欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • NCP1579DR2G
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • NCP1579DR2G图
  • 深圳市高捷芯城科技有限公司

     该会员已使用本站11年以上
  • NCP1579DR2G 现货库存
  • 数量6825 
  • 厂家onsemi(安森美) 
  • 封装SOP-8 
  • 批号23+ 
  • 百分百原装正品,可原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83062789 QQ:3007977934QQ:3007947087
  • NCP1579DR2G图
  • 深圳市源美盛达科技有限公司

     该会员已使用本站3年以上
  • NCP1579DR2G 现货库存
  • 数量2500 
  • 厂家ON/安森美 
  • 封装SOIC-8_150mil 
  • 批号21 22+ 
  • 原装正品价优 实力渠道力挺实单
  • QQ:2853152900QQ:2853152900 复制
  • 0755-83220231 QQ:2853152900
  • NCP1579DR2G图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • NCP1579DR2G
  • 数量85000 
  • 厂家ON/安森美 
  • 封装SOP8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • NCP1579DR2G图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • NCP1579DR2G
  • 数量98500 
  • 厂家ONSemicon 
  • 封装原厂封装 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • NCP1579DR2G图
  • 深圳市芯鹏泰科技有限公司

     该会员已使用本站8年以上
  • NCP1579DR2G
  • 数量7536 
  • 厂家onsemi 
  • 封装8-SOIC 
  • 批号23+ 
  • 开关式控制器芯片原装现货
  • QQ:892152356QQ:892152356 复制
  • 0755-82777852 QQ:892152356
  • NCP1579DR2G图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • NCP1579DR2G
  • 数量5680 
  • 厂家ON 
  • 封装SOP8 
  • 批号23+ 
  • 原装正品特价销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • NCP1579DR2G图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • NCP1579DR2G
  • 数量8800 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • NCP1579DR2G图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • NCP1579DR2G
  • 数量30000 
  • 厂家ON/安森美 
  • 封装SOP8 
  • 批号23+ 
  • 代理全新原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • NCP1579DR2G图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • NCP1579DR2G
  • 数量13850 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • NCP1579DR2G图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • NCP1579DR2G
  • 数量1356 
  • 厂家ON/安森美 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • NCP1579DR2G图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • NCP1579DR2G
  • 数量28000 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • NCP1579DR2G图
  • 集好芯城

     该会员已使用本站13年以上
  • NCP1579DR2G
  • 数量14852 
  • 厂家ON/安森美 
  • 封装SOP 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • NCP1579DR2G图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • NCP1579DR2G
  • 数量12300 
  • 厂家ON/安森美 
  • 封装SOP8 
  • 批号24+ 
  • ★原装真实库存★13点税!
  • QQ:2353549508QQ:2353549508 复制
    QQ:2885134615QQ:2885134615 复制
  • 0755-83201583 QQ:2353549508QQ:2885134615
  • NCP1579DR2G图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • NCP1579DR2G
  • 数量18531 
  • 厂家ON 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装正品现货特价
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • NCP1579DR2G图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • NCP1579DR2G
  • 数量30000 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • NCP1579DR2G图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • NCP1579DR2G
  • 数量5680 
  • 厂家ON 
  • 封装SOP8 
  • 批号23+ 
  • 原装正品长期供货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • NCP1579DR2G图
  • 深圳市正纳电子有限公司

     该会员已使用本站2年以上
  • NCP1579DR2G
  • 数量14742 
  • 厂家ON(安森美) 
  • 封装N/A 
  • 批号22+ 
  • 只做原装 实单来谈★★☆
  • QQ:2881664480QQ:2881664480 复制
  • 0755-82524192 QQ:2881664480
  • NCP1579DR2G图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • NCP1579DR2G
  • 数量31483 
  • 厂家ON 
  • 封装SOP-8 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • NCP1579DR2G图
  • 深圳市华科泰电子商行

     该会员已使用本站13年以上
  • NCP1579DR2G
  • 数量5100 
  • 厂家ON 
  • 封装 
  • 批号 
  • 绝对原装现货特价
  • QQ:405945546QQ:405945546 复制
    QQ:1439873477QQ:1439873477 复制
  • 0755-82567800 QQ:405945546QQ:1439873477
  • NCP1579DR2G图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • NCP1579DR2G
  • 数量660000 
  • 厂家ON Semiconductor(安森美) 
  • 封装8-SOIC 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • NCP1579DR2G图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • NCP1579DR2G
  • 数量5600 
  • 厂家ON Semiconductor 
  • 封装8-SOIC(0.154",3.90mm 宽) 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • NCP1579DR2G图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • NCP1579DR2G
  • 数量5000 
  • 厂家NXP Semiconductors 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104891 QQ:857273081QQ:1594462451
  • NCP1579DR2G图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • NCP1579DR2G
  • 数量9500 
  • 厂家ON 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • NCP1579DR2G图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • NCP1579DR2G
  • 数量65400 
  • 厂家ON 
  • 封装SOIC-8 
  • 批号NEW 
  • 【◆全新原装现货◆绝对价格优势◆质量保证◆】
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • NCP1579DR2G图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • NCP1579DR2G
  • 数量9328 
  • 厂家ON-安森美 
  • 封装SOP-8.贴片 
  • 批号▉▉:2年内 
  • ▉▉¥4.4元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • NCP1579DR2G图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • NCP1579DR2G
  • 数量865000 
  • 厂家ON/安森美 
  • 封装SOP8 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • NCP1579DR2G图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • NCP1579DR2G
  • 数量12000 
  • 厂家ON 
  • 封装SOIC-8 Narrow 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • NCP1579DR2G图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • NCP1579DR2G
  • 数量13500 
  • 厂家ON 
  • 封装SOP-8 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • NCP1579DR2G图
  • 深圳市宇集芯电子有限公司

     该会员已使用本站6年以上
  • NCP1579DR2G
  • 数量99000 
  • 厂家ON 
  • 封装SOIC-8 
  • 批号23+ 
  • 一级代理进口原装现货、假一罚十价格合理
  • QQ:1157099927QQ:1157099927 复制
    QQ:2039672975QQ:2039672975 复制
  • 0755-2870-8773手机微信同号13430772257 QQ:1157099927QQ:2039672975
  • NCP1579DR2G图
  • 深圳市湘达电子有限公司

     该会员已使用本站10年以上
  • NCP1579DR2G
  • 数量6600 
  • 厂家ON/安森美 
  • 封装8SOIC 
  • 批号20+ 
  • 原盒原装原标签,市场最低价。
  • QQ:215672808QQ:215672808 复制
  • 0755-83229772 QQ:215672808
  • NCP1579DR2G图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • NCP1579DR2G
  • 数量45000 
  • 厂家ON(安森美) 
  • 封装SOIC-8_150mil 
  • 批号1年内 
  • 全新原装 正品保障
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • NCP1579DR2G图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • NCP1579DR2G
  • 数量73806 
  • 厂家ON/安森美 
  • 封装SOP-8 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • NCP1579DR2G图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • NCP1579DR2G
  • 数量26700 
  • 厂家ON(安森美) 
  • 封装▊原厂封装▊ 
  • 批号▊ROHS环保▊ 
  • 十年以上分销商原装进口件服务型企业0755-83790645
  • QQ:2881664479QQ:2881664479 复制
  • 755-83790645 QQ:2881664479
  • NCP1579DR2G图
  • 深圳市凯信扬科技有限公司

     该会员已使用本站7年以上
  • NCP1579DR2G
  • 数量45005 
  • 厂家ON/安森美 
  • 封装SOP8 
  • 批号20+ 
  • 原装现货假一赔十原包装原盒低价
  • QQ:872328909QQ:872328909 复制
  • 0755-82518059 QQ:872328909
  • NCP1579DR2G图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • NCP1579DR2G
  • 数量5800 
  • 厂家ON 
  • 封装SOP 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291

产品型号NCP1579DR2G的概述

NCP1579DR2G芯片概述 NCP1579DR2G是一款由意法半导体(ON Semiconductor)设计和制造的高端DC/DC转换器。该芯片特别适用于在电源设计中实现高效率、高性能的控制,广泛应用于电子产品中的电源管理系统,例如笔记本电脑、平板电脑以及各种便携式设备。这款芯片凭借其高效能、灵活性和多种保护功能,成为了电源工程师的热门选择。 NCP1579DR2G具备多种输出选择,可支持 ±2A到2A的输出电流范围,适应不同负载条件的需求。同时,该芯片实现了高达95%的转换效率,降低了电源损耗,这对于现代电子设备尤其重要,因为这些设备通常需要在电池供电下长时间工作。 NCP1579DR2G详细参数 在讨论NCP1579DR2G的具体功能之前,了解其基本参数是必要的。以下是该芯片的一些关键特性: - 输入电压范围:4.5 V至22 V - 输出电压范围:0.8 V至12 V - 输...

产品型号NCP1579DR2G的Datasheet PDF文件预览

NCP1579  
Low Voltage Synchronous  
Buck Controller  
The NCP1579 is a low cost PWM controller designed to operate  
from a 5 V or 12 V supply. This device is capable of producing an  
output voltage as low as 0.8 V. This 8pin device provides an optimal  
level of integration to reduce size and cost of the power supply. The  
NCP1579 provides a 1 A gate driver design and an internally set  
275 kHz oscillator. In addition to the 1 A gate drive capability, other  
efficiency enhancing features of the gate driver include adaptive  
nonoverlap circuitry. The device also incorporates an externally  
compensated error amplifier and a capacitor programmable softstart  
function. Protection features include programmable short circuit  
protection and undervoltage lockout (UVLO). The NCP1579 comes in  
an 8pin SOIC package.  
http://onsemi.com  
MARKING DIAGRAM  
8
SOIC8  
D SUFFIX  
CASE 751  
1579  
ALYW  
G
8
1
1
1579 = Specific Device Code  
Features  
A
L
= Assembly Location  
= Wafer Lot  
Input Voltage Range from 4.5 to 13.2 V  
275 kHz Internal Oscillator  
Boost Pin Operates to 30 V  
Voltage Mode PWM Control  
0.8 V 2.0 % Internal Reference Voltage  
Adjustable Output Voltage  
Y
W
G
= Year  
= Work Week  
= PbFree Device  
PIN CONNECTIONS  
Capacitor Programmable SoftStart  
Internal 1 A Gate Drivers  
BST  
PHASE  
COMP/DIS  
FB  
1
2
3
4
8
7
6
5
TG  
GND  
BG  
80% Max Duty Cycle  
Input Under Voltage Lockout  
Programmable Current Limit  
This is a PbFree Device  
V
CC  
(Top View)  
Applications  
STB  
ORDERING INFORMATION  
BlueRay DVD  
LCD_TV  
Device  
NCP1579DR2G  
Package  
Shipping  
SOIC8  
2500/Tape & Reel  
DSP & FPGA Power Supply  
DCDC Regulator Modules  
(PbFree)  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
© Semiconductor Components Industries, LLC, 2008  
1
Publication Order Number:  
September, 2008 Rev. 0  
NCP1579/D  
NCP1579  
V
IN  
V
CC  
BST  
TG  
FB  
COMP/DIS  
GND  
V
OUT  
PHASE  
BG  
Figure 1. Typical Application Diagram  
POR  
UVLO  
5
V
CC  
VOCTH  
SCP  
+
-
FAULT  
R
LATCH  
GM  
6
FB  
-
+
BST  
TG  
1
2
FAULT  
+
-
PWM  
OUT  
Q
0.8 V  
(V  
REF  
)
S
PHASE  
8
+
-
Clock  
2 V  
+
-
Ramp  
V
CC  
COMP/DIS  
BG  
OSC  
OSC  
7
4
3
R
set  
FAULT  
GND  
Figure 2. Detailed Block Diagram  
http://onsemi.com  
2
NCP1579  
PIN FUNCTION DESCRIPTION  
Pin No.  
Symbol  
Description  
1
BST  
Supply rail for the floating top gate driver. To form a boost circuit, use an external diode to bring the  
desired input voltage to this pin (cathode connected to BST pin). Connect a capacitor (C ) between this pin  
BST  
and the PHASE pin. Typical values for C  
range from 0.1 mF to 1 mF. Ensure that C  
is placed near the IC.  
BST  
BST  
2
3
4
5
TG  
GND  
BG  
Top gate MOSFET driver pin. Connect this pin to the gate of the top NChannel MOSFET.  
IC ground reference. All control circuits are referenced to this pin.  
Bottom gate MOSFET driver pin. Connect this pin to the gate of the bottom NChannel MOSFET.  
V
CC  
Supply rail for the internal circuitry. Operating supply range is 4.5 V to 13.2 V. Decouple with a 1 mF  
capacitor to GND. Ensure that this decoupling capacitor is placed near the IC.  
6
7
8
FB  
This pin is the inverting input to the error amplifier. Use this pin in conjunction with the COMP pin to  
compensate the voltagecontrol feedback loop. Connect this pin to the output resistor divider (if used) or dir-  
ectly to V  
.
out  
COMP/DIS  
PHASE  
Compensation Pin. This is the output of the error amplifier (EA) and the noninverting input of the PWM com-  
parator. Use this pin in conjunction with the FB pin to compensate the voltagecontrol feedback loop. The com-  
pensation capacitor also acts as a softstart capacitor. Pull this pin low for disable.  
Switch node pin. This is the reference for the floating top gate driver. Connect this pin to the source of the top  
MOSFET.  
ABSOLUTE MAXIMUM RATINGS  
Pin Name  
Symbol  
V
MAX  
V
MIN  
Main Supply Voltage Input  
Bootstrap Supply Voltage Input  
V
15 V  
0.3 V  
0.3 V  
CC  
BST  
30 V wrt/GND  
15 V wrt/PHASE  
35 V wrt/GND for < 50  
ns  
Switching Node (Bootstrap Supply Return)  
HighSide Driver Output (Top Gate)  
LowSide Driver Output (Bottom Gate)  
PHASE  
TG  
26 V  
0.7 V  
5.0 V for < 50 ns  
30 V wrt/GND  
15 V wrt/PHASE  
0.3 V  
wrt/PHASE  
BG  
15 V  
0.3 V  
2.0 V for < 200 ns  
Feedback  
FB  
5.5 V  
5.5 V  
0.3 V  
0.3 V  
COMP/DISABLE  
COMP/DIS  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
°C/W  
°C/W  
°C  
Thermal Resistance, JunctiontoAmbient  
Thermal Resistance, JunctiontoCase  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
Storage Temperature Range  
R
165  
45  
q
JA  
R
q
JC  
T
J
0 to 125  
0 to 70  
55 to +150  
260  
T
A
°C  
T
stg  
°C  
Lead Temperature Soldering (10 sec): Reflow (SMD styles only) PbFree  
°C  
Moisture Sensitivity Level  
MSL  
3
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
http://onsemi.com  
3
NCP1579  
ELECTRICAL CHARACTERISTICS (0_C < T < 70_C; 4.5 V < V < 13.2 V, 4.5 V < [BSTPHASE] < 13.2 V, 4.5 V < BST < 30 V,  
A
CC  
0 V < PHASE < 21 V, C = C = 1.0 nF, for min/max values unless otherwise noted.)  
TG  
BG  
Characteristic  
Conditions  
Min  
4.5  
4.5  
Typ  
Max  
13.2  
26.5  
Unit  
V
Input Voltage Range  
Boost Voltage Range  
Supply Current  
V
Quiescent Supply Current  
Boost Quiescent Current  
Under Voltage Lockout  
UVLO Threshold  
V
V
= 1.0 V, No Switching, V = 13.2 V  
1.0  
0.1  
8.0  
1.0  
mA  
mA  
FB  
CC  
= 1.0 V, No Switching, V = 13.2 V  
FB  
CC  
V
CC  
Rising Edge  
3.8  
4.2  
V
UVLO Hysteresis  
300  
370  
440  
mV  
Switching Regulator  
VFB Feedback Voltage,  
Control Loop in Regulation  
T = 0 to 70°C  
A
784  
800  
816  
mV  
Oscillator Frequency  
RampAmplitude Voltage  
Minimum Duty Cycle  
Maximum Duty Cycle  
Error Amplifier (GM)  
Transconductance  
T = 0 to 70°C  
A
233  
0.8  
0
275  
1.1  
317  
1.4  
kHz  
V
%
70  
75  
80  
%
3.0  
55  
4.4  
mmho  
DB  
Open Loop DC Gain  
70  
Output Source Current  
Output Sink Current  
V
V
< 0.8 V  
> 0.8 V  
80  
80  
120  
120  
mA  
FB  
FB  
Input Bias Current  
SoftStart  
0.1  
1.0  
mA  
SS Source Current  
Switch Over Threshold  
Gate Drivers  
V
V
< 0.8 V  
= 0.8 V  
7.0  
14  
mA  
FB  
100  
% of Vref  
FB  
Upper Gate Source  
Upper Gate Sink  
Lower Gate Source  
Lower Gate Sink  
1.0  
1.0  
1.0  
2.0  
40  
A
A
V
= 12 V, VTG = VBG = 2.0 V  
CC  
A
A
TG Falling to BG Rising Delay  
BG Falling to TG Rising Delay  
Enable Threshold  
V
V
= 12 V, TG < 2.0 V, BG > 2.0 V  
= 12 V, BG < 2.0 V, TG > 2.0 V  
90  
90  
0.5  
ns  
ns  
V
CC  
35  
CC  
0.3  
0.4  
OverCurrent Protection  
OCSET Current Source  
OC SwitchOver Threshold  
Fixed OC Threshold  
Sourced from BG pin, before SS  
10  
mA  
mV  
mV  
700  
375  
http://onsemi.com  
4
NCP1579  
TYPICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)  
5.0  
4.7  
4.4  
4.1  
203  
202  
201  
V
CC  
= 12 V  
200  
199  
198  
3.8  
3.5  
V
= 5 V  
10  
CC  
0
10  
20  
30  
40  
50  
60  
70  
70  
30  
0
20  
30  
40  
50  
60  
70  
T , JUNCTION TEMPERATURE (°C)  
T , JUNCTION TEMPERATURE (°C)  
J
J
Figure 3. ICC vs. Temperature  
Figure 4. Oscillator Frequency (FSW) vs.  
Temperature  
14  
13  
12  
11  
10  
375  
365  
355  
345  
335  
325  
9
8
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
70  
T , JUNCTION TEMPERATURE (°C)  
T , JUNCTION TEMPERATURE (°C)  
J
J
Figure 5. Soft Start Sourcing Current vs.  
Temperature  
Figure 6. SCP Threshold vs. Temperature  
808  
806  
804  
802  
800  
798  
796  
794  
792  
0
10  
20  
40  
50  
60  
70  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 7. Reference Voltage (Vref) vs.  
Temperature  
http://onsemi.com  
5
NCP1579  
DETAILED OPERATING DESCRIPTION  
External Enable/Disable  
General  
The NCP1579 is a PWM controller intended for DCDC  
When the Comp pin voltage falls or is pulled externally  
below the 400 mV threshold, it disables the PWM Logic and  
the gate drive outputs. In this disabled mode, the operational  
transconductance amplifier (EOTA) output source current is  
reduced and limited to the SoftStart mode of 10 mA.  
conversion from 5.0 V & 12 V buses. The devices have a 1  
A internal gate driver circuit designed to drive Nchannel  
MOSFETs in a synchronousrectifier buck topology. The  
output voltage of the converter can be precisely regulated  
down to 800 mV 2.0% when the V pin is tied to V  
.
FB  
OUT  
Normal Shutdown Behavior  
The switching frequency, is internally set to 275 kHz. A high  
gain operational transconductance error amplifier (OTA) is  
used.  
Normal shutdown occurs when the IC stops switching  
because the input supply reaches UVLO threshold. In this  
case, switching stops, the internal SS is discharged, and all  
GATE pins go low. The switch node enters a high impedance  
state and the output capacitors discharge through the load  
with no ringing on the output voltage.  
Duty Cycle and Maximum Pulse Width Limits  
In steady state DC operation, the duty cycle will stabilize  
at an operating point defined by the ratio of the input to the  
output voltage. The devices can achieve an 80% duty cycle.  
There is a built in offtime which ensures that the bootstrap  
supply is charged every cycle. Both parts can allow a 12 V  
to 0.8 V conversion at 275 kHz.  
External SoftStart  
The NCP1579 features an external softstart function,  
which reduces inrush current and overshoot of the output  
voltage. Softstart is achieved by using the internal current  
source of 10 mA (typ), which charges the external integrator  
capacitor of the transconductance amplifier. Figure 8 is a  
Input Voltage Range (VCC and BST)  
The input voltage range for both V and BST is 4.5 V to  
CC  
13.2 V with respect to GND and PHASE, respectively.  
Although BST is rated at 13.2 V with respect to PHASE, it  
can also tolerate 26.4 V with respect to GND.  
typical softstart sequence. This sequence begins once V  
CC  
surpasses its UVLO threshold and OCP programming is  
complete. During softstart, as the Comp Pin rises through  
400 mV, the PWM Logic and gate drives are enabled. When  
the feedback voltage crosses 800 mV, the EOTA will be  
given control to switch to its higher regulation mode output  
current of 120 mA.  
4.0 V  
V
CC  
0.85 V  
Comp  
0.8 V  
V
fb  
550 mV  
BG  
TG  
50 mV  
OCP  
Program  
ming  
V
out  
UVLO  
POR  
SS  
NORMAL  
Figure 8. SoftStart Implementation  
http://onsemi.com  
6
 
NCP1579  
UVLO  
go through a Power On Reset (POR) cycle to reset the OCP  
fault.  
Undervoltage Lockout (UVLO) is provided to ensure that  
unexpected behavior does not occur when V is too low to  
support the internal rails and power the converter. For the  
NCP1579, the UVLO is set to permit operation when  
converting from a 5.0 input voltage.  
CC  
Drivers  
The NCP1579 includes gate drivers to switch external  
Nchannel MOSFETs. This allows the devices to address  
highpower as well as lowpower conversion requirements.  
The gate drivers also include adaptive nonoverlap  
circuitry. The nonoverlap circuitry increase efficiency,  
which minimizes power dissipation, by minimizing the  
body diode conduction time.  
Overcurrent Threshold Setting  
NCP1579 can easily program an Overcurrent Threshold  
ranging from 50 mV to 550 mV, simply by adding a resistor  
(RSET) between BG and GND. During a short period of  
time following V rising over UVLO threshold, an internal  
10 mA current (I  
A detailed block diagram of the nonoverlap and gate  
drive circuitry used in the chip is shown in Figure 9.  
CC  
) is sourced from BG pin,  
OCSET  
determining a voltage drop across R  
. This voltage  
OCSET  
drop will be sampled and internally held by the device as  
Overcurrent Threshold. The OC setting procedure overall  
1
2
8
BST  
FAULT  
time length is about 6 ms. Connecting a R  
resistor  
OCSET  
between BG and GND, the programmed threshold will be:  
TG  
I
@ R  
OCSET  
OCSET  
(eq. 1)  
I
+
OCth  
R
DS(on)  
PHASE  
RSET values range from 5 kW to 55 kW. In case R  
OCSET  
+
-
is not connected, the device switches the OCP threshold to  
a fixed 375 mV value: an internal safety clamp on BG is  
triggered as soon as BG voltage reaches 700 mV, enabling  
the 375 mV fixed threshold and ending OC setting phase.  
The current trip threshold tolerance is 25 mV. The accuracy  
of the set point is best at the highest set point (550 mV). The  
accuracy will decrease as the set point decreases.  
2 V  
+
-
V
CC  
BG  
4
3
R
set  
Current Limit Protection  
In case of a short circuit or overload, the lowside (LS)  
FET will conduct large currents. The controller will shut  
down the regulator in this situation for protection against  
FAULT  
GND  
Figure 9. Block Diagram  
overcurrent. The lowside R  
sense is implemented at  
DS(on)  
the end of each of the LSFET turnon duration to sense the  
over current trip point. While the LS driver is on, the Phase  
voltage is compared to the internally generated OCP trip  
voltage. If the phase voltage is lower than OCP trip voltage,  
an overcurrent condition occurs and a counter is initiated.  
When the counter completes, the PWM logic and both  
HSFET and LSFET are turned off. The controller has to  
Careful selection and layout of external components is  
required, to realize the full benefit of the onboard drivers.  
The capacitors between V and GND and between BST  
CC  
and SWN must be placed as close as possible to the IC. The  
current paths for the TG and BG connections must be  
optimized. A ground plane should be placed on the closest  
layer for return currents to GND in order to reduce loop area  
and inductance in the gate drive circuit.  
http://onsemi.com  
7
 
NCP1579  
APPLICATION SECTION  
Input Capacitor Selection  
The above calculation includes the delay from comp  
rising to when output voltage starts becomes valid.  
To calculate the time of output voltage rising to when it  
reaches regulation; DV is the difference between the comp  
voltage reaching regulation and 0.88 V.  
The input capacitor has to sustain the ripple current  
produced during the on time of the upper MOSFET, so it  
must have a low ESR to minimize the losses. The RMS value  
of this ripple is:  
Ǹ
IinRMS + IOUT D   (1 * D) ,  
Output Capacitor Selection  
The output capacitor is a basic component for the fast  
response of the power supply. In fact, during load transient,  
for the first few microseconds it supplies the current to the  
load. The controller immediately recognizes the load  
transient and sets the duty cycle to maximum, but the current  
slope is limited by the inductor value.  
During a load step transient the output voltage initial  
drops due to the current variation inside the capacitor and the  
ESR. ((neglecting the effect of the effective series  
inductance (ESL)):  
where D is the duty cycle, Iin  
is the input RMS current,  
RMS  
& I  
is the load current. The equation reaches its  
OUT  
maximum value with D = 0.5. Loss in the input capacitors  
can be calculated with the following equation:  
2
P
CIN + ESRCIN   IinRMS  
,
where P  
is the power loss in the input capacitors &  
CIN  
ESR  
is the effective series resistance of the input  
CIN  
capacitance. Due to large dI/dt through the input capacitors,  
electrolytic or ceramics should be used. If a tantalum must  
be used, it must by surge protected. Otherwise, capacitor  
failure could occur.  
DVOUTESR + DIOUT   ESRCOUT  
where V  
is the voltage deviation of V  
due to the  
OUT-ESR  
OUT  
Calculating Input Start-up Current  
To calculate the input start up current, the following  
equation can be used.  
effects of ESR and the ESR  
is the total effective series  
COUT  
resistance of the output capacitors.  
A minimum capacitor value is required to sustain the  
current during the load transient without discharging it. The  
voltage drop due to output capacitor discharge is given by  
the following equation:  
COUT   VOUT  
Iinrush  
+
,
tSS  
where I  
is the input current during start-up, C  
is the  
inrush  
OUT  
2
DIOUT   LOUT  
2   COUT   (VIN   D * VOUT  
total output capacitance, V  
is the desired output voltage,  
OUT  
DVOUTDISCHARGE  
+
,
)
and t is the soft start interval.  
SS  
If the inrush current is higher than the steady state input  
current during max load, then the input fuse should be rated  
accordingly, if one is used.  
where V  
due to the effects of discharge, L  
value & V is the input voltage.  
is the voltage deviation of V  
OUT  
OUT-DISCHARGE  
is the output inductor  
OUT  
IN  
It should be noted that ΔV  
OUT-ESR  
of these two voltages will determine the maximum deviation  
of the output voltage (neglecting the effect of the ESL).  
and  
OUT-DISCHARGE  
Calculating Soft Start Time  
To calculate the soft start time, the following equation can  
be used.  
ΔV  
are out of phase with each other, and the larger  
(Cp ) Cc) * DV  
tss  
+
Iss  
Inductor Selection  
Both mechanical and electrical considerations influence  
the selection of an output inductor. From a mechanical  
perspective, smaller inductor values generally correspond to  
smaller physical size. Since the inductor is often one of the  
largest components in the regulation system, a minimum  
inductor value is particularly important in space-constrained  
applications. From an electrical perspective, the maximum  
current slew rate through the output inductor for a buck  
regulator is given by:  
Where C is the compensation as well as the soft start  
capacitor,  
c
C is the additional capacitor that forms the second pole.  
p
I is the soft start current  
ss  
DV is the comp voltage from zero to until it reaches  
regulation  
DV  
V
IN * VOUT  
LOUT  
880 mV  
SlewRateLOUT  
+
This equation implies that larger inductor values limit the  
regulator’s ability to slew current through the output  
inductor in response to output load transients. Consequently,  
output capacitors must supply the load current until the  
inductor current reaches the output load current level. This  
results in larger values of output capacitance to maintain  
Vcomp  
Vout  
http://onsemi.com  
8
NCP1579  
tight output voltage regulation. In contrast, smaller values of  
Figure 10 shows a typical Type II transconductance error  
amplifier (EOTA). The compensation network consists of  
the internal error amplifier and the impedance networks ZIN  
inductance increase the regulator’s maximum achievable  
slew rate and decrease the necessary capacitance, at the  
expense of higher ripple current. The peak-to-peak ripple  
current for NCP1579 is given by the following equation:  
(R , R ) and external Z  
(R , C and C ). The  
1
2
FB  
c c p  
compensation network has to provide a closed loop transfer  
function with the highest 0 dB crossing frequency to have  
V
OUT(1 * D)  
Ipk * pkLOUT  
+
,
fast response (but always lower than F /8) and the highest  
SW  
LOUT   275 kHz  
gain in DC conditions to minimize the load regulation. A  
stable control loop has a gain crossing with -20 dB/decade  
slope and a phase margin greater than 45°. Include  
worst-case component variations when determining phase  
margin. Loop stability is defined by the compensation  
network around the EOTA, the output capacitor, output  
inductor and the output divider. Figure 11 shows the open  
loop and closed loop gain plots.  
where Ipk-pk  
is the peak to peak current of the output.  
LOUT  
From this equation it is clear that the ripple current increases  
as L decreases, emphasizing the trade-off between  
OUT  
dynamic response and ripple current.  
Feedback and Compensation  
The NCP1579 allows the output of the DC-DC converter  
to be adjusted from 0.8 V to 5.0 V via an external resistor  
divider network. The controller will try to maintain 0.8 V at  
the feedback pin. Thus, if a resistor divider circuit was  
Compensation Network Frequency:  
The inductor and capacitor form a double pole at the  
frequency  
placed across the feedback pin to V  
, the controller will  
OUT  
regulate the output voltage proportional to the resistor  
divider network in order to maintain 0.8 V at the FB pin.  
1
FLC  
+
Ǹ
2p   Lo   Co  
V
OUT  
The ESR of the output capacitor creates a “zero” at the  
frequency,  
R1  
1
FESR  
+
2p   ESR   Co  
FB  
The zero of the compensation network is formed as,  
R2  
1
FZ  
+
2p   RcCc  
The pole of the compensation network is calculated as,  
The relationship between the resistor divider network above  
and the output voltage is shown in the following equation:  
1
Fp +  
2p   Rc   Cp  
VREF  
OUT * VREF  
ǒ
Ǔ
R2 + R1   
V
Resistor R1 is selected based on a design tradeoff between  
efficiency and output voltage accuracy. For high values of  
R1 there is less current consumption in the feedback  
network, However the trade off is output voltage accuracy  
due to the bias current in the error amplifier. The output  
voltage error of this bias current can be estimated using the  
following equation (neglecting resistor tolerance):  
0.1 mA   R1  
Error% +  
  100%  
VREF  
Once R1 has been determined, R2 can be calculated.  
Figure 11. Gain Plot of the Error Amplifier  
R
1
Thermal Considerations  
EA  
The power dissipation of the NCP1579 varies with the  
Gm  
MOSFETs used, V , and the boost voltage (V ). The  
CC  
BST  
C
C
R
c
p
2
+
average MOSFET gate current typically dominates the  
control IC power dissipation. The IC power dissipation is  
determined by the formula:  
V
ref  
R
c
P
IC + (ICC   VCC) ) PTG ) PBG  
Figure 10. Type II Transconductance Error  
Amplifier  
Where:  
http://onsemi.com  
9
 
NCP1579  
P
= control IC power dissipation,  
= IC measured supply current,  
IC  
I
CC  
V
P
P
= IC supply voltage,  
= top gate driver losses,  
= bottom gate driver losses.  
CC  
TG  
BG  
NCP1579  
The upper (switching) MOSFET gate driver losses are:  
P
TG + QTG   fSW   VBST  
Where:  
Figure 12. Components to be Considered for  
Layout Specifications  
Q = total upper MOSFET gate charge at VBST,  
TG  
= the switching frequency,  
f
SW  
V
BST  
= the BST pin voltage.  
The lower (synchronous) MOSFET gate driver losses are:  
P
BG + QBG   fSW   VCC  
Where:  
Q
BG  
= total lower MOSFET gate charge at V  
.
CC  
The junction temperature of the control IC can then be  
calculated as:  
TJ + TA ) PIC   qJA  
Where:  
T = the junction temperature of the IC,  
J
T = the ambient temperature,  
A
θ
= the junctiontoambient thermal resistance of the  
IC package.  
JA  
The package thermal resistance can be obtained from the  
specifications section of this data sheet and a calculation can  
be made to determine the IC junction temperature. However,  
it should be noted that the physical layout of the board, the  
proximity of other heat sources such as MOSFETs and  
inductors, and the amount of metal connected to the IC,  
impact the temperature of the device. Use these calculations  
as a guide, but measurements should be taken in the actual  
application.  
Layout Considerations  
As in any high frequency switching converter, layout is  
very important. Switching current from one power device to  
another can generate voltage transients across the  
impedances of the interconnecting bond wires and circuit  
traces. These interconnecting impedances should be  
minimized by using wide, short printed circuit traces. The  
critical components should be located as close together as  
possible using ground plane construction or single point  
grounding. The figure below shows the critical power  
components of the converter. To minimize the voltage  
overshoot the interconnecting wires indicated by heavy lines  
should be part of ground or power plane in a printed circuit  
board. The components shown in the figure below should be  
located as close together as possible. Please note that the  
capacitors C and C  
each represent numerous physical  
IN  
OUT  
capacitors. It is desirable to locate the NCP1579 within 1  
inch of the MOSFETs, Q1 and Q2. The circuit traces for the  
MOSFETs’ gate and source connections from the NCP1579  
must be sized to handle up to 2 A peak current.  
http://onsemi.com  
10  
NCP1579  
PACKAGE DIMENSIONS  
SOIC8  
D SUFFIX  
CASE 75107  
ISSUE AJ  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
X−  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP1579/D  
配单直通车
NCP1579DR2G产品参数
型号:NCP1579DR2G
Brand Name:ON Semiconductor
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
零件包装代码:SOIC
包装说明:SOP, SOP8,.25
针数:8
制造商包装代码:751-07
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:1.53
其他特性:ALSO OPERATES IN ADJUSTABLE MODE FROM 0.8 TO 5 V
模拟集成电路 - 其他类型:SWITCHING CONTROLLER
控制模式:VOLTAGE-MODE
控制技术:PULSE WIDTH MODULATION
最大输入电压:13.2 V
最小输入电压:4.5 V
标称输入电压:12 V
JESD-30 代码:R-PDSO-G8
JESD-609代码:e3
长度:4.9 mm
湿度敏感等级:1
功能数量:1
端子数量:8
最高工作温度:70 °C
最低工作温度:
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装等效代码:SOP8,.25
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):NOT SPECIFIED
认证状态:Not Qualified
座面最大高度:1.75 mm
子类别:Switching Regulator or Controllers
表面贴装:YES
切换器配置:PUSH-PULL
最大切换频率:317 kHz
温度等级:COMMERCIAL
端子面层:Tin (Sn)
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:3.9 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!