欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • NCP5006SNT1
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • NCP5006SNT1图
  • 深圳市巨辉通科技有限公司

     该会员已使用本站14年以上
  • NCP5006SNT1 优势库存
  • 数量25000 
  • 厂家ONSEMI 
  • 封装SOT23-5 
  • 批号10+ 
  • ★专业代理LED背光驱动IC,型号齐全,公司优势产品★
  • QQ:905208275QQ:905208275 复制
    QQ:839052285QQ:839052285 复制
  • 0755-83202636;83227655 QQ:905208275QQ:839052285
  • NCP5006SNT1G图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • NCP5006SNT1G
  • 数量98500 
  • 厂家ON 
  • 封装TSOP-5 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • NCP5006SNT1G图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • NCP5006SNT1G
  • 数量85000 
  • 厂家ON/安森美 
  • 封装21+ 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • NCP5006SNT1图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • NCP5006SNT1
  • 数量3000 
  • 厂家ON 
  • 封装SOT23-5 
  • 批号23+ 
  • 全新原装公司现货库存!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • NCP5006SNT1图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • NCP5006SNT1
  • 数量3685 
  • 厂家on 
  • 封装SOT-23-5 细型,TSOT-23-5 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • NCP5006SNT1图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • NCP5006SNT1
  • 数量3685 
  • 厂家on 
  • 封装SOT-23-5 细型,TSOT-23-5 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • NCP5006SNT1G图
  • 深圳市高捷芯城科技有限公司

     该会员已使用本站11年以上
  • NCP5006SNT1G
  • 数量9908 
  • 厂家onsemi(安森美) 
  • 封装TSOP-5-1 
  • 批号23+ 
  • 支持大陆交货,美金交易。原装现货库存。
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83062789 QQ:3007977934QQ:3007947087
  • NCP5006SNT1G图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • NCP5006SNT1G
  • 数量42000 
  • 厂家ON/安森美 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • NCP5006SNT1G图
  • 北京耐芯威科技有限公司

     该会员已使用本站12年以上
  • NCP5006SNT1G
  • 数量5000 
  • 厂家ONS 
  • 封装 
  • 批号21+ 
  • 原装正品,公司现货
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 96-010-62104931 QQ:2880824479QQ:1344056792
  • NCP5006SNT1图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • NCP5006SNT1
  • 数量3000 
  • 厂家ON 
  • 封装5-TSOP 
  • 批号24+ 
  • 专业LED驱动芯片,全新原装,低价出售,欢迎询购
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • NCP5006SNT1图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • NCP5006SNT1
  • 数量3000 
  • 厂家ON 
  • 封装SOT23-5 
  • 批号23+ 
  • 全新原装公司现货销售
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • NCP5006SNT1G图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • NCP5006SNT1G
  • 数量9800 
  • 厂家ON/安森美 
  • 封装SOT23-5 
  • 批号23+ 
  • 进口原装原盘原标签假一赔十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • NCP5006SNT1图
  • 集好芯城

     该会员已使用本站13年以上
  • NCP5006SNT1
  • 数量1068 
  • 厂家ON Semiconductor 
  • 封装 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • NCP5006SNT1G图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • NCP5006SNT1G
  • 数量25771 
  • 厂家ON 
  • 封装TSOP-5 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • NCP5006SNT1G图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • NCP5006SNT1G
  • 数量18531 
  • 厂家ON 
  • 封装SOT23-.. 
  • 批号23+ 
  • 全新原装正品现货特价
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • NCP5006SNT1G图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • NCP5006SNT1G
  • 数量8460 
  • 厂家ON 
  • 封装SOT-23 
  • 批号NEW 
  • 【优势库存】专业代理全新现货特价热卖
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • NCP5006SNT1G图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • NCP5006SNT1G
  • 数量8800 
  • 厂家ON/安森美 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • NCP5006SNT1G图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • NCP5006SNT1G
  • 数量10000 
  • 厂家ONSEMI 
  • 封装SOT23-5 
  • 批号16+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • NCP5006SNT1图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • NCP5006SNT1
  • 数量78800 
  • 厂家ON-安森美 
  • 封装SOT-23-5 
  • 批号▉▉:2年内 
  • ▉▉¥10一一有问必回一一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • NCP5006SNT1G图
  • 深圳市福田区恒科电子商行

     该会员已使用本站2年以上
  • NCP5006SNT1G
  • 数量64839 
  • 厂家ON/安森美 
  • 封装SOT23-5 
  • 批号23+ 
  • 原装现货实单可谈样品可出
  • QQ:2885433641QQ:2885433641 复制
    QQ:360990916QQ:360990916 复制
  • -0755-83981760 QQ:2885433641QQ:360990916
  • NCP5006SNT1G图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • NCP5006SNT1G
  • 数量179967 
  • 厂家ON 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • NCP5006SNT1G图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • NCP5006SNT1G
  • 数量5185 
  • 厂家ON 
  • 封装SOT23-5 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755- QQ:2881894392QQ:2881894393
  • NCP5006SNT1G图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • NCP5006SNT1G
  • 数量865000 
  • 厂家ON/安森美 
  • 封装21+ 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • NCP5006SNT1G图
  • 深圳市积美福电子科技有限公司

     该会员已使用本站4年以上
  • NCP5006SNT1G
  • 数量1560 
  • 厂家ON/安森美 
  • 封装NA 
  • 批号21+ 
  • 只做原装正品,深圳现货库存
  • QQ:647176908QQ:647176908 复制
    QQ:499959596QQ:499959596 复制
  • 0755-83228296 QQ:647176908QQ:499959596
  • NCP5006SNT1图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • NCP5006SNT1
  • 数量5000 
  • 厂家ON Semiconductor 
  • 封装贴/插片 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • NCP5006SNT1G图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • NCP5006SNT1G
  • 数量13500 
  • 厂家ON 
  • 封装 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • NCP5006SNT1G图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • NCP5006SNT1G
  • 数量36218 
  • 厂家ON-安森美 
  • 封装TSSOP-5 
  • 批号▉▉:2年内 
  • ▉▉¥3一一有问必回一一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • NCP5006SNT1G图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • NCP5006SNT1G
  • 数量26700 
  • 厂家ON(安森美) 
  • 封装▊原厂封装▊ 
  • 批号▊ROHS环保▊ 
  • 十年以上分销商原装进口件服务型企业0755-83790645
  • QQ:2881664479QQ:2881664479 复制
  • 755-83790645 QQ:2881664479
  • NCP5006SNT1G图
  • 深圳市三得电子有限公司

     该会员已使用本站15年以上
  • NCP5006SNT1G
  • 数量91752 
  • 厂家ON 
  • 封装SOT153 
  • 批号2024 
  • 深圳原装现货库存,欢迎咨询合作
  • QQ:414322027QQ:414322027 复制
    QQ:565106636QQ:565106636 复制
  • 13509684848 QQ:414322027QQ:565106636
  • NCP5006SNT1G图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • NCP5006SNT1G
  • 数量30000 
  • 厂家ON/安森美 
  • 封装TSOP-5 
  • 批号23+ 
  • 代理全新原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • NCP5006SNT1G图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • NCP5006SNT1G
  • 数量27779 
  • 厂家ONSEMI 
  • 封装原封装 
  • 批号2020+ 
  • 全新原装现货热卖,价格绝对优势
  • QQ:1220223788QQ:1220223788 复制
    QQ:1327510916QQ:1327510916 复制
  • 86-0755-28767101 QQ:1220223788QQ:1327510916
  • NCP5006SNT1G图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • NCP5006SNT1G
  • 数量3250 
  • 厂家ON 
  • 封装SOT23-5 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • NCP5006SNT1G图
  • 深圳市迈锐达科技有限公司

     该会员已使用本站14年以上
  • NCP5006SNT1G
  • 数量96990 
  • 厂家ONS 
  • 封装 
  • 批号08+ 
  • 原装现货!冷门优势库存
  • QQ:603546486QQ:603546486 复制
    QQ:1181043992QQ:1181043992 复制
  • 86-0755 QQ:603546486QQ:1181043992
  • NCP5006SNT1图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • NCP5006SNT1
  • 数量5000 
  • 厂家ON 
  • 封装SOT-153 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • NCP5006SNT1G图
  • 深圳市湘达电子有限公司

     该会员已使用本站10年以上
  • NCP5006SNT1G
  • 数量6600 
  • 厂家ON 
  • 封装5-PinTSOP 
  • 批号20+ 
  • 原盒原装原标签,市场最低价。
  • QQ:215672808QQ:215672808 复制
  • 0755-83229772 QQ:215672808
  • NCP5006SNT1G图
  • 宇芯通实业(深圳)有限公司

     该会员已使用本站8年以上
  • NCP5006SNT1G
  • 数量30000 
  • 厂家ON安森美 
  • 封装高度集成的背光LED升压驱动器 
  • 批号20+ 
  • 只做品牌原装假一赔十
  • QQ:2903107741QQ:2903107741 复制
  • 0755-84535756 QQ:2903107741
  • NCP5006SNT1图
  • 深圳市芳益电子科技有限公司

     该会员已使用本站10年以上
  • NCP5006SNT1
  • 数量6000 
  • 厂家ON 
  • 封装SOT23-5 
  • 批号2023+ 
  • 原装现货大量库存 低价出售 欢迎加Q详谈
  • QQ:498361569QQ:498361569 复制
    QQ:389337416QQ:389337416 复制
  • 0755-13631573466 QQ:498361569QQ:389337416
  • NCP5006SNT1G图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • NCP5006SNT1G
  • 数量10410 
  • 厂家ON/安森美 
  • 封装SOT23-5 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784

产品型号NCP5006SNT1的概述

NCP5006SNT1芯片概述 NCP5006SNT1是一款由ON Semiconductor公司推出的低压差稳压器(LDO),其设计目标位于为便携式设备提供稳定的电源供应。该芯片广泛应用于移动设备、电源管理系统以及各种电子设备中,致力于提升系统的能效和稳定性。 该芯片可以将高于其输出电压的输入电压有效地调整至电源所需的稳定电压,使得后续电路能够获得可靠的电源。这种能力尤其重要,在电池供电的应用场合,输入电压可能因电池电量的减少而波动。NCP5006SNT1的优良特性使其成为各种电源设计中不可或缺的一部分。 芯片详细参数 具体来说,NCP5006SNT1具备以下关键参数: - 输入电压范围:2.5V至6.0V - 输出电压:固定版本为3.3V;可通过外部选择电阻配置为其他值。 - 最大输出电流:最高可达500mA - 输出电压精度:±2% - 低压差特性:典型值为200mV(在500m...

产品型号NCP5006SNT1的Datasheet PDF文件预览

NCP5006  
Compact Backlight LED  
Boost Driver  
The NCP5006 is a high efficiency boost converter operating in  
current loop, based on a PFM mode, to drive White LED. The current  
mode regulation allows a uniform brightness of the LEDs. The chip  
has been optimized for small ceramic capacitors, capable to supply  
up to 1.0 W output power.  
http://onsemi.com  
MARKING  
DIAGRAM  
Features  
5
2.7 to 5.5 V Input Voltage Range  
TSOP−5  
SN SUFFIX  
CASE 483  
DCSYW  
1
V to 24 V Output Compliance Allows up to 5 LEDs Drive in  
out  
5
Series  
1
Built−in Overvoltage Protection  
Inductor Based Converter brings up to 90% Efficiency  
Constant Output Current Regulation  
0.3 mA Standby Quiescent Current  
Includes Dimming Function (PWM)  
Enable Function Driven Directly from Low Battery Voltage Source  
Automatic LEDs Current Matching  
Thermal Shutdown Protection  
DCS = Device Code  
Y
= Year  
W
= Work Week  
PIN CONNECTIONS  
V
1
2
5
V
bat  
out  
All Pins are Fully ESD Protected  
Low EMI Radiation  
Pb−Free Package is Available  
GND  
FB  
3
4
EN  
(Top View)  
Typical Applications  
LED Display Back Light Control  
Keyboard Back Light  
High Efficiency Step Up Converter  
ORDERING INFORMATION  
Device  
Package  
Shipping†  
NCP5006SNT1  
TSOP−5  
3000 Tape & Reel  
3000 Tape & Reel  
NCP5006SNT1G  
TSOP−5  
(Pb−Free)  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
July, 2004 − Rev. 0  
NCP5006/D  
NCP5006  
V
bat  
V
bat  
U1  
EN  
C1  
4
5
V
bat  
4.7 mF  
L1  
GND  
22 mH  
2
3
GND  
GND  
D1  
1
V
out  
FB  
MBR0530  
NCP5006  
C2  
1.0 mF  
R1  
15 W  
D6  
D5  
D4  
D3  
D2  
GND  
GND  
LWT67C LWT67C LWT67C LWT67C LWT67C  
Figure 1. Typical Application  
Thermal Shutdown  
Current Sense  
V
bat  
5
V
bat  
V
sense  
1
2
4
3
V
out  
EN  
FB  
100 k  
Q1  
GND  
+
GND  
300 k  
GND  
+200 mV  
Band Gap  
Figure 2. Block Diagram  
http://onsemi.com  
2
 
NCP5006  
PIN FUNCTION DESCRIPTION  
Pin  
Pin Name  
Type  
Description  
1
V
out  
POWER  
This pin is the power side of the external inductor and must be connected to the  
external Schottky diode. It provides the output current to the load. Since the boost  
converter operates in a current loop mode, the output voltage can range up to  
+24 V but shall not extend this limit. However, if the voltage on this pin is higher  
than the Over Voltage Protection threshold (OVP) the device comes back to  
shutdown mode. To restart the chip, one must either send a Low to High  
sequence on Pin EN, or switch off the V supply. A capacitor must be used on  
bat  
the output voltage to avoid false triggering of the OVP circuit. This capacitor  
should be 1.0 mF minimum. Ceramic type, (ESR <100 mW), is mandatory to  
achieve the high end efficiency. This capacitor limits the noise created by the fast  
transients present in this circuitry. In order to limit the inrush current and to  
operate with an acceptable start−up time, it is recommended to use any value  
between 1.0 mF and 8.2 mF capacitor maximum. Care must be observed to avoid  
EMI through the PCB copper tracks connected to this pin.  
2
3
GND  
FB  
POWER  
This pin is the system ground for the NCP5006 and carries both the power and  
the analog signals. High quality ground must be provided to avoid spikes and/or  
uncontrolled operation. Care must be observed to avoid high−density current flow  
in a limited PCB copper track. Ground plane technique is recommended.  
ANALOG INPUT  
This pin provides the output current range adjustment by means of a sense  
resistor connected to the analog control or with a PWM control. The dimming  
function can be achieved by applying a PWM voltage technique to this pin (see  
Figure 29). The current output tolerance depends upon the accuracy of this  
resistor. Using a "5% metal film resistor or better, yields a good enough output  
current accuracy.  
Note: A built−in comparator switch OFF the DC/DC converter if the voltage  
sensed across this pin and ground is higher than 700 mV (typical).  
4
5
EN  
DIGITAL INPUT  
POWER  
This is an Active−High logic input which enables the boost converter. The built−in  
pull down resistor disables the device when the EN pin is left open. The LED  
brightness can be controlled by applying a pulse width modulated signal to the  
enable pin (see Figure 31).  
V
bat  
The external voltage supply is connected to this pin. A high quality reservoir  
capacitor must be connected across Pin 1 and Ground to achieve the specified  
output voltage parameters. A 4.7 mF/6.3 V, low ESR capacitor must be connected  
as close as possible across Pin 5 and ground Pin 2. The X5R or X7R ceramic  
MURATA types are recommended. The return side of the external inductor shall  
be connected to this pin. Typical application will use a 22 mH, size 1008, to handle  
the 1.0 to 100 mA max output current range. On the other hand, when the desired  
output current is above 20 mA, the inductor shall have an ESR < 1.5 W to achieve  
a good efficiency over the V range.  
bat  
http://onsemi.com  
3
NCP5006  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
6.0  
Unit  
V
Power Supply  
V
bat  
Output Power Supply Voltage Compliance  
V
out  
28  
V
Digital Input Voltage  
Digital Input Current  
EN  
−0.3 < V < V + 0.3  
V
mA  
in  
bat  
1.0  
ESD Capability (Note 1)  
Human Body Model (HBM)  
Machine Model (MM)  
V
ESD  
2.0  
200  
kV  
V
TSOP−5 Package  
Power Dissipation @ T = +85°C (Note 2)  
P
160  
250  
mW  
°C/W  
A
D
Thermal Resistance, Junction−to−Air  
Operating Ambient Temperature Range  
Operating Junction Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
R
q
JA  
T
A
−25 to +85  
−25 to +125  
+150  
°C  
°C  
°C  
°C  
T
J
T
Jmax  
T
stg  
−65 to +150  
Maximumratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values  
(not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage  
may occur and reliability may be affected.  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model (HBM) "2.0 kV per JEDEC standard: JESD22−A114  
Machine Model (MM) "200 V per JEDEC standard: JESD22−A115  
2. The maximum package power dissipation limit must not be exceeded.  
3. Latch−up current maximum rating: "100 mA per JEDEC standard: JESD78.  
4. Moisture Sensivity Level (MSL): 1 per IPC/JEDEC standard: J−STD−020A.  
POWER SUPPLY SECTION (Typical values are referenced to T = +25°C, Min & Max values are referenced −25°C to +85°C ambient  
A
temperature, unless otherwise noted.)  
Rating  
Pin  
4
Symbol  
Min  
2.7  
21  
Typ  
Max  
5.5  
Unit  
V
Power Supply  
V
bat  
Output Load Voltage Compliance  
5
V
out  
24  
V
Continuous DC Current in the Load @ V = 3xLED, L = 22 mH,  
5
I
50  
mA  
out  
out  
ESR < 1.5 W, V = 3.60 V  
bat  
Stand By Current, @ I = 0 mA, EN = L, V = 3.6 V  
4
4
4
I
0.3  
0.8  
3.0  
mA  
mA  
ns  
out  
bat  
stdb  
stdb  
Stand By Current, @ I = 0 mA, EN = L, V = 5.5 V  
I
out  
bat  
Inductor Discharging Time @ V = 3.6 V, L = 22 mH, 3xLED,  
Toffmax  
320  
bat  
I
= 10 mA  
out  
Thermal Shutdown Protection  
T
160  
30  
°C  
°C  
SD  
Thermal Shutdown Protection Hysteresis  
T
SDH  
http://onsemi.com  
4
 
NCP5006  
ANALOG SECTION (Typical values are referenced to T = +25°C, Min & Max values are referenced −25°C to +85°C ambient  
A
temperature, unless otherwise noted.)  
Rating  
Pin  
Symbol  
Min  
Typ  
Max  
Unit  
High Level Input Voltage  
Low Level Input Voltage  
4
EN  
1.3  
0.4  
V
V
EN Pull Down Resistor  
4
3
1
R
170  
100  
200  
100  
230  
kW  
mV  
ms  
EN  
Feedback Voltage Threshold  
FB  
Output Current Stabilization Time Delay following a DC/DC Start−up,  
@ V = 3.60 V, L = 22 mH, I = 20 mA  
I
outdly  
bat  
out  
Internal Switch ON Resistor @ Tamb = +25°C  
1
QR  
1.7  
W
DSON  
5. The overall tolerance depends upon the accuracy of the external resistor.  
ESD PROTECTION  
The NCP5006 includes silicon devices to protect the pins  
against the ESD spikes voltages. To cope with the different  
ESD voltages developed in the applications, the built−in  
means of a current loop, the output voltage will varies  
depending upon the dynamic impedance presented by the  
load.  
structures have been designed to handle "2.0 kV Human  
Body Model (HBM) and"200 V in Machine Model (MM)  
on each pin.  
Considering high intensity LED, the output voltage can  
range from a low 6.40 V (two LED in series biased with a  
low current), up to 21 V, the voltage compliance the chip  
can sustain continuously.  
The basic DC/DC structure is depicted in Figure 3. With  
a 28 V maximum rating voltage capability, the power  
device can accommodate high voltage source without any  
leakage current downgrading.  
in  
DC/DC OPERATION  
The DC/DC converter is designed to supply a constant  
current to the external load, the circuit being powered from  
a standard battery supply. Since the regulation is made by  
V
bat  
L1  
22 mH  
Vd  
sense  
POR  
1
D1  
Vds  
Q1  
TIME_OUT  
ZERO_CROSSING  
GND  
RESET  
LOGIC  
CONTROL  
Vd  
GND  
sense  
+
R1  
+
3
V(Ipeak)  
R2  
xR  
C2  
Vs  
Vref  
GND  
GND  
Figure 3. Basic DC/DC Converter Structure  
http://onsemi.com  
5
 
NCP5006  
Basically, the chip operates with two cycles:  
error amplifier associated to the loop regulation, the  
flip−flop resets, the NMOS is deactivated and the current  
is dumped into the load. Since the timings depend on the  
environment, the internal timer limits the toff cycle to  
320 ns (typical), making sure the system operates in a  
continuous mode to maximize the energy transfer.  
Cycle #1: time t1, the energy is stored into the inductor  
Cycle #2: time t2, the energy is dumped to the load  
The POR signal sets the flip−flop and the first cycle takes  
place. When the current hits the peak value, defined by the  
First Start−Up  
Normal Operation  
Ipeak  
I
L
Iv  
t1  
t2  
0 mA  
t
t
t
Ids  
0 mA  
Io  
0 mA  
Figure 4. Basic DC−DC Operation  
Based on the data sheet, the current flowing into the  
inductor is bounded by two limits:  
Ipeak Value: Internally fixed to 350 mA typical  
Iv Value: Limited by the fixed Toff time built in the  
chip (320 ns typical)  
The system operates in a continuous mode as depicted in  
to avoid saturation of the core. On top of that, the ferrite  
material shall be capable to operate at high frequency  
(1.0 MHz) to minimize the Foucault’s losses developed  
during the cycles.  
The operating frequency can be derived from the  
electrical parameters. Let V = Vo − V , rearranging  
bat  
Equation 1:  
Figure 4 and t and t times can be derived from basic  
1
2
equations. (Note: The equations are for theoretical analysis  
only, they do not include the losses.)  
dI * L  
E
(eq. 5)  
ton +  
Since toff is nearly constant (according to the 320 ns  
typical time), the dI is constant for a given load and  
inductance value. Rearranging Equation 5 yields:  
dI  
dt  
(eq. 1)  
L + E *  
Let V = E, then:  
bat  
V*dt * L  
(Ip * Iv) * L  
L
(eq. 6)  
(eq. 2)  
(eq. 3)  
ton +  
t1 +  
t2 +  
E
V
bat  
Let E = V , and Vopk = output peak voltage, then:  
bat  
(Ip * Iv) * L  
Vo * V  
(Vopk * V ) * dt  
bat  
(eq. 7)  
bat  
ton +  
V
bat  
Since t = 320 ns typical and Vo = 21 V maximum, then  
(assuming a typical V = 3.0 V):  
2
Finally, the operating frequency is:  
bat  
1
t2 * (Vo * V  
(eq. 8)  
bat)  
f +  
DI +  
ton ) toff  
L
The output power supplied by the NCP5006 is limited to  
one watt: Figure 5 shows the maximum power that can be  
delivered by the chip as a function of the output voltage.  
(eq. 4)  
320 ns * (21−3.0)  
DImax +  
+ 261 mA  
22 mH  
Of course, from a practical stand point, the inductor must  
be sized to cope with the peak current present in the circuit  
http://onsemi.com  
6
 
NCP5006  
Pout = f(Vbat) @ Rs = 2.0 W  
Ipeak = f(Vbat) @ Lout = 22 mH  
1200  
1000  
800  
400  
3 LED  
2 LED  
350  
300  
4 LED  
5 LED  
600  
250  
200  
400  
200  
0
P
out  
= f(V ) @ R  
= 2.0 W  
bat  
sense  
150  
6
2
3
4
5
2
3
4
5
6
V
bat  
(V)  
V
bat  
(V)  
Test conditions: L = 22 mH, R  
= 10 W, Tamb = +20°C  
sense  
Figure 5. Maximum Output Power as a Function of  
the Battery Supply Voltage  
Figure 6. Typical Inductor Peak Current as a  
Function of Vbat Voltage  
120  
100  
2 LED  
3 LED  
80  
60  
40  
20  
0
4 LED  
5 LED  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
bat  
(V)  
Test conditions: L = 22 mH, R  
= 2.0 W, Tamb = +25°C  
sense  
Figure 7. Maximum Output Current as a Function of Vbat  
http://onsemi.com  
7
 
NCP5006  
Output Current Range Set−Up  
The current regulation is achieved by means of an external sense resistor connected in series with the LED string.  
V
bat  
L1  
22 mH  
V
out  
D1  
1
FB  
3
Q1  
CONTROLLER  
GND  
R1  
xW  
GND  
Figure 8. Output Current Feedback  
The current flowing through the LED creates a voltage  
drop across the sense resistor R1. The voltage drop is  
constantly monitored internally, and maximum peak  
current allowed in the inductor is set accordingly in order  
to keep constant this voltage drop (and thus the current  
flowing through the LED). For example, should one need  
a 10 mA output current, the sense resistor should be sized  
according to the following equation:  
A standard 5% tolerance resistor, 22 W SMD device,  
yields 9.09 mA, good enough to fulfill the back light  
demand. The typical application schematic diagram is  
provided in Figure 9.  
Feedback Threshold  
200 mV  
10 mA  
(eq. 9)  
R
1
+
+
+ 20 W  
I
out  
V
bat  
U1  
C1  
4
5
1
Pulse  
EN  
V
bat  
4.7 mF  
GND  
L1  
22 mH  
D1  
2
3
V
out  
GND  
GND  
FB  
MBR0530  
C2  
1.0 mF  
NCP5006  
D6  
D5  
D4  
D3  
D2  
R1  
GND  
GND  
22 W  
LWT67C LWT67C LWT67C LWT67C LWT67C  
Figure 9. Basic Schematic Diagram  
http://onsemi.com  
8
 
NCP5006  
Output Load Drive  
The Schottky diode D1, associated with capacitor C2  
(see Figure 9), provides a rectification and filtering  
function.  
In order to optimize the built−in Boost capabilities, one  
shall operate the NCP5006 in the continuous output current  
mode. Such a mode is achieved by using and external  
reservoir capacitor (see Table 1) across the LED.  
At this point, the peak current flowing into the LED  
diodes shall be within the maximum ratings specified for  
these devices. Of course, pulsed operation can be achieved,  
due to the EN signal Pin 4, to force high current into the  
LED when necessary.  
When a pulse−operating mode is acceptable:  
A PWM mode control can be used to adjust the output  
current range by means of a resistor and a capacitor  
connected across FB pin. On the other hand, the  
Schottky diode can be removed and replaced by at  
least one LED diode, keeping in mind such LED shall  
sustain the large pulsed peak current during the  
operation.  
TYPICAL OPERATING CHARACTERISTICS  
Yield = f(Vbat) @ Iout = 4.0 mA/Lout = 22 mH  
Yield = f(Vbat) @ Iout = 10 mA/Lout = 22 mH  
100  
100  
90  
4 LED/10 mA  
4 LED/4 mA  
90  
80  
80  
5 LED/4 mA  
70  
5 LED/10 mA  
70  
60  
50  
40  
30  
2 LED/10 mA  
3 LED/10 mA  
3 LED/4 mA  
2 LED/4 mA  
60  
50  
40  
30  
20  
10  
0
20  
10  
0
2.50  
3.00  
3.50  
4.00  
(V)  
4.50  
5.00  
5.50  
2.50  
3.00  
3.50  
4.00  
(V)  
4.50  
5.00  
5.50  
V
V
bat  
bat  
Figure 10. Overall Efficiency vs. Power Supply @  
Figure 11. Overall Efficiency vs. Power Supply @  
Iout = 4.0 mA, L = 22 mH  
Iout = 10 mA, L = 22 mH  
Yield = f(Vbat) @ Iout = 15 mA/Lout = 22 mH  
Yield = f(Vbat) @ Iout = 20 mA/Lout = 22 mH  
100  
90  
100  
90  
3 LED/15 mA  
3 LED/20 mA  
80  
80  
70  
60  
50  
40  
30  
70  
60  
50  
40  
30  
5 LED/20 mA  
5 LED/15 mA  
2 LED/15 mA  
4 LED/15 mA  
2 LED/20 mA  
4 LED/20 mA  
20  
10  
0
20  
10  
0
2.50  
3.00  
3.50  
4.00  
4.50  
5.50  
2.50  
3.00  
3.50  
4.00  
4.50  
5.00  
5.50  
5.00  
Vbat (V)  
Vbat (V)  
Figure 12. Overall Efficiency vs. Power Supply @  
Figure 13. Overall Efficiency vs. Power Supply @  
Iout = 15 mA, L = 22 mH  
Iout = 20 mA, L = 22 mH  
http://onsemi.com  
9
 
NCP5006  
Yield = f(Vbat) @ Iout = 40 mA/Lout = 22 mH  
Feedback Variation vs. Temperature  
100  
90  
205  
204  
203  
202  
201  
200  
199  
198  
197  
2 LED/40 mA  
80  
5 LED/40 mA  
4 LED/40 mA  
70  
60  
50  
40  
30  
V
bat  
= 3.1 V thru 5.5 V  
3 LED/40 mA  
20  
10  
0
196  
195  
−40  
−20  
0
20  
40  
60  
80  
100  
2.50  
3.00  
3.50  
4.00  
(V)  
4.50  
5.00  
5.50  
V
bat  
TEMPERATURE (°C)  
All curve conditions: L = 22 mH, C = 4.7 mF, C = 1.0 mF,  
in  
out  
Typical curve @ T° = +25°C  
Figure 15. Feedback Voltage Stability  
Standby Current vs. Vbat  
Figure 14. Overall Efficiency vs. Power Supply @  
Iout = 40 mA, L = 22 mH  
Feedback Variation vs. Nominal  
(Vbat = 3.0 V, 6.0 V, T = 255C)  
5
4
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
−40°C thru 125°C  
3
2
1
V
bat  
= 3.1 V thru 5.5 V  
0
−1  
−2  
−3  
−4  
−5  
−40  
−20  
0
20  
40  
60  
80  
100  
2.7  
3.3  
3.9  
4.5  
5.1  
5.5  
TEMPERATURE (°C)  
V
bat  
(V)  
Figure 16. Feedback Voltage Variation  
Figure 17. Standby Current  
OVP vs. Temperature  
Frequency = f(Vbat) @ Iout = 20 mA−Lout = 22 mH  
2.5  
2.0  
26  
25  
2 LED  
V
= 3.6 V  
bat  
V
V
= 2.7 V  
= 5.5 V  
bat  
1.5  
1.0  
0.5  
0
3 LED  
4 LED  
bat  
24  
23  
22  
5 LED  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
−40 −20  
0
20  
40  
60  
80  
100 120130  
V
bat  
TEMPERATURE (°C)  
Figure 18. Typical Operating Frequency  
Figure 19. Overvoltage Protection  
http://onsemi.com  
10  
 
NCP5006  
TYPICAL OPERATING WAVEFORMS  
V
out  
Inductor  
Current  
Conditions:V = 3.6 V, L = 22 mH, 5 LED, I = 15 mA  
bat  
out  
out  
Figure 20. Typical Power Up Response  
V
out  
Inductor  
Current  
Conditions: V = 3.6 V, L = 22 mH, 5 LED, I = 15 mA  
bat  
out  
out  
Figure 21. Typical Start−Up Inductor Current and Output Voltage  
http://onsemi.com  
11  
 
NCP5006  
TYPICAL OPERATING WAVEFORMS  
Inductor  
Current  
Conditions:V = 3.6 V, L = 22 mH, 5 LED, I = 15 mA  
bat  
out  
out  
Figure 22. Typical Inductor Current  
V
out  
Ripple  
50 mV/div  
Inductor  
Current  
Conditions: V = 3.6 V, L = 22 mH, 5 LED, I = 15 mA  
bat  
out  
out  
Figure 23. Typical Output Voltage Ripple  
http://onsemi.com  
12  
 
NCP5006  
TYPICAL OPERATING WAVEFORMS  
Output Voltage  
Inductor Current  
Test Conditions: L = 22 mH, I = 15 mA, V = 3.6 V, Ambient Temperature  
out  
bat  
Figure 24. Typical Output Peak Voltage  
92.00  
90.00  
88.00  
86.00  
84.00  
82.00  
80.00  
78.00  
ESR = 0.3 W  
ESR = 1.3 W  
3
3.5  
4
4.5  
5
5.5  
V
bat  
(V)  
NCP5006: Efficiency = f(ESR) @ 5 LED, ILed = 20 mA  
Figure 25. Efficiency as a Function of Vbat and Inductor ESR  
http://onsemi.com  
13  
 
NCP5006  
10.00  
1.00  
0.10  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 26. Noise Returned to the Battery  
Test Conditions: V = 3.6 V, I = 20 mA, string of 3 LED (OSRAM LWT67C)  
bat  
out  
Figure 27. Relative EMI Over 100 kHz − 30 MHz Bandwidth  
http://onsemi.com  
14  
 
NCP5006  
TYPICAL APPLICATIONS CIRCUITS  
Standard Feedback  
The standard feedback provides a constant current to the  
LED, independently of the V supply and number of LED  
associated in series. Figure 28 depicts a typical application  
to supply 13 mA to the load.  
bat  
V
bat  
V
bat  
U1  
EN  
C1  
4
5
1
V
bat  
4.7 mF  
L1  
22 mH  
GND  
D1  
2
3
GND  
FB  
GND  
V
out  
MBR0530  
NCP5006  
C2  
1.0 mF  
R1  
D6  
D5  
D4  
D3  
D2  
GND  
GND  
15 W  
LWT67C LWT67C LWT67C LWT67C LWT67C  
Figure 28. Basic DC Current Mode Operation with Analog Feedback  
PWM Operation  
start and stop the converter, yielding high transients . These  
transients might generate spikes difficult to filter out in the  
rest of the application, a situation not recommended. The  
output current depends upon the duty cycle of the signal  
presented to the node Pin 3: this is very similar to the digital  
control discussed in Figure 31.  
The average mode yields a noise free operation since the  
converter operates continuously, together with a very good  
dimming function. The cost is an extra resistor and one  
extra capacitor, both being low cost parts.  
The analog feedback Pin 3 provides a way to dim the  
LED by means of an external PWM signal as depicted in  
Figure 29. By optimizing the internal high impedance  
presented by the FB pin, one can set up a simple R/C  
network to accommodate such a dimming function. Two  
modes of operation can be considered:  
Pulsed mode, with no filtering  
Averaged mode with filtering capacitor  
Although the pulsed mode will provide a good dimming  
function, from a human eye standpoint, it will continuously  
http://onsemi.com  
15  
 
NCP5006  
V
bat  
V
bat  
U1  
EN  
C1  
4
5
1
V
bat  
4.7 mF  
L1  
22 mH  
Average Network  
R2  
D1  
GND  
2
3
GND  
GND  
V
out  
R3  
PWM  
FB  
MBR0530  
10 k  
150 k  
NCP5006  
C2  
1.0 mF  
C3  
100 nF  
R4  
5.6 k  
GND  
GND  
GND  
R1  
10 W  
D6  
D5  
D4  
D3  
D2  
LWT67C LWT67C LWT67C LWT67C LWT67C  
Sense Resistor  
NOTE: RC filter R2 and C3 is optional (see text)  
Figure 29. Basic DC Current Mode Operation with PWM Control  
To implement such a function, let consider the feedback  
input as an operational amplifier with a high impedance  
input (reference schematic Figure 29). The analog loop  
will keep going to balance the current flowing through the  
sense resistor R1 until the feedback voltage is 200 mV. An  
extra resistor (R4) isolates the FB node from low resistance  
to ground, making possible to add an external voltage to  
this pin.  
The time constant R2/C3 generates the voltage across C3,  
added to the node Pin 1, while R2/R3/R4/R1/C3 create the  
discharge time constant. In order to minimize the pick up  
noise at FB node, the resistors shall have relative medium  
value, preferably well below 1.0 MW. Consequently, let R2 =  
150 k, R3 = 10 k and R4 = 5.6 k. On the other hand, the  
feedback delay to control the luminosity of the LED shall be  
acceptable by the user, 10 ms or less being a good  
compromise. The time constant can now be calculated based  
on a 400 mV offset voltage at the C3/R2/R3 node to force  
zero current to the LED. Assuming the PWM signal comes  
from a standard gate powered by a 3.0 V supply, running at  
10 kHz, then a full dimming of the LED can be achieved with  
a 95% span of the Duty Cycle signal. Figure 30 depicts the  
behavior under such PWM analog mode.  
PWM  
VFB  
VPWM  
Figure 30. Operation with Analog PWM, f = 10 kHz, DC = 25%  
http://onsemi.com  
16  
 
NCP5006  
Digital Control  
Cycle, but care must be observed as the DC/DC converter  
is continuously pulsed ON/OFF and noise are likely to be  
generated.  
Due to the EN pin, a digitally controlled luminosity can  
be implemented by providing a PWM signal to this pin (see  
Figure 31). The output current depends upon the Duty  
V
bat  
U1  
4
C1  
5
1
Pulse  
EN  
V
bat  
4.7 mF  
L1  
22 mH  
GND  
D1  
2
3
GND  
GND  
V
out  
FB  
MBR0530  
NCP5006  
C2  
1.0 mF  
R1  
22 W  
D6  
D5  
D4  
D3  
D2  
GND  
GND  
LWT67C LWT67C LWT67C LWT67C LWT67C  
NOTE: Pulse width and frequency depends upon the application constraints.  
Figure 31. Typical Semi−Pulsed Mode of Operation  
The PWM operation, using the EN pin as a digital  
control, is depicted in Figures 32 and 33. The tests have  
been carried out at room temperature with V = 3.60 V,  
L = 22 mH, five LEDs in series, RFB = 22 W.  
bat  
PWM  
V
out  
VFB  
VPWM  
Figure 32. Operation @ PWM = 10 kHz, DC = 10%  
http://onsemi.com  
17  
 
NCP5006  
PWM  
V
out  
VFB  
PWR CLK  
Figure 33. Operation @ PWM = 10 kHz, DC = 25%  
PWM  
V
out  
PWR CLK  
Figure 34. Magnified View of Operation @ PWM = 10 kHz, DC = 25%  
http://onsemi.com  
18  
 
NCP5006  
NCP5006 I = f(PWM) @ f = 10 kHz  
out  
10.00  
9.00  
8.00  
7.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
Digital EN  
Analog PWM  
0
20  
40  
60  
DC (%)  
80  
100  
120  
Figure 35. Output Current as a Function of the Operating Condition  
Table 1. Recommended Passive Parts  
Part  
Manufacturer  
MURATA  
MURATA  
MURATA  
CoilCraft  
CoilCraft  
WURTH  
TDK  
Description  
GRM42 − X7R  
GRM42 – X5R  
GRM40 – X5R  
1008PS − Shielded  
Power Wafer  
Part Number  
GRM42−6X7R−105K16  
GRM  
Ceramic Capacitor 1.0 mF/16 V  
Ceramic Capacitor 1.0 mF/25 V  
Ceramic Capacitor 4.7 mF/6.3 V  
Inductor 22 mH  
GRM40−X5R−475K6.3  
1008PS−223MC  
LPQ4812−223KXC  
744031220  
Inductor 22 mH  
Inductor 22 mH  
Power Choke  
Inductor 22 mH  
Power Inductor  
VLP4614T−220MR40  
http://onsemi.com  
19  
 
NCP5006  
Typical LEDs Load Mapping  
Since the output power is voltage battery limited (see  
Figure 5), one shall arrange the LED to cope with a specific  
need. In particular, since the power cannot extend 600 mW  
under realistic battery supply, powering ten LED can be  
achieved by a series/parallel combination as depicted in  
Figure 36.  
50 mA  
75 mA  
Load  
Load  
D1  
LED  
D5  
LED  
D1  
LED  
D3  
LED  
D5  
LED  
D7  
LED  
D9  
LED  
D2  
LED  
D6  
LED  
D2  
LED  
D4  
LED  
D6  
LED  
D8  
LED  
D10  
LED  
D3  
LED  
D7  
LED  
Sense  
Resistor  
R1  
2.7 W  
D4  
LED  
D8  
LED  
GND  
60 mA  
Load  
Sense  
R1  
D1  
LED  
D4  
LED  
D7  
LED  
D10  
LED  
D13  
LED  
3.9 W  
Resistor  
GND  
D2  
LED  
D5  
LED  
D8  
LED  
D11  
LED  
D14  
LED  
D3  
LED  
D6  
LED  
D9  
LED  
D12  
LED  
D15  
LED  
Test conditions:  
V
L
C
= 3.6 V  
= 22 mH  
= 1.0 mF  
bat  
out  
out  
Sense  
Resistor  
R1  
3.3 W  
GND  
Figure 36. Examples of Possible LED Arrangements  
http://onsemi.com  
20  
 
NCP5006  
GND  
MMBF0201NLT1  
C2  
4.7 mF/  
16 V  
C3  
4.7 mF/  
16 V  
D9  
D10  
D11  
R7  
Q2  
3.3 R  
LWT67C LWT67C LWT67C  
GND  
TP?  
R6  
Q1  
V
out  
D5  
D6  
D7  
D8  
D12  
51 R  
MMBF0201NLT1  
LWT67C LWT67C LWT67C LWT67C LWT67C  
U5  
1
U4A  
M54HC123  
TP1  
VFB  
6
4
5
U1  
4
1
2
FB  
NLAS4599  
Adjust Flash Pulse Width  
V
out  
GND  
GND  
R4  
GND  
GND  
V
CC  
V
CC  
C9  
P2  
10 k  
500 kA  
5
3
1.0 mF/  
V
bat  
EN  
10 V  
GND  
NCP5006  
V
CC  
C1  
C7  
GND  
1.0 nF  
V
CC  
C6  
C8  
10 mF/  
10 V  
GND  
100 nF  
C5  
100 nF  
C4  
P1  
100 kA  
R3  
10 k  
4.7 mF/  
R8  
1.5 k  
16 V  
GND  
V
CC  
R5  
100 k  
GND  
V
CC  
S2  
S1  
TRIG  
GND  
V
CC  
GND  
J2  
J1  
ENABLE  
V
bat  
Figure 37. NCP5006 Demo Board Schematic Diagram  
http://onsemi.com  
21  
 
NCP5006  
Figure 38. NCP5006 Demo Board PCB: Top Layer  
Figure 39. NCP5006 Demo Board PCB: Bottom Layer  
Figure 40. NCP5006 Demo Board Top Silkscreen  
http://onsemi.com  
22  
 
NCP5006  
FIGURES INDEX  
Figure 1: Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Figure 2: Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Figure 3: Basic DC/DC Converter Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 4: Basic DC/DC Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 5: Maximum Output Power as a Function of the Battery Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 6: Typical Inductor Peak Current as a Function of V Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
bat  
Figure 7: Maximum Output Current as a Function of V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
bat  
Figure 8: Output Current Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 9: Basic Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 10: Overall Efficiency vs. Power Supply @ I = 4.0 mA, L = 22 mH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
out  
Figure 11: Overall Efficiency vs. Power Supply @ I = 10 mA, L = 22 mH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
out  
Figure 12: Overall Efficiency vs. Power Supply @ I = 15 mA, L = 22 mH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
out  
Figure 13: Overall Efficiency vs. Power Supply @ I = 20 mA, L = 22 mH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
out  
Figure 14: Overall Efficiency vs. Power Supply @ I = 40 mA, L = 22 mH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
out  
Figure 15: Feedback Voltage Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 16: Feedback Voltage Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 17: Standby Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 18: Typical Operating Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 19: Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 20: Typical Power Up Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 21: Typical Start−Up Inductor Current and Output Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 22: Typical Inductor Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 23: Typical Output Voltage Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 24: Typical Output Peak Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 25: Efficiency as a Function of V and Inductor ESR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
bat  
Figure 26: Noise Returned to the Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 27: Relative EMI Over 100 kHz−30 MHz Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 28: Basic DC Current Mode Operation with Analog Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 29: Basic DC Current Mode Operation with PWM Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 30: Operation with Analog PWM, f = 10 kHz, DC = 25% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 31: Typical Semi−Pulsed Mode of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 32: Operation @ PWM = 10 kHz, DC = 10% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 33: Operation @ PWM = 10 kHz, DC = 25% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 34: Magnified View of Operation @ PWM = 10 kHz, DC = 25% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 35: Output Current as a Function of the Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 36: Examples of Possible LED Arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 37: NCP5006 Demo Board Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 38: NCP5006 Demo Board PCB: Top Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 39: NCP5006 Demo Board PCB: Bottom Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 40: NCP5006 Demo Board Top Silkscreen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
NOTE CAPTIONS INDEX  
Note 1:  
Note 2:  
Note 3:  
Note 4:  
Note 5:  
This device series contains ESD protection and exceeds the following tests . . . . . . . . . . . . . . . . . . . . . . . . . 4  
The maximum package power dissipation limit must not be exceeded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Latch−up current maximum rating: "100 mA per JEDEC standard: JESD78 . . . . . . . . . . . . . . . . . . . . . . . . 4  
Moisture Sensivity Level (MSL): 1 per IPC/JEDEC standard: J−STD−020A . . . . . . . . . . . . . . . . . . . . . . . . 4  
The overall tolerance depends upon the accuracy of the external resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
ABBREVIATIONS  
EN  
Enable  
FB  
Feed Back  
POR  
Power On Reset: Internal pulse to reset the chip when the power supply is applied  
http://onsemi.com  
23  
NCP5006  
PACKAGE DIMENSIONS  
TSOP−5  
SN SUFFIX  
CASE 483−02  
ISSUE C  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. MAXIMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS  
OF BASE MATERIAL.  
4. A AND B DIMENSIONS DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
D
5
4
3
B
C
S
1
2
L
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
G
A
B
C
D
G
H
J
K
L
M
S
2.90  
1.30  
0.90  
0.25  
0.85  
3.10 0.1142 0.1220  
1.70 0.0512 0.0669  
1.10 0.0354 0.0433  
0.50 0.0098 0.0197  
1.05 0.0335 0.0413  
A
J
0.013 0.100 0.0005 0.0040  
0.05 (0.002)  
0.10  
0.20  
1.25  
0
0.26 0.0040 0.0102  
0.60 0.0079 0.0236  
1.55 0.0493 0.0610  
H
M
K
10  
0
10  
_
_
_
_
2.50  
3.00 0.0985 0.1181  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
MountingTechniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental  
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over  
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under  
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.  
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCP5006/D  
配单直通车
NCP5006SNT1产品参数
型号:NCP5006SNT1
是否Rohs认证:不符合
生命周期:Obsolete
IHS 制造商:ON SEMICONDUCTOR
零件包装代码:TSOP
包装说明:TSOP-5
针数:5
Reach Compliance Code:not_compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:5.39
Is Samacsys:N
接口集成电路类型:LED DISPLAY DRIVER
JESD-30 代码:R-PDSO-G5
JESD-609代码:e0
长度:3 mm
复用显示功能:NO
功能数量:1
区段数:1
端子数量:5
最高工作温度:85 °C
最低工作温度:-25 °C
封装主体材料:PLASTIC/EPOXY
封装代码:TSSOP
封装等效代码:TSOP5/6,.11,37
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, THIN PROFILE, SHRINK PITCH
峰值回流温度(摄氏度):240
电源:3/5 V
认证状态:Not Qualified
座面最大高度:1.1 mm
子类别:Display Drivers
最大供电电压:5.5 V
最小供电电压:2.7 V
标称供电电压:3.6 V
表面贴装:YES
温度等级:OTHER
端子面层:Tin/Lead (Sn80Pb20)
端子形式:GULL WING
端子节距:0.95 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:30
宽度:1.5 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!