or by using  
a reference with excellent accuracy and superior load  
regulation, such as the MAX676/MAX677/MAX678.  
Se ria l-Inte rfa c e Configura tions  
The MAX536/MAX537s 3-wire or 4-wire serial interface is  
compatible with both Microwire (Figure 2) and SPI/QSPI  
(Figure 3). In Figures 2 and 3, LDAC can be tied either  
high or low for a 3-wire interface, or used as the fourth  
input with a 4-wire interface. The connection between  
SDO and the serial-interface port is not necessary, but  
may be used for data echo. (Data held in the shift register  
The reference input capacitance is also code depen-  
dent and typically ranges from 125pF to 300pF.  
5V  
5V  
R
P
1k  
R
P
1k  
SS  
SDO*  
MISO*  
SCK  
SK  
SDI  
MOSI  
SCK  
SDI  
SO  
SI*  
SPI/QSPI  
PORT  
MAX536  
MAX537  
SCK  
MAX536  
MAX537  
MICROWIRE  
PORT  
SDO*  
CS  
I/O  
I/O  
CS  
I/O  
I/O  
LDAC**  
LDAC**  
CPOL = 0, CPHA = 0  
*THE SDO-SI CONNECTION IS NOT REQUIRED FOR WRITING TO THE MAX536,  
BUT MAY BE USED FOR READBACK PURPOSES.  
*THE SDO-MISO CONNECTION IS NOT REQUIRED FOR WRITING TO THE MAX536,  
BUT MAY BE USED FOR READBACK PURPOSES.  
**THE LDAC CONNECTION IS NOT REQUIRED WHEN USING THE 3-WIRE INTERFACE.  
**THE LDAC CONNECTION IS NOT REQUIRED WHEN USING THE 3-WIRE INTERFACE.  
THE MAX537 HAS AN INTERNAL ACTIVE PULL-UP TO V  
DD,  
THE MAX537 HAS AN INTERNAL ACTIVE PULL-UP TO V  
DD,  
SO R IS NOT NECESSARY.  
P
SO R IS NOT NECESSARY.  
P
Figure 2. Connections for Microwire  
Figure 3. Connections for SPI/QSPI  
_______________________________________________________________________________________ 13  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
CS  
COMMAND  
EXECUTED  
SCK  
1
8
9
16  
SDI  
D2 D1 D0  
..........  
..........  
D15 D14 D13  
MSB  
LSB  
SDO  
...........  
Q15  
..........  
Q0  
MSB FROM  
PREVIOUS WRITE  
LSB FROM  
PREVIOUS WRITE  
Figure 4. 3-Wire Serial-Interface Timing Diagram (LDAC = GND or V  
)
DD  
6/MAX537  
CS  
SCK  
SDI  
INPUT REGISTER(S)  
UPDATED  
1
8
9
16  
..........D2 D1 D0  
D15 D14 D13..........  
MSB  
LSB  
SDO  
..........  
Q15  
Q0  
..........  
MSB FROM  
PREVIOUS WRITE  
LSB FROM  
PREVIOUS WRITE  
LDAC  
DACs  
UPDATED  
Figure 5. 4-Wire Serial-Interface Timing Diagram for Asynchronous DAC Updating Using LDAC  
t
CSW  
CS  
t
CP  
t
t
t
CH  
CSH  
CSS  
t
t
CL  
CSO  
t
CSI  
SCK  
t
DS  
t
DH  
SDI  
t
DO2  
t
DV  
t
TR  
t
DO1  
SDO  
LDAC*  
*USE OF LDAC IS OPTIONAL  
t
LDAC  
Figure 6. Detailed Serial-Interface Timing Diagram  
14 ______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
of the MAX536/MAX537 can be shifted out of SDO and  
returned to the microprocessor for data verification; data  
in the MAX536/MAX537 input/DAC registers cannot be  
read.)  
clocked into the internal shift register via the serial data input  
pin (SDI) on SCKs rising edge. The maximum guaranteed  
clock frequency is 10MHz. Data is latched into the appropri-  
ate MAX536/MAX537 input/DAC registers on CS’s rising  
edge.  
With a 3-wire interface (CS, SCK, SDI) and LDAC tied  
hig h, the DACs a re d oub le -b uffe re d . In this mod e ,  
depending on the command issued through the serial  
inte rfa c e , the inp ut re g is te r(s ) ma y b e loa d e d  
without affecting the DAC register(s), the DAC register(s)  
can be loaded directly, or all four DAC registers may be  
simultaneously updated from the input registers. With a 3-  
wire interface (CS, SCK, SDI) and LDAC tied low (Figure  
4), the DAC registers remain transparent. Any time an  
input register is updated, the change appears at the DAC  
output with the rising edge of CS.  
Interface timing is optimized when serial data is clocked out  
of the microcontroller/microprocessor on one clock edge  
and clocked into the MAX536/MAX537 on the other edge.  
Table 1 lists the serial-interface programming commands.  
For certain commands, the 12 data bits are “dont cares.  
The programming command Load-All-DACs-From-Shift-  
Register allows all input and DAC registers to be simultane-  
ously loaded with the same digital code from the input shift  
register. The NOP (no operation) command allows the regis-  
te r c onte nts to b e una ffe c te d a nd is us e ful whe n the  
MAX536/MAX537 are configured in a daisy-chain (see the  
Daisy-Chaining Devices section). The command to change  
the clock edge on which serial data is shifted out of the  
MAX536/MAX537 SDO pin also loads data from all input reg-  
isters to their respective DAC registers.  
The 4-wire interface (CS, SCK, SDI, LDAC) is similar to  
the 3-wire interface with LDAC tied high, except LDAC is  
a hardware input that simultaneously and asynchronously  
loads all DAC registers from their respective input regis-  
ters when driven low (Figure 5).  
Se ria l-Inte rfa c e De s c ription  
The MAX536/MAX537 require 16 bits of serial data. Data is  
sent MSB first and can be sent in two 8-bit packets or one  
16-bit word (CS must remain low until 16 bits are trans-  
ferred). The serial data is composed of two DAC address  
bits (A1, A0), two control bits (C1, C0), and the 12 data bits  
D11…D0 (Figure 7). The 4-bit address/control code deter-  
mines the following: 1) the register(s) to be updated and/or  
the status of the input and DAC registers (i.e., whether they  
are in transparent or latch mode), and 2) the edge on which  
data is clocked out of SDO.  
Se ria l-Da ta Output  
The serial-data output, SDO, is the internal shift registers  
output. The MAX536/MAX537 can be programmed so that  
data is clocked out of SDO on SCK’s rising (Mode 1) or  
falling (Mode 0) edge . In Mode 0, output data at SDO lags  
input data at SDI by 16.5 clock cycles, maintaining compati-  
bility with Microwire, SPI/QSPI, and other serial interfaces. In  
Mode 1, output data lags input data by 16 clock cycles. On  
power-up, SDO defaults to Mode 1 timing.  
For the MAX536, SDO is an open-drain output that should be  
pulled up to +5V. The data sheet timing specifications for  
SDO use a 1kpull-up resistor. For the MAX537, SDO is a  
complementary output and does not require an external  
pull-up.  
MSB ..................................................................................LSB  
16 Bits of Serial Data  
Address  
Bits  
Control  
Bits  
Data Bits  
Te s t Pin  
MSB.............................................LSB  
The test pin (TP) is used for pre-production analysis of the IC.  
A1 A0 C1 C0 D11................................................D0  
Connect TP to V for proper MAX536/MAX537 operation.  
DD  
Failure to do so affects DAC operation.  
4 Address/  
12 Data Bits  
Control Bits  
Da is y-Cha ining De vic e s  
Any number of MAX536/MAX537s can be daisy-chained by  
connecting the SDO pin of one device (with a pull-up resis-  
tor, if appropriate) to the SDI pin of the following device in the  
chain (Figure 8).  
Figure 7. Serial-Data Format (MSB Sent First)  
Figure 6 shows the serial-interface timing requirements. The  
chip-select pin (CS) must be low to enable the DACs serial  
interface. When CS is high, the interface control circuitry is  
disabled and the serial data output pin (SDO) is driven high  
(MAX537) or is a high-impedance open drain (MAX536). CS  
must go low at least tCSS before the rising serial clock (SCK)  
edge to properly clock in the first bit. When CS is low, data is  
Since the MAX537s SDO pin has an internal active pull-up,  
the SDO sink/source capability determines the time required  
to discharge/charge a capacitive load. Refer to the serial  
data out V  
and V  
specifications in the Electrical  
OH  
OL  
Characteristics.  
______________________________________________________________________________________ 15  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
Table 1. Serial-Interface Programming Commands  
16-BIT SERIAL WORD  
LDAC  
FUNCTION  
A1  
0
A0  
0
C1  
0
C0  
1
D11…D0  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
1
1
1
1
1
1
1
1
X
X
1
Load DAC A input register; DAC output unchanged.  
Load DAC B input register; DAC output unchanged.  
Load DAC C input register; DAC output unchanged.  
Load DAC D input register; DAC output unchanged.  
Load input register A; all DAC registers updated.  
Load input register B; all DAC registers updated.  
Load input register C; all DAC registers updated.  
Load input register D; all DAC registers updated.  
Load all DACs from shift register.  
0
1
0
1
1
0
0
1
1
1
0
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
1
1
6/MAX537  
X
X
0
0
0
0
1
0
0
No operation (NOP)  
X
1
0
Update all DACs from their respective input registers.  
Mode 1 (default condition at power-up), DOUT clocked out on  
SCK’s rising edge. All DACs updated from their respective  
input registers.  
1
1
1
0
1
1
0
0
XXXXXXXXXXXX  
XXXXXXXXXXXX  
X
X
Mode 0, DOUT clocked out on SCK’s falling edge. All DACs  
updated from their respective input registers.  
0
0
1
1
0
1
0
1
X
X
X
X
1
1
1
1
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
12-bit DAC data  
0
0
0
0
Load DAC A input register; DAC A is immediately updated.  
Load DAC B input register; DAC B is immediately updated.  
Load DAC C input register; DAC C is immediately updated.  
Load DAC D input register; DAC D is immediately updated.  
“X” = Dont Care. LDAC provides true latch control: when LDAC is low, the DAC registers are transparent; when LDAC is high,  
the DAC registers are latched.  
Additionally, when daisy-chaining devices, the maximum  
clock frequency is limited to:  
Whe n d a is y-c ha ining MAX536s , the d e la y from CS  
low to SCK high (t ) must be the greater of:  
CSS  
t
+ t  
DV DS  
1
f
(max) = ——————————————  
SCK  
or  
2 (t  
+ t - 38ns + t  
)
DO  
RC  
DS  
t
+ t + t - t  
RC DS CSW  
TR  
For e xa mp le , with t  
= 23ns (5V ± 10% s up p ly with  
RC  
where t is the time constant of the external pull-up resistor  
(R ) and the load capacitance (C) at SDO. For t < 20ns,  
RC  
R = 1kand C = 30pF), the maximum clock frequency is  
p
p
CSS  
RC  
8.7MHz.  
t
is simply t + t . Calculate t from the following  
DV DS RC  
Figure 9 shows an alternate method of connecting several  
MAX536/MAX537s. In this configuration, the data bus is  
common to all devices; data is not shifted through a  
daisy-chain. More I/O lines are required in this configu-  
ration because a dedicated chip-select input (CS) is  
required for each IC.  
equation:  
V
PULL-UP  
t
= R (C) ln  
RC  
p
(
)
]
[
V
- 2.4V  
PULL-UP  
where V  
is the voltage to which the pull-up resistor is  
PULL-UP  
connected.  
16 ______________________________________________________________________________________  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
6/MAX537  
+5V  
+5V  
+5V  
R *  
P
1k  
R *  
P
1k  
R *  
P
1k  
MAX536  
MAX537  
MAX536  
MAX537  
MAX536  
MAX537  
SCK  
SDI  
CS  
SCK  
SDI  
CS  
SCK  
SDI  
CS  
SCK  
DIN  
SDO  
SDO  
SDO  
CS  
TO OTHER  
SERIAL DEVICES  
* THE MAX537 HAS AN ACTIVE INTERNAL PULL-UP, SO R IS NOT NECESSARY.  
P
Figure 8. Daisy-Chaining MAX536/MAX537s with a 3-Wire Serial Interface  
DIN  
SCK  
LDAC  
CS1  
CS2  
TO OTHER  
SERIAL DEVICES  
CS3  
CS  
CS  
CS  
LDAC  
LDAC  
LDAC  
MAX536  
MAX537  
MAX536  
MAX537  
MAX536  
MAX537  
SCK  
SDI  
SCK  
SDI  
SCK  
SDI  
Figure 9. Multiple devices sharing a common DIN line may be simultaneously updated by bringing LDAC low. CS1, CS2, CS3… are  
driven separately, thus controlling which data are written to devices 1, 2, 3…  
______________________________________________________________________________________ 17  
Ca lib ra t e d , Qu a d , 1 2 -Bit  
Vo lt a g e -Ou t p u t DACs w it h S e ria l In t e rfa c e  
Bits 6 and 7 are not used. Writes to these bits are ignored.  
__________Ap p lic a t io n s In fo rm a t io n  
The PORT D Data Direction Register (DDRD) deter-  
mines whether the port bits are inputs or outputs. Its  
configuration is shown below:  
In t e rfa c in g t o t h e M6 8 HC1 1 *  
PORT D of the 68HC11 supports SPI. The four registers  
used for SPI operation are the Serial Peripheral Control  
Register, the Serial Peripheral Status Register, the Serial  
Peripheral Data I/O Register, and PORT Ds Data Direction  
Register. These registers have a default starting location of  
$1000.  
BIT  
7
6
5
4
3
2
1
0
NAME  
DDD5 DDD4 DDD3 DDD2 DDD1 DDD0  
On reset, the PORT D register (memory location $1008) is  
cleared and bits 5-0 are configured as general-purpose  
inputs. Setting bit 6 (SPE) of the Serial Peripheral Control  
Register (SPCR) configures PORT D for SPI as follows:  
Setting DDD_ = 0 configures the port bit as an input, while  
setting DDD_ = 1 configures the port bit as an output. Writes  
to bits 6 and 7 have no effect.  
In SPI mode with MSTR = 1, when a PORT D bit is expected  
to be an input (SS, MISO, RXD), the corresponding DDRD bit  
(DDD_) is ignored. If the bit is expected to be an output  
(SCK, MOSI, TXD), the corresponding DDRD bit must be  
set for the bit to be an output.  
BIT  
7
NAME  
6
5
4
3
2
1
0
6/MAX537  
SS  
SCK MOSI MISO TXD RXD  
Table 2. Serial Peripheral Control-Register Definitions  
NAME  
DEFINITION  
Serial Pe