欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • MAX5956BUEE+T
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • MAX5956BUEE+T图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • MAX5956BUEE+T
  • 数量9125 
  • 厂家ADI(亚德诺)/MAXIM(美信) 
  • 封装QSOP-16 
  • 批号23+ 
  • 原厂直销,现货供应,账期支持!
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • MAX5956BUEE+T图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • MAX5956BUEE+T
  • 数量5000 
  • 厂家Maxim Integrated Products 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104791 QQ:857273081QQ:1594462451
  • MAX5956BUEE+T图
  • 北京元坤伟业(国际)科技有限公司

     该会员已使用本站12年以上
  • MAX5956BUEE+T
  • 数量5000 
  • 厂家Maxim Integrated Products 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104578 QQ:857273081QQ:1594462451
  • MAX5956BUEE+T图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • MAX5956BUEE+T
  • 数量12000 
  • 厂家Maxim 
  • 封装原厂原装 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • MAX5956BUEE+T图
  • 集好芯城

     该会员已使用本站13年以上
  • MAX5956BUEE+T
  • 数量17331 
  • 厂家ADI 
  • 封装16-QSOP-150_MIL 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • MAX5956BUEE+T图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • MAX5956BUEE+T
  • 数量6328 
  • 厂家MAXIM-美信 
  • 封装QSOP-16 
  • 批号▉▉:2年内 
  • ▉▉¥30.6元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • MAX5956BUEE+T图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • MAX5956BUEE+T
  • 数量3265 
  • 厂家MAXIM 
  • 封装16-SSOP 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • MAX5956BUEE+T图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • MAX5956BUEE+T
  • 数量3550 
  • 厂家ADI/MAXIM 
  • 封装16-SSOP(0.154,3.90mm 宽) 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • MAX5956BUEE+T图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • MAX5956BUEE+T
  • 数量2500 
  • 厂家MAXIM 
  • 封装SOP-16 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!单价:86元
  • QQ:1415691092QQ:1415691092 复制
  • 133-5299-5145(微信同号) QQ:1415691092
  • MAX5956BUEE+T图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • MAX5956BUEE+T
  • 数量9500 
  • 厂家Maxim(美信) 
  • 封装16-SSOP(0.154,3.90mm 宽) 
  • 批号24+ 
  • 绝对原装正品,可开专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • MAX5956BUEE+T图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • MAX5956BUEE+T
  • 数量15000 
  • 厂家Maxim Integrated 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • MAX5956BUEE+T图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • MAX5956BUEE+T
  • 数量9800 
  • 厂家Maxim 
  • 封装na 
  • 批号24+ 
  • 原厂渠道,全新原装现货,欢迎查询!
  • QQ:97877805QQ:97877805 复制
  • 171-4729-0036(微信同号) QQ:97877805

产品型号MAX5956BUEE+T的概述

MAX5956BUEE+T芯片概述 MAX5956BUEE+T是一款高效的电源管理IC,专为多路复用和负载开关应用而设计。该芯片可广泛应用于各种电子设备中,主要提供高精度的电源管理解决方案。其设计特点使得MAX5956能够在防止电流过载和短路保护的同时,保持低功耗操作,受到许多电子工程师的青睐。 该芯片的主要特性包括其较低的导通电阻、快速的开关时间以及可编程的输出电压。这使得MAX5956BUEE+T不仅在工业应用中表现优异,还可以在消费类电子产品、通信设备以及医疗仪器中广泛应用。 MAX5956BUEE+T详细参数 MAX5956BUEE+T的技术规格如下: - 电源电压范围:3V至5.5V - 最大输出电流:6A - 导通电阻(RDS(ON)):40mΩ(典型值) - 开关频率:最高可达1MHz - 输入电压:3V到5.5V - 工作温度范围:-40°C至+125°C - 软启动功...

产品型号MAX5956BUEE+T的Datasheet PDF文件预览

19-3813; Rev 0; 9/05  
Low-Voltage, Dual Hot-Swap  
Controllers with Independent On/Off Control  
/MAX956  
General Description  
Features  
o Safe Hot Swap for +1V to +13.2V Power Supplies  
The MAX5955 and MAX5956 are +1V to +13.2V dual  
hot-swap controllers with independent on/off control for  
complete protection of dual-supply systems. They allow  
the safe insertion and removal of circuit cards into live  
backplanes. The MAX5955 and MAX5956 operate  
down to 1V provided one of the inputs is above 2.7V.  
with V  
or V  
≥ 2.7V  
IN1  
IN2  
o Independent On/Off Control for Each Channel  
o Internal Charge Pumps Generate n-Channel  
MOSFET Gate Drives  
o Inrush Current Regulated at Startup  
o Circuit-Breaker Function  
The discharged filter capacitors of the circuit card pro-  
vide low impedance to the live backplane. High inrush  
currents from the backplane to the circuit card can burn  
up connectors and components, or momentarily collapse  
the backplane power supply leading to a system reset.  
The MAX5955 and MAX5956 hot-swap controllers pre-  
vent such problems by gradually ramping up the output  
voltage and regulating the current to a preset limit when  
the board is plugged in, allowing the system to stabilize  
safely. After the startup cycle is completed, two on-chip  
comparators provide VariableSpeed/BiLevel™ protection  
against short-circuit and overcurrent faults, as well as  
immunity against system noise and load transients. In the  
event of a fault condition, the load is disconnected. The  
MAX5955B and MAX5956B must be unlatched after a  
fault, and the MAX5955A and MAX5956A automatically  
restart after a fault.  
o Adjustable Circuit Breaker/Current-Limit  
Threshold from 25mV to 100mV  
o VariableSpeed/BiLevel Circuit Breaker Response  
o Autoretry or Latched Fault Management  
o Status Outputs Indicate Fault/Safe Condition  
o Output Undervoltage and Overvoltage Monitoring  
or Protection  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
0°C to +85°C  
0°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +85°C  
0°C to +85°C  
PIN-PACKAGE  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
MAX5955AEEE  
MAX5955AEEE+  
MAX5955AUEE  
MAX5955AUEE+  
MAX5955BEEE  
MAX5955BEEE+  
MAX5955BUEE  
MAX5955BUEE+  
The MAX5955 and MAX5956 integrate an on-board  
charge pump to drive the gates of low-cost, external n-  
channel MOSFETs. The devices offer integrated fea-  
tures like startup current regulation and current glitch  
protection to eliminate external timing resistors and  
capacitors. These devices provide open-drain status  
outputs, an adjustable startup timer, and adjustable  
current limits. The MAX5955 provides output undervolt-  
age/overvoltage protection for each channel, while the  
MAX5956 provides undervoltage/overvoltage monitor-  
ing for each channel.  
+Denotes lead-free package.  
Ordering Information continued at end of data sheet.  
Selector Guide and Typical Operating Circuit appear at end  
of data sheet.  
The MAX5955 and MAX5956 are available in a space-  
saving 16-pin QSOP package.  
Pin Configuration  
TOP VIEW  
Applications  
Power-Supply Sequencing  
PGOOD1  
TIM  
1
2
3
4
5
6
7
8
16 PGOOD2  
15 ON2  
Base Station Line Cards  
IN1  
14 IN2  
Network Switches,  
Routers, Hubs  
Hot Plug-In Daughter  
Cards  
SENSE1  
GATE1  
GND  
MAX5955  
MAX5956  
13 SENSE2  
12 GATE2  
11 ON1  
Solid-State Circuit  
Breakers  
Portable Computer Device  
Bays (Docking Stations)  
RAID  
LIM1  
10 LIM2  
MON1  
9
MON2  
Variable Speed/BiLevel is a trademark of Maxim Integrated  
Products, Inc.  
QSOP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Voltage, Dual Hot-Swap Controllers with  
Independent On/Off Control  
ABSOLUTE MAXIMUM RATINGS  
IN_ to GND...........................................................................+14V  
Continuous Power Dissipation (T = +70°C)  
A
GATE_ to GND ...........................................-0.3V to (V  
ON_, PGOOD_, TIM to GND.......................-0.3V to the higher of  
+ 6.2V)  
16-Pin QSOP (derate 8.3mW/°C above +70°C)...........667mW  
Operating Temperature Range  
IN_  
(V  
+ 0.3V) and (V  
+ 0.3V)  
+ 0.3V)  
MAX59_ _ _U_ _...................................................0°C to +85°C  
MAX59_ _ _E_ _................................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
IN1  
IN2  
SENSE_, MON_, LIM_ to GND ...................-0.3V to (V  
Current into Any Pin ......................................................... 50mA  
IN_  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +1V to +13.2V provided at least one supply is higher than +2.7V, V  
= V  
= +2.7V, T = T  
A
to T  
, unless otherwise  
MAX  
IN_  
ON1  
ON2  
MIN  
noted. Typical values are at V  
= +5V, V  
= +3.3V, and T = +25°C.) (Note 1)  
IN2 A  
IN1  
PARAMETER  
POWER SUPPLIES  
IN_ Input Voltage Range  
Supply Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Other V +2.7V  
1.0  
13.2  
2.3  
V
IN  
IN  
/MAX956  
I
I
+ I , V  
= +5V, V = +3.3V  
IN2  
1.2  
25  
mA  
IN  
IN1  
IN2 IN1  
CURRENT CONTROL  
T
T
= +25°C  
22.5  
27.5  
27.5  
130  
A
LIM = GND  
= 300kΩ  
Slow-Comparator Threshold  
V
= -40°C to +85°C  
20.5  
80  
mV  
SC,TH  
A
(V _ - V  
_) (Note 2)  
SENSE  
IN  
R
100  
3
LIM  
1mV overdrive  
10mV overdrive  
During startup  
ms  
µs  
Slow-Comparator Response Time  
(Note 3)  
t
SCD  
110  
V
2 x V ,  
SC TH  
SU,TH  
FC,TH  
Fast-Comparator Threshold  
mV  
(V _ - V  
IN  
_)  
SENSE  
V
V
_ - V  
_; normal operation  
4 x V  
,
SC TH  
IN  
SENSE  
Fast-Comparator Response Time  
(V _ - V _)  
t
10mV overdrive, from overload condition  
_ = V  
260  
ns  
FCD  
IN  
SENSE  
SENSE Input Bias Current  
I
V
_
IN  
0.03  
1
µA  
B SENSE  
SENSE  
MOSFET DRIVER  
R
= 100kΩ  
6
0.31  
4
10.8  
0.45  
9
16  
0.58  
17  
TIM  
Startup Period (Note 4)  
Average Gate Current  
t
ms  
R
TIM  
= 4k(minimum value)  
START  
TIM floating  
Charging, V  
_ = +5V, V _ = +10V (Note 5)  
65  
100  
130  
µA  
GATE  
IN  
I
GATE  
Discharging, triggered by a fault or when  
3
mA  
V
< 0.875V  
ON_  
V
V
_ = 3V to 13.2V  
_ = 2.7V to 3.0V  
4.8  
4.1  
5.4  
5.0  
6.0  
6.0  
V
I
- V _,  
IN  
< 1µA  
IN  
IN  
GATE_  
GATE_  
Gate-Drive Voltage  
ON_ COMPARATOR  
ON_ Threshold  
V
V
DRIVE  
Low to high  
Hysteresis  
0.85  
0.875  
25  
0.90  
V
V
,
ON_ TH  
mV  
µs  
ON_ Propagation Delay  
10mV overdrive  
50  
2
_______________________________________________________________________________________  
Low-Voltage, Dual Hot-Swap Controllers with  
Independent On/Off Control  
/MAX956  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +1V to +13.2V provided at least one supply is higher than +2.7V, V  
= V  
= +2.7V, T = T  
A
to T  
, unless otherwise  
MAX  
IN_  
ON1  
ON2  
MIN  
noted. Typical values are at V  
= +5V, V  
= +3.3V, and T = +25°C.) (Note 1)  
IN2 A  
IN1  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.03  
100  
MAX  
UNITS  
µA  
V
< 4.5V  
> 4.5V  
= 4.5V  
ON_  
ON_  
ON_  
ON_ Input Bias Current  
ON_ Pulse-Width Low  
I
V
= V = +13.2V  
IN2  
V
V
BON  
IN1  
0.03  
1
t
To unlatch after a latched fault  
100  
µs  
UNLATCH  
DIGITAL OUTPUT (PGOOD_)  
Output Leakage Current  
Output Voltage Low  
V
_ = 13.2V  
1
µA  
V
PGOOD  
V
I
= 1mA  
0.4  
OL  
SINK  
PGOOD_ Delay  
t
After t  
, MON_ = V  
0.75  
ms  
PGDLY  
START  
IN_  
OUTPUT VOLTAGE MONITORS (MON1, MON2)  
Overvoltage  
Undervoltage  
657  
513  
687  
543  
20  
707  
563  
MON_ Trip Threshold  
V
mV  
MON  
MON_ Glitch Filter  
µs  
MON_ Input Bias Current  
V
= 600mV  
0.03  
µA  
MON_  
UNDERVOLTAGE LOCKOUT (UVLO)  
Startup is initiated when this threshold is  
2.10  
2.4  
2.67  
66  
V
reached by V  
or V , V _ > 0.875V  
IN2 ON  
UVLO Threshold  
V
UVLO  
IN1  
Hysteresis  
100  
mV  
µs  
V
fault  
toggled below UVLO to unlatch after a  
step from 0 to 2.8V  
IN_  
IN_  
UVLO Glitch Filter Reset Time  
100  
20  
UVLO to Startup Delay  
SHUTDOWN LATCH/RESTART  
Autoretry Delay  
t
V
37.5  
ms  
D,UVLO  
t
Delay time to restart after fault shutdown  
64 x t  
ms  
RETRY  
START  
Note 1: All devices are 100% tested at T = +25°C and T = +85°C. Limits at T = 0°C and -40°C are guaranteed by design.  
A
A
A
Note 2: The MAX5955/MAX5956 slow-comparator threshold is adjustable. V  
= R  
0.25µA + 25mV (see the Typical  
LIM  
SC,TH  
Operating Characteristics).  
Note 3: The current-limit slow-comparator response time is weighted against the amount of overcurrent; the higher the overcurrent  
condition, the faster the response time (see the Typical Operating Characteristics).  
Note 4: The startup period (t  
) is the time during which the slow comparator is ignored and the device acts as a current-limiter  
START  
by regulating the sense current with the fast comparator (see the Startup Period section).  
Note 5: The current available at GATE is a function of V (see the Typical Operating Characteristics).  
GATE  
_______________________________________________________________________________________  
3
Low-Voltage, Dual Hot-Swap Controllers with  
Independent On/Off Control  
Typical Operating Characteristics  
(Typical Operating Circuits, Q1 = Q2 = Fairchild FDB7090L, V  
= +5V, V  
= +3.3V, V  
= V  
= +2.7V, T = +25°C, unless  
IN1  
IN2  
ON1  
ON2 A  
otherwise noted. Channels 1 and 2 are identical in performance. Where characteristics are interchangeable, channels 1 and 2 are  
referred to as X and Y.)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
TOTAL SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= V  
= V  
= 2.7V  
ON2  
INY  
ON1  
V
V
= V  
= V  
ON1  
ON2  
IN1  
IN2  
I
+ I  
IN1 IN2  
A
B
I
+ I  
INX INY  
C
I
INX  
I
IN1  
V
= 5.0V  
INY  
I
I
INY  
IN2  
A) V  
B) V  
C) V  
= V  
ON2  
= V  
ON2  
= V  
ON2  
= 3.3V  
= 1.5V  
= 0  
ON1  
ON1  
ON1  
/MAX956  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
-40  
-15  
10  
35  
60  
85  
V
(V)  
V
(V)  
TEMPERATURE (°C)  
INX  
INX  
GATE CHARGE CURRENT  
vs. GATE VOLTAGE  
GATE-DRIVE VOLTAGE  
vs. INPUT VOLTAGE  
GATE CHARGE CURRENT  
vs. TEMPERATURE  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
6
5
4
3
2
1
0
V
= 2.7V  
INY  
V
= 13.2V  
INX  
V
= 5V  
INX  
V
= 13.2V  
INX  
V
= 5V  
INX  
V
= 1V  
INX  
V
= 1V  
INX  
60  
60  
40  
40  
V
V
= 2.7V  
INY  
20  
20  
V
= 2.7V  
12  
INY  
= 0  
GATEX  
0
0
0
5
10  
15  
20  
0
2
4
6
8
10  
14  
-40  
-15  
10  
35  
60  
85  
V
(V)  
V
(V)  
TEMPERATURE (°C)  
GATEX  
INX  
GATE STRONG DISCHARGE CURRENT  
vs. GATE VOLTAGE  
GATE STRONG DISCHARGE CURRENT  
vs. TEMPERATURE  
TURN-OFF TIME vs. SENSE VOLTAGE  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
10  
1
SLOW-COMP. THRESHOLD  
FAST-COMP. THRESHOLD  
V
= 13.2V  
INX  
V
= 5V  
INX  
V
= 13.2V  
INX  
V
= 5V  
INX  
0.1  
V
V
V
= V  
ON2  
= 0  
ON1  
INY  
GATEX  
= 2.7V  
V
= V = 0  
ON2  
ON1  
= V + 6.2V  
INX  
0.01  
0.001  
0.0001  
V
= 1V  
INX  
V
= 2.7V  
INY  
V
= 1V  
10  
INX  
V
= V + 6.2V  
GATEX  
INX  
0
5
10  
15  
20  
-40  
-15  
35  
60  
85  
0
25 50 75 100 125 150 175 200  
- V (mV)  
V
(V)  
TEMPERATURE (°C)  
V
GATEX  
IN  
SENSE  
4
_______________________________________________________________________________________  
Low-Voltage, Dual Hot-Swap Controllers with  
Independent On/Off Control  
/MAX956  
Typical Operating Characteristics (continued)  
(Typical Operating Circuits, Q1 = Q2 = Fairchild FDB7090L, V  
= +5V, V  
= +3.3V, V  
= V = +2.7V, T = +25°C, unless  
ON2 A  
IN1  
IN2  
ON1  
otherwise noted. Channels 1 and 2 are identical in performance. Where characteristics are interchangeable, channels 1 and 2 are  
referred to as X and Y.)  
SLOW-COMPARATOR THRESHOLD  
vs. R  
TURN-OFF TIME vs. SENSE VOLTAGE  
(EXPANDED SCALE)  
STARTUP PERIOD vs. R  
TIM  
LIM  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
10  
SLOW-COMP. THRESHOLD  
1
0.1  
0
100  
200  
300  
(k)  
400  
500  
600  
0
100  
200  
(k)  
300  
400  
20 25 30 35 40 45 50 55 60 65 70 75 80  
R
R
TIM  
LIM  
V
- V  
(mV)  
SENSE  
IN  
STARTUP WAVEFORMS  
FAST TURN-ON  
TURN-OFF TIME  
FAST-COMPARATOR FAULT  
TURN-OFF TIME  
SLOW-COMPARATOR FAULT  
MAX5955/56 toc15  
MAX5955/56 toc14  
MAX5955/56 toc13  
V
ON  
2V/div  
V
V
V
0
0
PGOOD  
PGOOD  
PGOOD  
t
t
0
0
5V/div  
FCD  
2V/div  
SCD  
5V/div  
I
OUT  
125mV STEP  
26mV STEP  
5A/div  
V
- V  
IN  
SENSE  
V
- V  
IN  
SENSE  
100mV/div  
100mV/div  
V
OUT  
5V/div  
V
V
GATE  
GATE  
5V/div  
5V/div  
V
GATE  
0
5V/div  
0
1ms/div  
= 5.0V, R  
400ns/div  
= 5.0V  
1ms/div  
= 5.0V  
V
TIM  
= 10m,  
SENSE  
IN  
V
IN  
V
IN  
R
= 27k, C  
= 1000µF  
BOARD  
STARTUP WAVEFORMS  
SLOW TURN-ON  
AUTORETRY DELAY  
MAX5955/56 toc17  
MAX5955/56 toc16  
V
ON  
2V/div  
V
GATE  
V
PGOOD  
5V/div  
2V/div  
I
OUT  
5A/div  
V
OUT  
5V/div  
V
OUT  
5V/div  
I
OUT  
V
GATE  
5A/div  
5V/div  
40ms/div  
1ms/div  
= 10m, R = 47k,  
V
= 5.0V, R  
= 10m, R = 47k,  
V
= 5.0V, R  
SENSE  
IN  
SENSE TIM  
IN  
TIM  
= 22nF  
GATE  
C
= 1000µF, R  
= 1.4Ω  
BOARD  
C
= 1000µF, C  
BOARD  
BOARD  
_______________________________________________________________________________________  
5
Low-Voltage, Dual Hot-Swap Controllers with  
Independent On/Off Control  
Pin Description  
PIN  
NAME  
FUNCTION  
Channel 1 Status Output (Open Drain, see the Absolute Maximum Ratings). PGOOD1 asserts high when hot  
1
PGOOD1 swap is successful and channel 1 is within regulation. PGOOD1 asserts low during startup, when ON1 is  
low, when channel 1 is off, or when channel 1 has any fault condition.  
Startup Timer Setting. Connect a resistor from TIM to GND to set the startup period. Leave TIM unconnected  
for the default startup period of 9ms.  
2
3
4
TIM  
IN1  
Channel 1 Supply Input. Connect to a supply voltage of 1V to 13.2V.  
Channel 1 Current-Sense Input. Connect R  
breaker function of channel 1.  
from IN1 to SENSE1. Connect to IN1 to disable circuit  
SENSE1  
SENSE1  
5
6
GATE1 Channel 1 Gate-Drive Output. Connect to the gate of an external n-channel MOSFET.  
GND  
Ground  
Channel 1 Current-Limit Setting. Connect a resistor from LIM1 to GND to set the current trip level. Connect to  
7
8
LIM1  
GND for the default 25mV threshold (see the Slow-Comparator Threshold, R  
section).  
LIM  
Channel 1 Output-Voltage Monitor. Window comparator input. Connect through a resistive divider from  
OUT1 to GND to set the channel 1 overvoltage and undervoltage threshold. Connect to IN1 to disable.  
/MAX956  
MON1  
MON2  
Channel 2 Output-Voltage Monitor. Window comparator input. Connect through a resistive divider from  
OUT2 to GND to set the channel 2 overvoltage and undervoltage threshold. Connect to IN2 to disable.  
9
Channel 2 Current-Limit Setting. Connect a resistor from LIM2 to GND to set the current trip level. Connect to  
10  
LIM2  
ON1  
GND for the default 25mV threshold (see the Slow-Comparator Threshold, R  
section).  
LIM  
11  
12  
Channel 1 On/Off Control Input. Channel 1 is turned on when V  
> 0.875V.  
ON1  
GATE2 Channel 2 Gate-Drive Output. Connect to the gate of an external n-channel MOSFET.  
Channel 2 Current-Sense Input. Connect R  
breaker function of channel 2.  
from IN2 to SENSE2. Connect to IN2 to disable circuit-  
SENSE2  
13  
SENSE2  
14  
15  
IN2  
Channel 2 Supply Input. Connect to a supply voltage of 1V to 13.2V.  
Channel 2 On/Off Control Input. Channel 2 is turned on when V > 0.875V.  
ON2  
ON2  
Channel 2 Status Output (Open Drain, see the Absolute Maximum Ratings). PGOOD2 asserts high when hot  
16  
PGOOD2  
swap is successful and channel 2 is within regulation. PGOOD2 asserts low during startup, when V  
low, when channel 2 is off, or when channel 2 has any fault condition.  
is  
ON2  
on-chip comparators. The startup period and current-  
limit threshold of the MAX5955/MAX5956 can be  
adjusted with external resistors. Figure 1 shows the  
MAX5955/MAX5956 functional diagram.  
Detailed Description  
The MAX5955 and MAX5956 are circuit breaker ICs for  
hot-swap applications where a line card is inserted into  
a live backplane. The MAX5955 and MAX5956 operate  
down to 1V provided one of the inputs is above 2.7V.  
Normally, when a line card is plugged into a live back-  
plane, the card’s discharged filter capacitors provide  
low impedance that can momentarily cause the main  
power supply to collapse. The MAX5955 and MAX5956  
reside either on the backplane or on the removable  
card to provide inrush current limiting and short-circuit  
protection. This is achieved by using external n-chan-  
nel MOSFETs, external current-sense resistors, and two  
The MAX5955/MAX5956 pull both PGOODs low and  
both external FETs off for an overcurrent condition. The  
MAX5955 also pulls both PGOODs low and both external  
FETs off (protection) for an undervoltage/overvoltage  
fault, whereas, the MAX5956 ONLY pulls the corre-  
sponding fault channel’s PGOOD_ low (monitoring).  
When the overvoltage/undervoltage fault disappears on  
the MAX5956, the corresponding PGOOD_ automatically  
goes high impedance.  
6
_______________________________________________________________________________________  
Low-Voltage, Dual Hot-Swap Controllers with  
Independent On/Off Control  
/MAX956  
Figure 1. Functional Diagram  
_______________________________________________________________________________________  
7
Low-Voltage, Dual Hot-Swap Controllers with  
Independent On/Off Control  
MOSFETs. If the fast comparator detects an overcur-  
rent, the MAX5955/MAX5956 regulate the gate voltage  
to ensure that the voltage across the sense resistor  
Startup Period  
R
sets the duration of the startup period from 0.45s  
TIM  
to 50ms (see the Setting the Startup Period, RTIM sec-  
tion). The default startup period is fixed at 9ms when  
TIM is floating. The startup period begins after the fol-  
lowing three conditions are met:  
does not exceed V  
. This effectively regulates the  
SU,TH  
inrush current during startup. Figure 2 shows the start-  
up waveforms. PGOOD_ goes high impedance 0.75ms  
after the startup period if no fault condition is present.  
1) V  
or V  
exceeds the UVLO threshold (2.4V) for  
IN2  
the UVLO to startup delay (37.5ms).  
IN1  
VariableSpeed/BiLevel Fault Protection  
VariableSpeed/BiLevel fault protection incorporates two  
comparators with different thresholds and response  
times to monitor the load current (Figure 3). During the  
startup period, protection is provided by limiting the  
load current. Protection is provided in normal operation  
(after the startup period has expired) by discharging  
both MOSFET gates with a strong 3mA pulldown cur-  
rent in response to a fault condition. After a fault,  
PGOOD_ is pulled low, the MAX5955B and MAX5956B  
stay latched off and the MAX5955A and MAX5956A  
automatically restart.  
2) V and V exceed the ON threshold (0.875V).  
ON1  
ON2  
3) The device is not latched or in its autoretry delay (see  
the Latched and Autoretry Overcurrent Fault  
Management section).  
The MAX5955/MAX5956 limit the load current if an  
overcurrent fault occurs during startup instead of com-  
pletely turning off the external MOSFETs. The slow  
comparator is disabled during the startup period and  
the load current can be limited in two ways:  
/MAX956  
1) Slowly enhancing the MOSFETs by limiting the  
MOSFET gate-charging current.  
Slow-Comparator Startup Period  
The slow comparator is disabled during the startup  
period while the external MOSFETs are turning on.  
Disabling the slow comparator allows the device to  
ignore the higher-than-normal inrush current charging  
the board capacitors when a card is first plugged into a  
live backplane.  
2) Limiting the voltage across the external current-  
sense resistor.  
During the startup period the gate-drive current is limit-  
ed to 100µA and decreases with the increase of the  
gate voltage (see the Typical Operating Characteris-  
tics). This allows the controller to slowly enhance the  
ON  
PGOOD  
SLOW  
COMPARATOR  
t
+ t  
START PGDLY  
3ms  
V
V
GATE  
4.3V TO 5.8V  
FAST  
COMPARATOR  
OUT  
V
TH  
V
V
GATE  
110µs  
OUT  
V
C
= LARGE  
= 0  
260ns  
SU,TH  
BOARD  
R
SENSE  
C
BOARD  
V
SC,TH  
V
FC,TH  
(4 x V  
)
SC,TH  
I
LOAD  
SENSE VOLTAGE (V - V  
)
IN  
SENSE  
t
ON  
Figure 3. VariableSpeed/BiLevel Response  
Figure 2. Startup Waveform  
8
_______________________________________________________________________________________  
Low-Voltage, Dual Hot-Swap Controllers with  
Independent On/Off Control  
/MAX956  
Slow-Comparator Normal Operation  
After the startup period is complete, the slow compara-  
tor is enabled and the device enters normal operation.  
then automatically restart after the autoretry delay that  
is internally set to 64 times t . During the autoretry  
START  
delay, toggling ON_ below 0.875V does not clear the  
fault latch. The autoretry can be overridden, causing  
the startup period to begin immediately by toggling one  
of the supply voltages below/above the UVLO thresh-  
old. When toggling a supply voltage to clear a fault,  
remember that the supply voltage must go below and  
then above the UVLO threshold for at least 100µs  
regardless of the final value of the supply voltage.  
The comparator threshold voltage (V  
) is adjustable  
SC,TH  
from 25mV to 100mV. The slow-comparator response  
time decreases to a minimum of 100µs with a large  
overdrive voltage. Response time is 3ms for a 1mV over-  
drive. The variable speed response time allows the  
MAX5955/MAX5956 to ignore low-amplitude momentary  
glitches, thus increasing system noise immunity. After  
an extended overcurrent condition, a fault is generated,  
both PGOODs are pulled low and the MOSFET gates  
are discharged with a strong 3mA pulldown current.  
Output Overvoltage/Undervoltage Fault  
Management  
The MAX5955/MAX5956 monitor the output voltages with  
the MON1 and MON2 window comparator inputs. These  
voltage monitors are enabled after the startup period.  
Once enabled, the voltage monitor detects a fault if  
Fast-Comparator Startup Period  
During the startup period, the fast comparator regulates  
the gate voltage to ensure that the voltage across the  
sense resistor does not exceed the startup fast-com-  
V _ is less than 543mV or greater than 687mV.  
MON  
parator threshold voltage (V  
), V  
is scaled to  
SC,TH  
SU,TH  
SU,TH  
When the MAX5955 protection device detects an output  
overvoltage/undervoltage fault on either MON1 or  
MON2, both external MOSFET gates are discharged at  
3mA and both PGOODs pull low. For the MAX5955A,  
the part continuously attempts to restart after each  
autoretry period. The part successfully restarts after the  
fault is removed and after waiting the autoretry period.  
For the MAX5955B, the GATEs are latched off until the  
output voltage fault is removed and the fault latch is  
cleared by toggling ON_ or by cycling one of the supply  
voltages above/below the UVLO threshold.  
two times the slow-comparator threshold (V  
).  
Fast-Comparator Normal Operation  
In normal operation, if the load current reaches the fast-  
comparator threshold, a fault is generated, both  
PGOODs are pulled low, and the MOSFET gates are dis-  
charged with a strong 3mA pulldown current. This hap-  
pens in the event of a serious current overload or a dead  
short. The fast-comparator threshold voltage (V  
) is  
FC,TH  
scaled to four times the slow-comparator threshold  
(V ). This comparator has a fast response time of  
SC,TH  
260ns (Figure 3).  
When the MAX5956 monitoring device detects an out-  
put overvoltage/undervoltage fault on either MON1 or  
MON2, neither external MOSFET gates are affected,  
but the PGOOD_ of the channel experiencing the fault  
pulls low. Thus the fault is reported on the channel with  
the problem, but the MAX5956 does not allow an output  
overvoltage/undervoltage fault to disrupt operation by  
shutting down the channels. The MAX5956’s PGOOD_  
output immediately goes high impedance after the out-  
put overvoltage/undervoltage fault is removed.  
Undervoltage Lockout (UVLO)  
The UVLO prevents the MAX5955/MAX5956 from turning  
on the external MOSFETs until one input voltage exceeds  
the UVLO threshold (2.4V) for t  
. The MAX5955/  
D,UVLO  
MAX5956 use power from the higher input voltage rail for  
the charge pumps. This allows for more efficient charge-  
pump operation. The UVLO protects the external  
MOSFETs from an insufficient gate-drive voltage. t  
D,UVLO  
ensures that the board is fully inserted into the backplane  
and that the input voltages are stable. Any input voltage  
transient on both supplies below the UVLO threshold  
The voltage monitors do not react to output glitches of  
less than 20µs. A capacitor from MON_ to GND increas-  
es the effective glitch filter time. The voltage monitoring  
function of the MAX5955/MAX5956 can be disabled by  
reinitiates the t  
and the startup period.  
D,UVLO  
connecting V  
to MON1 and V  
to MON2.  
Latched and Autoretry  
Overcurrent Fault Management  
IN1  
IN2  
Status Outputs (PGOOD_)  
The status output is an open-drain output that pulls low  
in response to one of the following conditions:  
The MAX5955B/MAX5956B latch the external MOSFETs  
off when an overcurrent fault is detected. Toggling ON_  
below 0.875V or one of the supply voltages  
below/above the UVLO threshold for at least 100µs  
clears the fault latch and reinitiates the startup period.  
Similarly, the MAX5955A/MAX5956A turn the external  
MOSFETs off when an overcurrent fault is detected,  
• Overcurrent fault  
• Output undervoltage/overvoltage fault  
PGOOD_ goes low when the corresponding channel is  
forced off (ON_ < 0.875V) (Table 1).  
_______________________________________________________________________________________  
9
Low-Voltage, Dual Hot-Swap Controllers with  
Independent On/Off Control  
Table 1. Status Output Truth Table  
OVER/UNDER-  
VOLTAGE FAULT  
OVER/UNDER-  
VOLTAGE FAULT  
OVERCURRENT OVERCURRENT  
PGOOD1/  
PGOOD2  
GATE1/  
GATE2  
PART  
FAULT (V  
)
FAULT (V  
)
OUT1  
OUT2  
(V  
)
(V  
)
OUT2  
OUT1  
Yes  
X
X
X
Yes  
X
X
Yes  
X
X
X
Yes  
X
X
X
X
Yes  
X
X
X
X
X
X
Yes  
X
X
Low/Low  
Low/Low  
Low/Low  
Low/Low  
Low/Low  
Low/Low  
Low/High  
High/Low  
Off/Off  
Off/Off  
Off/Off  
Off/Off  
Off/Off  
Off/Off  
On/On  
On/On  
MAX5955  
UV/OV  
Protection  
MAX5956  
UV/OV  
Monitor  
X
X
Yes  
No  
No  
Yes  
Sense Resistor  
Applications Information  
The slow-comparator threshold voltage is adjustable  
from 25mV to 100mV. Select a sense resistor that causes  
a drop equal to the slow-comparator threshold voltage at  
a current level above the maximum normal operating  
current. Typically, set the overload current at 1.2 to 1.5  
times the full load current. The fast-comparator threshold  
is four times the slow-comparator threshold in normal  
operating mode. Choose the sense-resistor power rating  
Component Selection  
/MAX956  
n-Channel MOSFET  
Select the external MOSFETs according to the applica-  
tion’s current levels. Table 2 lists some recommended  
components. The MOSFET’s on-resistance (R  
)
DS(ON)  
should be chosen low enough to have a minimum volt-  
age drop at full load to limit the MOSFET power dissi-  
to be greater than (I  
)2 x V  
.
SC,TH  
OVERLOAD  
pation. High R  
causes output ripple if there is a  
DS(ON)  
pulsating load. Determine the device power rating to  
accommodate a short-circuit condition on the board at  
startup and when the device is in automatic-retry mode  
(see the MOSFET Thermal Considerations section).  
Slow-Comparator Threshold, R  
LIM  
The slow-comparator threshold voltage is adjustable  
from 25mV to 100mV, allowing designers to fine-tune  
the current-limit threshold for use with standard-value  
sense resistors. Low slow-comparator thresholds allow  
for increased efficiency by reducing the power dissi-  
pated by the sense resistor. Furthermore, the low 25mV  
slow-comparator threshold is beneficial when operating  
with supply rails down to 1V because it allows a small  
percentage of the overall output voltage to be used for  
current sensing. The VariableSpeed/BiLevel fault pro-  
tection feature offers inherent system immunity against  
load transients and noise. This allows the slow-com-  
parator threshold to be set close to the maximum nor-  
mal operating level without experiencing nuisance  
faults. To adjust the slow-comparator threshold, calcu-  
Using the MAX5955B/MAX5956B in latched mode allows  
the use of MOSFETs with lower power ratings. A MOSFET  
typically withstands single-shot pulses with higher dissi-  
pation than the specified package rating. Table 3 lists  
some recommended manufacturers and components.  
Table 2. Recommended n-Channel  
MOSFETs  
PART NUMBER MANUFACTURER  
DESCRIPTION  
11m, 8 SO, 30V  
22m, 8 SO, 20V  
6m, D2PAK, 20V  
20m, 8 SO, 30V  
30m, 8 SO, 20V  
IRF7413  
International  
Rectifier  
IRF7401  
late R  
as follows:  
LIM  
IRL3502S  
MMSF3300  
V
25mV  
TH  
R
=
LIM  
Motorola  
Fairchild  
MMSF5N02H  
MTB60N05H  
FDS6670A  
NDS8426A  
FDB8030L  
0.25µA  
is the desired slow-comparator threshold  
2
14m, D PAK, 50V  
where V  
voltage.  
TH  
10m, 8 SO, 30V  
13.5m, 8 SO, 20V  
2
4.5m, D PAK, 30V  
10 ______________________________________________________________________________________  
Low-Voltage, Dual Hot-Swap Controllers with  
Independent On/Off Control  
/MAX956  
Table 3. Component Manufacturers  
COMPONENT  
MANUFACTURER  
PHONE  
WEBSITE  
www.vishay.com  
Dale-Vishay  
402-564-3131  
704-264-8861  
888-522-5372  
310-233-3331  
602-244-3576  
Sense Resistors  
IRC  
www.irctt.com  
Fairchild  
www.fairchildsemi.com  
www.irf.com  
MOSFETs  
International Rectifier  
Motorola  
www.mot-sps.com/ppd  
Setting the Startup Period, R  
START  
where:  
TIM  
The startup period (t  
) is adjustable from 0.45ms to  
C
is the external gate to ground capacitance  
GATE  
50ms. The adjustable startup period feature allows sys-  
tems to be customized for MOSFET gate capacitance  
(Figure 4).  
V is the change in gate voltage.  
GATE  
and board capacitance (C ). The startup period is  
BOARD  
adjusted with the resistance connected from TIM to GND  
(R ). R must be between 4kand 500k. The  
Q
GATE  
is the MOSFET total gate charge.  
TIM  
TIM  
I
is the gate-charging/discharging current.  
GATE  
startup period has a default value of 9ms when TIM is left  
In this case, the inrush current depends on the MOSFET  
gate-to-drain capacitance (C ) plus any additional  
capacitance from GATE to GND (C  
load current (I  
floating. Calculate R  
with the following equation:  
TIM  
rss  
t
START  
=
), and on any  
GATE  
R
TIM  
) present during the startup period.  
LOAD  
128 × 800pF  
where t  
is the desired startup period.  
START  
C
BOARD  
I
=
× I  
+ I  
INRUSH  
GATE LOAD  
C
+ C  
rss  
GATE  
Startup Sequence  
There are two ways of completing the startup sequence.  
Case A describes a startup sequence that slowly turns  
on the MOSFETs by limiting the gate charge. Case B  
uses the current-limiting feature and turns on the  
MOSFETs as fast as possible while still preventing a high  
Example: Charging and Discharging Times Using  
the Fairchild FDB7030L MOSFET  
If V  
V
= 5V then GATE1 charges up to 10.4V (V  
+
IN1  
IN1  
); therefore V  
= 10.4V. The manufacturer’s  
DRIVE  
GATE  
data sheet specifies that the FDB7030L has approxi-  
mately 60nC of gate charge and C = 600pF. The  
inrush current. The output voltage ramp-up time (t ) is  
ON  
determined by the longer of the two timings, case A and  
rss  
MAX5955/MAX5956 have a 100µA gate-charging cur-  
rent and a 3mA strong discharging current.  
case B. Set the startup timer t  
to be longer than t  
ON  
START  
to guarantee enough time for the output voltage to settle.  
Case A: Slow Turn-On (Without Current Limit)  
There are two ways to turn on the MOSFETs without  
reaching the fast-comparator current limit:  
R
SENSE  
V
OUT  
V
IN  
C
BOARD  
• If the board capacitance (C  
inrush current is low.  
) is small, the  
BOARD  
0.1µF  
R
PULLUP  
• If the gate capacitance is high, the MOSFETs turn  
on slowly.  
C
GATE  
IN_  
SENSE  
GATE  
In both cases, the turn-on time is determined only by the  
charge required to enhance the MOSFET. The small  
gate-charging current of 100µA effectively limits the out-  
put voltage dV/dt. Connecting an external capacitor  
between GATE and GND extends turn-on time. The time  
required to charge/discharge a MOSFET is as follows:  
PGOOD_  
MAX5955  
MAX5956  
ON_  
*
GND  
C
× ∆V  
+ Q  
GATE  
GATE GATE  
* REQUIRED COMPONENTS. SEE THE ON_ COMPARATORS SECTION.  
t =  
I
GATE  
Figure 4. Operating with an External Gate Capacitor  
______________________________________________________________________________________ 11  
Low-Voltage, Dual Hot-Swap Controllers with  
Independent On/Off Control  
C
= 6µF and the load does not draw any current  
allows the internal circuits to stabilize after application  
of a steeply rising V  
BOARD  
during the startup period. With no gate capacitor the  
inrush current, charge, and discharge times are:  
.
IN_  
Using the MAX5955/MAX5956 on the  
Backplane  
6µF  
600pF + 0  
I
=
×100µA + 0 = 1A  
INRUSH  
Using the MAX5955/MAX5956 on the backplane allows  
multiple cards with different input capacitance to be  
inserted into the same slot even if the card does not  
have on-board hot-swap protection. The startup period  
can be triggered if IN_ is connected to ON_ through a  
trace on the card (Figure 5).  
0 ×10.4V + 60nC  
100µA  
t
t
=
= 0.6ms  
CHARGE  
0 ×10.4V + 60nC  
=
= 0.02ms  
DISCHARGE  
3mA  
With a 22nF gate capacitor the inrush current, charge,  
and discharge times are:  
Input Transients  
The voltage at IN1 or IN2 must be above the UVLO dur-  
ing inrush and fault conditions. When a short-circuit con-  
dition occurs on the board, the fast comparator trips  
causing the external MOSFET gates to be discharged at  
3mA. The main system power supply must be able to  
sustain a temporary fault current, without dropping below  
the UVLO threshold of 2.4V, until the external MOSFET is  
completely off. If the main system power supply collapses  
below UVLO, the MAX5955/MAX5956 force the device to  
restart once the supply has recovered. The MOSFET is  
turned off in a very short time resulting in a high di/dt. The  
backplane delivering the power to the external card must  
have low inductance to minimize voltage transients  
caused by this high di/dt.  
6µF  
600pF + 22nF  
I
=
×100µA + 0 = 26.5mA  
INRUSH  
22nF ×10.4V + 60nC  
100µA  
t
t
=
= 2.89ms  
CHARGE  
/MAX956  
22nF ×10.4V + 60nC  
=
= 0.096ms  
DISCHARGE  
3mA  
Case B: Fast Turn-On (with Current Limit)  
In applications where the board capacitance (C  
)
BOARD  
is high, the inrush current causes a voltage drop across  
R
that exceeds the startup fast-comparator  
SENSE  
threshold. The fast comparator regulates the voltage  
across the sense resistor to V . This effectively  
SU,TH  
MOSFET Thermal Considerations  
During normal operation, the external MOSFETs dissi-  
regulates the inrush current during startup. In this case,  
the current charging C can be considered con-  
BOARD  
pate little power. The MOSFET R  
is low when the  
DS(ON)  
stant and the turn-on time is:  
× V ×R  
SENSE  
MOSFET is fully enhanced. The power dissipated in  
2
normal operation is P = I  
x R  
. The most  
DS(ON)  
D
LOAD  
power dissipation occurs during the turn-on and turn-  
off transients when the MOSFETs are in their linear  
regions. Take into consideration the worst-case sce-  
nario of a continuous short-circuit fault, consider these  
two cases:  
C
BOARD  
IN  
t
=
ON  
V
SU,TH  
The maximum inrush current in this case is:  
1) The single turn-on with the device latched after a  
fault (MAX5955B/MAX5956B)  
V
SU,TH  
I
=
INRUSH  
R
SENSE  
2) The continuous automatic retry after a fault  
(MAX5955A/MAX5956A)  
Figure 2 shows the waveforms and timing diagrams for a  
startup transient with current regulation (see Typical  
Operating Characteristics). When operating under this  
condition, an external gate capacitor is not required.  
ON_ Comparators  
The ON_ comparators control the on/off function of the  
MAX5955/MAX5956. ON_ allows independent control  
over channel 1 and channel 2. Drive ON1 and ON2  
high (> 0.875V) to enable channel 1 and channel 2,  
respectively. Pull ON_ low (< 0.875V) to disable the  
respective channel. An RC time delay must be added  
to the ON_ inputs with delay set to at least 20µs. This  
MOSFET manufacturers typically include the package  
thermal resistance from junction to ambient (R ) and  
θJA  
θJC  
thermal resistance from junction to case (R  
), which  
determine the startup time and the retry duty cycle  
(d = t /t + t ). Calculate the required  
START START  
RETRY  
transient thermal resistance with the following equation:  
T
V
T  
A
JMAX  
× I  
Z
θJA(MAX)  
IN START  
/ R  
SU,TH SENSE  
where I  
= V  
START  
12 ______________________________________________________________________________________  
Low-Voltage, Dual Hot-Swap Controllers with  
Independent On/Off Control  
/MAX956  
When the output is short circuited, the voltage drop  
across the external MOSFET becomes large. Hence,  
the power dissipation across the switch increases, as  
does the die temperature. An efficient way to achieve  
good power dissipation on a surface-mount package is  
to lay out two copper pads directly under the MOSFET  
package on both sides of the board. Connect the two  
pads to the ground plane through vias, and use  
enlarged copper mounting pads on the top side of the  
board (refer to the MAX5956 EV Kit data sheet).  
Layout Considerations  
To take full advantage of the switch response time to an  
output fault condition, it is important to keep all traces as  
short as possible and to maximize the high-current trace  
dimensions to reduce the effect of undesirable parasitic  
resistance and inductance. Place the MAX5955/  
MAX5956 close to the card’s connector, and a 0.01µF  
capacitor to GND should be placed as close as possible  
to each V pin. Use a ground plane to minimize imped-  
IN  
ance and inductance. Minimize the current-sense resis-  
tor trace length (< 10mm), and ensure accurate current  
sensing with Kelvin connections (Figure 6).  
REMOVABLE CARD  
WITH NO HOT-INSERTION  
PROTECTION  
HIGH-CURRENT PATH  
BACKPLANE  
V
OUT  
V
IN  
C
BOARD  
0.1µF  
SENSE RESISTOR  
IN_  
SENSE_ GATE_  
MAX5955  
MAX5956  
ON_  
*
*
*
MAX5955  
MAX5956  
* REQUIRED COMPONENTS. SEE THE ON_ COMPARATORS SECTION.  
Figure 6. Kelvin Connection for the Current-Sense Resistors  
Figure 5. Using the MAX5955/MAX5956 on a Backplane  
Selector Guide  
OUTPUT UNDERVOLTAGE/OVERVOLTAGE  
PROTECTION/MONITOR  
PART  
MAX5955AEEE  
FAULT MANAGEMENT  
Protection  
Protection  
Protection  
Protection  
Monitor  
Autoretry  
Autoretry  
Latched  
Latched  
Autoretry  
Autoretry  
Latched  
Latched  
MAX5955AUEE  
MAX5955BEEE  
MAX5955BUEE  
MAX5956AEEE  
MAX5956AUEE  
MAX5956BEEE  
MAX5956BUEE  
Monitor  
Monitor  
Monitor  
______________________________________________________________________________________ 13  
Low-Voltage, Dual Hot-Swap Controllers with  
Independent On/Off Control  
Typical Operating Circuit  
Q1  
V
OUT1  
V
IN1  
0.1µF  
*
*
IN1  
ON1  
SENSE1  
GATE1  
*
C
ON1  
ON2  
BOARD1  
*
*
ON2  
MON1  
*
MAX5955  
MAX5956  
PGOOD1  
PGOOD2  
GND  
PGOOD1  
PGOOD2  
GND  
*
*
MON2  
TIM  
C
BOARD2  
/MAX956  
IN2  
SENSE2  
GATE2  
LIM2  
LIM1  
*
*
*
V
IN2  
V
OUT2  
Q2  
0.1µF  
*OPTIONAL  
* REQUIRED COMPONENTS. SEE THE ON_ COMPARATORS SECTION.  
Ordering Information (continued)  
Chip Information  
TRANSISTOR COUNT: 3542  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
0°C to +85°C  
0°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +85°C  
0°C to +85°C  
PIN-PACKAGE  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
PROCESS: BiCMOS  
MAX5956AEEE  
MAX5956AEEE+  
MAX5956AUEE  
MAX5956AUEE+  
MAX5956BEEE  
MAX5956BEEE+  
MAX5956BUEE  
MAX5956BUEE+  
+Denotes lead-free package.  
14 ______________________________________________________________________________________  
Low-Voltage, Dual Hot-Swap Controllers with  
Independent On/Off Control  
/MAX956  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  
Quijano  
配单直通车
MAX5956BUEE+T产品参数
型号:MAX5956BUEE+T
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
IHS 制造商:MAXIM INTEGRATED PRODUCTS INC
零件包装代码:SSOP
包装说明:SSOP, SSOP16,.25
针数:16
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.31.00.01
Factory Lead Time:14 weeks
风险等级:5.2
可调阈值:YES
模拟集成电路 - 其他类型:POWER SUPPLY SUPPORT CIRCUIT
JESD-30 代码:R-PDSO-G16
JESD-609代码:e3
长度:4.89 mm
湿度敏感等级:1
信道数量:2
功能数量:1
端子数量:16
最高工作温度:85 °C
最低工作温度:
封装主体材料:PLASTIC/EPOXY
封装代码:SSOP
封装等效代码:SSOP16,.25
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, SHRINK PITCH
峰值回流温度(摄氏度):260
电源:1/13.2 V
认证状态:Not Qualified
座面最大高度:1.73 mm
子类别:Power Management Circuits
最大供电电流 (Isup):2.3 mA
最大供电电压 (Vsup):13.2 V
最小供电电压 (Vsup):1 V
标称供电电压 (Vsup):5 V
表面贴装:YES
技术:BICMOS
温度等级:COMMERCIAL EXTENDED
端子面层:Matte Tin (Sn)
端子形式:GULL WING
端子节距:0.635 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:3.9 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!