欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • NCP1216D65R2G
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • NCP1216D65R2G图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • NCP1216D65R2G 现货库存
  • 数量8821 
  • 厂家ON(安森美) 
  • 封装8-SOIC(0.154,3.90mm 宽) 
  • 批号22+ 
  • 原装正品现货,可开专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • NCP1216D65R2G图
  • 深圳市恒意法科技有限公司

     该会员已使用本站17年以上
  • NCP1216D65R2G 现货库存
  • 数量21000 
  • 厂家ON/安森美 
  • 封装SOP8 
  • 批号21+ 
  • 专营原装正品现货,当天发货,可开发票!
  • QQ:2881514372QQ:2881514372 复制
  • 0755-83247729 QQ:2881514372
  • NCP1216D65R2G图
  • 深圳市宏芯微科技有限公司

     该会员已使用本站15年以上
  • NCP1216D65R2G 现货库存
  • 数量15868 
  • 厂家ON 
  • 封装SOP-8 
  • 批号20+ 
  • 优势库存,杜绝假冒伪劣,应对市场激烈竞争,超低价热卖!
  • QQ:1678302500QQ:1678302500 复制
  • 0755-82815382 QQ:1678302500
  • NCP1216D65R2G图
  • 北京耐芯威科技有限公司

     该会员已使用本站12年以上
  • NCP1216D65R2G 优势库存
  • 数量5000 
  • 厂家ON Semiconductor 
  • 封装8-SOIC 
  • 批号 
  • 原装正品 优势现货
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 96-010-62104931 QQ:2880824479QQ:1344056792
  • NCP1216D65R2G图
  • 北京耐芯威科技有限公司

     该会员已使用本站12年以上
  • NCP1216D65R2G 热卖库存
  • 数量5000 
  • 厂家ON Semiconductor 
  • 封装8-SOIC 
  • 批号 
  • 原装正品 优势现货
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 96-010-62104931 QQ:2880824479QQ:1344056792
  • NCP1216D65R2G图
  • 北京耐芯威科技有限公司

     该会员已使用本站12年以上
  • NCP1216D65R2G 热卖库存
  • 数量5000 
  • 厂家ON Semiconductor 
  • 封装8-SOIC 
  • 批号 
  • 原装正品 优势现货
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • NCP1216D65R2G图
  • 集好芯城

     该会员已使用本站13年以上
  • NCP1216D65R2G
  • 数量13051 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • NCP1216D65R2G图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • NCP1216D65R2G
  • 数量2500 
  • 厂家ON 
  • 封装SOP8 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507162QQ:2355507162 复制
  • 86-0755-83210909 QQ:2355507165QQ:2355507162
  • NCP1216D65R2G图
  • 北京耐芯威科技有限公司

     该会员已使用本站13年以上
  • NCP1216D65R2G
  • 数量5000 
  • 厂家ON Semiconductor 
  • 封装8-SOIC 
  • 批号21+ 
  • 全新原装、现货库存,欢迎询价
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 86-010-010-62104931 QQ:2880824479QQ:1344056792
  • NCP1216D65R2G图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • NCP1216D65R2G
  • 数量9500 
  • 厂家ON(安森美) 
  • 封装8-SOIC(0.154,3.90mm 宽) 
  • 批号24+ 
  • 绝对原装正品,可开专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • NCP1216D65R2G图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • NCP1216D65R2G
  • 数量4365 
  • 厂家on 
  • 封装8-SOIC 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • NCP1216D65R2G图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • NCP1216D65R2G
  • 数量4365 
  • 厂家on 
  • 封装8-SOIC 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • NCP1216D65R2G图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • NCP1216D65R2G
  • 数量65400 
  • 厂家ON 
  • 封装NA 
  • 批号NEW 
  • 【◆全新原装现货◆绝对价格优势◆质量保证◆】
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • NCP1216D65R2G图
  • 深圳市凯信扬科技有限公司

     该会员已使用本站7年以上
  • NCP1216D65R2G
  • 数量9820 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号21+ 
  • 原则深圳现货,优势价格
  • QQ:872328909QQ:872328909 复制
  • 0755-82518059 QQ:872328909
  • NCP1216D65R2G图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • NCP1216D65R2G
  • 数量20000 
  • 厂家ON 
  • 封装SOP-8 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • NCP1216D65R2G图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • NCP1216D65R2G
  • 数量3665 
  • 厂家ON 
  • 封装SOP-8 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755- QQ:2881894392QQ:2881894393
  • NCP1216D65R2G图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • NCP1216D65R2G
  • 数量47048 
  • 厂家ON/安森美 
  • 封装SOP8 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • NCP1216D65R2G图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • NCP1216D65R2G
  • 数量5193 
  • 厂家ON/安森美 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • NCP1216D65R2G图
  • 深圳市顺兴源微电子商行

     该会员已使用本站7年以上
  • NCP1216D65R2G
  • 数量6890000 
  • 厂家ON 
  • 封装SOIC-8 
  • 批号16+ 
  • 原装现货,低价出售
  • QQ:3475025894QQ:3475025894 复制
    QQ:3504055308QQ:3504055308 复制
  • 0755-82723655 QQ:3475025894QQ:3504055308
  • NCP1216D65R2G图
  • 深圳市华科泰电子商行

     该会员已使用本站13年以上
  • NCP1216D65R2G
  • 数量451 
  • 厂家ON 
  • 封装SOIC-8 
  • 批号 
  • 绝对原装现货特价
  • QQ:405945546QQ:405945546 复制
    QQ:1439873477QQ:1439873477 复制
  • 0755-82567800 QQ:405945546QQ:1439873477
  • NCP1216D65R2G图
  • 深圳市富莱微科技有限公司

     该会员已使用本站6年以上
  • NCP1216D65R2G
  • 数量7773 
  • 厂家ON Semiconductor 
  • 封装8-SOIC 
  • 批号20+ 
  • 进口原装,公司现货
  • QQ:1968343307QQ:1968343307 复制
    QQ:2885835292QQ:2885835292 复制
  • 0755-83210149 QQ:1968343307QQ:2885835292
  • NCP1216D65R2G图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • NCP1216D65R2G
  • 数量5000 
  • 厂家ON Semiconductor 
  • 封装8-SOIC 
  • 批号2024+ 
  • 全新原装、现货库存,欢迎询价
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • NCP1216D65R2G图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • NCP1216D65R2G
  • 数量5000 
  • 厂家ON Semiconductor 
  • 封装8-SOIC 
  • 批号2024+ 
  • 原装正品 优势现货
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • NCP1216D65R2G图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • NCP1216D65R2G
  • 数量5000 
  • 厂家ON 
  • 封装SOP-8 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • NCP1216D65R2G图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • NCP1216D65R2G
  • 数量5000 
  • 厂家STMicroelectronics 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104891 QQ:857273081QQ:1594462451
  • NCP1216D65R2G图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • NCP1216D65R2G
  • 数量13880 
  • 厂家ON/安森美 
  • 封装SOIC-8_150mil 
  • 批号21+ 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • NCP1216D65R2G图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • NCP1216D65R2G
  • 数量85000 
  • 厂家ON/安森美 
  • 封装1518+ 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • NCP1216D65R2G图
  • 深圳市隆鑫创展电子有限公司

     该会员已使用本站15年以上
  • NCP1216D65R2G
  • 数量30000 
  • 厂家CYPRESS 
  • 封装NA 
  • 批号2022+ 
  • 电子元器件一站式配套服务QQ:122350038
  • QQ:2355878626QQ:2355878626 复制
    QQ:2850299242QQ:2850299242 复制
  • 0755-82812278 QQ:2355878626QQ:2850299242
  • NCP1216D65R2G图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • NCP1216D65R2G
  • 数量8580 
  • 厂家ON/安森美 
  • 封装NA 
  • 批号2021+ 
  • 全新原装挺实单欢迎来撩/可开票
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • NCP1216D65R2G图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • NCP1216D65R2G
  • 数量32500 
  • 厂家ON(安森美) 
  • 封装SOIC-8_150mil 
  • 批号1年内 
  • 原厂渠道 正品保障 长期供应
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • NCP1216D65R2G图
  • 北京耐芯威科技有限公司

     该会员已使用本站12年以上
  • NCP1216D65R2G
  • 数量5000 
  • 厂家ON Semiconductor 
  • 封装8-SOIC 
  • 批号21+ 
  • 全新原装、现货库存,欢迎询价
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 96-010-62104931 QQ:2880824479QQ:1344056792
  • NCP1216D65R2G图
  • 上海意淼电子科技有限公司

     该会员已使用本站14年以上
  • NCP1216D65R2G
  • 数量20000 
  • 厂家ON 
  • 封装N/A 
  • 批号23+ 
  • 原装现货热卖!请联系吴先生 13681678667
  • QQ:617677003QQ:617677003 复制
  • 15618836863 QQ:617677003
  • NCP1216D65R2G图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • NCP1216D65R2G
  • 数量865000 
  • 厂家ON/安森美 
  • 封装1518+ 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • NCP1216D65R2G图
  • 深圳德田科技有限公司

     该会员已使用本站7年以上
  • NCP1216D65R2G
  • 数量9500 
  • 厂家ON SEMI 
  • 封装原厂封装 
  • 批号新年份 
  • 全新原装现货,质量保证 ,可出样品!!!
  • QQ:229754250QQ:229754250 复制
  • 0755-83254070 QQ:229754250

产品型号NCP1216D65R2G的概述

芯片NCP1216D65R2G的概述 NCP1216D65R2G是一款由NXP Semiconductors公司开发的高性能电源管理集成电路(IC),专为开关模式电源(SMPS)系统设计。该芯片广泛应用于消费电子、计算机及通信设备中,对电源的稳定性和效率有着日益增长的需求。NCP1216D65R2G结合了先进的电源管理技术和高效的控制机制,能够在多种复杂环境中实现高效的电源转换。 NCP1216D65R2G属于NCP系列,具备多种功能,主要包括自适应变压器(flyback)控制、内置高压启动、软启动、过流保护、过温保护等特性。这些功能使得该芯片在各种电源应用中显著提升了可靠性和效率,降低了系统的复杂性。 芯片NCP1216D65R2G的详细参数 以下是NCP1216D65R2G的一些主要技术参数: - 工作电压范围:85V至265V AC - 工作频率:可调节,范围从50kHz到100...

产品型号NCP1216D65R2G的Datasheet PDF文件预览

NCP1216, NCP1216A  
PWM Current-Mode  
Controller for High-Power  
Universal Off-Line Supplies  
Housed in a SOIC8 or PDIP7 package, the NCP1216 represents  
an enhanced version of NCP1200 based controllers. Due to its high  
drive capability, NCP1216 drives large gatecharge MOSFETs, which  
together with internal ramp compensation and builtin frequency  
jittering, ease the design of modern ACDC adapters.  
http://onsemi.com  
MARKING  
DIAGRAMS  
With an internal structure operating at different fixed frequencies,  
the controller supplies itself from the highvoltage rail, avoiding the  
need of an auxiliary winding. This feature naturally eases the designer  
task in some particular applications, e.g. battery chargers or TV sets.  
Currentmode control also provides an excellent input audio  
susceptibility and inherent pulsebypulse control. Internal ramp  
compensation easily prevents subharmonic oscillations from taking  
place in continuous conduction mode designs.  
8
SOIC8  
D SUFFIX  
CASE 751  
16XXX  
ALYW  
G
8
1
1
When the current setpoint falls below a given value, e.g. the output  
power demand diminishes, the IC automatically enters the socalled  
skip cycle mode and provides excellent efficiency at light loads.  
Because this occurs at a user adjustable low peak current, no acoustic  
noise takes place.  
P1216XXXX  
AWL  
PDIP7  
P SUFFIX  
CASE 626B  
YYWWG  
The NCP1216 features an efficient protective circuitry, which in  
presence of an over current condition disables the output pulses while  
the device enters a safe burst mode, trying to restart. Once the default  
has gone, the device autorecovers.  
1
XXXX = Specific Device Code  
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
Features  
No Auxiliary Winding Operation  
CurrentMode Control with Adjustable SkipCycle Capability  
Internal Ramp Compensation  
A
WW, W = Work Week  
G or G = PbFree Package  
Limited Duty Cycle to 50% (NCP1216A Only)  
Internal 1.0 ms SoftStart (NCP1216A Only)  
BuiltIn Frequency Jittering for Better EMI Signature  
AutoRecovery Internal Output ShortCircuit Protection  
Extremely Low NoLoad Standby Power  
500 mA Peak Current Capability  
DEVICE MARKING INFORMATION  
See detailed device marking information in the ordering  
information section on page 16 of this data sheet.  
Fixed Frequency Versions at 65 kHz, 100 kHz, 133 kHz  
Internal Temperature Shutdown  
PIN CONNECTIONS  
Direct Optocoupler Connection  
Adj  
FB  
HV  
NC  
V
1
2
3
4
8
7
6
5
SPICE Models Available for TRANsient and AC Analysis  
PintoPin Compatible with NCP1200 Series  
These are PbFree and HalideFree Devices  
CS  
CC  
Gnd  
Drv  
Typical Applications  
High Power ACDC Converters for TVs, SetTop Boxes, etc.  
Offline Adapters for Notebooks  
Telecom DCDC Converters  
ORDERING INFORMATION  
See detailed ordering and shipping information in the ordering  
information section on page 16 of this data sheet.  
All Power Supplies  
© Semiconductor Components Industries, LLC, 2010  
1
Publication Order Number:  
December, 2010 Rev. 13  
NCP1216/D  
NCP1216, NCP1216A  
+
*See Application Section  
NCP1216  
8
7
6
5
1
2
3
4
Adj HV  
+
FB  
CS Vcc  
EMI  
Filter  
Drv  
GND  
R
comp  
Universal Input  
+
R
sense  
Figure 1. Typical Application Example  
PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
Function  
Pin Description  
1
Adj  
Adjust the Skipping Peak Current  
This pin lets you adjust the level at which the cycle skipping process  
takes place. Shorting this pin to ground, permanently disables the skip  
cycle feature.  
2
3
FB  
CS  
Sets the Peak Current Setpoint  
Current Sense Input  
By connecting an Optocoupler to this pin, the peak current setpoint is  
adjusted accordingly to the output power demand.  
This pin senses the primary current and routes it to the internal com-  
parator via an L.E.B. By inserting a resistor in series with the pin, you  
control the amount of ramp compensation you need.  
4
5
6
7
8
GND  
Drv  
IC Ground  
Driving Pulses  
Supplies the IC  
The driver’s output to an external MOSFET.  
V
This pin is connected to an external bulk capacitor of typically 22 mF.  
This unconnected pin ensures adequate creepage distance.  
Connected to the highvoltage rail, this pin injects a constant current  
CC  
NC  
HV  
Generates the V from the Line  
CC  
into the V bulk capacitor.  
CC  
http://onsemi.com  
2
NCP1216, NCP1216A  
1
2
3
4
8
7
6
HV  
NC  
Adj  
FB  
HV Current Source  
Skip Cycle Comparator  
96 k  
1.1 V  
25 k  
Internal V  
CC  
+
UVLO High and Low  
Internal Regulator  
Clock Jittering  
220 ns  
L.E.B  
19 k  
65 kHz  
100 kHz  
133kHz  
Q
Current  
Sense  
Q FlipFlop  
Set  
V
CC  
D
Cmax  
= 75%  
Reset  
Ramp  
Compensation  
+
20 k  
$500 mA  
GND  
5 Drv  
57 k  
25 k  
Pullup Resistor  
1 ms SS*  
Overload?  
+
V
1 V  
ref  
5 V  
Fault Duration  
* Available for ”A” version only.  
Figure 2. Internal Circuit Architecture  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
16  
Unit  
V
Power Supply Voltage, V Pin  
V
CC  
CC  
Maximum Voltage on Low Power Pins (except Pin 8 and Pin 6)  
Maximum Voltage on Pin 8 (HV), Pin 6 (V ) Decoupled to Ground with 10 mF  
0.3 to 10  
500  
V
V
CC  
Maximum Voltage on Pin 8 (HV), Pin 6 (V ) Grounded  
450  
V
CC  
Minimum Operating Voltage on Pin 8 (HV)  
28  
V
Maximum Current into all Pins except V (Pin 6) and HV (Pin 8) when 10 V ESD Di-  
5.0  
mA  
CC  
odes are Activated  
Thermal Resistance JunctiontoAir, PDIP7 Version  
Thermal Resistance JunctiontoAir, SOIC8 Version  
R
100  
178  
°C/W  
q
JA  
JA  
R
q
Maximum Junction Temperature  
Temperature Shutdown  
T
150  
155  
°C  
°C  
°C  
°C  
kV  
V
JMAX  
TSD  
Hysteresis in Shutdown  
30  
Storage Temperature Range  
60 to +150  
2.0  
ESD Capability, HBM Model (All Pins except V and HV)  
CC  
ESD Capability, Machine Model  
200  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
http://onsemi.com  
3
NCP1216, NCP1216A  
ELECTRICAL CHARACTERISTICS (For typical values T = 25°C, for min/max values T = 0°C to +125°C, Maximum T = 150°C,  
J
J
J
V
= 11 V unless otherwise noted.)  
CC  
Characteristic  
Pin  
Symbol  
Min  
Typ  
Max  
Unit  
DYNAMIC SELFSUPPLY  
V
V
V
Increasing Level at which the Current Source Turns Off  
Decreasing Level at which the Current Source Turns On  
Decreasing Level at which the Latchoff Phase Ends  
6
6
VCC  
11.2  
9.2  
12.2  
10.0  
13.4  
V
V
CC  
CC  
CC  
OFF  
(Note 1)  
VCC  
11.0  
(Note 1)  
ON  
6
6
VCC  
5.6  
V
latch  
Internal IC Consumption, No Output Load on Pin 5, F  
Internal IC Consumption, No Output Load on Pin 5, F  
Internal IC Consumption, No Output Load on Pin 5, F  
= 65 kHz  
= 100 kHz  
= 133 kHz  
I
I
I
I
I
I
I
990  
1110  
(Note 2)  
mA  
SW  
SW  
SW  
CC1  
6
6
6
6
6
6
1025  
1060  
1.7  
1180  
(Note 2)  
mA  
mA  
CC1  
CC1  
CC2  
CC2  
CC2  
CC3  
1200  
(Note 2)  
Internal IC Consumption, 1.0 nF Output Load on Pin 5, F  
Internal IC Consumption, 1.0 nF Output Load on Pin 5, F  
Internal IC Consumption, 1.0 nF Output Load on Pin 5, F  
= 65 kHz  
2.0  
(Note 2)  
mA  
mA  
mA  
mA  
SW  
SW  
SW  
= 100 kHz  
= 133 kHz  
2.1  
2.4  
(Note 2)  
2.4  
2.9  
(Note 2)  
Internal IC Consumption, Latchoff Phase, V = 6.0 V  
NCP1216  
NCP1216A  
250  
320  
CC  
INTERNAL STARTUP CURRENT SOURCE (T > 0°C)  
J
Highvoltage Current Source, V = 10 V  
8
8
IC1  
IC2  
4.9  
(Note 3)  
8.0  
9.0  
11  
mA  
mA  
CC  
Highvoltage Current Source, V = 0 V  
CC  
DRIVE OUTPUT  
Output Voltage Risetime @ C = 1.0 nF, 1090% of a 12 V Output Signal  
5
5
5
5
T
60  
20  
20  
10  
ns  
ns  
W
L
r
Output Voltage Falltime @ C = 1.0 nF, 1090% of a 12 V Output Signal  
T
f
L
Source Resistance  
R
OH  
15  
35  
18  
Sink Resistance  
R
OL  
5.0  
W
CURRENT COMPARATOR (Pin 5 Unloaded)  
Input Bias Current @ 1.0 V Input Level on Pin 3  
Maximum Internal Current Setpoint  
3
3
3
3
3
I
0.02  
1.08  
330  
80  
mA  
V
IB  
I
0.93  
1.14  
130  
Limit  
Default Internal Current Setpoint for Skip Cycle Operation  
Propagation Delay from Current Detection to Gate OFF State  
Leading Edge Blanking Duration  
I
mV  
ns  
ns  
Lskip  
T
DEL  
LEB  
T
220  
1. VCCOFF and VCCON minmax always ensure an hysteresis of 2.0 V.  
2. Maximum value at T = 0°C.  
J
3. Minimum value for T = 125°C.  
J
http://onsemi.com  
4
 
NCP1216, NCP1216A  
ELECTRICAL CHARACTERISTICS (continued) (For typical values T = 25°C, for min/max values T = 0°C to +125°C, Maximum  
J
J
T = 150°C, V = 11 V unless otherwise noted.)  
J
CC  
Characteristic  
Pin  
Symbol  
Min  
Typ  
Max  
Unit  
INTERNAL OSCILLATOR (V = 11 V, Pin 5 Loaded by 1.0 kW)  
CC  
Oscillation Frequency, 65 kHz Version  
Oscillation Frequency, 100 kHz Version  
Oscillation Frequency, 133 kHz Version  
f
f
f
58.5  
90  
65  
71.5  
110  
146  
kHz  
kHz  
kHz  
%
OSC  
OSC  
OSC  
100  
133  
4.0  
120  
Builtin Frequency Jittering in Percentage of f  
Maximum DutyCycle  
f
jitter  
OSC  
NCP1216  
NCP1216A  
D
69  
42  
75  
46.5  
81  
50  
%
max  
FEEDBACK SECTION (V = 11 V, Pin 5 Loaded by 1.0 kW)  
CC  
Internal Pullup Resistor  
2
R
up  
20  
kW  
Pin 2 (FB) to Internal Current Setpoint Division Ratio  
SKIP CYCLE GENERATION  
I
3.3  
ratio  
Default Skip Mode Level  
1
1
V
0.9  
2.6  
1.1  
25  
1.26  
3.2  
V
skip  
Pin 1 Internal Output Impedance  
INTERNAL RAMP COMPENSATION  
Internal Ramp Level @ 25°C (Note 4)  
Z
kW  
out  
3
3
V
ramp  
2.9  
19  
V
Internal Ramp Resistance to C Pin  
R
ramp  
kW  
S
4. A 1.0 MW resistor is connected to the ground for the measurement.  
http://onsemi.com  
5
 
NCP1216, NCP1216A  
TYPICAL CHARACTERISTICS  
50  
40  
30  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
20  
10  
0
25  
0
25  
50  
75  
100  
125  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 3. High Voltage Pin Leakage Current vs.  
Temperature  
Figure 4. VCCOFF vs. Temperature  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
1400  
1300  
1200  
1100  
1000  
900  
133 kHz  
65 kHz  
800  
100 kHz  
700  
600  
500  
9.0  
25  
0
25  
50  
75  
100  
125  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. VCCON vs. Temperature  
Figure 6. ICC1 (@ VCC = 11 V) vs. Temperature  
150  
130  
110  
90  
2.80  
2.60  
2.40  
2.20  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
133 kHz  
100 kHz  
133 kHz  
100 kHz  
65 kHz  
70  
65 kHz  
50  
25  
0
25  
50  
75  
100  
125  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. ICC2 vs. Temperature  
Figure 8. Switching Frequency vs.  
Temperature  
http://onsemi.com  
6
NCP1216, NCP1216A  
5.90  
5.80  
5.70  
5.60  
5.50  
5.40  
5.30  
400  
350  
300  
250  
200  
150  
100  
NCP1216A  
NCP1216  
50  
0
25  
0
25  
50  
75  
100  
125  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. VCClatch vs. Temperature  
Figure 10. ICC3 vs. Temperature  
1.13  
30  
25  
20  
15  
10  
5
1.08  
1.03  
0.98  
0.93  
Source  
Sink  
0
25  
0
25  
50  
75  
100  
125  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Drive Sink and Source Resistance  
vs. Temperature  
Figure 12. Current Sense Limit vs. Temperature  
1.20  
1.15  
75.0  
74.5  
74.0  
73.5  
73.0  
72.5  
72.0  
1.10  
1.05  
1.00  
25  
0
25  
50  
75  
100  
125  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. Vskip vs. Temperature  
Figure 14. NCP1216 Max DutyCycle vs.  
Temperature  
http://onsemi.com  
7
NCP1216, NCP1216A  
49.0  
3.10  
3.05  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
48.5  
48.0  
47.5  
47.0  
46.5  
46.0  
45.5  
45.0  
25  
0
25  
50  
75  
100  
125  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. NCP1216A Max DutyCycle vs.  
Figure 16. Vramp vs. Temperature  
Temperature  
14  
12  
10  
8
6
4
2
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
Figure 17. High Voltage Current Source  
(@ VCC = 10 V) vs. Temperature  
http://onsemi.com  
8
NCP1216, NCP1216A  
APPLICATION INFORMATION  
Introduction  
Over Current Protection (OCP): By continuously  
monitoring the FB line activity, NCP1216 enters burst mode  
as soon as the power supply undergoes an overload. The  
device enters a safe low power operation, which prevents  
from any lethal thermal runaway. As soon as the default  
disappears, the power supply resumes operation. Unlike  
other controllers, overload detection is performed  
independently of any auxiliary winding level. In presence of  
a bad coupling between both power and auxiliary windings,  
the short circuit detection can be severely affected. The DSS  
naturally shields you against these troubles.  
The NCP1216 implements a standard current mode  
architecture where the switchoff event is dictated by the  
peak current setpoint. This component represents the ideal  
candidate where low part count is the key parameter,  
particularly in lowcost ACDC adapters, TV power  
supplies etc. Due to its highperformance HighVoltage  
technology, the NCP1216 incorporates all the necessary  
components normally needed in UC384X based supplies:  
timing components, feedback devices, lowpass filter and  
selfsupply. This later point emphasizes the fact that ON  
Semiconductor’s NCP1216 does NOT need an auxiliary  
winding to operate: the product is naturally supplied from  
Wide DutyCycle Operation: Wide mains operation requires  
a large dutycycle excursion. The NCP1216 can go up to 75%  
typically. For Continuous Conduction Mode (CCM)  
applications, the internal ramp compensation lets you fight  
against subharmonic oscillations.  
the highvoltage rail and delivers a V to the IC. This  
system is called the Dynamic SelfSupply (DSS):  
CC  
Dynamic SelfSupply (DSS): Due to its Very High  
Voltage Integrated Circuit (VHVIC) technology,  
ON Semiconductor’s NCP1216 allows for a direct pin  
connection to the highvoltage DC rail. A dynamic current  
source charges up a capacitor and thus provides a fully  
Low Standby Power: If SMPS naturally exhibit a good  
efficiency at nominal load, they begin to be less efficient  
when the output power demand diminishes. By skipping  
unnecessary switching cycles, the NCP1216 drastically  
reduces the power wasted during light load conditions. In  
noload conditions, the NPC1216 allows the total standby  
power to easily reach next International Energy Agency  
(IEA) recommendations.  
independent V level to the NCP1216. As a result, there is  
CC  
no need for an auxiliary winding whose management is  
always a problem in variable output voltage designs (e.g.  
battery chargers).  
Adjustable Skip Cycle Level: By offering the ability to tailor  
the level at which the skip cycle takes place, the designer can  
make sure that the skip operation only occurs at low peak  
current. This point guarantees a noisefree operation with  
cheap transformers. Skip cycle offers a proven mean to  
reduce the standby power in no or light loads situations.  
No Acoustic Noise While Operating: Instead of skipping  
cycles at high peak currents, the NCP1216 waits until the  
peak current demand falls below a useradjustable 1/3 of the  
maximum limit. As a result, cycle skipping can take place  
without having a singing transformer, one can thus select  
cheap magnetic components free of noise problems.  
Internal Frequency Dithering for Improved EMI  
Signature: By modulating the internal switching frequency  
External MOSFET Connection: By leaving the external  
MOSFET external to the IC, you can select avalanche proof  
devices, which in certain cases (e.g. low output powers), let  
you work without an active clamping network. Also, by  
controlling the MOSFET gate signal flow; you have an  
option to slow down the device commutation, therefore  
reducing the amount of ElectroMagnetic Interference  
(EMI).  
with the DSS V ripple, natural energy spread appears and  
CC  
softens the controller’s EMI signature.  
Wide Switching Frequency Offered with Different  
Options (65 kHz 100 kHz 133 kHz): Depending on the  
application, the designer can pick up the right device to help  
reducing magnetics or improve the EMI signature before  
reaching the 150 kHz starting point.  
SPICE Model: A dedicated model to run transient  
cyclebycycle simulations is available but also an  
averaged version to help you closing the loop.  
Readytouse templates can be downloaded in OrCAD’s  
PSpice and INTUSOFT’s IsSpice from ON Semiconductor  
web site, in the NCP1216 related section.  
Ramp Compensation: By inserting a resistor between the  
Current Sense (CS) pin and the actual sense resistor, it  
becomes possible to inject a given amount of ramp  
compensation since the internal sawtooth clock is routed to  
the CS pin. Subharmonic oscillations in Continuous  
Conduction Mode (CCM) can thus be compensated via a  
single resistor.  
http://onsemi.com  
9
NCP1216, NCP1216A  
Dynamic SelfSupply  
The DSS principle is based on the charge/discharge of the  
Application note AND8069/D details tricks to widen the  
NCP1216 driving implementation, in particular for large Q  
MOSFETs. This document can be downloaded at  
g
V
CC  
bulk capacitor from a low level up to a higher level. We  
can easily describe the current source operation with a bunch  
of simple logical equations:  
www.onsemi.com/pub/Collateral/AND8069D.PDF.  
Ramp Compensation  
POWERON: If V < VCC  
then the Current Source  
CC  
OFF  
Ramp compensation is a known mean to cure  
subharmonic oscillations. These oscillations take place at  
half the switching frequency and occur only during  
Continuous Conduction Mode (CCM) with a dutycycle  
greater than 50%. To lower the current loop gain, one usually  
injects between 50% and 100% of the inductor downslope.  
Figure 19 depicts how internally the ramp is generated:  
is ON, no output pulses  
If V decreasing > VCC then the Current Source is  
CC  
ON  
OFF, output is pulsing  
If V increasing < VCC  
then the Current Source is  
CC  
OFF  
ON, output is pulsing  
Typical values are: VCC  
To better understand the operational principle, Figure 18  
offers the necessary light:  
= 12.2 V, VCC = 10 V  
ON  
OFF  
DC  
= 75°C  
max  
2.9V  
0V  
V
ripple  
= 2.2 V  
VCC  
= 12.2 V  
OFF  
VCC = 10 V  
ON  
R
comp  
19 k  
+
L.E.B  
OFF, I = 0 mA  
ON, I = 8 mA  
CS  
R
sense  
From Setpoint  
Output Pulse  
70  
Figure 19. Inserting a Resistor in Series with the  
Current Sense Information brings Ramp  
Compensation  
30  
50  
90  
10  
Figure 18. The Charge/Discharge Cycle Over a  
10 mF VCC Capacitor  
In the NCP1216, the ramp features a swing of 2.9 V with  
a Duty cycle max at 75%. Over a 65 kHz frequency, it  
corresponds to a  
The DSS behavior actually depends on the internal IC  
consumption and the MOSFET’s gate charge Q . If we  
select a 600 V 10 A MOSFET featuring a 30 nC Q , then we  
can compute the resulting average consumption supported  
by the DSS which is:  
g
2.9  
0.75  
(eq. 5)  
g
  65 kHz + 251 mVńms ramp.  
In our FLYBACK design, let’s suppose that our primary  
inductance L is 350 mH, delivering 12 V with a Np : Ns  
ratio of 1:0.1. The OFF time primary current slope is thus  
given by:  
p
(eq. 1)  
I
[ F   Q ) I  
sw  
.
CC1  
total  
g
The total IC heat dissipation incurred by the DSS only is  
given by:  
N
p
N
s
V
out  
L
) V  
f
(eq. 6)  
 
+ 371 mAńms or37 mVńms  
(eq. 2)  
I
  V .  
pin8  
total  
p
Suppose that we select the NCP1216P065 with the above  
MOSFET, the total current is  
when projected over an R  
of 0.1 W, for instance. If we  
sense  
select 75% of the downslope as the required amount of  
ramp compensation, then we shall inject 27 mV/ms. Our  
internal compensation being of 251 mV/ms, the divider ratio  
(eq. 3)  
(30 n   65 k) ) 900 m + 2.9 mA.  
Supplied from a 350 VDC rail (250 VAC), the heat  
dissipated by the circuit would then be:  
(divratio) between R  
and the 19 kW is 0.107. A few lines  
comp  
of algebra to determine R  
:
comp  
(eq. 4)  
350 V   2.9 mA + 1 W  
19 k   divratio  
1 * divratio  
(eq. 7)  
+ 2.37 kW  
As you can see, it exists a tradeoff where the dissipation  
capability of the NCP1216 fixes the maximum Q that the  
g
Frequency Jittering  
circuit can drive, keeping its dissipation below a given  
target. Please see the “Power Dissipation” section for a  
complete design example and discover how a resistor can  
help to heal the NCP1216 heat equation.  
Frequency jittering is a method used to soften the EMI  
signature by spreading the energy in the vicinity of the main  
switching component. NCP1216 offers a $4% deviation of  
http://onsemi.com  
10  
 
NCP1216, NCP1216A  
the nominal switching frequency whose sweep is  
To better understand how this skip cycle mode takes place,  
a look at the operation mode versus the FB level  
immediately gives the necessary insight:  
synchronized with the V ripple. For instance, with a 2.2 V  
CC  
peaktopeak ripple, the NCP1216P065 frequency will  
equal 65 kHz in the middle of the ripple and will increase as  
V
rises or decrease as V  
ramps down. Figure 20  
CC  
CC  
FB  
portrays the behavior we have adopted:  
VCC  
Ripple  
OFF  
68 kHz  
V
CC  
4.2 V, F Pin Open  
B
3.2 V, Upper  
Dynamic Range  
Normal Current Mode Operation  
Skip Cycle Operation  
65 kHz  
1 V  
I
= 333 mV / R  
pMIN  
sense  
62 kHz  
VCC  
ON  
Figure 21.  
When FB is above the skip cycle threshold (1.0 V by  
default), the peak current cannot exceed 1.0 V/R . When  
Figure 20. VCC Ripple is Used to Introduce a  
Frequency Jittering on the Internal Oscillator  
Sawtooth  
sense  
the IC enters the skip cycle mode, the peak current cannot go  
below V / 3.3. The user still has the flexibility to alter this  
pin1  
1.0 V by either shunting pin 1 to ground through a resistor  
or raising it through a resistor up to the desired level.  
Grounding pin 1 permanently invalidates the skip cycle  
operation.  
Skipping Cycle Mode  
The NCP1216 automatically skips switching cycles when  
the output power demand drops below a given level. This is  
accomplished by monitoring the FB pin. In normal  
operation, pin 2 imposes a peak current accordingly to the  
load value. If the load demand decreases, the internal loop  
asks for less peak current. When this setpoint reaches a  
determined level, the IC prevents the current from  
decreasing further down and starts to blank the output  
pulses: the IC enters the socalled skip cycle mode, also  
named controlled burst operation. The power transfer now  
depends upon the width of the pulse bunches (Figure 22).  
Suppose we have the following component values:  
Power P1  
Power  
P2  
Power  
P3  
L , primary inductance = 350 mH  
p
F , switching frequency = 65 kHz  
sw  
I skip = 600 mA (or 333 mV / R  
)
p
sense  
The theoretical power transfer is therefore:  
Figure 22. Output Pulses at Various Power Levels  
1
2
2
(eq. 8)  
  L   I   F  
sw  
+ 4 W.  
p
p
(X = 5 ms/div) P1 < P2 < P3  
If this IC enters skip cycle mode with a bunch length of  
10 ms over a recurrent period of 100 ms, then the total power  
transfer is:  
(eq. 9)  
4   0.1 + 400 mW.  
http://onsemi.com  
11  
 
NCP1216, NCP1216A  
due to the DSS operation. In our example, at  
= 50°C, I is measured to be 2.9 mA with a  
10 A / 600 V MOSFET. As a result, the NCP1216 will  
dissipate from a 250 VAC network,  
Max Peak  
Current  
300  
200  
100  
0
T
ambient  
CC2  
Skip Cycle  
Current Limit  
°
(eq. 11)  
350 V   2.9 mA@T + 50 C + 1 W  
A
The PDIP7 package offers a junctiontoambient thermal  
resistance R of 100°C/W. Adding some copper area  
qJA  
around the PCB footprint will help decreasing this number:  
12 mm x 12 mm to drop R down to 75°C/W with 35 m  
qJA  
copper thickness (1 oz.) or 6.5 mm x 6.5 mm with 70 m  
copper thickness (2 oz.). For a SOIC8, the original  
178°C/W will drop to 100°C/W with the same amount of  
copper. With this later PDIP7 number, we can compute the  
maximum power dissipation that the package accepts at an  
ambient of 50°C:  
315.4U  
882.7U  
1.450M  
2.017M  
2.585M  
Figure 23. The Skip Cycle Takes Place at Low Peak  
Currents which Guarantees Noise Free Operation  
T
* T  
Amax  
Jmax  
(eq. 12)  
P
+
+ 1 W  
max  
R
qJ * A  
NonLatching Shutdown  
which barely matches our previous budget. Several  
solutions exist to help improving the situation:  
In some cases, it might be desirable to shut off the part  
temporarily and authorize its restart once the default has  
disappeared. This option can easily be accomplished  
through a single NPN bipolar transistor wired between FB  
and ground. By pulling FB below the Adj pin 1 level, the  
output pulses are disabled as long as FB is pulled below  
pin 1. As soon as FB is relaxed, the IC resumes its operation.  
Figure 24 depicts the application example:  
1. Insert a Resistor in Series with Pin 8: This resistor will  
take a part of the heat normally dissipated by the NCP1216.  
Calculations of this resistor imply that V  
does not drop  
pin8  
below 30 V in the lowest mains conditions. Therefore, R  
can be selected with:  
drop  
V
* 50 V  
bulkmin  
(eq. 13)  
R
v
drop  
8 mA  
In our case, V  
minimum is 120 VDC, which leads to a  
bulk  
1
2
3
4
8
7
6
5
dropping resistor of 8.7 kW. With the above example in  
mind, the DSS will exhibit a dutycycle of:  
(eq. 14)  
2.9 mAń8 mA + 36%  
Q1  
ON/OFF  
By inserting the 8.7 kW resistor, we drop  
8.7 kW * 8 mA + 69.6 V  
(eq. 15)  
during the DSS activation. The power dissipated by the  
NCP1216 is therefore:  
Figure 24. Another Way of Shutting Down the IC  
without a Definitive Latchoff State  
P * DSS +  
instant duty * cycle  
(350 * 69) * 8 m * 0.36 + 800 mW  
(eq. 16)  
(eq. 17)  
A full latching shutdown, including overtemperature  
protection, is described in application note AND8069/D.  
We can pass the limit and the resistor will dissipate  
1 W * 800 mW + 200 mW  
Power Dissipation  
or  
The NCP1216 is directly supplied from the DC rail  
through the internal DSS circuitry. The current flowing  
through the DSS is therefore the direct image of the  
NCP1216 current consumption. The total power dissipation  
can be evaluated using:  
2
8.7 k  
69  
(eq. 18)  
p
drop  
+
* 0.36  
2. Select a MOSFET with a Lower Q : Certain MOSFETs  
g
exhibit different total gate charges depending on the  
technology they use. Careful selection of this component  
can help to significantly decrease the dissipated heat.  
(eq. 10)  
(V  
HVDC  
* 11 V)   I  
CC2  
which is, as we saw, directly related to the MOSFET Q . If  
g
we operate the device on a 90250 VAC rail, the maximum  
rectified voltage can go up to 350 VDC. However, as the  
characterization curves show, the current consumption  
drops at a higher junction temperature, which quickly occurs  
http://onsemi.com  
12  
 
NCP1216, NCP1216A  
3. Implement Figure 3, from AN8069/D, Solution: This is  
manner with a low dutycycle. The system autorecovers  
when the fault condition disappears.  
another possible option to keep the DSS functionality (good  
shortcircuit protection and EMI jittering) while driving any  
types of MOSFETs. This solution is recommended when the  
designer plans to use SOIC8 controllers.  
During the startup phase, the peak current is pushed to the  
maximum until the output voltage reaches its target and the  
feedback loop takes over. This period of time depends on  
normal output load conditions and the maximum peak  
current allowed by the system. The timeout used by this IC  
4. Connect an Auxiliary Winding: If the mains conditions  
are such that you simply can’t match the maximum power  
dissipation, then you need to connect an auxiliary winding  
to permanently disconnect the startup source.  
works with the V decoupling capacitor: as soon as the  
CC  
V
CC  
decreases from the VCC  
level (typically 12.2 V) the  
OFF  
device internally watches for an overload current situation.  
Overload Operation  
If this condition is still present when the VCC level is  
ON  
In applications where the output current is purposely not  
controlled (e.g. wall adapters delivering raw DC level), it is  
interesting to implement a true shortcircuit protection. A  
shortcircuit actually forces the output voltage to be at a low  
level, preventing a bias current to circulate in the  
Optocoupler LED. As a result, the FB pin level is pulled up  
to 4.2 V, as internally imposed by the IC. The peak current  
setpoint goes to the maximum and the supply delivers a  
rather high power with all the associated effects. Please note  
that this can also happen in case of feedback loss, e.g. a  
broken Optocoupler. To account for this situation, NCP1216  
hosts a dedicated overload detection circuitry. Once  
activated, this circuitry imposes to deliver pulses in a burst  
reached, the controller stops the driving pulses, prevents the  
selfsupplycurrent source to restart and puts all the circuitry  
in standby, consuming as little as 350 mA typical (I  
CC3  
parameter). As a result, the V level slowly discharges  
CC  
toward 0 V. When this level crosses 5.6 V typical, the  
controller enters a new startup phase by turning the current  
source on: V rises toward 12.2 V and again delivers  
CC  
output pulses at the VCC  
crossing point. If the fault  
OFF  
condition has been removed before VCC  
approaches,  
ON  
then the IC continues its normal operation. Otherwise, a new  
fault cycle takes place. Figure 25 shows the evolution of the  
signals in presence of a fault.  
V
CC  
Regulation  
Occurs Here  
12.2 V  
Latchoff  
Phase  
10 V  
5.6 V  
Time  
Drv  
Driver  
Driver  
Pulses  
Pulses  
VCC  
= 12.2 V  
OFF  
VCC = 10 V  
Time  
Time  
ON  
VCC  
= 5.6 V  
latch  
Internal  
Fault Flag  
Fault is  
Relaxed  
Fault Occurs Here  
Startup Phase  
Figure 25.  
Calculating the VCC Capacitor  
If the fault is relaxed during the V natural fall down  
CC  
As the above section describes, the fall down sequence  
sequence, the IC automatically resumes.  
depends upon the V level: how long does it take for the  
CC  
If the fault still persists when V reached VCC , then the  
CC  
ON  
V
line to go from 12.2 V to 10 V. The required time  
CC  
controller cuts everything off until recovery.  
http://onsemi.com  
13  
 
NCP1216, NCP1216A  
Protecting the Controller Against Negative Spikes  
depends on the startup sequence of your system, i.e. when  
you first apply the power to the IC. The corresponding  
transient fault duration due to the output capacitor charging  
must be less than the time needed to discharge from 12.2 V  
to 10 V, otherwise the supply will not properly start. The test  
consists in either simulating or measuring in the lab how  
much time the system takes to reach the regulation at full  
load. Let’s suppose that this time corresponds to 6ms.  
As with any controller built upon a CMOS technology, it  
is the designer’s duty to avoid the presence of negative  
spikes on sensitive pins. Negative signals have the bad habit  
to forward bias the controller substrate and induce erratic  
behaviors. Sometimes, the injection can be so strong that  
internal parasitic SCRs are triggered, engendering  
irremediable damages to the IC if a low impedance path is  
offered between V and GND. If the current sense pin is  
Therefore a V  
fall time of 10 ms could be well  
CC  
CC  
often the seat of such spurious signals, the highvoltage pin  
can also be the source of problems in certain circumstances.  
During the turnoff sequence, e.g. when the user unplugs the  
appropriated in order to not trigger the overload detection  
circuitry. If the corresponding IC consumption, including  
the MOSFET drive, establishes at 2.9 mA, we can calculate  
the required capacitor using the following formula:  
power supply, the controller is still fed by its V capacitor  
CC  
and keeps activating the MOSFET ON and OFF with a peak  
DV·C  
i
(eq. 19)  
Dt +  
current limited by R  
. Unfortunately, if the quality  
sense  
coefficient Q of the resonating network formed by L and  
p
with DV = 2.2 V. Then for a wanted Dt of 30 ms, C equals  
39.5 mF or a 68 mF for a standard value (including 20%  
dispersions). When an overload condition occurs, the IC  
blocks its internal circuitry and its consumption drops to  
C
bulk  
is low (e.g. the MOSFET R  
+ R  
are small),  
dson  
sense  
conditions are met to make the circuit resonate and thus  
negatively bias the controller. Since we are talking about ms  
pulses, the amount of injected charge, (Q = I * t),  
immediately latches the controller that brutally discharges  
350 mA typical. This happens at V = 10 V and it remains  
CC  
stuck until V reaches 5.6 V: we are in latchoff phase.  
CC  
its V capacitor. If this V capacitor is of sufficient value,  
CC  
CC  
Again, using the selected 68 mF and 350 mA current  
consumption, this latchoff phase lasts: 780 ms.  
its stored energy damages the controller. Figure 26 depicts  
a typical negative shot occurring on the HV pin where the  
brutal V discharge testifies for latchup.  
CC  
0
V
CC  
5 V/DIV  
V
latch  
10 ms/DIV  
1 V/DIV  
Figure 26. A Negative Spike Takes Place on the Bulk Capacitor at the Switchoff Sequence  
Simple and inexpensive cures exist to prevent from  
internal parasitic SCR activation. One of them consists in  
inserting a resistor in series with the highvoltage pin to  
keep the negative current to the lowest when the bulk  
becomes negative (Figure 27). Please note that the negative  
Another option (Figure 28) consists in wiring a diode  
from V to the bulk capacitor to force V to reach  
CC  
CC  
VCC sooner and thus stops the switching activity before  
ON  
the bulk capacitor gets deeply discharged. For security  
reasons, two diodes can be connected in series.  
spike is clamped to (2 * V ) due to the diode bridge. Also,  
f
the power dissipation of this resistor is extremely small since  
it only heats up during the startup sequence.  
http://onsemi.com  
14  
 
NCP1216, NCP1216A  
R
bulk  
> 4.7 k  
+
+
C
bulk  
C
bulk  
1
2
8
7
1
2
8
7
D3  
1N4007  
3
4
6
5
3
4
6
5
+
+
CV  
CC  
CV  
CC  
Figure 27.  
Figure 28.  
A simple resistor in series avoids any latchup in the controller  
or one diode forces V to reach V sooner.  
CC  
CCON  
SoftStart NCP1216A only  
The NCP1216A features an internal 1.0 ms softstart  
activated during the power on sequence (PON). As soon as  
activated during the over current burst (OCP) sequence.  
Every restart attempt is followed by a softstart activation.  
Generally speaking, the softstart will be activated when  
V
CC  
reaches V , the peak current is gradually  
CCOFF  
V
CC  
ramps up either from zero (fresh poweron sequence)  
increased from nearly zero up to the maximum clamping  
level (e.g. 1.0 V). This situation lasts during 1ms and further  
to that time period, the peak current limit is blocked to  
1.0 V until the supply enters regulation. The softstart is also  
or 5.6 V, the latchoff voltage occurring during OCP.  
Figure 29 portrays the softstart behavior. The time scales  
are purposely shifted to offer a better zoom portion.  
Figure 29. Softstart is activated during a startup sequence or an OCP condition  
http://onsemi.com  
15  
 
NCP1216, NCP1216A  
ORDERING INFORMATION  
Device  
Version  
Marking  
Package  
Shipping  
NCP1216D65R2G  
65 kHz  
100 kHz  
133 kHz  
65 kHz  
16D06  
SOIC8  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
50 Units / Rail  
(PbFree)  
NCP1216D100R2G  
NCP1216D133R2G  
NCP1216P65G  
16D10  
16D13  
SOIC8  
(PbFree)  
SOIC8  
(PbFree)  
P1216P065  
P1216P100  
P1216P133  
16A06  
PDIP7  
(PbFree)  
NCP1216P100G  
100 kHz  
133 kHz  
65 kHz  
PDIP7  
(PbFree)  
50 Units / Rail  
NCP1216P133G  
PDIP7  
(PbFree)  
50 Units/ Rail  
NCP1216AD65R2G  
NCP1216AD100R2G  
NCP1216AD133R2G  
NCP1216AP65G  
NCP1216AP100G  
NCP1216AP133G  
SOIC8  
(PbFree)  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
50 Units / Rail  
100 kHz  
133 kHz  
65 kHz  
16A10  
SOIC8  
(PbFree)  
16A13  
SOIC8  
(PbFree)  
P1216AP06  
P1216AP10  
P1216AP13  
PDIP7  
(PbFree)  
100 kHz  
133 kHz  
PDIP7  
(PbFree)  
50 Units / Rail  
PDIP7  
(PbFree)  
50 Units / Rail  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
16  
NCP1216, NCP1216A  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AJ  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
17  
NCP1216, NCP1216A  
PACKAGE DIMENSIONS  
PDIP7  
P SUFFIX  
CASE 626B01  
ISSUE A  
NOTES:  
J
1. DIMENSIONS AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. DIMENSIONS IN MILLIMETERS.  
3. DIMENSION L TO CENTER OF LEAD  
WHEN FORMED PARALLEL.  
8
5
M
4. PACKAGE CONTOUR OPTIONAL  
(ROUND OR SQUARE CORNERS).  
5. DIMENSIONS A AND B ARE DATUMS.  
B
L
1
4
MILLIMETERS  
DIM MIN  
MAX  
A
B
C
D
F
G
H
J
9.40 10.16  
F
6.10  
3.94  
0.38  
1.02  
6.60  
4.45  
0.51  
1.78  
A
NOTE 2  
2.54 BSC  
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
C
K
L
7.62 BSC  
M
N
−−−  
0.76  
10 °  
1.01  
T−  
SEATING  
PLANE  
N
H
D
K
G
M
M
M
B
0.13 (0.005)  
T A  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent  
rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur.  
Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury  
or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an  
Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP1216/D  
配单直通车
NCP1216D65R2G产品参数
型号:NCP1216D65R2G
Brand Name:ON Semiconductor
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Not Recommended
零件包装代码:SOIC
包装说明:SOP, SOP8,.25
针数:8
制造商包装代码:751-07
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
Factory Lead Time:1 week
风险等级:6.87
Is Samacsys:N
模拟集成电路 - 其他类型:SWITCHING CONTROLLER
控制模式:CURRENT-MODE
控制技术:PULSE WIDTH MODULATION
最小输入电压:11 V
标称输入电压:11 V
JESD-30 代码:R-PDSO-G8
JESD-609代码:e3
长度:4.9 mm
湿度敏感等级:1
功能数量:1
端子数量:8
最大输出电流:0.5 A
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装等效代码:SOP8,.25
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):260
认证状态:Not Qualified
座面最大高度:1.75 mm
子类别:Switching Regulator or Controllers
表面贴装:YES
切换器配置:SINGLE
最大切换频率:71.5 kHz
技术:CMOS
端子面层:Tin (Sn)
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:40
宽度:3.9 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!