欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • NCP1200P60G
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • NCP1200P60G图
  • 深圳市宏芯微科技有限公司

     该会员已使用本站15年以上
  • NCP1200P60G 现货库存
  • 数量15868 
  • 厂家ON 
  • 封装DIP8 
  • 批号20+ 
  • 优势库存,杜绝假冒伪劣,应对市场激烈竞争,超低价热卖!
  • QQ:1678302500QQ:1678302500 复制
  • 0755-82815382 QQ:1678302500
  • NCP1200P60G图
  • 深圳西迈尔科技有限公司

     该会员已使用本站9年以上
  • NCP1200P60G 现货库存
  • 数量10000 
  • 厂家ON 
  • 封装DIP-8 
  • 批号13+ 
  • 原装现货供应
  • QQ:13316801556QQ:13316801556 复制
    QQ:2706801556QQ:2706801556 复制
  • 13316801556 QQ:13316801556QQ:2706801556
  • NCP1200P60G图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • NCP1200P60G 现货库存
  • 数量8500 
  • 厂家原厂 
  • 封装DIP-8 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • NCP1200P60G图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • NCP1200P60G 现货库存
  • 数量60030 
  • 厂家ON/安森美 
  • 封装DIP8 
  • 批号2023+ 
  • 专营原装正品量大可定货
  • QQ:2885134554QQ:2885134554 复制
    QQ:2885134398QQ:2885134398 复制
  • 0755-22669259 QQ:2885134554QQ:2885134398
  • NCP1200P60G图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • NCP1200P60G
  • 数量5300 
  • 厂家ON(安森美) 
  • 封装DIP-8 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • NCP1200P60G图
  • 深圳市宇川湘科技有限公司

     该会员已使用本站6年以上
  • NCP1200P60G
  • 数量23000 
  • 厂家ON SEMICONDUCTOR 
  • 封装原封装 
  • 批号23+ 
  • 原装正品现货,郑重承诺只做原装!
  • QQ:2885348305QQ:2885348305 复制
    QQ:2885348305QQ:2885348305 复制
  • 0755-84534256 QQ:2885348305QQ:2885348305
  • NCP1200P60G图
  • 深圳市能元时代电子有限公司

     该会员已使用本站10年以上
  • NCP1200P60G
  • 数量50000 
  • 厂家ON/安森美 
  • 封装NA 
  • 批号24+ 
  • 公司原装现货可含税!假一罚十!
  • QQ:2885637848QQ:2885637848 复制
    QQ:2885658492QQ:2885658492 复制
  • 0755-84502810 QQ:2885637848QQ:2885658492
  • NCP1200P60G图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • NCP1200P60G
  • 数量38415 
  • 厂家TI 
  • 封装 
  • 批号24+ 
  • 原装现货
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • NCP1200P60G图
  • 深圳市勤思达科技有限公司

     该会员已使用本站14年以上
  • NCP1200P60G
  • 数量150000 
  • 厂家ON 
  • 封装DIP8 
  • 批号2019+ 
  • 全新原装,绝对正品,公司大量现货供应.
  • QQ:2881910282QQ:2881910282 复制
    QQ:2881239443QQ:2881239443 复制
  • 0755-83268779 QQ:2881910282QQ:2881239443
  • NCP1200P60G图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • NCP1200P60G
  • 数量8460 
  • 厂家ON 
  • 封装DIP-8 
  • 批号NEW 
  • 【优势库存】专业代理全新现货特价热卖
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • NCP1200P60G图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • NCP1200P60G
  • 数量15 
  • 厂家ON/安森美 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • NCP1200P60G图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • NCP1200P60G
  • 数量9000 
  • 厂家ON 
  • 封装DIP8 
  • 批号2021+ 
  • 原装特价新亚洲4B025
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • NCP1200P60G图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • NCP1200P60G
  • 数量61314 
  • 厂家ON 
  • 封装DIP-8 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • NCP1200P60G图
  • 集好芯城

     该会员已使用本站13年以上
  • NCP1200P60G
  • 数量13149 
  • 厂家ON/安森美 
  • 封装PDIP8 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • NCP1200P60G图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • NCP1200P60G
  • 数量18310 
  • 厂家ON 
  • 封装PDIP-8 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • NCP1200P60G图
  • 深圳市宇集芯电子有限公司

     该会员已使用本站6年以上
  • NCP1200P60G
  • 数量99000 
  • 厂家ON 
  • 封装DIP8 
  • 批号23+ 
  • 一级代理进口原装现货、假一罚十价格合理
  • QQ:1157099927QQ:1157099927 复制
    QQ:2039672975QQ:2039672975 复制
  • 0755-2870-8773手机微信同号13430772257 QQ:1157099927QQ:2039672975
  • NCP1200P60G图
  • 深圳市富莱微科技有限公司

     该会员已使用本站6年以上
  • NCP1200P60G
  • 数量7927 
  • 厂家ON Semiconductor 
  • 封装8-DIP 
  • 批号20+ 
  • 进口原装,公司现货
  • QQ:1968343307QQ:1968343307 复制
    QQ:2885835292QQ:2885835292 复制
  • 0755-83210149 QQ:1968343307QQ:2885835292
  • NCP1200P60G图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • NCP1200P60G
  • 数量26700 
  • 厂家ON(安森美) 
  • 封装▊原厂封装▊ 
  • 批号▊ROHS环保▊ 
  • 十年以上分销商原装进口件服务型企业0755-83790645
  • QQ:2881664479QQ:2881664479 复制
  • 755-83790645 QQ:2881664479
  • NCP1200P60G图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • NCP1200P60G
  • 数量11530 
  • 厂家STMicroelectronics 
  • 封装7-DIP 
  • 批号23+ 
  • 全新原装现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • NCP1200P60G图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • NCP1200P60G
  • 数量12245 
  • 厂家ON/安森美 
  • 封装DIP-8 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • NCP1200P60G图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • NCP1200P60G
  • 数量5000 
  • 厂家ON Semiconductor 
  • 封装贴/插片 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • NCP1200P60G图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • NCP1200P60G
  • 数量60000 
  • 厂家ON/安森美 
  • 封装DIP8 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • NCP1200P60G 其他被动元件图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • NCP1200P60G 其他被动元件
  • 数量25000 
  • 厂家ON/安森美 
  • 封装DIP 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • NCP1200P60G图
  • 深圳市凯睿晟科技有限公司

     该会员已使用本站10年以上
  • NCP1200P60G
  • 数量30000 
  • 厂家ON/安森美 
  • 封装DIP-8 
  • 批号24+ 
  • 优势供应 实单必成 可开增值税13点
  • QQ:2885648621QQ:2885648621 复制
  • 0755-23616725 QQ:2885648621
  • NCP1200P60G图
  • 深圳市奥伟斯科技有限公司

     该会员已使用本站7年以上
  • NCP1200P60G
  • 数量90000 
  • 厂家ON 
  • 封装N/A 
  • 批号11+ 
  • 安森美专业供应商
  • QQ:3003412773QQ:3003412773 复制
    QQ:3003714016QQ:3003714016 复制
  • 0755-83254770 QQ:3003412773QQ:3003714016
  • NCP1200P60G图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • NCP1200P60G
  • 数量85000 
  • 厂家ON/安森美 
  • 封装08+ 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • NCP1200P60G图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • NCP1200P60G
  • 数量13500 
  • 厂家ON 
  • 封装 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • NCP1200P60G图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • NCP1200P60G
  • 数量10000 
  • 厂家ON 
  • 封装DIP8 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • NCP1200P60G图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • NCP1200P60G
  • 数量8800 
  • 厂家ON/安森美 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • NCP1200P60G图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • NCP1200P60G
  • 数量7282 
  • 厂家ON 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • NCP1200P60G图
  • 深圳市昌和盛利电子有限公司

     该会员已使用本站11年以上
  • NCP1200P60G
  • 数量24865 
  • 厂家ON【原装正品专卖★价格最低】 
  • 封装DIP-8 
  • 批号▊ NEW ▊ 
  • ◆★█【专注原装正品现货】★价格最低★!量大可定!欢迎惠顾!(长期高价回收全新原装正品电子元器件)
  • QQ:1551106297QQ:1551106297 复制
    QQ:3059638860QQ:3059638860 复制
  • 0755-23125986 QQ:1551106297QQ:3059638860
  • NCP1200P60G图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • NCP1200P60G
  • 数量5756 
  • 厂家ON进口原装 
  • 封装DIP-8 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256

产品型号NCP1200P60G的概述

NCP1200P60G芯片概述 NCP1200P60G是一款由NXP Semiconductors推出的高性能开关电源控制器,主要用于AC-DC转换,广泛应用于各类电源适配器、LED驱动电源及各种工业控制设备中。凭借其高效率、低的待机功耗以及小巧的封装,NCP1200P60G成为了现代电子产品设计中不可或缺的重要组件。 该芯片集成了PWM(脉宽调制)控制技术,具备良好的负载调节能力和宽输入电压范围,使其能够适应不同的工作环境和应用需求。同时,NCP1200P60G还具有多种保护功能,包括过流保护、过温保护和短路保护,确保设备在各种极端条件下的安全运行。 NCP1200P60G的详细参数 NCP1200P60G的主要技术参数如下: - 输入电压范围:85V - 265V AC - 输出电流:最大600mA - 开关频率:最大100kHz - 效率:高达85% - 工作温度范围:-40°C...

产品型号NCP1200P60G的Datasheet PDF文件预览

NCP1200  
PWM Current−Mode  
Controller for Low−Power  
Universal Off−Line Supplies  
Housed in SOIC−8 or PDIP−8 package, the NCP1200 represents a  
major leap toward ultra−compact Switchmode Power Supplies. Due to  
a novel concept, the circuit allows the implementation of a complete  
offline battery charger or a standby SMPS with few external  
components. Furthermore, an integrated output short−circuit  
protection lets the designer build an extremely low−cost AC−DC wall  
adapter associated with a simplified feedback scheme.  
With an internal structure operating at a fixed 40 kHz, 60 kHz or  
100 kHz, the controller drives low gate−charge switching devices like  
an IGBT or a MOSFET thus requiring a very small operating power.  
Due to current−mode control, the NCP1200 drastically simplifies the  
design of reliable and cheap offline converters with extremely low  
acoustic generation and inherent pulse−by−pulse control.  
http://onsemi.com  
MARKING  
DIAGRAMS  
8
SOIC−8  
D SUFFIX  
CASE 751  
200Dy  
ALYW  
8
8
1
1
8
PDIP−8  
P SUFFIX  
CASE 626  
1200Pxxx  
AWL  
YYWW  
When the current setpoint falls below a given value, e.g. the output  
power demand diminishes, the IC automatically enters the skip cycle  
mode and provides excellent efficiency at light loads. Because this  
occurs at low peak current, no acoustic noise takes place.  
1
1
xxx  
y
= Device Code: 40, 60 or 100  
= Device Code:  
4 for 40  
Finally, the IC is self−supplied from the DC rail, eliminating the  
need of an auxiliary winding. This feature ensures operation in  
presence of low output voltage or shorts.  
6 for 60  
1 for 100  
A
L
= Assembly Location  
= Wafer Lot  
Features  
No Auxiliary Winding Operation  
Y, YY = Year  
W, WW = Work Week  
Internal Output Short−Circuit Protection  
Extremely Low No−Load Standby Power  
Current−Mode with Skip−Cycle Capability  
Internal Leading Edge Blanking  
250 mA Peak Current Source/Sink Capability  
Internally Fixed Frequency at 40 kHz, 60 kHz and 100 kHz  
Direct Optocoupler Connection  
Built−in Frequency Jittering for Lower EMI  
SPICE Models Available for TRANsient and AC Analysis  
Internal Temperature Shutdown  
PIN CONNECTIONS  
Adj  
FB  
1
2
3
4
8
7
6
5
HV  
NC  
V
CS  
CC  
GND  
Drv  
(Top View)  
Pb−Free Packages are Available  
ORDERING INFORMATION  
Typical Applications  
See detailed ordering and shipping information in the package  
dimensions section on page 14 of this data sheet.  
AC−DC Adapters  
Offline Battery Chargers  
Auxiliary/Ancillary Power Supplies (USB, Appliances, TVs, etc.)  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
December, 2004 − Rev. 13  
NCP1200/D  
NCP1200  
*
6.5 V @ 600 mA  
C2  
470 mF/10 V  
C3  
10 mF  
400 V  
+
+
D2  
1N5819  
HV  
NC  
1
2
3
4
8
7
6
5
Adj  
FB  
CS  
V
CC  
M1  
MTD1N60E  
Rf  
GND Drv  
470  
EMI  
Filter  
+
C5  
R
sense  
10 mF  
D8  
5 V1  
Universal Input  
*Please refer to the application information section  
Figure 1. Typical Application  
PIN FUNCTION DESCRIPTION  
Pin No. Pin Name  
Function  
Description  
1
2
3
Adj  
FB  
CS  
Adjust the Skipping Peak Current  
This pin lets you adjust the level at which the cycle skipping process takes  
place.  
Sets the Peak Current Setpoint  
Current Sense Input  
By connecting an Optocoupler to this pin, the peak current setpoint is ad-  
justed accordingly to the output power demand.  
This pin senses the primary current and routes it to the internal comparator  
via an L.E.B.  
4
5
6
7
8
GND  
Drv  
The IC Ground  
Driving Pulses  
Supplies the IC  
No Connection  
The driver’s output to an external MOSFET.  
V
CC  
This pin is connected to an external bulk capacitor of typically 10 mF.  
This un−connected pin ensures adequate creepage distance.  
Connected to the high−voltage rail, this pin injects a constant current into  
NC  
HV  
Generates the V from the Line  
CC  
the V bulk capacitor.  
CC  
http://onsemi.com  
2
NCP1200  
8
7
6
5
1
2
3
4
Adj  
FB  
HV  
NC  
HV Current  
Source  
Skip Cycle  
Comparator  
75.5 k  
1.4 V  
+
UVLO  
Internal  
High and Low  
Internal Regulator  
V
CC  
29 k  
Q Flip−Flop  
DCmax = 80%  
Set  
40, 60 or  
100 kHz  
Clock  
Q
Current  
Sense  
250 ns  
L.E.B.  
V
CC  
Reset  
+
8 k  
60 k  
Ground  
Drv  
+
V
5.2 V  
1 V  
ref  
±110 mA  
20 k  
Overload?  
Fault Duration  
Figure 2. Internal Circuit Architecture  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Units  
V
Power Supply Voltage  
V
R
16  
CC  
Thermal Resistance Junction−to−Air, PDIP−8 version  
Thermal Resistance Junction−to−Air, SOIC version  
100  
178  
°C/W  
q
q
JA  
JA  
R
Maximum Junction Temperature  
Typical Temperature Shutdown  
T
150  
140  
°C  
Jmax  
Storage Temperature Range  
T
−60 to +150  
°C  
kV  
V
stg  
ESD Capability, HBM Model (All Pins except V and HV)  
2.0  
200  
450  
500  
30  
CC  
ESD Capability, Machine Model  
Maximum Voltage on Pin 8 (HV), pin 6 (V ) Grounded  
V
CC  
Maximum Voltage on Pin 8 (HV), Pin 6 (V ) Decoupled to Ground with 10 mF  
V
CC  
Minimum Operating Voltage on Pin 8 (HV)  
V
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
http://onsemi.com  
3
NCP1200  
ELECTRICAL CHARACTERISTICS (For typical values T = +25°C, for min/max values T = −25°C to +125°C, Max T = 150°C,  
J
J
J
V
CC  
= 11 V unless otherwise noted)  
Rating  
DYNAMIC SELF−SUPPLY (All Frequency Versions, Otherwise Noted)  
Pin  
Symbol  
Min  
Typ  
Max  
Unit  
V
V
V
Increasing Level at Which the Current Source Turns−off  
Decreasing Level at Which the Current Source Turns−on  
Decreasing Level at Which the Latchoff Phase Ends  
6
6
6
6
V
10.3  
8.8  
11.4  
9.8  
12.5  
11  
V
V
CC  
CC  
CC  
CCOFF  
V
CCON  
V
6.3  
V
CClatch  
Internal IC Consumption, No Output Load on Pin 5  
Internal IC Consumption, 1 nF Output Load on Pin 5, F  
Internal IC Consumption, 1 nF Output Load on Pin 5, F  
Internal IC Consumption, 1 nF Output Load on Pin 5, F  
I
I
I
I
I
710  
880  
mA  
CC1  
CC2  
CC2  
CC2  
CC3  
Note 1  
= 40 kHz  
= 60 kHz  
= 100 kHz  
6
6
6
6
1.2  
1.4  
1.9  
350  
1.4  
mA  
mA  
mA  
mA  
SW  
SW  
SW  
Note 2  
1.6  
Note 2  
2.2  
Note 2  
Internal IC Consumption, Latchoff Phase  
INTERNAL CURRENT SOURCE  
High−voltage Current Source, V = 10 V  
8
8
I
I
2.8  
4.0  
4.9  
mA  
mA  
CC  
C1  
High−voltage Current Source, V = 0 V  
CC  
C2  
DRIVE OUTPUT  
Output Voltage Rise−time @ CL = 1 nF, 10−90% of Output Signal  
Output Voltage Fall−time @ CL = 1 nF, 10−90% of Output Signal  
5
5
5
5
T
67  
28  
40  
12  
ns  
ns  
W
r
T
f
Source Resistance (drive = 0, Vgate = V  
− 1 V)  
R
27  
5
61  
25  
CCHMAX  
OH  
Sink Resistance (drive = 11 V, Vgate = 1 V)  
CURRENT COMPARATOR (Pin 5 Un−loaded)  
Input Bias Current @ 1 V Input Level on Pin 3  
Maximum internal Current Setpoint  
R
W
OL  
IB  
3
3
3
3
3
I
0.8  
0.02  
0.9  
1.0  
mA  
V
I
Limit  
Default Internal Current Setpoint for Skip Cycle Operation  
Propagation Delay from Current Detection to Gate OFF State  
Leading Edge Blanking Duration  
I
350  
100  
230  
mV  
ns  
ns  
Lskip  
T
160  
DEL  
LEB  
T
INTERNAL OSCILLATOR (V = 11 V, Pin 5 Loaded by 1 kW)  
CC  
Oscillation Frequency, 40 kHz Version  
Oscillation Frequency, 60 kHz Version  
Oscillation Frequency, 100 kHz Version  
f
f
f
36  
52  
86  
42  
61  
48  
70  
116  
kHz  
kHz  
kHz  
Hz/V  
Hz/V  
Hz/V  
%
OSC  
OSC  
OSC  
103  
300  
450  
620  
80  
Built−in Frequency Jittering, F  
Built−in Frequency Jittering, F  
Built−in Frequency Jittering, F  
Maximum Duty Cycle  
= 40 kHz  
= 60 kHz  
= 100 kHz  
f
SW  
SW  
SW  
jitter  
jitter  
jitter  
f
f
Dmax  
74  
87  
FEEDBACK SECTION (V = 11 V, Pin 5 Loaded by 1 kW)  
CC  
Internal Pullup Resistor  
2
Rup  
8.0  
4.0  
kW  
Pin 3 to Current Setpoint Division Ratio  
SKIP CYCLE GENERATION  
Default skip mode level  
Iratio  
1
1
Vskip  
Zout  
1.1  
1.4  
25  
1.6  
V
Pin 1 internal output impedance  
kW  
1. Max value @ T = −25°C.  
J
2. Max value @ T = 25°C, please see characterization curves.  
J
http://onsemi.com  
4
 
NCP1200  
60  
50  
40  
30  
20  
10  
0
11.70  
11.60  
11.50  
11.40  
11.30  
11.20  
11.10  
100 kHz  
60 kHz  
40 kHz  
−25  
0
25  
50  
75  
100  
125  
125  
125  
−25  
0
25  
50  
75  
100  
125  
125  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 3. HV Pin Leakage Current vs.  
Temperature  
Figure 4. VCC OFF vs. Temperature  
9.85  
9.80  
9.75  
9.70  
9.65  
9.60  
9.55  
9.50  
9.45  
900  
850  
800  
750  
100 kHz  
60 kHz  
100 kHz  
40 kHz  
700  
650  
600  
60 kHz  
40 kHz  
50  
−25  
0
25  
50  
75  
100  
−25  
0
25  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. VCC ON vs. Temperature  
Figure 6. ICC1 vs. Temperature  
2.10  
1.90  
110  
104  
100 kHz  
100 kHz  
98  
92  
86  
80  
74  
68  
62  
56  
50  
44  
38  
1.70  
1.50  
1.30  
1.10  
60 kHz  
40 kHz  
60 kHz  
40 kHz  
0.90  
−25  
0
25  
50  
75  
100  
−25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. ICC2 vs. Temperature  
Figure 8. Switching Frequency vs. TJ  
http://onsemi.com  
5
NCP1200  
6.50  
6.45  
6.40  
6.35  
6.30  
6.25  
6.20  
460  
430  
400  
370  
340  
310  
280  
250  
220  
190  
−25  
0
25  
50  
75  
100  
125  
125  
125  
−25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. VCC Latchoff vs. Temperature  
Figure 10. ICC3 vs. Temperature  
60  
50  
40  
30  
20  
10  
0
1.00  
0.96  
0.92  
0.88  
0.84  
Source  
Sink  
0.80  
−25  
0
25  
50  
75  
100  
−25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. DRV Source/Sink Resistances  
Figure 12. Current Sense Limit vs. Temperature  
1.34  
1.33  
86.0  
84.0  
1.32  
1.31  
1.30  
1.29  
82.0  
80.0  
78.0  
76.0  
74.0  
1.28  
−25  
0
25  
50  
75  
100  
−25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. Vskip vs. Temperature  
Figure 14. Max Duty Cycle vs. Temperature  
http://onsemi.com  
6
NCP1200  
APPLICATIONS INFORMATION  
INTRODUCTION  
Dynamic Self−Supply  
The NCP1200 implements a standard current mode  
architecture where the switch−off time is dictated by the  
peak current setpoint. This component represents the ideal  
candidate where low part−count is the key parameter,  
particularly in low−cost AC−DC adapters, auxiliary  
supplies etc. Due to its high−performance High−Voltage  
technology, the NCP1200 incorporates all the necessary  
components normally needed in UC384X based supplies:  
timing components, feedback devices, low−pass filter and  
self−supply. This later point emphasizes the fact that ON  
Semiconductor’s NCP1200 does NOT need an auxiliary  
winding to operate: the product is naturally supplied from  
The DSS principle is based on the charge/discharge of the  
V
bulk capacitor from a low level up to a higher level. We  
CC  
can easily describe the current source operation with a bunch  
of simple logical equations:  
POWER−ON: IF V < V  
THEN Current Source  
CC  
CCOFF  
is ON, no output pulses  
IF V decreasing > V  
OFF, output is pulsing  
THEN Current Source is  
THEN Current Source is  
CC  
CCON  
IF V increasing < V  
CC  
CCOFF  
ON, output is pulsing  
Typical values are: V  
= 11.4 V, V  
= 9.8 V  
CCOFF  
CCON  
To better understand the operational principle, Figure 15’s  
sketch offers the necessary light:  
the high−voltage rail and delivers a V to the IC. This  
CC  
system is called the Dynamic Self−Supply (DSS).  
V
= 11.4 V  
CCOFF  
V
CC  
10.6 V Avg.  
V
CCON  
= 9.8 V  
ON  
OFF  
Current  
Source  
Output Pulses  
50.00M 70.00M  
10.00M  
30.00M  
90.00M  
Figure 15. The Charge/Discharge Cycle  
Over a 10 mF VCC Capacitor  
The DSS behavior actually depends on the internal IC  
consumption and the MOSFET’s gate charge, Qg. If we  
select a MOSFET like the MTD1N60E, Qg equals 11 nC  
(max). With a maximum switching frequency of 48 kHz (for  
the P40 version), the average power necessary to drive the  
MOSFET (excluding the driver efficiency and neglecting  
various voltage drops) is:  
. 0.16 = 256 mW. If for design reasons this contribution is  
still too high, several solutions exist to diminish it:  
1. Use a MOSFET with lower gate charge Qg  
2. Connect pin through a diode (1N4007 typically) to  
one of the mains input. The average value on pin 8  
2 * V  
mains PEAK  
becomes  
. Our power contribution  
p
example drops to: 160 mW.  
Fsw @ Qg @ V  
with  
cc  
Fsw = maximum switching frequency  
Qg = MOSFET’s gate charge  
Dstart  
1N4007  
V
CC  
= V level applied to the gate  
GS  
To obtain the final driver contribution to the IC  
C3  
4.7 mF  
400 V  
+
NCP1200  
consumption, simply divide this result by V : Idriver =  
CC  
HV  
NC  
1
2
3
4
8
7
6
5
Fsw @ Qg = 530 mA. The total standby power consumption  
at no−load will therefore heavily rely on the internal IC  
consumption plus the above driving current (altered by the  
driver’s efficiency). Suppose that the IC is supplied from a  
400 V DC line. To fully supply the integrated circuit, let’s  
imagine the 4 mA source is ON during 8 ms and OFF during  
50 ms. The IC power contribution is therefore: 400 V . 4 mA  
Adj  
FB  
CS  
V
CC  
EMI  
Filter  
GND Drv  
Figure 16. A simple diode naturally reduces the  
average voltage on pin 8  
http://onsemi.com  
7
 
NCP1200  
3. Permanently force the V level above V  
with  
When FB is above the skip cycle threshold (1.4 V by  
CC  
CCH  
an auxiliary winding. It will automatically  
default), the peak current cannot exceed 1 V/Rsense. When  
the IC enters the skip cycle mode, the peak current cannot go  
below Vpin1 / 4 (Figure 19). The user still has the flexibility  
to alter this 1.4 V by either shunting pin 1 to ground through  
a resistor or raising it through a resistor up to the desired  
level.  
disconnect the internal startup source and the IC  
will be fully self−supplied from this winding.  
Again, the total power drawn from the mains will  
significantly decrease. Make sure the auxiliary  
voltage never exceeds the 16 V limit.  
Skipping Cycle Mode  
The NCP1200 automatically skips switching cycles when  
the output power demand drops below a given level. This is  
accomplished by monitoring the FB pin. In normal  
operation, pin 2 imposes a peak current accordingly to the  
load value. If the load demand decreases, the internal loop  
asks for less peak current. When this setpoint reaches a  
determined level, the IC prevents the current from  
decreasing further down and starts to blank the output  
pulses: the IC enters the so−called skip cycle mode, also  
named controlled burst operation. The power transfer now  
depends upon the width of the pulse bunches (Figure 18 ).  
Suppose we have the following component values:  
P1  
P2  
P3  
Figure 18. Output pulses at various power levels  
Lp, primary inductance = 1 mH  
(X = 5 ms/div) P1<P2<P3  
F , switching frequency = 48 kHz  
SW  
Ip skip = 300 mA (or 350 mV / Rsense)  
Max Peak  
Current  
The theoretical power transfer is therefore:  
1
2
@ Lp @ Ip2 @ Fsw + 2.2 W  
If this IC enters skip cycle mode with a bunch length of  
Skip Cycle  
Current Limit  
10 ms over a recurrent period of 100 ms, then the total power  
transfer is: 2.2 . 0.1 = 220 mW.  
To better understand how this skip cycle mode takes place,  
a look at the operation mode versus the FB level  
immediately gives the necessary insight:  
FB  
4.8 V  
3.8 V  
Figure 19. The skip cycle takes place at low peak  
currents which guarantees noise free operation  
Normal Current Mode Operation  
1.4 V  
Skip Cycle Operation  
Ip  
min  
= 350 mV / R  
sense  
Figure 17. Feedback Voltage Variations  
http://onsemi.com  
8
 
NCP1200  
Power Dissipation  
Overload Operation  
The NCP1200 is directly supplied from the DC rail  
through the internal DSS circuitry. The current flowing  
through the DSS is therefore the direct image of the  
NCP1200 current consumption. The total power dissipation  
can be evaluated using: (VHVDC * 11 V) @ ICC2. If we  
operate the device on a 250 VAC rail, the maximum rectified  
voltage can go up to 350 VDC. As a result, the worse case  
dissipation occurs on the 100 kHz version which will  
dissipate 340 . 1.8 mA@Tj = −25°C = 612 mW (however  
this 1.8 mA number will drop at higher operating  
In applications where the output current is purposely not  
controlled (e.g. wall adapters delivering raw DC level), it is  
interesting to implement a true short−circuit protection. A  
short−circuit actually forces the output voltage to be at a low  
level, preventing a bias current to circulate in the  
optocoupler LED. As a result, the FB pin level is pulled up  
to 4.1 V, as internally imposed by the IC. The peak current  
setpoint goes to the maximum and the supply delivers a  
rather high power with all the associated effects. Please note  
that this can also happen in case of feedback loss, e.g. a  
broken optocoupler. To account for this situation, the  
NCP1200 hosts a dedicated overload detection circuitry.  
Once activated, this circuitry imposes to deliver pulses in a  
burst manner with a low duty cycle. The system recovers  
when the fault condition disappears.  
temperatures). Please note that in the above example, I  
CC2  
is based on a 1 nF capacitor loading pin 5. As seen before,  
will depend on your MOSFET’s Q : I = I + F  
I
CC2  
g
CC2  
CC1  
sw  
x Q . Final calculations shall thus account for the total  
g
gate−charge Q your MOSFET will exhibit. A DIP8  
g
During the startup phase, the peak current is pushed to the  
maximum until the output voltage reaches its target and the  
feedback loop takes over. This period of time depends on  
normal output load conditions and the maximum peak  
current allowed by the system. The time−out used by this IC  
package offers a junction−to−ambient thermal resistance  
of R  
100°C/W. The maximum power dissipation can  
qJ−A  
thus be computed knowing the maximum operating  
ambient temperature (e.g. 70°C) together with the  
maximum allowable junction temperature (125°C):  
TJmax * TAmax  
works with the V decoupling capacitor: as soon as the  
CC  
Pmax +  
= 550 mW. As we can see, we do not  
V
CC  
decreases from the V  
level (typically 11.4 V) the  
RRqJ*A  
CCOFF  
device internally watches for an overload current situation.  
If this condition is still present when V is reached, the  
controller stops the driving pulses, prevents the self−supply  
current source to restart and puts all the circuitry in standby,  
reach the worse consumption budget imposed by the 100  
kHz version. Two solutions exist to cure this trouble. The  
first one consists in adding some copper area around the  
CCON  
NCP1200 DIP8 footprint. By adding a min−pad area of 80  
2
consuming as little as 350 mA typical (I parameter). As  
mm of 35 m copper (1 oz.) R  
drops to about 75°C/W  
CC3  
qJ−A  
a result, the V level slowly discharges toward 0. When  
which allows the use of the 100 kHz version. The other  
solutions are:  
CC  
this level crosses 6.3 V typical, the controller enters a new  
startup phase by turning the current source on: V rises  
1. Add a series diode with pin 8 (as suggested in the  
above lines) to drop the maximum input voltage  
down to 222 V ((2   350)/pi) and thus dissipate  
less than 400 mW  
CC  
toward 11.4 V and again delivers output pulses at the  
UVLO crossing point. If the fault condition has been  
H
removed before UVLO approaches, then the IC continues  
L
its normal operation. Otherwise, a new fault cycle takes  
place. Figure 20 shows the evolution of the signals in  
presence of a fault.  
2. Implement a self−supply through an auxiliary  
winding to permanently disconnect the self−supply.  
SOIC−8 package offers a worse R  
compared to that of  
qJ−A  
the DIP8 package: 178°C/W. Again, adding some copper  
area around the PCB footprint will help decrease this  
number: 12 mm x 12 mm to drop R  
down to 100°C/W  
qJ−A  
with 35 m copper thickness (1 oz.) or 6.5 mm x 6.5 mm with  
70 m copper thickness (2 oz.). One can see, we do not  
recommend using the SOIC package for the 100 kHz version  
with DSS active as the IC may not be able to sustain the  
power (except if you have the adequate place on your PCB).  
However, using the solution of the series diode or the  
self−supply through the auxiliary winding does not cause  
any problem with this frequency version. These options are  
thoroughly described in the AND8023/D.  
http://onsemi.com  
9
NCP1200  
V
CC  
Regulation  
Occurs Here  
11.4 V  
Latchoff  
Phase  
9.8 V  
6.3 V  
Time  
Drv  
Driver  
Driver  
Pulses  
Pulses  
Time  
Time  
Internal  
Fault  
Flag  
Fault is  
Relaxed  
Startup Phase  
Fault Occurs Here  
Figure 20. If the fault is relaxed during the VCC natural fall down sequence, the IC automatically resumes.  
If the fault persists when VCC reached UVLOL, then the controller cuts everything off until recovery.  
Calculating the V Capacitor  
As the above section describes, the fall down sequence  
Protecting the Controller Against Negative Spikes  
As with any controller built upon a CMOS technology, it  
is the designer’s duty to avoid the presence of negative  
spikes on sensitive pins. Negative signals have the bad habit  
to forward bias the controller substrate and induce erratic  
behaviors. Sometimes, the injection can be so strong that  
internal parasitic SCRs are triggered, engendering  
irremediable damages to the IC if they are a low impedance  
CC  
depends upon the V level: how long does it take for the  
CC  
V
CC  
line to go from 11.4 V to 9.8 V? The required time  
depends on the startup sequence of your system, i.e. when  
you first apply the power to the IC. The corresponding  
transient fault duration due to the output capacitor charging  
must be less than the time needed to discharge from 11.4 V  
to 9.8 V, otherwise the supply will not properly start. The test  
consists in either simulating or measuring in the lab how  
much time the system takes to reach the regulation at full  
load. Let’s suppose that this time corresponds to 6ms.  
path is offered between V and GND. If the current sense  
CC  
pin is often the seat of such spurious signals, the  
high−voltage pin can also be the source of problems in  
certain circumstances. During the turn−off sequence, e.g.  
when the user unplugs the power supply, the controller is still  
Therefore a V  
fall time of 10 ms could be well  
CC  
appropriated in order to not trigger the overload detection  
circuitry. If the corresponding IC consumption, including  
the MOSFET drive, establishes at 1.5 mA, we can calculate  
the required capacitor using the following formula:  
DV @ C  
fed by its V capacitor and keeps activating the MOSFET  
CC  
ON and OFF with a peak current limited by Rsense.  
Unfortunately, if the quality coefficient Q of the resonating  
network formed by Lp and Cbulk is low (e.g. the MOSFET  
Rdson + Rsense are small), conditions are met to make the  
circuit resonate and thus negatively bias the controller. Since  
we are talking about ms pulses, the amount of injected  
charge (Q = I x t) immediately latches the controller which  
Dt +  
, with DV = 2V. Then for a wanted Dt of 10 ms,  
i
C equals 8 mF or 10 mF for a standard value. When an  
overload condition occurs, the IC blocks its internal  
circuitry and its consumption drops to 350 mA typical. This  
brutally discharges its V capacitor. If this V capacitor  
CC  
CC  
appends at V = 9.8 V and it remains stuck until V  
CC  
CC  
is of sufficient value, its stored energy damages the  
controller. Figure 21 depicts a typical negative shot  
reaches 6.5 V: we are in latchoff phase. Again, using the  
calculated 10 mF and 350 mA current consumption, this  
latchoff phase lasts: 109 ms.  
occurring on the HV pin where the brutal V discharge  
CC  
testifies for latchup.  
http://onsemi.com  
10  
NCP1200  
Figure 21. A negative spike takes place on the Bulk capacitor at the switch−off sequence  
Simple and inexpensive cures exist to prevent from  
internal parasitic SCR activation. One of them consists in  
inserting a resistor in series with the high−voltage pin to  
keep the negative current to the lowest when the bulk  
becomes negative (Figure 22). Please note that the negative  
spike is clamped to –2 x Vf due to the diode bridge. Please  
refer to AND8069/D for power dissipation calculations.  
Another option (Figure 23) consists in wiring a diode from  
to the bulk capacitor to force V to reach UVLOlow  
sooner and thus stops the switching activity before the bulk  
capacitor gets deeply discharged. For security reasons, two  
diodes can be connected in series.  
V
CC  
CC  
3
Rbulk  
> 4.7 k  
2
3
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
D3  
1N4007  
+
+
Cbulk  
Cbulk  
1
1
+
CV  
+
CV  
CC  
CC  
Figure 22. A simple resistor in series avoids any  
latchup in the controller  
Figure 23. or a diode forces VCC to reach  
UVLOlow sooner  
A Typical Application  
inherent short−circuit protection of the NCP1200, you only  
need a bunch of components around the IC, keeping the final  
cost at an extremely low level. The transformer is available  
from different suppliers as detailed on the following page.  
Figure 24 depicts a low−cost 3.5 W AC−DC 6.5 V wall  
adapter. This is a typical application where the wall−pack  
must deliver a raw DC level to a given internally regulated  
apparatus: toys, calculators, CD players etc. Due to the  
http://onsemi.com  
11  
 
NCP1200  
R7  
Clamping  
Network  
L5  
330 mH  
L4  
2.2 mH  
6.5 V @ 600 mA  
R
clamp  
+
+
D3  
1N5819  
C5  
470 mF/  
10 V  
C10  
4.7 mF/  
10 V  
C3  
4.7 mF  
400 V  
C2  
4.7 mF  
400 V  
+
+
Clamp  
T1  
NCP1200  
D
clamp  
1
2
3
4
HV  
Adj  
8
7
6
5
Snubber  
Optional  
Networks  
FB  
NC  
R2  
220  
CS  
V
CC  
R
Snubber  
GND Drv  
M1  
C
Snubber  
MTD1N60E  
Universal  
Input  
+
R6  
2.8  
C9  
10 mF  
L6  
330 mH  
R9  
10  
D6  
5 V1  
IC1  
SFH615A−2  
Figure 24. A typical AC−DC wall adapter showing the reduced part count due to the NCP1200  
T1: Lp = 2.9 mH, Np:Ns = 1:0.08, leakage = 80 mH, E16 core, NCP1200P40  
To help designers during the design stage, several manufacturers propose ready−to−use transformers for the above  
application, but can also develop devices based on your particular specification:  
Eldor Corporation Headquarter  
Via Plinio 10,  
Atelier Special de Bobinage  
125 cours Jean Jaures  
22030 Orsenigo  
38130 ECHIROLLES FRANCE  
Tel.: 33 (0)4 76 23 02 24  
(Como) Italia  
Tel.: +39−031−636 111  
Fax: 33 (0)4 76 22 64 89  
Fax : +39−031−636 280  
Email: eldor@eldor.it  
Email: asb@wanadoo.fr  
ref. 1: NCP1200−10 W−UM: 10 W for USB  
(Lp = 1.8 mH, 60 kHz, 1:0.1, RM8 pot core)  
Coilcraft  
www.eldor.it  
ref. 1: 2262.0058C: 3.5 W version  
(Lp = 2.9 mH, Lleak = 80 mH, E16)  
ref. 2: 2262.0059A: 5 W version  
(Lp = 1.6 mH, Lleak = 45 mH, E16)  
EGSTON GesmbH  
1102 Silver Lake Road  
Cary, Illinois 60013 USA  
Tel: (847) 639−6400  
Fax: (847) 639−1469  
Grafenbergerstrabe 37  
Email: info@coilcraft.com  
http://www.coilcraft.com  
3730 Eggenburg  
Austria  
ref. 1: Y8844−A: 3.5 W version  
(Lp = 2.9 mH, Lleak = 65 mH, E16)  
ref. 2: Y8848−A: 10 W version  
(Lp = 1.8 mH, Lleak = 45 mH, 1:01, E core)  
Tel.: +43 (2984) 2226−0  
Fax : +43 (2984) 2226−61  
Email: info@egston.com  
http://www.egston.com/english/index.htm  
ref. 1: F0095001: 3.5 W version  
(Lp = 2.7 mH, Lleak = 30 mH, sandwich configuration, E16)  
http://onsemi.com  
12  
NCP1200  
Improving the Output Drive Capability  
1
2
3
4
8
7
6
5
The NCP1200 features an asymmetrical output stage used  
to soften the EMI signature. Figure 25 depicts the way the  
driver is internally made:  
2N2222  
2N2907  
NCP1200  
Rd  
To Gate  
V
CC  
Q
2
7
40  
Figure 26. Improving Both Turn−On and  
Turn−Off Times  
1
5
12  
1
2
3
4
8
7
6
5
Q\  
NCP1200  
3
1N4148  
To Gate  
2N2907  
Figure 25. The higher ON resistor slows down  
the MOSFET while the lower OFF resistor  
ensures fast turn−off.  
In some cases, it is possible to expand the output drive  
capability by adding either one or two bipolar transistors.  
Figures 26, 27, and 28 give solutions whether you need to  
improve the turn−on time only, the turn−off time or both. Rd  
is there to damp any overshoot resulting from long copper  
traces. It can be omitted with short connections. Results  
showed a rise fall time improvement by 5X with standard  
2N2222/2N2907:  
Figure 27. Improving Turn−Off Time Only  
1
2
3
4
8
7
NCP1200  
2N2222  
To Gate  
6
5
1N4148  
Figure 28. Improving Turn−On Time Only  
http://onsemi.com  
13  
 
NCP1200  
If the leakage inductance is kept low, the MTD1N60E can  
withstand accidental avalanche energy, e.g. during a  
high−voltage spike superimposed over the mains, without  
the help of a clamping network. If this leakage path  
permanently forces a drain−source voltage above the  
MOSFET BVdss (600 V), a clamping network is mandatory  
and must be built around Rclamp and Clamp. Dclamp shall  
react extremely fast and can be a MUR160 type. To calculate  
the component values, the following formulas will help you:  
V
: the clamping ripple, could be around 20 V  
Another option lies in implementing a snubber network  
ripple  
which will damp the leakage oscillations but also provide  
more capacitance at the MOSFET’s turn−off. The peak  
voltage at which the leakage forces the drain is calculated  
by:  
L
leak  
V
+ Ip @  
Ǹ
max  
C
lump  
R
clamp =  
where C  
represents the total parasitic capacitance seen  
lump  
at the MOSFET opening. Typical values for Rsnubber and  
Csnubber in this 4W application could respectively be 1.5  
kW and 47 pF. Further tweaking is nevertheless necessary to  
tune the dissipated power versus standby power.  
2 @ V  
@ (V  
* (V  
) Vf sec) @ N)  
out  
clamp  
clamp  
L
@ Ip2 @ Fsw  
leak  
V
clamp  
@ Fsw @ R  
C
+
Available Documents  
clamp  
V
ripple  
clamp  
“Implementing the NCP1200 in Low−cost AC−DC  
Converters”, AND8023/D.  
with:  
V
: the desired clamping level, must be selected to be  
clamp  
“Conducted EMI Filter Design for the NCP1200’’,  
AND8032/D.  
between 40 V to 80 V above the reflected output voltage  
when the supply is heavily loaded.  
“Ramp Compensation for the NCP1200’’, AND8029/D.  
V
+ Vf: the regulated output voltage level + the secondary  
out  
TRANSient and AC models available to download at:  
http://onsemi.com/pub/NCP1200  
diode voltage drop  
L
leak  
: the primary leakage inductance  
NCP1200 design spreadsheet available to download at:  
http://onsemi.com/pub/NCP1200  
N: the Ns:Np conversion ratio  
: the switching frequency  
F
SW  
ORDERING INFORMATION  
Device  
Type  
Marking  
Package  
Shipping  
NCP1200P40  
1200P40  
PDIP−8  
50 Units / Rail  
NCP1200P40G  
1200P40  
PDIP−8  
50 Units / Rail  
(Pb−Free)  
F
SW  
= 40 kHz  
NCP1200D40R2  
200D4  
200D4  
SOIC−8  
2500 Units /Reel  
2500 Units /Reel  
NCP1200D40R2G  
SOIC−8  
(Pb−Free)  
NCP1200P60  
1200P60  
1200P60  
PDIP−8  
50 Units / Rail  
50 Units / Rail  
NCP1200P60G  
PDIP−8  
(Pb−Free)  
F
SW  
= 60 kHz  
NCP1200D60R2  
200D6  
200D6  
SOIC−8  
2500 Units /Reel  
2500 Units /Reel  
NCP1200D60R2G  
SOIC−8  
(Pb−Free)  
NCP1200P100  
1200P100  
1200P100  
PDIP−8  
50 Units / Rail  
50 Units / Rail  
NCP1200P100G  
PDIP−8  
(Pb−Free)  
F
SW  
= 100 kHz  
NCP1200D100R2  
NCP1200D100R2G  
200D1  
200D1  
SOIC−8  
2500 Units / Reel  
2500 Units / Reel  
SOIC−8  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
14  
NCP1200  
PACKAGE DIMENSIONS  
SOIC−8  
D SUFFIX  
CASE 751−07  
ISSUE AC  
NOTES:  
−X−  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
8
5
4
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
C
N X 45  
_
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
SEATING  
PLANE  
−Z−  
0.10 (0.004)  
1.27 BSC  
0.050 BSC  
M
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
J
H
D
8
0
_
_
_
_
M
S
S
X
0.25 (0.010)  
Z
Y
0.25  
5.80  
0.50 0.010  
6.20 0.228  
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
0.275  
4.0  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
15  
NCP1200  
PACKAGE DIMENSIONS  
PDIP−8  
P SUFFIX  
CASE 626−05  
ISSUE L  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
8
5
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
−B−  
1
4
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
0.370  
0.240  
0.155  
0.015  
0.040  
F
−A−  
NOTE 2  
L
G
H
J
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
K
L
C
7.62 BSC  
0.300 BSC  
M
N
−−−  
0.76  
10  
_
1.01  
−−−  
0.030  
10  
_
0.040  
J
−T−  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
0.13 (0.005)  
T
A
B
The product described herein (NCP1200), may be covered by the following U.S. patents: 6,271,735, 6,362,067, 6,385,060, 6,429,709, 6,587,357. There may  
be other patents pending.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCP1200/D  
配单直通车
NCP1200P60G产品参数
型号:NCP1200P60G
Brand Name:ON Semiconductor
是否无铅: 不含铅
生命周期:Not Recommended
零件包装代码:DIP
包装说明:DIP, DIP8,.3
针数:8
制造商包装代码:626-05
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
Factory Lead Time:1 week
风险等级:6.84
模拟集成电路 - 其他类型:SWITCHING CONTROLLER
控制模式:CURRENT-MODE
控制技术:PULSE WIDTH MODULATION
最小输入电压:11 V
标称输入电压:11 V
JESD-30 代码:R-PDIP-T8
JESD-609代码:e3
长度:9.78 mm
功能数量:1
端子数量:8
最大输出电流:0.25 A
封装主体材料:PLASTIC/EPOXY
封装代码:DIP
封装等效代码:DIP8,.3
封装形状:RECTANGULAR
封装形式:IN-LINE
峰值回流温度(摄氏度):260
认证状态:Not Qualified
座面最大高度:4.45 mm
子类别:Switching Regulator or Controllers
表面贴装:NO
切换器配置:SINGLE
最大切换频率:70 kHz
技术:CMOS
端子面层:Tin (Sn)
端子形式:THROUGH-HOLE
端子节距:2.54 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:40
宽度:7.62 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!