欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • MCP1643T-I/MSVAO
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • MCP1643T-I/MSVAO图
  • 集好芯城

     该会员已使用本站13年以上
  • MCP1643T-I/MSVAO
  • 数量1068 
  • 厂家Microchip Technology 
  • 封装 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • MCP1643T-I/MSVAO图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • MCP1643T-I/MSVAO
  • 数量37228 
  • 厂家MICROCHIP/微芯 
  • 封装MSOP 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • MCP1643T-I/MSVAO图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • MCP1643T-I/MSVAO
  • 数量3645 
  • 厂家Microchip 
  • 封装8-TSSOP,8-MSOP(0.118,3.00mm 宽) 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • MCP1643T-I/MSVAO图
  • 北京奥芯威电子技术有限公司

     该会员已使用本站17年以上
  • MCP1643T-I/MSVAO
  • 数量2500 
  • 厂家MICROCHIP 
  • 封装08L MSOP 3x3 
  • 批号24+ 
  • 原厂订货速度快价格优
  • QQ:1148653051QQ:1148653051 复制
    QQ:9528334QQ:9528334 复制
  • 10-82621962 QQ:1148653051QQ:9528334
  • MCP1643T-I/MSVAO图
  • 深圳市思诺康科技有限公司

     该会员已使用本站16年以上
  • MCP1643T-I/MSVAO
  • 数量1000 
  • 厂家Microchip Technology 
  • 封装8-TSSOP 
  • 批号23+ 
  • IC-电源管理LED驱动器
  • QQ:2881281130QQ:2881281130 复制
    QQ:2881281133QQ:2881281133 复制
  • 0755-83286481 QQ:2881281130QQ:2881281133
  • MCP1643T-I/MSVAO图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • MCP1643T-I/MSVAO
  • 数量6500000 
  • 厂家微芯 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008961396QQ:3008961396 复制
  • 0755-21008751 QQ:3008961396
  • MCP1643T-I/MSVAO图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • MCP1643T-I/MSVAO
  • 数量8000 
  • 厂家MICROCHIP/微芯 
  • 封装 
  • 批号21+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • MCP1643T-I/MSVAO图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • MCP1643T-I/MSVAO
  • 数量8618 
  • 厂家Microchip Technology 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号MCP1650的Datasheet PDF文件预览

MCP1650/51/52/53  
750 kHz Boost Controller  
Description  
M
Features  
• Output Power Capability Over 5 Watts  
• Output Voltage Capability From 3.3V to Over  
100V  
• 750 kHz Gated Oscillator Switching Frequency  
• Adaptable Duty Cycle for Battery or Wide-Input,  
Voltage-Range Applications  
The MCP1650/51/52/53 is a 750 kHz gated oscillator  
boost controller packaged in an 8 or 10-pin MSOP  
package. Developed for high-power, portable applica-  
tions, the gated oscillator controller can deliver 5 watts  
of power to the load while consuming only 120 µA of  
quiescent current at no load. The MCP1650/51/52/53  
can operate over a wide input voltage range (2.0V to  
5.5V) to accommodate multiple primary-cell and single-  
cell Li-Ion battery-powered applications, in addition to  
2.8V, 3.3V and 5.0V regulated input voltages.  
• Input Voltage Range: 2.0V to 5.5V  
• Capable of SEPIC and Flyback Topologies  
• Shutdown Control with I < 0.1 µA (Typical)  
Q
• Low Operating Quiescent Current: I = 120 µA  
• Voltage Feedback Tolerance (0.6%, Typical)  
• Popular MSOP-8 Package  
• Peak Current Limit Feature  
• Two Undervoltage Lockout (UVLO) Options:  
- 2.0V or 2.55V  
• Operating Temperature Range: -40°C to +125°C  
An internal 750 kHz gated oscillator makes the  
MCP1650/51/52/53 ideal for space-limited designs.  
The high switching frequency minimizes the size of the  
external inductor and capacitor, saving board space  
and cost. The internal oscillator operates at two differ-  
ent duty cycles depending on the level of the input volt-  
age. By changing duty cycle in this fashion, the peak  
input current is reduced at high input voltages, reducing  
output ripple voltage and electrical stress on power  
train components. When the input voltage is low, the  
duty cycle changes to a larger value in order to provide  
full-power capability at a wide input voltage range  
typical of battery-powered, portable applications.  
The MCP1650/51/52/53 was designed to drive external  
switches directly using internal low-resistance  
MOSFETs.  
Additional features integrated on the MCP1650/51/52/  
53 family include peak input current limit, adjustable  
output voltage/current, low battery detection and  
power-good indication.  
Q
Applications  
• High-Power Boost Applications  
• High-Voltage Bias Supplies  
• White LED Drivers and Flashlights  
• Local 3.3V to 5.0V Supplies  
• Local 3.3V to 12V Supplies  
• Local 5.0V to 12V Supplies  
• LCD Bias Supply  
Package Types  
8-Pin MSOP  
8-Pin MSOP  
1
2
3
4
1
2
3
4
EXT  
GND  
CS  
8
7
6
5
VIN  
NC  
NC  
SHDN  
EXT  
GND  
CS  
8
7
6
5
VIN  
LBO  
LBI  
FB  
FB  
SHDN  
8-Pin MSOP  
10-Pin MSOP  
EXT  
GND  
CS  
FB  
NC  
VIN  
1
2
3
4
5
10  
1
2
3
4
EXT  
GND  
CS  
8
7
6
5
VIN  
PG  
NC  
SHDN  
PG  
9
LBO  
LBI  
SHDN  
8
7
6
FB  
2004 Microchip Technology Inc.  
DS21876A-page 1  
MCP1650/51/52/53  
MCP1650 Block Diagram  
MCP1650  
VIN  
+
1R 0.-122V  
9R  
Internal Osc. with  
+
-
2 fixed Duty Cycles  
1.22V  
VHIGH  
ISNS  
VDUTY  
Ref  
Osc.  
VLOW  
Soft-  
Start  
DC = 80% VIN < 3.8V  
DC = 56% VIN > 3.8V  
VHIGH  
VDUTY  
ON/  
OFF  
+
-
CS  
VIN  
Current Limit  
OSC. OUT  
+
-
VREF  
GND  
VLOW  
VIN  
SHDN  
FB  
ON/OFF  
Control  
DR  
S
Pulse  
EXT  
Voltage Feedback  
Latch  
R
Q
+
-
VREF  
1.22V  
DS21876A-page 2  
2004 Microchip Technology Inc.  
MCP1650/51/52/53  
MCP1651/2/3 Block Diagram  
MCP1650/51/52/53  
MCP1650 - No Features  
MCP1651 - Low Battery Detection  
MCP1652 - Power Good Indication  
MCP1653 - Low Battery Detection and PG  
MCP1653 - LBI and PG Features  
MCP1651 - Low Battery Detection  
LBO  
V
IN  
Low Battery  
Comparator  
+
-
1.22 Vref  
LBI  
CS  
MCP1650  
Vin  
EXT  
SHDN  
GND  
VFB  
Vref. (1.22V)  
MCP1652 - Power Good Indication  
V
IN  
PG  
85% of Vref  
Power Good  
+
-
Comparators  
+
-
A
115% of Vref  
2004 Microchip Technology Inc.  
DS21876A-page 3  
MCP1650/51/52/53  
Timing Diagram  
MCP1650/1/2/3 Timing Diagram  
Osc  
S
R
Q
DR  
EXT  
S
R
Latch Truth Table  
Q
S
0
0
1
1
R
0
1
0
1
Q
Qn  
1
0
1
Q
Typical Application Circuits  
3.3V to 12V 100 mA Boost Converter  
R
SENSE  
MOSFET/Schottky  
Boost  
Inductor  
3.3 µH  
Combination Device  
VOUT = 12V  
0.05Ω  
I
OUT = 0 to 100 mA  
V
CS  
EXT  
FB  
IN  
8
2
5
6
3
1
4
GND  
SHDN  
COUT  
90.9 kΩ  
Input  
CIN  
10 µF  
Ceramic  
10 µF  
on  
Voltage  
3.3V ±10%  
NC  
NC  
7
off  
10 kΩ  
DS21876A-page 4  
2004 Microchip Technology Inc.  
MCP1650/51/52/53  
† Notice: Stresses above those listed under “Maximum Rat-  
ings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied. Expo-  
sure to maximum rating conditions for extended periods may  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
TO GND...........................................................6.0V  
V
IN  
CS,FB,LBI,LBO,SHDN,PG,EXT............ GND – 0.3V to  
V
+ 0.3V  
IN  
Current at EXT pin ................................................ ±1A  
Storage temperature .......................... -65°C to +150°C  
Operating Junction Temperature........ -40°C to +125°C  
ESD protection on all pins ........................... ≥ 4 kV HBM  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, all parameters apply at V = +2.7V to +5.5V, SHDN = High,  
IN  
T = -40°C to +125°C. Typical values apply for V = 3.3V, T +25°C.  
J
IN  
A
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Characteristics  
Supply Voltage  
Undervoltage Lockout  
(S Option)  
V
2.7  
2.4  
2.55  
5.5  
2.7  
V
V
IN  
UVLO  
V
V
rising edge  
IN  
IN  
Under Voltage Lockout  
(R Option)  
UVLO  
1.85  
2.0  
2.15  
V
rising edge  
Undervoltage Hysteresis  
Shutdown Supply Current  
Quiescent Supply Current  
Soft Start Time  
UVLO  
117  
0.001  
120  
1
220  
mV  
µA  
µA  
µs  
HYST  
I
SHDN = GND  
EXT = Open  
SHD  
I
Q
T
500  
SS  
Feedback Characteristics  
Feedback Voltage  
Feedback Comparator  
Hysteresis  
V
1.18  
1.22  
12  
1.26  
23  
V
mV  
All conditions  
FB  
V
HYS  
Feedback Input Bias Current  
Current Sense Input  
I
-50  
50  
nA  
V
< 1.3V  
FBlk  
FB  
Current Sense Threshold  
Delay from Current Sense to  
Output  
I
75  
114  
80  
155  
mV  
ns  
SNS-TH  
T
dly_ISNS  
Ext Drive  
EXT Driver ON Resistance  
R
8
4
18  
12  
HIGH  
(High Side)  
EXT Driver ON Resistance  
(Low Side)  
R
LOW  
Oscillator Characteristics  
Switching Frequency  
Low Duty Cycle Switch-Over  
Voltage  
F
650  
750  
3.8  
850  
kHz  
V
OSC  
V
V
rising edge  
IN  
LowDuty  
Duty Cycle Switch Voltage  
Hysteresis  
DC  
92  
mV  
Hyst  
Low Duty Cycle  
High Duty Cycle  
DC  
DC  
50  
72  
56  
80  
62  
88  
%
%
LOW  
HIGH  
2004 Microchip Technology Inc.  
DS21876A-page 5  
MCP1650/51/52/53  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise noted, all parameters apply at V = +2.7V to +5.5V, SHDN = High,  
IN  
T = -40°C to +125°C. Typical values apply for V = 3.3V, T +25°C.  
J
IN  
A
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Shutdown Input  
Logic High Input  
Logic Low Input  
V
V
I
50  
5
15  
100  
% of V  
% of V  
nA  
IN-HIGH  
IN  
IN  
IN-Low  
Input Leakage Current  
SHDN=V  
IN  
SHDN  
Low Battery Detect (MCP1651/MCP1653 Only)  
Low Battery Threshold  
Low Battery Threshold  
Hysteresis  
LBI  
1.18  
95  
1.22  
123  
1.26  
145  
V
mV  
LBI Input falling (All Conditions)  
TH  
LBI  
THHYS  
Low Battery Input Leakage  
Current  
I
10  
nA  
V
= 2.5V  
LBI  
LBI  
Low Battery Output Voltage  
V
I
53  
0.01  
200  
1
mV  
µA  
I
V
SINK = 3.2 mA, V = 0V  
LBO  
LBO  
LB LBI  
Low Battery Output Leakage  
= 5.5V, V  
= 5.5V  
LBI  
LBO  
Current  
Time Delay from LBI to LBO  
T
70  
µs  
L
L
Transitions from  
BITH  
D_LBO  
BI  
+ 0.1V to L  
- 0.1V  
BITH  
Power Good Output (MCP1652/MCP1653 Only)  
Power Good Threshold Low  
Power Good Threshold High  
Power Good Threshold  
Hysteresis  
V
V
-20  
+10  
-15  
+15  
5
-10  
+20  
%
%
%
Referenced to Feedback Voltage  
Referenced to Feedback Voltage  
Referenced to Feedback Voltage  
(Both Low and High Thresholds)  
PGTH-L  
PGTH-H  
V
PGTH-HYS  
Power Good Output Voltage  
V
T
53  
85  
200  
mV  
µs  
I
V
V
SINK = 3.2 mA, V = 0V  
PGOUT  
PG  
FB  
Time Delay from V out of  
Transitions from  
FB  
D_PG  
FB  
regulation to Power Good  
Output transition  
+ 0.1V to V  
-0.1V  
FBTH  
FBTH  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise noted, all parameters apply at V = +2.7V to +5.5V, SHDN = High,  
IN  
T = -40°C to +125°C. Typical values apply for V = 3.3V, T = +25°C.  
A
IN  
A
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Storage Temperature Range  
Operating Junction Temperature  
Range  
T
T
-40  
-40  
+125  
+125  
°C  
°C  
A
Continuous  
J
Thermal Package Resistances  
Thermal Resistance, MSOP-8  
θ
θ
208  
113  
°C/W Single-Layer SEMI G42-88  
Board, Natural Convection  
JA  
JA  
Thermal Resistance, MSOP-10  
°C/W 4-Layer JC51-7 Standard Board,  
Natural Convection  
DS21876A-page 6  
2004 Microchip Technology Inc.  
MCP1650/51/52/53  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VIN = 3.3V, VOUT = 12V, CIN = 10 µF (x5R or X7R Ceramic), COUT = 10 µF (X5R or X7R),  
I
OUT = 10 mA, L = 3.3 µH, SHDN > VIH, TA = +25°C.  
200  
840  
820  
800  
780  
760  
740  
720  
ILOAD = 0 mA  
175  
150  
125  
100  
75  
TJ = +125°C  
VIN = 2.0V  
TJ = +25°C  
TJ = - 40°C  
VIN = 5.5V  
VIN = 4.1V  
VIN = 2.7V  
20 35 50 65 80 95 110 125 140  
50  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
-40 -25 -10  
5
Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-1:  
Input Quiescent Current vs.  
FIGURE 2-4:  
Oscillator Frequency vs.  
Input Voltage.  
Ambient Temperature.  
200  
175  
150  
125  
100  
3.85  
3.84  
3.83  
3.82  
3.81  
3.80  
3.79  
3.78  
3.77  
3.76  
3.75  
VIN = Rising  
ILOAD = 0 mA  
VIN = 5.5V  
VIN = 4.1V  
VIN = 2.7V  
VIN = 2.0V  
75  
50  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-2:  
Input Quiescent Current vs.  
FIGURE 2-5:  
Duty Cycle Switch-Over  
Ambient Temperature.  
Voltage vs. Ambient Temperature.  
800  
780  
94.0  
93.5  
93.0  
92.5  
92.0  
91.5  
91.0  
90.5  
90.0  
TJ = +25°C  
760  
740  
720  
700  
TJ = +125°C  
TJ = - 40°C  
2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Input Voltage (V)  
6
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
FIGURE 2-3:  
Oscillator Frequency vs.  
FIGURE 2-6:  
Duty Cycle Switch-Over  
Input Voltage.  
Hysteresis Voltage vs. Ambient Temperature.  
2004 Microchip Technology Inc.  
DS21876A-page 7  
MCP1650/51/52/53  
Note: Unless otherwise indicated, VIN = 3.3V, VOUT = 12V, CIN = 10 µF (x5R or X7R Ceramic), COUT = 10 µF (X5R or X7R),  
I
OUT = 10 mA, L = 3.3 µH, SHDN > VIH, TA = +25°C.  
1.0  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
TA = +25°C  
0.8  
TJ = +125°C  
TJ = +25°C  
ISINK  
0.6  
0.4  
ISOURCE  
TJ = - 40°C  
0.2  
0.0  
2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Input Voltage (V)  
Input Voltage (V)  
FIGURE 2-7:  
EXT Sink and Source  
FIGURE 2-10:  
Feedback Voltage vs. Input  
Current vs. Input Voltage.  
Voltage.  
0.8  
0.7  
18  
16  
14  
12  
10  
8
VIN = 3.3V  
ISINK  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
TJ = +125°C  
TJ = +25°C  
ISOURCE  
TJ = - 40°C  
6
4
2
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Input Voltage (V)  
6
Ambient Temperature (°C)  
FIGURE 2-8:  
EXT Sink and Source  
FIGURE 2-11:  
Feedback Voltage  
Current vs. Ambient Temperature.  
Hysteresis vs. Input Voltage.  
80  
70  
60  
2.7VFALL  
50  
2.7VRISE  
40  
30  
20  
10  
0
5VRISE  
5VFALL  
100  
150  
200  
250  
300  
350  
400  
450  
500  
External Capacitance (pF)  
FIGURE 2-9:  
EXT Rise and Fall Times vs.  
FIGURE 2-12:  
Dynamic Load Response.  
External Capacitance.  
DS21876A-page 8  
2004 Microchip Technology Inc.  
MCP1650/51/52/53  
Note: Unless otherwise indicated, VIN = 3.3V, VOUT = 12V, CIN = 10 µF (x5R or X7R Ceramic), COUT = 10 µF (X5R or X7R),  
I
OUT = 10 mA, L = 3.3 µH, SHDN > VIH, TA = +25°C.  
TA = 25°C  
OUT = 100 mA  
89  
87  
85  
83  
81  
79  
77  
75  
I
2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0  
Input Votlage (V)  
FIGURE 2-13:  
Dynamic Line Response.  
FIGURE 2-16:  
Efficiency vs. Input Voltage.  
90  
85  
80  
75  
70  
65  
60  
TA = 25°C  
VIN = 3.3V  
10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0  
Load Current (mA)  
FIGURE 2-14:  
Power-Up Timing (Input  
FIGURE 2-17:  
Efficiency vs. Load Current.  
Voltage).  
12.16  
12.15  
12.14  
12.13  
12.12  
12.11  
12.10  
TA = 25°C  
I
OUT = 100 mA  
2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0  
Input Voltage (V)  
FIGURE 2-18:  
Output Voltage vs. Input  
FIGURE 2-15:  
Power-Up Timing  
Voltage (Line Regulation).  
(Shutdown).  
2004 Microchip Technology Inc.  
DS21876A-page 9  
MCP1650/51/52/53  
Note: Unless otherwise indicated, VIN = 3.3V, VOUT = 12V, CIN = 10 µF (x5R or X7R Ceramic), COUT = 10 µF (X5R or X7R),  
I
OUT = 10 mA, L = 3.3 µH, SHDN > VIH, TA = +25°C.  
12.17  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
TA = +25°C  
TJ = +125°C  
12.16  
12.15  
12.14  
12.13  
12.12  
12.11  
12.10  
VIN = 3.3V  
TJ = +25°C  
TJ = - 40°C  
VIN = 4.3V  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Output Current (mA)  
Input Votlage (V)  
FIGURE 2-19:  
Output Voltage vs. Output  
FIGURE 2-22:  
LBI Hysteresis Voltage vs.  
Current (Load Regulation).  
Input Voltage.  
0.26  
0.24  
0.22  
250  
200  
150  
100  
50  
TA = +25°C  
IOUT = 100mA  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
TJ = +125°C  
TJ = +25°C  
TJ = - 40°C  
0
0
2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0  
Input Voltage (V)  
2
4
6
8
10  
LBO Sink Current (mA)  
FIGURE 2-20:  
Output Voltage Ripple vs.  
FIGURE 2-23:  
LBO Output Voltage vs.  
Input Voltage.  
LBO Sink Current.  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
TJ = +125°C  
TJ = +25°C  
TJ = - 40°C  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Input Voltage (V)  
FIGURE 2-21:  
LBI Threshold Voltage vs.  
FIGURE 2-24:  
LBO Output Timing.  
Input Voltage.  
DS21876A-page 10  
2004 Microchip Technology Inc.  
MCP1650/51/52/53  
Note: Unless otherwise indicated, VIN = 3.3V, VOUT = 12V, CIN = 10 µF (x5R or X7R Ceramic), COUT = 10 µF (X5R or X7R),  
I
OUT = 10 mA, L = 3.3 µH, SHDN > VIH, TA = +25°C.  
20  
116  
114  
112  
110  
108  
106  
104  
PGTH(HIGH)  
TA = 25°C  
15  
10  
5
PGTH(Hysteresis)  
TJ = +125°C  
0
-5  
TJ = +25°C  
-10  
-15  
-20  
PGTH(LOW)  
TJ = - 40°C  
2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Input Voltage (V)  
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Input Voltage (V)  
FIGURE 2-25:  
PG Threshold and  
FIGURE 2-28:  
Current Sense Threshold  
Hysteresis Percentage vs. Input Voltage.  
vs. Input Voltage.  
250  
200  
20.0  
16.0  
TJ = +125°C  
TJ = +125°C  
150  
12.0  
8.0  
100  
TJ = +25°C  
TJ = - 40°C  
50  
0
4.0  
TJ = - 40°C  
6
TJ = +25°C  
5
0.0  
0
2
4
8
10  
2
2.5  
3
3.5  
4
4.5  
5.5  
6
PG Output Sink Current (mA)  
Input Voltage (V)  
FIGURE 2-26:  
PG Output Voltage vs. Sink  
FIGURE 2-29:  
V
High Output Voltage  
EXT  
Current.  
vs. Input Voltage.  
8.0  
7.0  
6.0  
5.0  
4.0  
TJ = +125°C  
TJ = - 40°C  
3.0  
2.0  
1.0  
0.0  
TJ = +25°C  
5
2
2.5  
3
3.5  
4
4.5  
5.5  
6
Input Voltage (V)  
FIGURE 2-27:  
PG Timing.  
FIGURE 2-30:  
V
Low Output Voltage  
EXT  
vs. Input Voltage.  
2004 Microchip Technology Inc.  
DS21876A-page 11  
MCP1650/51/52/53  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
Pin No.  
PIN FUNCTION TABLE  
Pin No. Pin No. Pin No.  
Symbol  
Function  
MCP1650 MCP1651 MCP1652 MCP1653  
1
2
3
4
5
8
1
2
3
4
5
6
7
8
1
2
3
4
5
7
1
2
3
4
6
7
8
9
10  
EXT  
GND  
CS  
FB  
SHDN  
LBI  
LBO  
PG  
V
IN  
External Gate Drive  
Ground  
Current Sense  
Feedback Input  
Shutdown  
Low Battery Input  
Low Battery Output  
Power Good Output  
Input Voltage  
8
3.1  
External Gate Drive (EXT)  
3.6  
Low Battery Input (LBI)  
EXT is the output pin that drives the external N-channel  
MOSFET on and off during boost operation. EXT is  
equal to GND for SHDN or UVLO conditions.  
LBI is the input pin for the low battery comparator.  
When the voltage on this pin falls below the nominal  
1.22V threshold setting, the LBO (Low Battery Output)  
open-drain is active-low.  
3.2  
Circuit Ground (GND)  
3.7  
Low Battery Output (LBO)  
Connect the GND pin to circuit ground. See layout  
guidelines for suggested grounding physical layout.  
LBO is an active-low, open-drain output capable of  
sinking 10 mA when the LBI pin is below the threshold  
voltage. LBO is high-impedance during SHDN or UVLO  
conditions.  
3.3  
Current Sense (CS)  
Input peak current is sensed on CS through the exter-  
nal current sense resistor. When the sensed current is  
converted to a voltage, the current sense threshold is  
3.8  
Power Good (PG)  
122 mV below V typical. If that threshold is exceeded,  
PG is an active-high, open-drain output capable of  
sinking 10 mA when the FB input pin is 15% below its  
typical value or more than 15% above its typical value,  
indicating that the output voltage is out of regulation.  
PG is high impedance during SHDN or UVLO  
condition.  
IN  
the pulse is terminated asynchronously.  
3.4  
Feedback Input (FB)  
Connect output voltage of boost converter through  
external resistor divider to the FB pin for voltage  
regulation. The nominal voltage that is compared to this  
input for pulse termination is 1.22V.  
3.9  
Input Voltage (V )  
IN  
V
is an input supply pin. Tie 2.7V to 5.5V input power  
IN  
source.  
3.5  
Shutdown Input (SHDN)  
The SHDN input is used to turn the boost converter on  
and off. For normal operation, tie this pin high or to V .  
IN  
To turn off the device, tie this pin to low or ground.  
DS21876A-page 12  
2004 Microchip Technology Inc.  
MCP1650/51/52/53  
4.3  
Fixed Duty Cycle  
4.0  
4.1  
DETAILED DESCRIPTION  
Device Overview  
The MCP1650/51/52/53 family utilizes a unique two-  
step maximum duty cycle architecture to minimize input  
peak current and improve output ripple voltage for wide  
input voltage operating ranges. When the input voltage  
is below 3.8V, the duty cycle is typically 80%. For input  
voltages above 3.8V, the duty cycle is typically 56%. By  
decreasing the duty cycle at higher input voltages, the  
input peak current is reduced. For low input voltages, a  
longer duty cycle stores more energy during the on-  
time of the boost MOSFET. For applications that span  
the 3.8V input range, the inductor value should be  
selected to meet not only the minimum input voltage at  
80% duty cycle, but 3.8V at 56% duty cycle as well.  
Refer to Section 5.0 “Application Circuits/Issues”  
for more information about selecting inductor values.  
The MCP1650/51/52/53 is a gated oscillator boost  
controller. By adding an external N-channel MOSFET,  
schottky diode and boost inductor, high-output power  
applications can be achieved. The 750 kHz hysteretic  
gated oscillator architecture enables the use of small,  
low-cost external components. By using a hysteretic  
approach, no compensation components are  
necessary for the stability of the regulator output.  
Output voltage regulation is accomplished by  
comparing the output voltage (sensed through an  
external resistor divider) to a reference internal to the  
MCP1650/51/52/53. When the sensed output voltage  
is below the reference, the EXT pin pulses the external  
N-channel MOSFET on and off at the 750 kHz gated  
oscillator frequency. Energy is stored in the boost  
inductor when the external N-channel MOSFET is on  
and is delivered to the load through the external  
Schottky diode when the MOSFET is turned off.  
Several pulses may be required to deliver enough  
energy to pump the output voltage above the upper  
hysteretic limit. Once above the hysteretic limit, the  
internal oscillator is no longer gated to the EXT pin and  
no energy is transferred from input to output.  
4.4  
Shutdown Input Operation  
The SHDN pin is used to turn the MCP1650/51/52/53  
on and off. When the SHDN pin is tied low, the  
MCP1650/51/52/53 is off. When tied high, the  
MCP1650/51/52/53 will be enabled and begin boost  
operation as long as the input voltage is not below the  
UVLO threshold.  
4.5  
Soft-Start Operation  
The peak current in the MOSFET is sensed to limit its  
maximum value. As with all boost topology converters,  
even though the MOSFET is turned off, there is still a  
DC path through the boost inductor and diode to the  
load. Additional protection circuity, such as fuses, are  
recommended for short circuit protection.  
When power is first applied to the MCP1650/51/52/53,  
the internal reference initialization is controlled to slow  
down the start-up of the boost output voltage.This is  
done to reduce high inrush current required from the  
source. High inrush currents can cause the source  
voltage to drop suddenly and trip the UVLO threshold,  
shutting down the converter prior to it reaching steady-  
state operation.  
4.2  
Input Voltage  
The range of input voltage for the MCP1650/51/52/53  
family of devices is specified from 2.7V to 5.5V. For the  
S-option devices, the undervoltage lockout (UVLO)  
feature will turn the boost controller off once the input  
voltage falls below 2.55V, typical. For the R-option  
devices, the UVLO is set to 2.0V. The R-option devices  
are recommended for use when “bootstrapping” the  
output voltage back to the input. The input of the  
MCP1650/51/52/53 device is supplied by the output  
voltage during boost operation. This can be used to  
derive output voltages from input voltages that start up  
at approximately 2V (2-cell alkaline batteries).  
4.6  
Gated Oscillator Architecture  
A 750 kHz internal oscillator is used as the base  
frequency of the MCP1650/51/52/53. The oscillator  
duty cycle is typically 80% when the input voltage is  
below a nominal value of 3.8V, and 56% when the  
input voltage is above a nominal value of 3.8V. Two  
duty cycles are provided to reduce the peak inductor  
current in applications where the input voltage varies  
over a wide range. High-peak inductor current results  
in undesirable high-output ripple voltages. For  
applications that have input voltage that cross this  
3.8V boundary, both duty cycle conditions need to be  
examined to determine which one has the least  
amount of energy storage. Refer to Section 5.0  
“Application Circuits/Issues” for more information  
about design considerations.  
2004 Microchip Technology Inc.  
DS21876A-page 13  
MCP1650/51/52/53  
4.7  
FB Pin  
4.11 Low Battery Detect  
The output voltage is fed back through a resistor divider  
to the FB pin. It is then compared to an internal 1.22V  
reference. When the divided-down output is below the  
internal reference, the internal oscillator is gated on  
and the EXT pin pulses the external N-channel  
MOSFET on and off to transfer energy from the source  
to the load at 750 kHz. This will cause the output volt-  
age to rise until it is above the 1.22V threshold, thereby  
gating the internal oscillator off. Hysteresis is provided  
within the comparator and is typically 12 mV. The rate  
at which the oscillator is gated on and off is determined  
by the input voltage, load current, hysteresis voltage  
and inductance. The output ripple voltage will vary  
depending on the input voltage, load current,  
hysteresis voltage and inductance.  
The Low-Battery Detect (MCP1651 and MCP1653  
only) feature can be used to determine when the LBI  
input voltage has fallen below a predetermined  
threshold. The low-battery detect comparator  
continuously monitors the voltage on the LBI pin. When  
the voltage on the LBI pin is above the 1.22V + 123 mV  
hysteresis, the LBO pin will be high-impedance (open-  
drain). When in the high-impedance state, the leakage  
current into the LBO pin is typically less than 0.1 µA. As  
the voltage on the LBI pin decreases and is lower than  
the 1.22V typical threshold, the LBO pin will transition  
to a low state and is capable of sinking up to 10 mA.  
123 mV of hysteresis is provided to prevent chattering  
of the LBO pin as a result of battery input impedance  
and boost input current.  
4.8  
PWM Latch  
4.12 Power Good Output  
The gated oscillator is self-latched to prevent double  
and sporadic pulsing. The reset into the latch is asyn-  
chronous and can terminate the pulse during the on-  
time of the duty cycle. The reset can be accomplished  
by the feedback voltage comparator or the current limit  
comparator.  
The Power Good Output feature (MCP1652 and  
MCP1653 only) monitors the divided-down voltage  
feedback into the FB pin. When the output voltage falls  
more than 15% (typical) below the regulated set point,  
the power good (PG) output pin will transition from a  
high-impedance state (open-drain) to a low state  
capable of sinking 10 mA. If the output voltage rises  
more than 15% (typical) above the regulated set point,  
the PG output pin will transition from high to low.  
4.9  
Peak Inductor Current  
The external switch peak current is sensed on the CS  
pin across an optional external current sense resistor.  
If the CS pin falls more than 122 mV (typical) below  
4.13 Device Protection  
V , the current limit comparator is set and the pulse is  
IN  
4.13.1  
OVERCURRENT LIMIT  
terminated. This prevents the current from getting too  
high and damaging the N-channel MOSFET. In the  
event of a short circuit, the switch current will be low  
due to the current limit. However, there is a DC path  
from the input through the inductor and external diode.  
This is true for all boost-derived topologies and addi-  
tional protection circuitry is necessary to prevent  
catastrophic damage.  
The Current Sense (CS) input pin is used to sense the  
peak input current of the boost converter. This can be  
used to limit how high the peak inductor current can  
reach. The current sense feature is optional and can be  
bypassed by connecting the V input pin to the CS  
IN  
input pin. Because of the path from input through the  
boost inductor and boost diode to output, the boost  
topology cannot support  
a short circuit without  
additional circuitry. This is typical of all boost regulators.  
4.10 EXT Output Driver  
The EXT output pin is designed to directly drive  
external N-channel MOSFETs and is capable of  
sourcing 400 mA (typical) and sinking 800 mA (typical)  
for fast on and off transitions. The top side of the EXT  
driver is connected directly to V , while the low side of  
IN  
the driver is tied to GND, providing rail-to-rail drive  
capability. Design flexibility is added by connecting an  
external resistor in series with the N-channel MOSFET  
to control the speed of the turn on and off. By slowing  
the transition speed down, there will be less high-  
frequency noise. Speeding the transition up produces  
higher efficiency.  
DS21876A-page 14  
2004 Microchip Technology Inc.  
MCP1650/51/52/53  
5.1.1  
NON-BOOTSTRAP BOOST  
5.0  
5.1  
APPLICATION CIRCUITS/  
ISSUES  
APPLICATIONS  
Non-bootstrap applications are typically used when the  
output voltage is boosted to a voltage that is higher  
than the rated voltage of the MCP1650/51/52/53. For  
non-bootstrap applications, the input voltage is  
connected to the boost inductor through the optional  
Typical Applications  
The MCP1650/51/52/53 boost controller can be used in  
several different configurations and in many different  
applications. For applications that require minimum  
space, low cost and high efficiency, the MCP1650/51/  
52/53 product family is a good choice. It can be used in  
boost, buck-boost, Single-Ended Primary Inductive  
Converters (SEPIC), as well as in flyback converter  
topologies.  
current sense resistor and the V pin of the MCP1650/  
IN  
51/52/53. For this type of application, the S-option  
devices (UVLO at 2.55V, typical) should be used. The  
gated oscillator duty cycle will be dependant on the  
value of the voltage on V . If V > 3.8V, the duty cycle  
IN  
IN  
will be 56%. If V < 3.8V, the duty cycle will be 80%.  
IN  
In non-bootstrap applications, output voltages of over  
100V can be generated. Even though the MCP1650/  
51/52/53 device is not connected to the high boost  
output voltage, the drain of the external MOSFET and  
reverse voltage of the external Schottky diode are  
connected. The output voltage capacitor must also be  
rated for the output voltage.  
3.3V to 12V 100 mA Boost Converter  
RSENSE  
MOSFET/Schottky  
Boost  
Combination Device  
0.05 Ω  
Inductor  
3.3 µH  
V
OUT = 12V  
I
OUT = 0 to 100 mA  
VIN  
CS  
3
1
4
7
8
2
5
GND  
EXT  
FB  
MCP1650  
COUT  
90.9 kΩ  
10 kΩ  
SHDN  
Input  
CIN  
10 µF  
10 µF  
Voltage  
3.3V ±10%  
Ceramic  
NC 6  
NC  
on  
off  
FIGURE 5-1:  
Typical Non-Bootstrap Application Circuit (MCP1650/51/52/53).  
2004 Microchip Technology Inc.  
DS21876A-page 15  
MCP1650/51/52/53  
to start up with the input voltage below 2.7V. For this  
type of application, the MCP1650/51/52/53 will start off  
of the lower 2.0V input and begin to boost the output up  
to its regulated value. As the output rises, so does the  
input voltage of the MCP1650/51/52/53. This provides  
a solution for 2-cell alkaline inputs for output voltages  
that are less than 6V.  
5.1.2  
BOOTSTRAP BOOST  
APPLICATIONS  
For bootstrap configurations, the higher-regulated  
boost output voltage is used to power the MCP1650/  
51/52/53. This provides a constant higher voltage used  
to drive the external MOSFET. The R-option devices  
(UVLO < 2.0V) can be used for applications that need  
Li-Ion Input to 5.0V 1A Regulated Output (Bootstrap) with MCP1652 Power Good Output  
Schottky Diode  
Vout = 5V  
3.3 µH  
Iout = 1A  
10 Ω  
VIN  
CS  
EXT  
FB  
3
1
4
7
8
2
5
6
N-Channel  
MOSFET  
GND  
MCP1652  
0.1 µF  
3.09 kΩ  
Cout  
SHDN  
Input  
Voltage  
Cin  
47 µF  
47 µF  
PG  
Ceramic  
2.8V to 4.2V  
NC  
on  
off  
0.1Ω  
Shutdown  
1 kΩ  
Power Good Output  
FIGURE 5-2:  
Bootstrap Application Circuit MCP1650/51/52/53.  
with the previous boost-converter applications, the  
SEPIC converter can be used in either a bootstrap or  
non-bootstrap configuration. The SEPIC converter can  
be a very popular topology for driving high-power  
LEDs. For many LEDs, the forward voltage drop is  
approximately 3.6V, which is between the maximum  
and minimum voltage range of a single-cell Li-Ion  
battery, as well as 3 alkaline or nickel metal batteries.  
5.1.3  
SEPIC CONVERTER  
APPLICATIONS  
In many applications, the input voltage can vary above  
and below the regulated output voltage. A standard  
boost converter cannot be used when the output volt-  
age is below the input voltage. In this case, the  
MCP1650/51/52/53 can be used as a SEPIC controller.  
A SEPIC requires 2 inductors or a single coupled  
inductor, in addition to an AC coupling capacitor. As  
Li-Ion Input to 3.6V 3W LED Driver (SEPIC Converter)  
Schottky Diode  
4.7 µF  
3.3 µH  
IOUT = 1A  
10 Ω  
VIN  
CS  
EXT  
FB  
3
1
4
7
8
2
5
6
COUT  
N-Channel  
MOSFET  
3.3 µH  
GND  
MCP1651  
47 µF  
0.1 µF  
2.49 kΩ  
1 kΩ  
Ceramic  
SHDN  
Input  
Voltage  
CIN  
47 µF  
PG  
2.8V to 4.2V  
NC  
on  
0.1Ω  
off  
Dimming Capability  
3W  
LED  
Power Good Output  
0.2 Ω  
FIGURE 5-3:  
SEPIC Converter Application Circuit MCP1650/51/52/53.  
DS21876A-page 16  
2004 Microchip Technology Inc.  
MCP1650/51/52/53  
5.2.1.1  
Calculations  
5.2  
Design Considerations  
When developing switching power converter circuits,  
there are numerous things to consider and the  
MCP1650/51/52/53 family is no exception. The gated  
oscillator architecture does provide a simple control  
approach so that stabilizing the regulator output is an  
easier task than that of a fixed-frequency regulator.  
POUT = VOUT × IOUT  
Where:  
P
P
= 12V X 100 mA  
= 1.2 Watts  
OUT  
OUT  
The MCP1650/51/52/53 controller utilizes an external  
switch and diode allowing for a very wide range of  
conversion (high voltage gain and/or high current gain).  
There are practical, as well as power-conversion,  
topology limitations. The MCP1650/51/52/53 gated  
oscillator hysteretic mode converter has similar  
limitations, as do fixed-frequency boost converters.  
PIN = POUT ⁄ (Efficiency)  
Where:  
P
= 1.2W/80%  
IN  
(80% is a good efficiency estimate)  
P
= 1.5 Watts  
IN  
For gated oscillator hysteretic designs, the switching  
frequency is not constant and will gate several pulses  
to raise the output voltage. Once the upper hysteresis  
threshold is reached, the gated pulses stop and the  
output will coast down at a rate determined by the out-  
put capacitor and the load. Using the gated oscillator  
switching frequency and duty cycle, it is possible to  
determine what the maximum boost ratio is for  
continuous inductor current operation.  
5.2.1  
DESIGN EXAMPLE  
Input Voltage = 2.8V to 4.2V  
Output Voltage = 12V  
Output Current = 100 mA  
Oscillator Frequency = 750 kHz  
Duty cycle = 80% for V < 3.8V  
IN  
Duty cycle = 56% for V > 3.8V  
IN  
1
VOUT  
=
------------ × VIN  
1 D  
Setting the output voltage:  
RTOP = RBOT  
VOUT  
This relationship assumes that the output load current  
is significant and the boost converter is operating in  
Continuous Inductor Current mode. If the load is very  
light or a small boost inductance is used, higher boost  
ratio’s can be achieved.  
×
------------- – 1  
VFB  
Where:  
R
R
= Top Resistor Value  
= Bottom Resistor Value  
TOP  
BOT  
Calculate at minimum V :  
IN  
By adjusting the external resistor divider, the output  
voltage of the boost converter can be set to the desired  
value. Due to the RC delay caused by the resistor  
divider and the device input capacitance, resistor  
values greater than 100 kare not recommended. The  
feedback voltage is typically 1.22V.  
1
VOUTMAX  
=
--------------- × 2.8  
1 0.8  
The ideal maximum output voltage is 14V. The actual  
measured result will be less due to the forward voltage  
drop in the boost diode, as well as other circuit losses.  
For applications where the input voltage is above and  
below 3.8V, another point must be checked to deter-  
mine the maximum boost ratio. At 3.8V, the duty cycle  
changes from 80% to 56% to minimize the peak current  
in the inductor.  
For this example:  
R
V
V
=
=
=
=
10 kΩ  
12V  
1.22V  
88.4 kΩ  
BOT  
OUT  
FB  
R
TOP  
90.9 Kwas selected as the closest standard value.  
1
VOUTMAX  
For this case, V  
=
------------------ × 3.8  
1 0.56  
= 8.63V less than the required  
OUTMAX  
12V output specified. The size of the inductor has to  
decrease in order to operate the boost regulator in  
Discontinuous Inductor Current mode.  
2004 Microchip Technology Inc.  
DS21876A-page 17  
MCP1650/51/52/53  
To determine the maximum inductance for  
Discontinuous Operating mode, multiply the energy  
going into the inductor every switching cycle by the  
number of cycles per second (switching frequency).  
This number must be greater than the maximum input  
power.  
5.2.2  
MOSFET SELECTION  
There are a couple of key consideration’s when  
selecting the proper MOSFET for the boost design. A  
low  
R
logic-level N-channel MOSFET is  
DSON  
recommended.  
5.2.2.1 MOSFET Selection Process.  
1. Voltage Rating - The MOSFET drain-to-source  
The equation for the energy flowing into the inductor is  
given below. The input power to the system is equal to  
energy times time.  
voltage must be rated for a minimum of V  
+
OUT  
V
of the external boost diode. For example, in  
FD  
2
1
the 12V output converter, a MOSFET drain-to-  
Energy = -- × L × IPK  
2
source voltage rating of 12V  
+ 0.5V is  
necessary. Typically, a 20V part can be used for  
12V outputs.  
The inductor peak current is calculated using the  
equation below:  
2. Logic-Level R  
- The MOSFET carries  
DSON  
significant current during the boost cycle on  
time. During this time, the peak current in the  
MOSFET can get quite high. In this example, a  
SOT-23 MOSFET was used with the following  
ratings:  
VIN  
L
IPK = -------- × TON  
Using a typical inductance of 3.3 µH, the peak current  
in the inductor is calculated below:  
IRLM2502 N-channel MOSFET  
F
T
=
=
=
=
=
750 kHz  
(1/F * Duty Cycle)  
SW  
V
= 20V (Drain Source Breakdown  
BDS  
ON  
SW  
Voltage)  
I
(2.8V)  
Energy (2.8V)  
Power (2.8V)  
905 mA  
1.35 µ-Joules  
1.01 Watts  
PK  
R
R
= 50 milli-ohms (V = 2.5V)  
GS  
DSON  
DSON  
= 35 milli-ohms (V = 5.0V)  
GS  
Q
= Total Gate Charge = 8 nC  
G
At 3.8V and below, the converter can boost to 14V  
while operating in the Continuous mode.  
V
= 0.6V to 1.2V (Gate Source Threshold  
GS  
Voltage)  
I
(3.8V)  
=
=
=
860 mA  
1.22 µ-Joules  
0.914 Watts  
Selecting MOSFETs with lower R  
better or more efficient. Lower R  
is not always  
PK  
DSON  
DSON  
typically results  
Energy at 3.8V  
Power  
in higher total gate charge and input capacitance, slow-  
ing the transition time of the MOSFET and resulting in  
increased switching losses.  
For this example, a 3.3 µH inductor is too large, a  
2.2 µH inductor is selected.  
5.2.3  
DIODE SELECTION  
F
= 750 kHz  
SW  
The external boost diode also switches on and off at the  
switching frequency and requires very fast turn-on and  
turn-off times. For most applications, Schottky diodes  
are recommended. The voltage rating of the Schottky  
diode must be rated for maximum boost output voltage.  
For example, 12V output boost converter, the diode  
should be rated for 12V plus margin. A 20V or 30V  
Schottky diode is recommended for a 12V output appli-  
cation. Schottky diodes also have low forward-drop  
characteristics, another desired feature for switching  
power supply applications.  
T
= (1/F  
* Duty Cycle)  
ON  
SW  
I
(2.8V) = 1.36A  
Energy (2.8V) = 2.02 µ-Joules  
Power (2.8V) = 1.52 Watts  
(3.8V) = 1.29A  
Energy at 3.8V = 1.83 µ-Joules  
Power = 1.4 Watts  
PK  
I
PK  
As the inductance is lowered, the peak current drawn  
from the input at all loads is increased. The best choice  
of inductance for high boost ratios is the maximum  
inductance value necessary while maintaining  
discontinuous operation.  
For lower boost-ratio applications (3.3V to 5.0V), a  
3.3 µH inductor or larger is recommended. In these  
cases, the inductor operates in Continuous Current  
mode.  
DS21876A-page 18  
2004 Microchip Technology Inc.  
MCP1650/51/52/53  
5.2.4  
INPUT/OUTPUT CAPACITOR  
SELECTION  
5.2.7  
EXTERNAL COMPONENT  
MANUFACTURES  
There are no special requirements on the input or  
output capacitor. For most applications, ceramic  
capacitors or low effective series resistance (ESR) tan-  
talum capacitors will provide lower output ripple voltage  
than aluminum electrolytic. Care must be taken not to  
exceed the manufacturer’s rated voltage or ripple cur-  
rent specifications. Low-value capacitors are desired  
because of cost and size, but typically result in higher  
output ripple voltage.  
The input capacitor size is dependant on the source  
impedance of the application. The hysteretic  
architecture of the MCP1650/51/52/53 boost converter  
can draw relatively high input current peaks at certain  
line and load conditions. Small input capacitors can  
produce a large ripple voltage at the input of the  
converter, resulting in unsatisfactory performance.  
The output capacitor plays a very important role in the  
performance of the hysteretic gated oscillator  
converter. In some cases, using ceramic capacitors  
can result in higher output ripple voltage. This is a  
result of the low ESR that ceramic capacitors exhibit.  
As shown in the application schematics, 100 milli-ohms  
of ESR in series with the ceramic capacitor will actually  
reduce the output ripple voltage and peak input cur-  
rents for some applications. The selection of the capac-  
itor and ESR will largely determine the output ripple  
voltage.  
Inductors:  
®
Sumida  
http://www.sumida.com/  
Corporation  
®
Coilcraft  
http://www.coilcraft.com  
http://www.bhelectronics.com  
http://www.pulseeng.com/  
®
BH Electronics  
Pulse  
®
Engineering  
®
Coiltronics  
http://www.cooperet.com/  
Capacitors  
®
MuRata  
Kemet  
http://www.murata.com/  
http://www.kemet.com/  
http://www.taiyo-yuden.com/  
http://www.avx.com/  
®
Taiyo-Yuden  
®
AVX  
MOSFETs and Diodes:  
International  
http://www.irf.com/  
Rectifier  
®
Vishay /Siliconix  
http://www.vishay.com/com-  
pany/brands/siliconix/  
http://www.onsemi.com/  
ON  
®
Semiconductor  
Fairchild  
Semiconductor  
http://www.fairchildsemi.com/  
®
5.2.5  
LOW BATTERY DETECTION  
For low battery detection, the MCP1651 or MCP1653  
device should be used. The low-battery detect feature  
compares the low battery input (LBI) pin to the internal  
1.22V reference. If the LBI input is below the LBI  
threshold voltage, the low battery output (LBO) pin will  
sink current (up to 10 mA) through the internal open-  
drain MOSFET. If the LBI input voltage is above the LBI  
threshold, the LBO output pin will be open or high  
impedance.  
5.2.6  
POWER GOOD OUTPUT  
For power good detection, the MCP1652 or MCP1653  
device is ideal. The power good feature compares the  
voltage on FB pin to the internal reference (±15%). If  
the FB pin is more than 15% above or below the power  
good threshold, the PG output will sink current through  
the internal open-drain MOSFET. If the output of the  
regulator is within ±15% of the output voltage, the PG  
pin will be open or high-impedance.  
2004 Microchip Technology Inc.  
DS21876A-page 19  
MCP1650/51/52/53  
6.0  
TYPICAL LAYOUT  
MCP1651R  
(+2.8V to +4.8V Input to +5V Output @ 1A)  
Coilcraft®  
DO1813HC  
TP2  
+VOUT_1  
TP1  
+VIN_1  
2A Power Train Path  
F1  
D1  
L1  
VR  
3.3 µH  
FUSE  
B330ADIC VR  
+5V Output @ 1A  
C1  
47µ  
R2  
49.9K  
R1  
100  
Single-Cell Li-Ion  
Input (2.8V to 4.8V)  
C2  
47µ  
TP3  
GND  
R3  
3.09K  
R4  
0.1  
Q1  
IRLML2502  
8
2
6
5
3
1
4
7
VIN  
GND  
LBI  
CS  
EXT  
FB  
TP4  
GND  
C3  
0.1µ  
R5  
73.2K  
0
/LBO  
0
PGND  
/SHDN  
0
0
AGND AGND  
PGND  
R7  
562  
R6  
1K  
0
MCP1651_MSOP  
R8  
49.9K  
PGND  
TP5  
/SHDN1  
0
AGND  
D2  
LED  
Low Input  
0
AGND  
Keep Away From Switching Section  
FIGURE 6-1:  
MCP1650/51/52/53 Application Schematic.  
When designing the physical layout for the MCP1650/  
51/52/53, the highest priority should be placing the  
boost power train components in order to minimize the  
size of the high current paths. It is also important to pro-  
vide ground-path separation between the large-signal  
power train ground and the small signal feedback path  
and feature grounds. In some cases, additional filtering  
The feedback resistor divider that sets the output  
voltage should be considered sensitive and be routed  
away from the power-switching components discussed  
previously.  
As shown in the diagram, R , R and the GND pin of  
6
8
the MCP1650/51/52/53 should be returned to an  
analog ground plane.  
on the V pin is helpful to minimize MCP1650/51/52/53  
IN  
The analog ground plane and power ground plane  
input noise.  
should be connected at a single point close to the input  
In this layout example, the critical power train paths are  
capacitor (C ).  
2
_
from input to output, +V 1 to F to C to L to Q to  
IN  
1
2
1
1
GND. Current will flow in this path when the switch (Q )  
1
is turned on. When Q is turned off, the path for current  
1
_
flow will quickly change to +V 1 to F to L to D to  
IN  
1
1
1
C to R4 to GND. When starting the layout for this appli-  
1
cation, both of these power train paths should be as  
short as possible. The C , Q and R GND connections  
2
1
4
should all be connected to a single “Power Ground”  
plane to minimize any wiring inductance.  
Bold traces are used to represent high-current  
connections and should be made as wide as is  
practical.  
R
and C is an optional filter that reduces the  
1
3
switching noise on the V pin of the MCP1650/51/52/  
IN  
53. This should be considered for high-power  
applications (> 1W) and bootstrap applications where  
V
of the MCP1650/51/52/53 is supplied by the output  
IN  
voltage of the boost regulator.  
DS21876A-page 20  
2004 Microchip Technology Inc.  
MCP1650/51/52/53  
Figure 6-2 represents the top wiring for the MCP1650/  
51/52/53 application shown.  
Figure 6-3 represents the bottom wiring for the  
MCP1650/51/52/53 application shown.  
As shown in Figure 6-2, the high-current wiring is short  
and wide. In this example, a 1 oz. copper layer is used  
for both the top and bottom layers. The ground plane  
connected to C2 and R4 are connected through the  
vias (holes) connecting the top and bottom layer. The  
feedback signal (from TP2) is wired from the output of  
the regulator around the high current switching section  
to the feedback voltage divider and to the FB pin of the  
MCP1650/51/52/53.  
Silk-screen reference designator labels are transparent  
from the top of the board. The analog ground plane and  
power ground plane are connected near the ground  
connection of the input capacitor (C ). This prevents  
2
high-power, ground-circulating currents from flowing  
through the analog ground plane.  
FIGURE 6-3:  
Bottom Layer Wiring.  
FIGURE 6-2:  
Top Layer Wiring.  
2004 Microchip Technology Inc.  
DS21876A-page 21  
MCP1650/51/52/53  
7.0  
PACKAGING INFORMATION  
7.1  
Package Marking Information  
Example:  
8-Lead MSOP (MCP1650, MCP1651, MCP1652)  
1650SE  
0448256  
XXXXX  
YWWNNN  
Example:  
10-Lead MSOP (MCP1653)  
1653SE  
XXXXX  
0448256  
YYWWNNN  
Legend: XX...X Customer specific information*  
YY  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
WW  
NNN  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard marking consists of Microchip part number, year code, week code, and traceability code.  
DS21876A-page 22  
2004 Microchip Technology Inc.  
MCP1650/51/52/53  
8-Lead Plastic Micro Small Outline Package (UA) (MSOP)  
E
E1  
p
D
2
1
B
n
α
A2  
A
c
φ
A1  
(F)  
L
β
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
8
.026 BSC  
0.65 BSC  
Overall Height  
A
A2  
A1  
E
-
-
.043  
-
-
0.85  
-
1.10  
Molded Package Thickness  
Standoff  
.030  
.000  
.033  
-
.037  
.006  
0.75  
0.95  
0.15  
0.00  
Overall Width  
.193 TYP.  
4.90 BSC  
Molded Package Width  
Overall Length  
E1  
D
.118 BSC  
.118 BSC  
3.00 BSC  
3.00 BSC  
Foot Length  
L
.016  
.024  
.037 REF  
.031  
0.40  
0.60  
0.95 REF  
0.80  
Footprint (Reference)  
Foot Angle  
F
φ
c
0°  
.003  
.009  
5°  
-
8°  
.009  
.016  
15°  
0°  
0.08  
0.22  
5°  
-
-
-
-
-
8°  
0.23  
0.40  
15°  
Lead Thickness  
Lead Width  
.006  
B
α
β
.012  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
-
-
5°  
15°  
5°  
15°  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MO-187  
Drawing No. C04-111  
2004 Microchip Technology Inc.  
DS21876A-page 23  
MCP1650/51/52/53  
10-Lead Plastic Micro Small Outline Package (UN) (MSOP)  
E
E1  
p
D
2
1
B
n
α
A
φ
c
A2  
A1  
L
(F)  
β
L1  
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
NOM  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
10  
.020 TYP  
10  
0.50 TYP.  
Overall Height  
Molded Package Thickness  
Standoff  
A
A2  
A1  
E
-
-
.043  
-
-
0.85  
-
1.10  
0.95  
0.15  
.030  
.000  
.033  
-
.037  
.006  
0.75  
0.00  
Overall Width  
.193 BSC  
4.90 BSC  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
.118 BSC  
.118 BSC  
3.00 BSC  
3.00 BSC  
L
.016  
.024  
.037 REF  
.031  
0.40  
0.60  
0.95 REF  
0.80  
Footprint  
F
φ
Foot Angle  
0°  
.003  
.006  
5°  
-
-
8°  
.009  
.012  
15°  
0°  
0.08  
0.15  
5°  
-
-
8°  
0.23  
0.30  
15°  
c
Lead Thickness  
Lead Width  
B
α
β
.009  
0.23  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
-
-
-
-
5°  
15°  
5°  
15°  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MO-187  
Drawing No. C04-021  
DS21876A-page 24  
2004 Microchip Technology Inc.  
MCP1650/51/52/53  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
X
X
XX  
a)  
MCP1650R-E/MS:  
2.0V Option  
Device  
UVLO  
Temperature Package  
Range  
b)  
MCP1650RT-E/MS:  
2.0V Option,  
Tape and Reel  
2.55V Option  
2.55V Option,  
Tape and Reel  
Options  
c)  
d)  
MCP1650S-E/MS:  
MCP1650ST-E/MS:  
Device  
MCP1650: 750 kHz Boost Controller  
MCP1651: 750 kHz Boost Controller  
MCP1652: 750 kHz Boost Controller  
MCP1653: 750 kHz Boost Controller  
a)  
b)  
MCP1651R-E/MS:  
MCP1651RT-E/MS:  
2.0V Option  
2.0V Option,  
Tape and Reel  
2.55V Option  
2.55V Option,  
Tape and Reel  
c)  
d)  
MCP1651S-E/MS:  
MCP1651ST-E/MS:  
UVLO Options  
R
S
=
=
2.0V  
2.55V  
a)  
b)  
MCP1652R-E/MS:  
MCP1652RT-E/MS:  
2.0V Option  
Temperature Range  
Package  
E
=
-40°C to +125°C  
2.0V Option,  
Tape and Reel  
2.55V Option  
2.55V Option,  
Tape and Reel  
c)  
d)  
MCP1652S-E/MS:  
MCP1652ST-E/MS:  
MS  
UN  
=
=
Plastic Micro Small Outline (MSOP), 8-lead  
Plastic Micro Small Outline (MSOP), 10-lead  
a)  
b)  
MCP1653R-E/UN:  
MCP1653RT-E/UN:  
2.0V Option  
2.0V Option,  
Tape and Reel  
2.55V Option  
2.55V Option,  
Tape and Reel  
c)  
d)  
MCP1653S-E/UN:  
MCP1653ST-E/UN:  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2004 Microchip Technology Inc.  
DS21876A-page 25  
MCP1650/51/52/53  
NOTES:  
DS21876A-page 26  
2004 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical  
components in life support systems is not authorized except  
with express written approval by Microchip. No licenses are  
conveyed, implicitly or otherwise, under any intellectual  
property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart and rfPIC are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER,  
SEEVAL, SmartShunt and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Application Maestro, dsPICDEM, dsPICDEM.net,  
dsPICworks, ECAN, ECONOMONITOR, FanSense,  
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,  
ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK,  
MPSIM, PICkit, PICDEM, PICDEM.net, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, rfLAB, Select Mode,  
SmartSensor, SmartTel and Total Endurance are trademarks  
of Microchip Technology Incorporated in the U.S.A. and other  
countries.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2004, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in October  
2003. The Company’s quality system processes and procedures are for  
®
its PICmicro 8-bit MCUs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
2004 Microchip Technology Inc.  
DS21876A-page 27  
M
WORLDWIDE SALES AND SERVICE  
China - Beijing  
Korea  
AMERICAS  
Unit 706B  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Corporate Office  
Wan Tai Bei Hai Bldg.  
No. 6 Chaoyangmen Bei Str.  
Beijing, 100027, China  
Tel: 86-10-85282100  
Fax: 86-10-85282104  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or  
82-2-558-5934  
Fax: 480-792-7277  
Singapore  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
China - Chengdu  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Rm. 2401-2402, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Atlanta  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Chengdu 610016, China  
Tel: 86-28-86766200  
Taiwan  
Kaohsiung Branch  
30F - 1 No. 8  
Fax: 86-28-86766599  
Boston  
Min Chuan 2nd Road  
Kaohsiung 806, Taiwan  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
China - Fuzhou  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848  
Fax: 978-692-3821  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
Tel: 86-591-7503506  
Fax: 86-591-7503521  
Taiwan  
Taiwan Branch  
Chicago  
11F-3, No. 207  
China - Hong Kong SAR  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Tel: 630-285-0071  
Fax: 630-285-0075  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200  
Dallas  
EUROPE  
Austria  
Fax: 852-2401-3431  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Durisolstrasse 2  
Room 701, Bldg. B  
A-4600 Wels  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Austria  
Detroit  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250  
Tel: 86-21-6275-5700  
Fax: 86-21-6275-5060  
Regus Business Centre  
Lautrup hoj 1-3  
China - Shenzhen  
Rm. 1812, 18/F, Building A, United Plaza  
No. 5022 Binhe Road, Futian District  
Shenzhen 518033, China  
Tel: 86-755-82901380  
Fax: 248-538-2260  
Ballerup DK-2750 Denmark  
Tel: 45-4420-9895 Fax: 45-4420-9910  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, IN 46902  
Tel: 765-864-8360  
Fax: 765-864-8387  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Fax: 86-755-8295-1393  
China - Shunde  
Room 401, Hongjian Building, No. 2  
Los Angeles  
Fengxiangnan Road, Ronggui Town, Shunde  
District, Foshan City, Guangdong 528303, China  
Tel: 86-757-28395507 Fax: 86-757-28395571  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Germany  
Tel: 949-263-1888  
China - Qingdao  
Steinheilstrasse 10  
D-85737 Ismaning, Germany  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Fax: 949-263-1338  
Rm. B505A, Fullhope Plaza,  
No. 12 Hong Kong Central Rd.  
Qingdao 266071, China  
San Jose  
1300 Terra Bella Avenue  
Mountain View, CA 94043  
Tel: 650-215-1444  
Tel: 86-532-5027355 Fax: 86-532-5027205  
Italy  
India  
Via Quasimodo, 12  
20025 Legnano (MI)  
Milan, Italy  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-22290061 Fax: 91-80-22290062  
Japan  
Fax: 650-961-0286  
Toronto  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Netherlands  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
P. A. De Biesbosch 14  
NL-5152 SC Drunen, Netherlands  
Tel: 31-416-690399  
Benex S-1 6F  
3-18-20, Shinyokohama  
ASIA/PACIFIC  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Fax: 31-416-690340  
Australia  
United Kingdom  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Australia  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Berkshire, England RG41 5TU  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
02/17/04  
DS21876A-page 28  
2004 Microchip Technology Inc.  
配单直通车
MCP16502TAA-E/S8B产品参数
型号:MCP16502TAA-E/S8B
生命周期:Active
IHS 制造商:MICROCHIP TECHNOLOGY INC
包装说明:HVQCCN,
Reach Compliance Code:compliant
Factory Lead Time:8 weeks 6 days
风险等级:2.06
可调阈值:YES
模拟集成电路 - 其他类型:POWER SUPPLY SUPPORT CIRCUIT
JESD-30 代码:S-PQCC-N32
长度:5 mm
信道数量:6
功能数量:1
端子数量:32
最高工作温度:125 °C
最低工作温度:-40 °C
封装主体材料:PLASTIC/EPOXY
封装代码:HVQCCN
封装形状:SQUARE
封装形式:CHIP CARRIER, HEAT SINK/SLUG, VERY THIN PROFILE
座面最大高度:1 mm
最大供电电压 (Vsup):5.5 V
最小供电电压 (Vsup):2.7 V
标称供电电压 (Vsup):5 V
表面贴装:YES
温度等级:AUTOMOTIVE
端子形式:NO LEAD
端子节距:0.5 mm
端子位置:QUAD
宽度:5 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!