欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • OP491GSZ图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • OP491GSZ 现货库存
  • 数量26980 
  • 厂家ADI 
  • 封装N/A 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • OP491GSZ图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • OP491GSZ 现货库存
  • 数量6851 
  • 厂家ADI 
  • 封装SOP14 
  • 批号24+ 
  • 全新原装现货,可开增值税发票,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • OP491GSZ图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • OP491GSZ 现货库存
  • 数量60030 
  • 厂家ADI/亚德诺 
  • 封装SOP14 
  • 批号2023+ 
  • 专营原装正品量大可定货
  • QQ:2885134554QQ:2885134554 复制
    QQ:2885134398QQ:2885134398 复制
  • 0755-22669259 QQ:2885134554QQ:2885134398
  • OP491GSZ图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • OP491GSZ 现货库存
  • 数量20800 
  • 厂家AD 
  • 封装SOP14 
  • 批号21+ 
  • 原装现货 欢迎咨询0755- 83790645
  • QQ:2881664479QQ:2881664479 复制
  • 755-83790645 QQ:2881664479
  • OP491GSZ-REEL7图
  • 深圳市高捷芯城科技有限公司

     该会员已使用本站11年以上
  • OP491GSZ-REEL7 现货库存
  • 数量7012 
  • 厂家ADI(亚德诺) 
  • 封装SOP 
  • 批号23+ 
  • 百分百原装正品,可原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83062789 QQ:3007977934QQ:3007947087
  • OP491GSZ图
  • 集好芯城

     该会员已使用本站13年以上
  • OP491GSZ 现货库存
  • 数量18036 
  • 厂家ADI(亚德诺) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • OP491GSZ图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • OP491GSZ 现货库存
  • 数量3000 
  • 厂家ADI/亚德诺 
  • 封装NA 
  • 批号21+ 
  • 羿芯诚只做原装 原厂渠道 价格优势
  • QQ:2881498351QQ:2881498351 复制
  • 0755-22968581 QQ:2881498351
  • OP491GSZ图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • OP491GSZ 现货库存
  • 数量28458 
  • 厂家AD量大发货 
  • 封装SOP14 
  • 批号2020+ 
  • 全新原装进口现货特价热卖,长期供货
  • QQ:1220223788QQ:1220223788 复制
    QQ:1327510916QQ:1327510916 复制
  • 86-0755-28767101 QQ:1220223788QQ:1327510916
  • OP491GSZ图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • OP491GSZ 现货库存
  • 数量8500 
  • 厂家ADI(亚德诺)/LINEAR 
  • 封装SOIC-14 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • OP491GSZ-REEL7图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • OP491GSZ-REEL7 现货库存
  • 数量1000 
  • 厂家ADI 
  • 封装SOP 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • OP491GSZ-REEL7图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • OP491GSZ-REEL7 现货库存
  • 数量7849 
  • 厂家AD 
  • 封装SOP 
  • 批号24+ 
  • 全新原装,特价,假一罚十
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • OP491GSZ-REEL7图
  • 深圳市富莱微科技有限公司

     该会员已使用本站6年以上
  • OP491GSZ-REEL7 优势库存
  • 数量1000 
  • 厂家ADI 
  • 封装N/A 
  • 批号22+ 
  • 只做原装,现货库存,价格优势
  • QQ:1968343307QQ:1968343307 复制
    QQ:2885835292QQ:2885835292 复制
  • 0755-83210149 QQ:1968343307QQ:2885835292
  • OP491GSZ图
  • 深圳市科雨电子有限公司

     该会员已使用本站8年以上
  • OP491GSZ
  • 数量9800 
  • 厂家ADI 
  • 封装SOP 
  • 批号21+ 
  • 原厂渠道,全新原装现货,欢迎查询!
  • QQ:97877807QQ:97877807 复制
  • 171-4755-1968(微信同号) QQ:97877807
  • OP491GSZ图
  • 深圳市科雨电子有限公司

     该会员已使用本站8年以上
  • OP491GSZ
  • 数量932 
  • 厂家ADI 
  • 封装SOP-14 
  • 批号21+ 
  • ★体验愉快问购元件!!就找我吧!单价:98元
  • QQ:1415691092QQ:1415691092 复制
  • 133-5299-5145(微信同号) QQ:1415691092
  • OP491GSZ-REEL图
  • 深圳市科雨电子有限公司

     该会员已使用本站8年以上
  • OP491GSZ-REEL
  • 数量2500 
  • 厂家ADI 
  • 封装SOP-14 
  • 批号21+ 
  • ★体验愉快问购元件!!就找我吧!单价:112元
  • QQ:97877805QQ:97877805 复制
  • 171-4729-0036(微信同号) QQ:97877805
  • OP491GSZ图
  • 深圳市正纳电子有限公司

     该会员已使用本站2年以上
  • OP491GSZ
  • 数量8000 
  • 厂家ADI(亚德诺) 
  • 封装NA 
  • 批号22+ 
  • 原装现货★★★
  • QQ:2881664480QQ:2881664480 复制
  • 0755-82524192 QQ:2881664480
  • OP491GSZ图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • OP491GSZ
  • 数量9800 
  • 厂家AD 
  • 封装原厂原装 
  • 批号面议 
  • 原厂渠道,全新原装现货,欢迎查询!
  • QQ:97877807QQ:97877807 复制
  • 171-4755-1968(微信同号) QQ:97877807
  • OP491GSZ图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • OP491GSZ
  • 数量5800 
  • 厂家AD 
  • 封装SOP 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • OP491GSZ图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • OP491GSZ
  • 数量69850 
  • 厂家ADI 
  • 封装14-Lead SOIC 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • OP491GSZ图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • OP491GSZ
  • 数量3260 
  • 厂家ADI/亚德诺 
  • 封装NA/ 
  • 批号23+ 
  • 原厂直销,现货供应,账期支持!
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • OP491GSZ图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • OP491GSZ
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • OP491GSZ图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • OP491GSZ
  • 数量35898 
  • 厂家AnalogDevicesInc 
  • 封装14-SOIC 
  • 批号21+ 
  • ■原装现货长期供应电子元器件代理经销WWW.ZN-IC.COM
  • QQ:2881664480QQ:2881664480 复制
  • 0755-83532193 QQ:2881664480
  • OP491GSZ图
  • 深圳市宏诺德电子科技有限公司

     该会员已使用本站8年以上
  • OP491GSZ
  • 数量68000 
  • 厂家AD 
  • 封装SOIC 
  • 批号22+ 
  • 全新进口原厂原装,优势现货库存,有需要联系电话:18818596997 QQ:84556259
  • QQ:84556259QQ:84556259 复制
    QQ:783839662QQ:783839662 复制
  • 0755- QQ:84556259QQ:783839662
  • OP491GSZ图
  • 深圳市誉兴微科技有限公司

     该会员已使用本站4年以上
  • OP491GSZ
  • 数量12600 
  • 厂家ADI/亚德诺 
  • 封装SOP 
  • 批号22+ 
  • 深圳原装现货,支持实单
  • QQ:2252757071QQ:2252757071 复制
  • 0755-82579431 QQ:2252757071
  • OP491GSZ图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • OP491GSZ
  • 数量58867 
  • 厂家AD 
  • 封装SOP14 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • OP491GSZ图
  • 深圳市西源信息科技有限公司

     该会员已使用本站9年以上
  • OP491GSZ
  • 数量8800 
  • 厂家ADI/亚德诺 
  • 封装SOP 
  • 批号最新批号 
  • 原装现货零成本有接受价格就出
  • QQ:3533288158QQ:3533288158 复制
    QQ:408391813QQ:408391813 复制
  • 0755-84876394 QQ:3533288158QQ:408391813
  • OP491GSZ图
  • 北京逸博微科技有限公司

     该会员已使用本站16年以上
  • OP491GSZ
  • 数量550 
  • 厂家ADI 
  • 封装 
  • 批号21+ 
  • 代理分销原装进口原包装现货
  • QQ:352981218QQ:352981218 复制
  • 010-62969189 QQ:352981218
  • OP491GSZ图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • OP491GSZ
  • 数量660000 
  • 厂家Analog Devices Inc 
  • 封装14-SOIC (0.154 
  • 批号3.90mm Width) 
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • OP491GSz图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • OP491GSz
  • 数量36000 
  • 厂家AD/PMI 
  • 封装SOP14 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • OP491GSZ图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • OP491GSZ
  • 数量30000 
  • 厂家AD 
  • 封装SOP-14 
  • 批号23+ 
  • 代理全新原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • OP491GSZ图
  • 深圳亿景融荣科技有限公司

     该会员已使用本站2年以上
  • OP491GSZ
  • 数量336 
  • 厂家AD 
  • 封装14-Lead SOIC 
  • 批号23+ 
  • 查报价_www.quaic.com
  • QQ:236255295QQ:236255295 复制
    QQ:2560388062QQ:2560388062 复制
  • 15092623555 QQ:236255295QQ:2560388062
  • OP491GSZ图
  • 深圳市婷轩实业有限公司

     该会员已使用本站6年以上
  • OP491GSZ
  • 数量5000 
  • 厂家Analog Devices Inc 
  • 封装14-SOIC 
  • 批号23+ 
  • 进口原装现货热卖
  • QQ:2881943288QQ:2881943288 复制
    QQ:3026548067QQ:3026548067 复制
  • 0755-89608519 QQ:2881943288QQ:3026548067
  • OP491GSZ图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • OP491GSZ
  • 数量65000 
  • 厂家AD 
  • 封装SOP14 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • OP491GSZ-REEL图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • OP491GSZ-REEL
  • 数量6500000 
  • 厂家N/A 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • OP491GSZ   PB图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • OP491GSZ PB
  • 数量18000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • OP491GSZ-REEL7图
  • 深圳市隆鑫创展电子有限公司

     该会员已使用本站15年以上
  • OP491GSZ-REEL7
  • 数量30000 
  • 厂家MICROCHIP 
  • 封装VQFN32 
  • 批号2022+ 
  • 电子元器件一站式配套服务QQ:122350038
  • QQ:2355878626QQ:2355878626 复制
    QQ:2850299242QQ:2850299242 复制
  • 0755-82812278 QQ:2355878626QQ:2850299242
  • OP491GSZ图
  • 深圳市特拉特科技有限公司

     该会员已使用本站2年以上
  • OP491GSZ
  • 数量6000 
  • 厂家ADI 
  • 封装SOP 
  • 批号22+ 
  • 原厂直供现货价优十年信誉保证每一片都来自原厂
  • QQ:709809857QQ:709809857 复制
  • 0755-82531732 QQ:709809857

产品型号OP491GSZ的概述

OP491GSZ芯片概述及参数详解 一、概述 OP491GSZ是一款高性能的运算放大器,广泛应用于模拟信号处理领域。与常见的运算放大器相比,OP491GSZ具有更低的偏置电流和更高的增益带宽,适合需要高精度和高响应速度的应用场合。这款芯片的设计体现了对低功耗和高线性的追求,故而在医用设备、数据采集系统及传感器信号处理中得到广泛应用。 二、详细参数 OP491GSZ的主要参数: 1. 工作电压范围: - 典型工作电压为±2.5V至±15V - 单电源供电时,工作电压也可在5V至30V范围内。 2. 增益带宽积: - 增益带宽积为4MHz,使其适用于高频信号处理。 3. 输入偏置电流: - 输入偏置电流典型值为1nA,保证了在高阻抗应用中的高精度。 4. 输入失调电压: - 输入失调电压最大为250μV,确保了信号处理中的精度。 5. 电源电流: - ...

产品型号OP491GSZ的Datasheet PDF文件预览

Micropower Single-Supply  
Rail-to-Rail Input/Output Op Amps  
OP191/OP291/OP491  
PIN CONFIGURATIONS  
FEATURES  
Single-supply operation: 2.7 V to 12 V  
Wide input voltage range  
Rail-to-rail output swing  
Low supply current: 300 μA/amp  
Wide bandwidth: 3 MHz  
Slew rate: 0.5 V/μs  
OUTA  
–INA  
+INA  
–V  
1
2
3
4
8
7
6
5
+V  
NC  
–INA  
+INA  
–V  
1
2
3
4
8
7
6
5
NC  
OUTB  
–INB  
+INB  
+V  
OP291  
OP191  
OUTA  
NC  
NC = NO CONNECT  
Figure 1. 8-Lead Narrow-Body SOIC  
Figure 2. 8-Lead Narrow-Body SOIC  
Low offset voltage: 700 μV  
No phase reversal  
OUTA  
–INA  
+INA  
+V  
1
2
3
4
5
6
7
14 OUTD  
13 –IND  
12 +IND  
11 –V  
OUTA  
–INA  
+INA  
+V  
1
2
3
4
5
6
7
14 OUTD  
13 –IND  
12 +IND  
11 –V  
-
-
-
-
+
+
APPLICATIONS  
Industrial process control  
Battery-powered instrumentation  
Power supply control and protection  
Telecommunications  
OP491  
OP491  
+INB  
–INB  
OUTB  
10 +INC  
+INB  
–INB  
OUTB  
10 +INC  
9
8
–INC  
+
+
9
8
–INC  
OUTC  
OUTC  
Remote sensors  
Low voltage strain gage amplifiers  
DAC output amplifiers  
Figure 3. 14-Lead Narrow-Body SOIC  
Figure 4. 14-Lead PDIP  
OUTA  
–INA  
+INA  
+V  
1
2
3
4
5
6
7
14 OUTD  
13 –IND  
12 +IND  
11 –V  
OP491  
+INB  
–INB  
OUTB  
10 +INC  
9
8
–INC  
OUTC  
Figure 5. 14-Lead TSSOP  
GENERAL DESCRIPTION  
The OP191, OP291, and OP491 are single, dual, and quad  
micropower, single-supply, 3 MHz bandwidth amplifiers  
featuring rail-to-rail inputs and outputs. All are guaranteed to  
operate from a +3 V single supply as well as ±± V dual supplies.  
The ability to swing rail-to-rail at both the input and output  
enables designers to build multistage filters in single-supply  
systems and to maintain high signal-to-noise ratios.  
The OP191/OP291/OP491 are specified over the extended  
industrial –40°C to +12±°C temperature range. The OP191  
single and OP291 dual amplifiers are available in 8-lead plastic  
SOIC surface-mount packages. The OP491 quad is available in a  
14-lead PDIP, a narrow 14-lead SOIC package, and a 14-lead  
TSSOP.  
Fabricated on Analog Devices CBCMOS process, the OPx91  
family has a unique input stage that allows the input voltage to  
safely extend 10 V beyond either supply without any phase  
inversion or latch-up. The output voltage swings to within  
millivolts of the supplies and continues to sink or source  
current all the way to the supplies.  
Applications for these amplifiers include portable tele-  
communications equipment, power supply control and  
protection, and interface for transducers with wide output  
ranges. Sensors requiring a rail-to-rail input amplifier include  
Hall effect, piezo electric, and resistive transducers.  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
OP191/OP291/OP491  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Overdrive Recovery ................................................................... 18  
Applications..................................................................................... 19  
Single 3 V Supply, Instrumentation Amplifier....................... 19  
Single-Supply RTD Amplifier................................................... 19  
A 2.± V Reference from a 3 V Supply ...................................... 20  
± V Only, 12-Bit DAC Swings Rail-to-Rail ............................. 20  
A High-Side Current Monitor.................................................. 20  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Specifications............................................................... 3  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 17  
Input Overvoltage Protection ................................................... 18  
Output Voltage Phase Reversal................................................. 18  
A 3 V, Cold Junction Compensated Thermocouple Amplifier  
....................................................................................................... 21  
Single-Supply, Direct Access Arrangement for Modems...... 21  
3 V, ±0 Hz/60 Hz Active Notch Filter with False Ground..... 22  
Single-Supply, Half-Wave, and Full-Wave Rectifiers............. 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 24  
REVISION HISTORY  
3/04—Rev. B to Rev. C.  
4/06—Rev. C to Rev. D  
Changes to OP291 SOIC Pin Configuration .................................1  
Changes to Noise Performance, Voltage Density, Table 1........... 3  
Changes to Noise Performance, Voltage Density, Table 2........... 4  
Changes to Noise Performance, Voltage Density, Table 3........... ±  
Changes to Figure 23 and Figure 24............................................. 10  
Changes to Figure 42...................................................................... 13  
Changes to Figure 43...................................................................... 14  
Changes to Figure ±7...................................................................... 16  
Added Figure ±8.............................................................................. 16  
Changed Reference from Figure 47 to Figure 12........................ 17  
Updated Outline Dimensions....................................................... 23  
Changes to Ordering Guide .......................................................... 24  
11/03—Rev. A to Rev. B.  
Edits to General Description ...........................................................1  
Edits to Pin Configuration ...............................................................1  
Changes to Ordering Guide.............................................................±  
Updated Outline Dimensions....................................................... 19  
12/02—Rev. 0 to Rev. A.  
Edits to General Description ...........................................................1  
Edits to Pin Configuration ...............................................................1  
Changes to Ordering Guide.............................................................±  
Edits to Dice Characteristics............................................................±  
Rev. D | Page 2 of 24  
 
OP191/OP291/OP491  
SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
@ VS = 3.0 V, VCM = 0.1 V, VO = 1.4 V, TA = 2±°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
OP191G  
VOS  
VOS  
IB  
80  
80  
30  
0.1  
500  
1
μV  
mV  
μV  
mV  
nA  
nA  
nA  
nA  
V
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
OP291G/OP491G  
Input Bias Current  
Input Offset Current  
700  
1.25  
65  
95  
11  
22  
3
IOS  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 2.9 V  
70  
65  
25  
90  
87  
70  
dB  
dB  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 0.3 V to 2.7 V  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
V/mV  
V/mV  
μV/°C  
pA/°C  
pA/°C  
50  
Offset Voltage Drift  
Bias Current Drift  
Offset Current Drift  
∆VOS/∆T  
∆IB/∆T  
∆IOS/∆T  
1.1  
100  
20  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 100 kΩ to GND  
−40°C to +125°C  
RL = 2 kΩ to GND  
−40°C to +125°C  
RL = 100 kΩ to V+  
−40°C to +125°C  
RL = 2 kΩ to V+  
−40°C to +125°C  
Sink/source  
2.95  
2.90  
2.8  
2.99  
2.98  
2.9  
2.80  
4.5  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
Ω
2.70  
Output Voltage Low  
Short-Circuit Limit  
VOL  
10  
35  
75  
130  
40  
ISC  
8.75  
6.0  
13.50  
10.5  
200  
−40°C to +125°C  
f = 1 MHz, AV = 1  
Open-Loop Impedance  
POWER SUPPLY  
ZOUT  
PSRR  
ISY  
Power Supply Rejection Ratio  
VS = 2.7 V to 12 V  
−40°C ≤ TA ≤ +125°C  
VO = 0 V  
80  
75  
110  
110  
200  
330  
dB  
dB  
μA  
μA  
Supply Current/Amplifier  
350  
480  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
+SR  
–SR  
BWP  
tS  
GBP  
θO  
RL = 10 kΩ  
RL = 10 kΩ  
1% distortion  
To 0.01%  
0.4  
0.4  
1.2  
22  
3
V/μs  
V/μs  
kHz  
Slew Rate  
Full-Power Bandwidth  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
μs  
MHz  
Degrees  
dB  
45  
145  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise  
CS  
f = 1 kHz, RL = 10 kΩ  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
2
30  
0.8  
μV p-p  
nV/√Hz  
pA/√Hz  
Voltage Noise Density  
Current Noise Density  
Rev. D | Page 3 of 24  
 
OP191/OP291/OP491  
@ VS = ±.0 V, VCM = 0.1 V, VO = 1.4 V, TA = 2±°C, unless otherwise noted. +± V specifications are guaranteed by +3 V and ±± V testing.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
OP191  
VOS  
VOS  
IB  
80  
80  
30  
0.1  
500  
1.0  
700  
1.25  
65  
95  
11  
22  
μV  
mV  
μV  
mV  
nA  
nA  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
OP291/OP491  
Input Bias Current  
Input Offset Current  
IOS  
nA  
nA  
Input Voltage Range  
0
5
V
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 4.9 V  
70  
65  
25  
93  
90  
70  
dB  
dB  
–40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 0.3 V to 4.7 V  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
V/mV  
V/mV  
μV/°C  
pA/°C  
pA/°C  
50  
Offset Voltage Drift  
Bias Current Drift  
Offset Current Drift  
∆VOS/∆T  
∆IB/∆T  
∆IOS/∆T  
1.1  
100  
20  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 100 kΩ to GND  
−40°C to +125°C  
RL = 2 kΩ to GND  
−40°C to +125°C  
RL = 100 kΩ to V+  
−40°C to +125°C  
RL = 2 kΩ to V+  
−40°C to +125°C  
Sink/source  
−40°C to +125°C  
f = 1 MHz, AV = 1  
4.95  
4.90  
4.8  
4.99  
4.98  
4.85  
4.75  
4.5  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
Ω
4.65  
Output Voltage Low  
VOL  
10  
35  
75  
155  
40  
Short-Circuit Limit  
ISC  
8.75  
6.0  
13.5  
10.5  
200  
Open-Loop Impedance  
POWER SUPPLY  
ZOUT  
PSRR  
ISY  
Power Supply Rejection Ratio  
VS = 2.7 V to 12 V  
−40°C ≤ TA ≤ +125°C  
VO = 0 V  
80  
75  
110  
110  
220  
350  
dB  
dB  
μA  
μA  
Supply Current/Amplifier  
400  
500  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
+SR  
–SR  
BWP  
tS  
GBP  
θO  
RL = 10 kΩ  
RL = 10 kΩ  
1% distortion  
To 0.01%  
0.4  
0.4  
1.2  
22  
3
V/μs  
V/μs  
kHz  
Slew Rate  
Full-Power Bandwidth  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
μs  
MHz  
Degrees  
dB  
45  
145  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise  
CS  
f = 1 kHz, RL = 10 kΩ  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
2
42  
0.8  
μV p-p  
nV/√Hz  
pA/√Hz  
Voltage Noise Density  
Current Noise Density  
Rev. D | Page 4 of 24  
OP191/OP291/OP491  
@ VO = ±±.0 V, 4.9 V ≤ VCM ≤ +4.9 V, TA = +2±°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
OP191  
VOS  
VOS  
IB  
80  
80  
30  
500  
1
700  
1.25  
65  
μV  
mV  
μV  
mV  
nA  
nA  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
OP291/OP491  
Input Bias Current  
95  
Input Offset Current  
IOS  
0.1  
11  
22  
+5  
nA  
nA  
V
dB  
dB  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
−5  
75  
67  
25  
CMRR  
AVO  
VCM  
=
5 V  
100  
97  
70  
−40°C ≤ TA ≤ +125°C  
RL = +10 kΩ, VO = 4.7 V  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
50  
V/mV  
μV/°C  
pA/°C  
pA/°C  
Offset Voltage Drift  
Bias Current Drift  
Offset Current Drift  
∆VOS/∆T  
∆IB/∆T  
∆IOS/∆T  
1.1  
100  
20  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
VO  
RL = 100 kΩ to GND  
−40°C to +125°C  
RL = 2 kΩ to GND  
–40°C ≤ TA ≤ +125°C  
Sink/source  
4.93  
4.99  
V
V
V
V
mA  
mA  
Ω
4.90  
4.80  
4.65  
8.75  
6
4.98  
4.95  
4.75  
16.00  
13  
Short-Circuit Limit  
ISC  
−40°C to +125°C  
f = 1 MHz, AV = 1  
Open-Loop Impedance  
POWER SUPPLY  
ZOUT  
PSRR  
ISY  
200  
Power Supply Rejection Ratio  
VS = 5 V  
−40°C ≤ TA ≤ +125°C  
VO = 0 V  
80  
75  
110  
100  
260  
390  
dB  
dB  
μA  
μA  
Supply Current/Amplifier  
420  
550  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
BWP  
tS  
GBP  
θO  
RL = 10 kΩ  
1% distortion  
To 0.01%  
0.5  
1.2  
22  
3
45  
145  
V/μs  
kHz  
μs  
MHz  
Degrees  
dB  
Full-Power Bandwidth  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise  
CS  
f = 1 kHz  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
2
42  
0.8  
μV p-p  
nV/√Hz  
pA/√Hz  
Voltage Noise Density  
Current Noise Density  
Rev. D | Page 5 of 24  
OP191/OP291/OP491  
5V  
V
= ±5V  
s
R
= 2k  
100  
90  
L
A
= +1  
V
V
= 20V p-p  
IN  
INPUT  
OUTPUT  
10  
0%  
5V  
200μs  
Figure 6. Input and Output with Inputs Overdriven by 5 V  
Rev. D | Page 6 of 24  
OP191/OP291/OP491  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage  
16 V  
Input Voltage  
GND to VS 10 V  
7 V  
Indefinite  
Differential Input Voltage  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
N, R, RU Packages  
Operating Temperature Range  
OP191G/OP291G/OP491G  
Junction Temperature Range  
N, R, RU Packages  
–65°C to +150°C  
–40°C to +125°C  
Absolute maximum ratings apply to both DICE and packaged  
parts, unless otherwise noted.  
THERMAL RESISTANCE  
–65°C to +150°C  
300°C  
θJA is specified for the worst-case conditions; that is, θJA is  
specified for device in socket for PDIP packages; θJA is specified  
for device soldered in circuit board for TSSOP and SOIC  
packages.  
Lead Temperature (Soldering, 60 sec)  
Table 5. Thermal Resistance  
Package Type  
θJA  
θJC  
43  
33  
36  
35  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
8-Lead SOIC (R)  
14-Lead PDIP (N)  
14-Lead SOIC (R)  
14-Lead TSSOP (RU)  
158  
76  
120  
180  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. D | Page 7 of 24  
 
OP191/OP291/OP491  
TYPICAL PERFORMANCE CHARACTERISTICS  
180  
40  
30  
V
= 3V  
= 25°C  
S
V
V
= 3V  
CM  
CM  
T
A
160  
140  
120  
BASED ON  
1200 OP AMPS  
20  
10  
= 2.9V  
0
100  
80  
V
= 3V  
S
–10  
V
V
= 0.1V  
CM  
CM  
–20  
–30  
–40  
60  
40  
= 0V  
85  
20  
0
–50  
–60  
–0.18  
–0.10  
–0.02  
0.06  
0.14  
0.22  
–40  
25  
TEMPERATURE (°C)  
125  
INPUT OFFSET VOLTAGE (mV)  
Figure 7. OP291 Input Offset Voltage Distribution, VS = 3 V  
Figure 10. Input Bias Current vs. Temperature, VS = 3 V  
120  
0
V
= 3V  
S
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–40°C < T < +125°C  
BASED ON 600 OP AMPS  
A
100  
V
V
= 0.1V  
= 2.9V  
CM  
V
= 3V  
CM  
S
80  
60  
40  
20  
0
V
= 3V  
CM  
V
= 0V  
CM  
0
1
2
3
4
5
6
7
–40  
25  
85  
125  
INPUT OFFSET VOLTAGE (µV/°C)  
TEMPERATURE (°C)  
Figure 8. OP291 Input Offset Voltage Drift Distribution, VS = 3 V  
Figure 11. Input Offset Current vs. Temperature, VS = 3 V  
0
36  
V
= 3V  
V = 3V  
S
S
30  
24  
18  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
V
= 0.1V  
CM  
12  
6
V
= 0V  
CM  
V
= 3V  
CM  
0
–6  
V
= 2.9V  
–12  
–18  
CM  
–24  
–30  
–36  
–40  
25  
85  
125  
0
0.3  
0.6  
0.9 1.2  
1.5 1.8  
2.1 2.4  
2.7 3.0  
TEMPERATURE (°C)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 9. Input Offset Voltage vs. Temperature, VS = 3 V  
Figure 12. Input Bias Current vs. Input Common-Mode Voltage, VS = 3 V  
Rev. D | Page 8 of 24  
 
OP191/OP291/OP491  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
50  
40  
+V @ R = 100k  
V
T
= 3V  
= 25°C  
O
L
S
A
30  
20  
10  
0
+V @ R = 2kꢀ  
O
L
–10  
–20  
–30  
–40  
V
= 3V  
S
–50  
160  
–40  
25  
85  
125  
10  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 13. Output Voltage Swing vs. Temperature, VS = 3 V  
Figure 16. Closed-Loop Gain vs. Frequency, VS = 3 V  
160  
CMRR  
V
T
= 3V  
= 25°C  
S
A
V
= 3V  
140  
120  
140  
120  
100  
80  
S
A
T
= 25°C  
100  
80  
60  
40  
20  
0
60  
40  
90  
20  
0
45  
0
–20  
–40  
–45  
–90  
–20  
–40  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. CMRR vs. Frequency, VS = 3 V  
Figure 14. Open-Loop Gain and Phase vs. Frequency, VS = 3 V  
90  
89  
1200  
V
= 3V  
S
R
V
= 100k,  
L
= 2.9V  
CM  
1000  
800  
600  
400  
200  
0
R
= 100k,  
= 0.1V  
L
88  
87  
86  
85  
84  
V
CM  
V
= 3V, V = 0.3V/2.7V  
O
S
–40  
25  
85  
125  
–40  
25  
85  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. CMRR vs. Temperature, VS = 3 V  
Figure 15. Open-Loop Gain vs. Temperature, VS = 3 V  
Rev. D | Page 9 of 24  
OP191/OP291/OP491  
0.35  
160  
V
= 3V  
±PSRR  
S
140  
120  
100  
80  
V
T
= 3V  
= 25°C  
S
A
0.30  
0.25  
+PSRR  
60  
0.20  
0.15  
0.10  
–PSRR  
40  
20  
0
–20  
–40  
0.05  
–40  
100  
1k  
10k  
100k  
1M  
10M  
125  
125  
25  
85  
125  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 19. PSRR vs. Frequency, VS = 3 V  
Figure 22. Supply Current vs. Temperature, VS = +3 V, +5 V, 5 V  
113  
112  
111  
110  
109  
108  
107  
3.0  
V
V
A
R
= 2.8V p-p  
= 3V  
= +1  
IN  
S
V
= 3V  
S
2.5  
V
L
= 100kꢀ  
2.0  
1.5  
1.0  
0.5  
0
100  
1k  
10k  
100k  
1M  
–40  
25  
85  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 23. Maximum Output Swing vs. Frequency, VS = 3 V  
Figure 20. PSRR vs. Temperature, VS = 3 V  
1k  
1.6  
1.4  
1.2  
1.0  
0.8  
V
= 3V  
S
+SR  
100  
0.6  
0.4  
0.2  
–SR  
10  
0
–40  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
25  
85  
TEMPERATURE (°C)  
Figure 24. Voltage Noise Density, VS = 5 V or 5 V  
Figure 21. Slew Rate vs. Temperature, VS = 3 V  
Rev. D | Page 10 of 24  
OP191/OP291/OP491  
70  
40  
30  
V = 5V  
S
V
= 5V  
= 25°C  
S
+I  
B
T
A
60  
50  
BASED ON 600  
OP AMPS  
–I  
B
V
= 5V  
CM  
20  
10  
40  
30  
0
–10  
–20  
–30  
–40  
20  
10  
0
V
= 0V  
CM  
–I  
B
+I  
B
–0.50  
–0.30  
–0.10  
0.10  
0.30  
0.50  
–40  
25  
85  
125  
INPUT OFFSET VOLTAGE (mV)  
TEMPERATURE (°C)  
Figure 25. OP291 Input Offset Voltage Distribution, VS = 5 V  
Figure 28. Input Bias Current vs. Temperature, VS = 5 V  
120  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
V
= 5V  
S
V
= 5V  
S
–40°C < T < +125°C  
BASED ON 600 OP AMPS  
A
100  
80  
60  
40  
20  
0
V
= 0V  
CM  
0.2  
0
V
= 5V  
CM  
–0.2  
0
1
2
3
4
5
6
7
–40  
25  
85  
125  
INPUT OFFSET VOLTAGE (µV/°C)  
TEMPERATURE (°C)  
Figure 26. OP291 Input Offset Voltage Drift Distribution, VS = 5 V  
Figure 29. Input Offset Current vs. Temperature, VS = 5 V  
0.15  
36  
V
= 5V  
S
V
= 5V  
S
30  
24  
18  
0.10  
0.05  
0
V
= 0V  
CM  
12  
6
0
–6  
–12  
–18  
V
= 5V  
CM  
–0.05  
–0.10  
–24  
–30  
–36  
0
1
2
3
4
5
–40  
25  
85  
125  
COMMON-MODE INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 27. Input Offset Voltage vs. Temperature, VS = 5 V  
Figure 30. Input Bias Current vs. Common-Mode Input Voltage, VS = 5 V  
Rev. D | Page 11 of 24  
OP191/OP291/OP491  
50  
40  
5.00  
4.95  
4.90  
4.85  
R
= 100k  
V
T
= 5V  
= 25°C  
L
S
A
30  
20  
10  
0
R
= 2kꢀ  
–10  
L
4.80  
4.75  
4.70  
–20  
–30  
–40  
V
= 5V  
S
–50  
160  
–40  
25  
85  
125  
10  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 31. Output Voltage Swing vs. Temperature, VS = 5 V  
Figure 34. Closed-Loop Gain vs. Frequency, VS = 5 V  
160  
CMRR  
V
T
= 5V  
= 25°C  
S
A
V
= 5V  
140  
120  
140  
120  
100  
80  
S
A
T
= 25°C  
100  
80  
60  
40  
20  
0
60  
40  
90  
20  
0
45  
0
–20  
–40  
–45  
–90  
–20  
–40  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 35. CMRR vs. Frequency, VS = 5V  
Figure 32. Open-Loop Gain and Phase vs. Frequency, VS = 5 V  
96  
95  
94  
140  
V
= 5V  
S
V
= 5V  
S
R
= 100k, V  
= 5V  
CM  
120  
100  
80  
L
93  
92  
91  
90  
60  
R
= 100k, V  
= 0V  
CM  
L
89  
88  
40  
20  
R
= 2k, V = 5V  
CM  
L
87  
86  
R
= 2k, V = 0V  
CM  
L
0
–40  
–40  
25  
85  
125  
25  
85  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 36. CMRR vs. Temperature, VS = 5 V  
Figure 33. Open-Loop Gain vs. Temperature, VS = 5 V  
Rev. D | Page 12 of 24  
OP191/OP291/OP491  
20  
18  
16  
14  
12  
160  
±PSRR  
V
= 5V  
S
A
140  
120  
100  
80  
+I , V = ±5V  
SC  
S
T
= 25°C  
–I , V = ±5V  
SC  
S
+PSRR  
+I , V = +3V  
SC  
S
60  
40  
10  
8
–I , V = +3V  
SC  
S
–PSRR  
20  
0
6
4
–20  
–40  
–40  
25  
85  
125  
100  
1k  
10k  
100k  
1M  
10M  
125  
125  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 40. Short-Circuit Current vs. Temperature, VS = +3 V, +5 V, 5 V  
Figure 37. PSRR vs. Frequency, VS = 5 V  
80  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= ±5V  
S
70  
60  
50  
+SR  
–SR  
40  
30  
20  
10kꢀ  
1kꢀ  
V
O
A
B
10  
0
10kꢀ  
= 10V p-p @ 1kHz  
V
= 5V  
S
V
IN  
0
500  
1000  
1500  
2000  
2500  
–40  
25  
85  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 41. Channel Separation, VS = 5 V  
Figure 38. OP291 Slew Rate vs. Temperature, VS = 5 V  
5.0  
0.50  
V
V
= 4.8V p-p  
= 5V  
IN  
V
= 5V  
S
S
4.5  
4.0  
0.45  
0.40  
A
R
= +1  
= 100kꢀ  
V
L
+SR  
3.5  
3.0  
0.35  
0.30  
–SR  
2.5  
2.0  
0.25  
0.20  
1.5  
1.0  
0.15  
0.10  
0.5  
0
0.05  
0
100  
1k  
10k  
100k  
1M  
–40  
25  
85  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 42. Maximum Output Swing vs. Frequency, VS = 5 V  
Figure 39. OP491 Slew Rate vs. Temperature, VS = 5 V  
Rev. D | Page 13 of 24  
OP191/OP291/OP491  
10  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
A
R
= 9.8V p-p  
= ±5V  
= +1  
IN  
S
V = ±5V  
S
V
L
= 100kꢀ  
8
V
= –5V  
CM  
6
4
2
V
= +5V  
CM  
0
100  
–0.2  
1k  
10k  
100k  
1M  
–40  
25  
85  
125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 43. Maximum Output Swing vs. Frequency, VS = 5 V  
Figure 46. Input Offset Current vs. Temperature, VS = 5 V  
0.15  
36  
V
= ±5V  
S
V
= ±5V  
S
24  
12  
0.10  
0.05  
0
V
= –5V  
CM  
0
–12  
–24  
–36  
V
= +5V  
CM  
–0.05  
–0.10  
–40  
25  
85  
125  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
TEMPERATURE (°C)  
COMMON-MODE INPUT VOLTAGE (V)  
Figure 44. Input Offset Voltage vs. Temperature, VS = 5 V  
Figure 47. Input Bias Current vs. Common-Mode Voltage, VS = 5 V  
50  
5.00  
V
= ±5V  
S
R
= 2k  
L
4.95  
4.90  
4.85  
40  
+I  
B
30  
20  
10  
0
–I  
V
= +5V  
B
CM  
4.80  
4.75  
R
= 2kꢀ  
L
V
= ±5V  
S
0
–4.75  
–4.80  
–10  
–20  
–30  
V
= –5V  
CM  
–I  
B
–4.85  
–4.90  
B
R
= 2kꢀ  
L
+I  
–40  
–50  
–4.95  
–5.00  
R
= 2kꢀ  
L
–40  
25  
85  
125  
–40  
25  
85  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 45. Input Bias Current vs. Temperature, VS = 5 V  
Figure 48. Output Voltage Swing vs. Temperature, VS = 5 V  
Rev. D | Page 14 of 24  
OP191/OP291/OP491  
70  
60  
160  
CMRR  
V
T
= ±5V  
= 25°C  
S
V
= ±5V  
S
A
140  
120  
A
T
= 25°C  
50  
40  
30  
20  
10  
100  
80  
0
45  
60  
40  
90  
135  
180  
225  
270  
0
–10  
–20  
–30  
20  
0
–20  
–40  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 49. Open-Loop Gain and Phase vs. Frequency, VS = 5 V  
Figure 52. CMRR vs. Frequency, VS = 5 V  
200  
102  
V
= ±5V  
V
= ±5V  
S
S
180  
160  
101  
100  
R
L
= 2k  
140  
120  
99  
98  
100  
80  
97  
96  
95  
94  
65  
40  
25  
0
R
L
= 2kꢀ  
93  
92  
–40  
25  
85  
125  
–40  
25  
85  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 50. Open-Loop Gain vs. Temperature, VS = 5 V  
Figure 53. CMRR vs. Temperature, VS = 5 V  
50  
40  
160  
±PSRR  
V
T
= ±5V  
= 25°C  
S
A
V
= ±5V  
S
A
140  
120  
T
= 25°C  
30  
20  
10  
100  
80  
+PSRR  
0
60  
40  
–10  
–PSRR  
–20  
20  
0
–30  
–40  
–20  
–40  
–50  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 51. Closed-Loop Gain vs. Frequency, VS = 5 V  
Figure 54. PSRR vs. Frequency, VS = 5 V  
Rev. D | Page 15 of 24  
OP191/OP291/OP491  
115  
1k  
V
= ±5V  
S
OP491  
110  
105  
100  
95  
OP291  
100  
10  
90  
–40  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
25  
85  
125  
TEMPERATURE (°C)  
Figure 55. OP291/OP491 PSRR vs. Temperature, VS = 5 V  
Figure 58. Voltage Noise Density, VS = 3 V  
0.7  
V
= ±5V  
S
1.00V  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
90  
+SR  
–SR  
INPUT  
V
S
= 3V  
= 200k  
OUTPUT  
10  
R
L
0%  
500mV  
2.00µs  
100mV  
–40  
25  
85  
125  
TEMPERATURE (°C)  
Figure 56. Slew Rate vs. Temperature, VS = 5 V  
Figure 59. Large Signal Transient Response, VS = 3 V  
1k  
100  
10  
V
= 3V  
S
2.00V  
A
= +100  
V
100  
90  
A
= +10  
V
INPUT  
A
= +1  
V
1
V
R
A
= ±5V  
= 200k  
= +1V/V  
S
L
V
10  
0%  
OUTPUT  
1.00V  
2.00µs  
100mV  
0.1  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M 2M  
Figure 57. Output Impedance vs. Frequency  
Figure 60. Large Signal Transient Response, VS = 5 V  
Rev. D | Page 16 of 24  
OP191/OP291/OP491  
THEORY OF OPERATION  
The OP191/OP291/OP491 are single-supply, micropower  
amplifiers featuring rail-to-rail inputs and outputs. To achieve  
wide input and output ranges, these amplifiers employ unique  
input and output stages. In Figure 61 , the input stage comprises  
two differential pairs, a PNP pair and an NPN pair. These two  
stages do not work in parallel. Instead, only one stage is on for  
any given input signal level. The PNP stage (Transistor Q1 and  
Transistor Q2) is required to ensure that the amplifier remains  
in the linear region when the input voltage approaches and  
reaches the negative rail. On the other hand, the NPN stage  
(Transistor Q± and Transistor Q6) is needed for input voltages  
up to and including the positive rail.  
Notice that the input stage includes ± kΩ series resistors and  
differential diodes, a common practice in bipolar amplifiers to  
protect the input transistors from large differential voltages.  
These diodes turn on whenever the differential voltage exceeds  
approximately 0.6 V. In this condition, current flows between  
the input pins, limited only by the two ± kΩ resistors. This  
characteristic is important in circuits where the amplifier may  
be operated open-loop, such as a comparator. Evaluate each  
circuit carefully to make sure that the increase in current does  
not affect the performance.  
The output stage in OP191 devices uses a PNP and an NPN  
transistor, as do most output stages; however, Q32 and Q33, the  
output transistors, are actually connected with their collectors  
to the output pin to achieve the rail-to-rail output swing. As the  
output voltage approaches either the positive or negative rail,  
these transistors begin to saturate. Thus, the final limit on  
output voltage is the saturation voltage of these transistors,  
which is about ±0 mV. The output stage does have inherent gain  
arising from the collectors and any external load impedance.  
Because of this, the open-loop gain of the amplifier is  
dependent on the load resistance.  
For the majority of the input common-mode range, the PNP  
stage is active, as is shown in Figure 12. Notice that the bias  
current switches direction at approximately 1.2 V to 1.3 V  
below the positive rail. At voltages below this, the bias current  
flows out of the OP291, indicating a PNP input stage. Above  
this voltage, however, the bias current enters the device,  
revealing the NPN stage. The actual mechanism within the  
amplifier for switching between the input stages comprises  
Transistor Q3, Transistor Q4, and Transistor Q7. As the input  
common-mode voltage increases, the emitters of Q1 and Q2  
follow that voltage plus a diode drop. Eventually, the emitters  
of Q1 and Q2 are high enough to turn on Q3, which diverts the  
8 μA of tail current away from the PNP input stage, turning it  
off. Instead, the current is mirrored through Q4 and Q7 to  
activate the NPN input stage.  
Q22  
Q26  
8µA  
–IN  
Q32  
Q23  
Q27  
5k  
Q3  
Q20  
Q30  
Q31  
5kꢀ  
Q16  
Q5 Q6  
+IN  
Q1 Q2  
10pF  
Q17  
Q8  
Q10  
Q11  
Q12  
Q14  
Q15  
V
Q21  
OUT  
Q9  
Q13  
Q24 Q28  
Q18  
Q19  
Q25  
Q29  
Q33  
Q4  
Q7  
Figure 61. Simplified Schematic  
Rev. D | Page 17 of 24  
 
 
OP191/OP291/OP491  
OUTPUT VOLTAGE PHASE REVERSAL  
INPUT OVERVOLTAGE PROTECTION  
Some operational amplifiers designed for single-supply  
operation exhibit an output voltage phase reversal when their  
inputs are driven beyond their useful common-mode range.  
Typically, for single-supply bipolar op amps, the negative supply  
determines the lower limit of their common-mode range.  
With these devices, external clamping diodes with the anode  
connected to ground and the cathode to the inputs prevent  
input signal excursions from exceeding the devices negative  
supply (that is, GND), preventing a condition that could cause  
the output voltage to change phase. JFET input amplifiers can  
also exhibit phase reversal, and, if so, a series input resistor is  
usually required to prevent it.  
As with any semiconductor device, whenever the condition  
exists for the input to exceed either supply voltage, check the  
input overvoltage characteristic. When an overvoltage occurs,  
the amplifier could be damaged depending on the voltage level  
and the magnitude of the fault current. Figure 62 shows the  
characteristics for the OP191 family. This graph was generated  
with the power supplies at ground and a curve tracer connected  
to the input. When the input voltage exceeds either supply by  
more than 0.6 V, internal PN junctions energize, allowing  
current to flow from the input to the supplies. As described, the  
OP291/OP491 do have ± kΩ resistors in series with each input  
to help limit the current. Calculating the slope of the current vs.  
voltage in the graph confirms the ± kΩ resistor.  
The OP191 is free from reasonable input voltage range  
restrictions due to its novel input structure. In fact, the input  
signal can exceed the supply voltage by a significant amount  
without causing damage to the device. As shown in Figure 64,  
the OP191 family can safely handle a 20 V p-p input signal on  
±± V supplies without exhibiting any sign of output voltage  
phase reversal or other anomalous behavior. Thus, no external  
clamping diodes are required.  
I
IN  
+2mA  
+1mA  
–10V  
–5V  
+5V  
+10V  
V
IN  
OVERDRIVE RECOVERY  
The overdrive recovery time of an operational amplifier is the  
time required for the output voltage to recover to its linear  
region from a saturated condition. This recovery time is  
important in applications where the amplifier must recover  
quickly after a large transient event, such as a comparator. The  
circuit shown in Figure 63 was used to evaluate the OPx91  
overdrive recovery time. The OPx91 takes approximately 8 μs to  
recover from positive saturation and approximately 6.± μs to  
recover from negative saturation.  
–1mA  
–2mA  
Figure 62. Input Overvoltage Characteristics  
This input current is not inherently damaging to the device as  
long as it is limited to ± mA or less. For an input of 10 V over  
the supply, the current is limited to 1.8 mA. If the voltage is  
large enough to cause more than ± mA of current to flow, then  
an external series resistor should be added. The size of this  
resistor is calculated by dividing the maximum overvoltage by  
± mA and subtracting the internal ± kΩ resistor. For example, if  
the input voltage could reach 100 V, the external resistor should  
be (100 V/± mA) − ± kꢀ = 1± kΩ. This resistance should be  
placed in series with either or both inputs if they are subjected  
to the overvoltages.  
R1  
9k  
3
2
+
1/2  
V
V
1
OUT  
IN  
10V STEP  
OP291  
R2  
10kꢀ  
R3  
10kꢀ  
V
= ±5V  
S
Figure 63. Overdrive Recovery Time Test Circuit  
5µs  
5µs  
100  
90  
100  
90  
+5V  
8
V
IN  
3
2
+
20V p-p  
1/2  
OP291  
V
1
OUT  
4
10  
10  
0%  
0%  
–5V  
20mV  
20mV  
TIME (200µs/DIV)  
TIME (200µs/DIV)  
Figure 64. Output Voltage Phase Reversal Behavior  
Rev. D | Page 18 of 24  
 
 
 
 
OP191/OP291/OP491  
APPLICATIONS  
SINGLE 3 V SUPPLY, INSTRUMENTATION  
AMPLIFIER  
SINGLE-SUPPLY RTD AMPLIFIER  
The circuit in Figure 66 uses three op amps of the OP491 to  
develop a bridge configuration for an RTD amplifier that  
operates from a single ± V supply. The circuit takes advantage of  
the OP491 wide output swing range to generate a high bridge  
excitation voltage of 3.9 V. In fact, because of the rail-to-rail  
output swing, this circuit works with supplies as low as 4.0 V.  
Amplifier A1 servos the bridge to create a constant excitation  
current in conjunction with the AD±89, a 1.23± V precision  
reference. The op amp maintains the reference voltage across  
the parallel combination of the 6.19 kΩ and 2.±± MΩ resistors,  
which generate a 200 μA current source. This current splits  
evenly and flows through both halves of the bridge. Thus,  
100 μA flows through the RTD to generate an output voltage  
based on its resistance. A 3-wire RTD is used to balance the line  
resistance in both 100 Ω legs of the bridge to improve accuracy.  
The OP291 low supply current and low voltage operation  
make it ideal for battery-powered applications, such as the  
instrumentation amplifier shown in Figure 6±. The circuit uses  
the classic two op amp instrumentation amplifier topology, with  
four resistors to set the gain. The equation is simply that of a  
noninverting amplifier, as shown in Figure 6±. The two resistors  
labeled R1 should be closely matched both to each other and to  
the two resistors labeled R2 to ensure good common-mode  
rejection performance. Resistor networks ensure the closest  
matching as well as matched drifts for good temperature  
stability. Capacitor C1 is included to limit the bandwidth and,  
therefore, the noise in sensitive applications. The value of this  
capacitor should be adjusted depending on the desired closed-  
loop bandwidth of the instrumentation amplifier. The RC  
combination creates a pole at a frequency equal to 1/(2π ×  
R1C1). If AC-CMRR is critical, then a matched capacitor to C1  
should be included across the second resistor labeled R1.  
GAIN = 274  
200ꢀ  
10 TURNS  
5V  
26.7kꢀ  
26.7kꢀ  
3V  
A3  
1/4  
OP491  
8
V
100ꢀ  
RTD  
OUT  
5
6
A2  
+
1/2  
1/4  
7
V
V
OUT  
IN  
OP291  
100ꢀ  
2.55Mꢀ  
OP491  
4
3
2
1/2  
OP291  
365ꢀ  
365ꢀ  
100kꢀ  
1
6.19kꢀ  
A1  
1/4  
OP491  
100kꢀ  
R1  
R2  
R2  
R1  
0.01pF  
ALL RESISTORS 1% OR BETTER  
AD589  
C1  
100pF  
37.4kꢀ  
R1  
R2  
V
= (1 +  
OUT  
) = V  
IN  
Figure 65. Single 3 V Supply Instrumentation Amplifier  
5V  
Figure 66. Single-Supply RTD Amplifier  
Because the OP291 accepts rail-to-rail inputs, the input  
common-mode range includes both ground and the positive  
supply of 3 V. Furthermore, the rail-to-rail output range ensures  
the widest signal range possible and maximizes the dynamic  
range of the system. Also, with its low supply current of  
300 μA/device, this circuit consumes a quiescent current of  
only 600 μA yet still exhibits a gain bandwidth of 3 MHz.  
Amplifier A2 and Amplifier A3 are configured in the two op  
amp instrumentation amplifier topology described in the Single  
3 V Supply, Instrumentation Amplifier section. The resistors are  
chosen to produce a gain of 274, such that each 1°C increase in  
temperature results in a 10 mV change in the output voltage, for  
ease of measurement. A 0.01 μF capacitor is included in parallel  
with the 100 kΩ resistor on Amplifier A3 to filter out any  
unwanted noise from this high gain circuit. This particular RC  
combination creates a pole at 1.6 kHz.  
A question may arise about other instrumentation amplifier  
topologies for single-supply applications. For example, a  
variation on this topology adds a fifth resistor between the two  
inverting inputs of the op amps for gain setting. While that  
topology works well in dual-supply applications, it is inherently  
inappropriate for single-supply circuits. The same could be said  
for the traditional three op amp instrumentation amplifier. In  
both cases, the circuits simply cannot work in single-supply  
situations unless a false ground between the supplies is created.  
Rev. D | Page 19 of 24  
 
 
 
 
OP191/OP291/OP491  
A 2.5 V REFERENCE FROM A 3 V SUPPLY  
In many single-supply applications, the need for a 2.± V  
reference often arises. Many commercially available monolithic  
2.± V references require a minimum operating supply voltage of  
4 V. The problem is exacerbated when the minimum operating  
system supply voltage is 3 V. The circuit illustrated in Figure 67  
is an example of a 2.± V reference that operates from a single  
3 V supply. The circuit takes advantage of the OP291 rail-to-rail  
input and output voltage ranges to amplify an AD±89 1.23± V  
output to 2.± V. The OP291 low TCVOS of 1 μV/°C helps  
maintain an output voltage temperature coefficient of less than  
200 ppm/°C. The circuit overall temperature coefficient is  
dominated by the temperature coefficient of R2 and R3. Lower  
temperature coefficient resistors are recommended. The entire  
circuit draws less than 420 μA from a 3 V supply at 2±°C.  
The OP291 serves two functions. First, it is required to buffer  
the high output impedance of the DAC VREF pin, which is on the  
order of 10 kΩ. The op amp provides a low impedance output  
to drive any following circuitry. Second, the op amp amplifies  
the output signal to provide a rail-to-rail output swing. In this  
particular case, the gain is set to 4.1 to generate a ±.0 V output  
when the DAC is at full scale. If other output voltage ranges are  
needed, such as 0 V to 4.09± V, the gain can easily be adjusted  
by altering the value of the resistors.  
A HIGH-SIDE CURRENT MONITOR  
In the design of power supply control circuits, a great deal of  
design effort is focused on ensuring a pass transistors long-  
term reliability over a wide range of load current conditions.  
As a result, monitoring and limiting device power dissipation  
is of prime importance in these designs. The circuit illustrated  
in Figure 69 is an example of a ± V, single-supply, high-side  
current monitor that can be incorporated into the design of a  
voltage regulator with fold-back current limiting or a high  
current power supply with crowbar protection. This design uses  
an OP291 rail-to-rail input voltage range to sense the voltage  
drop across a 0.1 Ω current shunt. A p-channel MOSFET used  
as the feedback element in the circuit converts the op amp  
differential input voltage into a current. This current is then  
applied to R2 to generate a voltage that is a linear representation  
of the load current. The transfer equation for the current  
monitor is given by  
3V  
R1  
3V  
17.4k  
3
2
8
1/2  
OP291  
2.5V  
1
AD589  
REF  
4
RESISTORS = 1%, 100ppm/°C  
POTENTIOMETER = 10 TURN, 100ppm/°C  
R3  
R2  
R1  
5kꢀ  
100kꢀ  
100kꢀ  
Figure 67. A 2.5 V Reference that Operates on a Single 3 V Supply  
5 V ONLY, 12-BIT DAC SWINGS RAIL-TO-RAIL  
The OPx91 family is ideal for use with a CMOS DAC to  
generate a digitally controlled voltage with a wide output range.  
Figure 68 shows the DAC8043 used in conjunction with the  
AD±89 to generate a voltage output from 0 V to 1.23 V. The  
DAC is operated in voltage switching mode, where the reference  
is connected to the current output, IOUT, and the output voltage  
is taken from the VREF pin. This topology is inherently  
R
SENSE  
Monitor Output = R2×  
×I  
L
R1  
For the element values shown, the monitor output transfer  
characteristic is 2.± V/A.  
noninverting as opposed to the classic current output mode,  
which is inverting and, therefore, unsuitable for single supply.  
R
0.1  
SENSE  
I
L
5V  
5V  
5V  
5V  
R1  
100ꢀ  
8
3
2
8
1/2  
1
R1  
2
OP291  
V
R
FB  
DD  
DAC8043  
GND CLK SR1 LD  
17.8k  
4
3
1
I
S
M1  
3N163  
1.23V  
V
OUT  
REF  
G
5V  
8
MONITOR  
OUTPUT  
4
7
6
5
D
3
AD589  
D
1/2  
OP291  
R2  
2.49kꢀ  
V
= –––– (5V)  
1
OUT  
4096  
DIGITAL  
4
CONTROL  
2
Figure 69. A High-Side Load Current Monitor  
R2  
32.4kꢀ  
R4  
100kꢀ  
R3  
232ꢀ  
1%  
1%  
1%  
Figure 68. 5 V Only, 12-Bit DAC Swings Rail-to-Rail  
Rev. D | Page 20 of 24  
 
 
 
 
OP191/OP291/OP491  
The transmit signal, TXA, is inverted by A2 and then reinverted  
by A3 to provide a differential drive to the transformer, where  
each amplifier supplies half the drive signal. This is needed  
because of the smaller swings associated with a single supply as  
opposed to a dual supply. Amplifier A1 provides some gain for  
the received signal, and it also removes the transmit signal  
present at the transformer from the received signal. To do this,  
the drive signal from A2 is also fed to the noninverting input of  
A1 to cancel the transmit signal from the transformer.  
A 3 V, COLD JUNCTION COMPENSATED  
THERMOCOUPLE AMPLIFIER  
The OP291 low supply operation makes it ideal for 3 V battery-  
powered applications such as the thermocouple amplifier  
shown in Figure 70. The K-type thermocouple terminates in an  
isothermal block where the junction ambient temperature is  
continuously monitored using a simple 1N914 diode. The diode  
corrects the thermal EMF generated in the junctions by feeding  
a small voltage, scaled by the 1.± MΩ and 47± Ω resistors, to the  
op amp.  
390pF  
37.4k  
To calibrate this circuit, immerse the thermocouple measuring  
junction in a 0°C ice bath and adjust the ±00 Ω potentiometer  
to 0 V out. Next, immerse the thermocouple in a 2±0°C  
temperature bath or oven and adjust the scale adjust  
potentiometer for an output voltage of 2.±0 V. Within this  
temperature range, the K-type thermocouple is accurate to  
within ±3°C without linearization.  
20k,1%  
A1  
13  
0.1μF  
1/4  
OP491  
RXA  
14  
12  
0.0047μF  
3.3kꢀ  
20k,1%  
A2  
10  
475,1%  
1.235V  
1/4  
OP491  
8
10k  
AD589  
3.0V  
9
37.4k,1%  
T1  
ISOTHERMAL  
BLOCK  
SCALE  
ADJUST  
1.33M20kꢀ  
0.1μF  
7.15kꢀ  
24.3kꢀ  
1%  
750pF  
20k,1%  
1N914  
1%  
TXA  
0.033μF  
1:1  
20k,1%  
20k,1%  
24.9kꢀ  
1%  
1.5Mꢀ  
1%  
4.99kꢀ  
1%  
ALUMEL  
8
2
3
AL  
CR  
V
OUT  
1/2  
OP291  
5.1V TO 6.2V  
ZENER 5  
COLD  
JUNCTIONS  
1
500ꢀ  
10 TURN  
A3  
7
6
5
O1P/4491  
0V = 0°C  
3V = 300°C  
11.2mV  
4
ZERO  
ADJUST  
CHROMEL  
475ꢀ  
1%  
2.1kꢀ  
1%  
3V OR 5V  
K-TYPE  
THERMOCOUPLE  
40.7μV/°C  
Figure 70. A 3 V, Cold Junction Compensated Thermocouple Amplifier  
4
2
3
100kꢀ  
1/4  
OP491  
11  
1
SINGLE-SUPPLY, DIRECT ACCESS ARRANGEMENT  
FOR MODEMS  
A4  
10μF  
0.1μF  
100kꢀ  
An important building block in modems is the telephone line  
interface. In the circuit shown in Figure 71, a direct access  
arrangement is used to transmit and receive data from the  
telephone line. Amplifier A1 is the receiving amplifier;  
Amplifier A2 and Amplifier A3 are the transmitters. The fourth  
amplifier, A4, generates a pseudo ground halfway between the  
supply voltage and ground. This pseudo ground is needed for  
the ac-coupled bipolar input signals.  
Figure 71. Single-Supply, Direct Access Arrangement for Modems  
The OP491 bandwidth of 3 MHz and rail-to-rail output swings  
ensure that it can provide the largest possible drive to the  
transformer at the frequency of transmission.  
Rev. D | Page 21 of 24  
 
 
 
OP191/OP291/OP491  
The filter section uses a pair of OP491s in a twin-T  
3 V, 50 HZ/60 HZ ACTIVE NOTCH FILTER WITH  
FALSE GROUND  
configuration whose frequency selectivity is very sensitive  
to the relative matching of the capacitors and resistors in  
the twin-T section. Mylar is the material of choice for the  
capacitors, and the relative matching of the capacitors and  
resistors determines the pass band symmetry of the filter. Using  
1% resistors and ±% capacitors produces satisfactory results.  
To process ac signals in a single-supply system, it is often best  
to use a false ground biasing scheme. Figure 72 illustrates a  
circuit that uses this approach. In this circuit, a false-ground  
circuit biases an active notch filter used to reject ±0 Hz/60 Hz  
power line interference in portable patient monitoring  
equipment. Notch filters are quite commonly used to reject  
power line frequency interference that often obscures low  
frequency physiological signals, such as heart rates, blood  
pressure readings, EEGs, and EKGs. This notch filter effectively  
squelches 60 Hz pickup at a filter Q of 0.7±. Substituting  
3.16 kΩ resistors for the 2.67 kΩ resistors in the twin-T section  
(R1 through R±) configures the active filter to reject ±0 Hz  
interference.  
SINGLE-SUPPLY, HALF-WAVE, AND FULL-WAVE  
RECTIFIERS  
An OPx91 device configured as a voltage follower operating on  
a single supply can be used as a simple half-wave rectifier in low  
frequency (<2 kHz) applications. A full-wave rectifier can be  
configured with a pair of OP291s, as illustrated in Figure 73.  
The circuit works in the following way. When the input signal is  
above 0 V, the output of Amplifier A1 follows the input signal.  
Because the noninverting input of Amplifier A2 is connected to  
the output of A1, op amp loop control forces the inverting input  
of the A2 to the same potential. The result is that both terminals  
of R1 are equipotential; that is, no current flows. Because there  
is no current flow in R1, the same condition exists for R2; thus,  
the output of the circuit tracks the input signal. When the input  
signal is below 0 V, the output voltage of A1 is forced to 0 V.  
This condition now forces A2 to operate as an inverting voltage  
follower because the noninverting terminal of A2 is also at 0 V.  
The output voltage at VOUTA is then a full-wave rectified version  
of the input signal. If needed, a buffered, half-wave rectified  
version of the input signal is available at VOUTB.  
R2  
2.67kꢀ  
R1  
3V  
2.67kꢀ  
C1  
1μF  
C2  
1μF  
11  
2
3
1/4  
OP491  
1
5
V
V
IN  
OUT  
R3  
R4  
2.67kꢀ  
1/4  
OP491  
2.67kꢀ  
7
A1  
4
6
A2  
R5  
C3  
2μF  
(1μF × 2)  
R6  
100kꢀ  
1.33kꢀ  
(2.67k÷ 2)  
R7  
1kꢀ  
R8  
1kꢀ  
R11  
100kꢀ  
C5  
3V  
R1  
100kꢀ  
R2  
100kꢀ  
0.01μF  
R9  
1Mꢀ  
R12  
499ꢀ  
9
1/4  
5V  
8
8
6
5
OP491  
V
A
C6  
1.5V  
1μF  
OUT  
OUT  
1/2  
OP291  
V
10  
IN  
3
2
7
FULL-WAVE  
RECTIFIED  
OUTPUT  
A3  
C4  
1μF  
2V p-p  
<2kHz  
1/2  
1
A2  
OP291  
R10  
1Mꢀ  
4
A1  
V
B
HALF-WAVE  
RECTIFIED  
OUTPUT  
Figure 72. A 3 V Single-Supply, 50 Hz/60 Hz Active Notch Filter  
with False Ground  
1V  
500mV  
V
IN  
Amplifier A3 is the heart of the false ground bias circuit.  
It buffers the voltage developed by R9 and R10 and is the  
reference for the active notch filter. Because the OP491  
exhibits a rail-to-rail input common-mode range, R9 and R10  
are chosen to split the 3 V supply symmetrically. An in-the-loop  
compensation scheme used around the OP491 allows the op  
amp to drive C6, a 1 μF capacitor, without oscillation. C6  
maintains a low impedance ac ground over the operating  
frequency range of the filter.  
100  
90  
(1V/DIV)  
V
A
OUT  
(0.5V/DIV)  
10  
0%  
V
B
OUT  
(0.5V/DIV)  
500mV  
TIME (200μs/DIV)  
200μs  
Figure 73. Single-Supply, Half-Wave, and Full-Wave Rectifiers  
Using an OP291  
Rev. D | Page 22 of 24  
 
 
 
OP191/OP291/OP491  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8.75 (0.3445)  
8.55 (0.3366)  
8
1
5
4
14  
1
8
7
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1.35 (0.0531)  
1.75 (0.0689)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
× 45°  
0.25 (0.0098)  
0.10 (0.0039)  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0°  
SEATING  
PLANE  
8°  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 76. 14-Lead Standard Small Outline Package [SOIC]  
Narrow Body (R-14)  
Figure 74. 8-Lead Standard Small Outline Package [SOIC]  
Narrow Body (R-8)  
[S-Suffix]  
[S-Suffix]  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters and (inches)  
5.10  
5.00  
4.90  
0.775 (19.69)  
0.750 (19.05)  
0.735 (18.67)  
14  
1
8
7
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
14  
8
7
4.50  
4.40  
4.30  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
6.40  
BSC  
PIN 1  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210  
(5.33)  
MAX  
1
0.015  
(0.38)  
MIN  
PIN 1  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.015 (0.38)  
GAUGE  
0.65  
BSC  
1.05  
1.00  
0.80  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.20  
0.09  
1.20  
MAX  
0.75  
0.60  
0.45  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
0.070 (1.78)  
0.050 (1.27)  
0.045 (1.14)  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
COMPLIANT TO JEDEC STANDARDS MS-001-AA  
Figure 77. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Dimensions shown in millimeters  
Figure 75. 14-Lead Plastic Dual In-Line Package [PDIP]  
(N-14)  
[P-Suffix]  
Dimensions shown in inches and (millimeters)  
Rev. D | Page 23 of 24  
 
OP191/OP291/OP491  
ORDERING GUIDE  
Model  
OP191GS  
OP191GS-REEL  
OP191GS-REEL7  
OP191GSZ1  
OP191GSZ-REEL1  
OP191GSZ-REEL71  
OP291GS  
OP291GS-REEL  
OP291GS-REEL7  
OP291GSZ1  
OP291GSZ-REEL1  
OP291GSZ-REEL71  
OP491GP  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
14-Lead PDIP  
14-Lead PDIP  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead TSSOP  
14-Lead TSSOP  
Package Option  
R-8 [S-Suffix]  
R-8 [S-Suffix]  
R-8 [S-Suffix]  
R-8 [S-Suffix]  
R-8 [S-Suffix]  
R-8 [S-Suffix]  
R-8 [S-Suffix]  
R-8 [S-Suffix]  
R-8 [S-Suffix]  
R-8 [S-Suffix]  
R-8 [S-Suffix]  
R-8 [S-Suffix]  
N-14 [P-Suffix]  
N-14 [P-Suffix]  
R-14 [S-Suffix]  
R-14 [S-Suffix]  
R-14 [S-Suffix]  
R-14 [S-Suffix]  
R-14 [S-Suffix]  
R-14 [S-Suffix]  
RU-14  
OP491GPZ1  
OP491GS  
OP491GS-REEL  
OP491GS-REEL7  
OP491GSZ1  
OP491GSZ-REEL1  
OP491GSZ-REEL71  
OP491GRU-REEL  
OP491GRUZ-REEL1  
OP491GBC  
RU-14  
DIE  
1 Z = Pb-free part.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00294-0-4/06(D)  
Rev. D | Page 24 of 24  
 
 
配单直通车
OP491GSZ产品参数
型号:OP491GSZ
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
零件包装代码:SOIC
包装说明:SOP,
针数:14
Reach Compliance Code:unknown
风险等级:5.29
放大器类型:OPERATIONAL AMPLIFIER
最大平均偏置电流 (IIB):0.095 µA
标称共模抑制比:97 dB
最大输入失调电压:1250 µV
JESD-30 代码:R-PDSO-G14
JESD-609代码:e3
长度:8.65 mm
湿度敏感等级:NOT SPECIFIED
负供电电压上限:-8 V
标称负供电电压 (Vsup):-5 V
功能数量:4
端子数量:14
最高工作温度:125 °C
最低工作温度:-40 °C
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):NOT APPLICABLE
座面最大高度:1.75 mm
标称压摆率:0.5 V/us
子类别:Operational Amplifier
供电电压上限:8 V
标称供电电压 (Vsup):5 V
表面贴装:YES
技术:BICMOS
温度等级:AUTOMOTIVE
端子面层:MATTE TIN
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT APPLICABLE
标称均一增益带宽:3000 kHz
宽度:3.9 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!