欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • PGA280AIPWR
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • PGA280AIPWR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • PGA280AIPWR 现货库存
  • 数量3000 
  • 厂家TI 
  • 封装TSSOP24 
  • 批号23+ 
  • 原装正品特价销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • PGA280AIPWR图
  • 集好芯城

     该会员已使用本站13年以上
  • PGA280AIPWR 现货库存
  • 数量27703 
  • 厂家TI(德州仪器) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • PGA280AIPWR图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • PGA280AIPWR 现货库存
  • 数量12500 
  • 厂家TI(德州仪器) 
  • 封装TSSOP-24 
  • 批号1年内 
  • 原厂渠道 正品保障 长期供应
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • PGA280AIPWR图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • PGA280AIPWR 现货库存
  • 数量8000 
  • 厂家TI(德州仪器) 
  • 封装N/A 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • PGA280AIPWR图
  • 深圳市华来深电子有限公司

     该会员已使用本站13年以上
  • PGA280AIPWR 现货库存
  • 数量2000 
  • 厂家TI 
  • 封装TSSOP24 
  • 批号17+ 
  • 受权代理!全新原装现货特价热卖!
  • QQ:1258645397QQ:1258645397 复制
    QQ:876098337QQ:876098337 复制
  • 0755-83238902 QQ:1258645397QQ:876098337
  • PGA280AIPWR图
  • 深圳市富莱微科技有限公司

     该会员已使用本站6年以上
  • PGA280AIPWR 现货热卖
  • 数量2000 
  • 厂家TI 
  • 封装N/A 
  • 批号22+ 
  • 只做原装,现货库存,价格优势
  • QQ:1968343307QQ:1968343307 复制
    QQ:2885835292QQ:2885835292 复制
  • 0755-83210149 QQ:1968343307QQ:2885835292
  • PGA280AIPWR图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • PGA280AIPWR 现货热卖
  • 数量5000 
  • 厂家TI 
  • 封装TSSOP (PW) 
  • 批号21+ 
  • ?原厂TI渠道!欢迎来电咨询!
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • PGA280AIPWR图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • PGA280AIPWR
  • 数量5470 
  • 厂家TI/德州仪器 
  • 封装TSSOP24 
  • 批号20+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • PGA280AIPWR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • PGA280AIPWR
  • 数量85000 
  • 厂家TI/德州仪器 
  • 封装TSSOP24 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • PGA280AIPWR图
  • 深圳市旺能芯科技有限公司

     该会员已使用本站4年以上
  • PGA280AIPWR
  • 数量15000 
  • 厂家TI/德州仪器 
  • 封装TSSOP24 
  • 批号22+ 
  • 深圳全新原装库存现货
  • QQ:2881495751QQ:2881495751 复制
  • 13602549709 QQ:2881495751
  • PGA280AIPWR图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • PGA280AIPWR
  • 数量19492 
  • 厂家TI/德州仪器 
  • 封装TSSOP24 
  • 批号24+ 
  • 原装原厂 现货现卖
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820
  • PGA280AIPWR图
  • 深圳市隆亿诚科技有限公司

     该会员已使用本站3年以上
  • PGA280AIPWR
  • 数量3253 
  • 厂家TI/德州仪器 
  • 封装TSSOP24 
  • 批号22+ 
  • 支持检测.现货价优!
  • QQ:778039761QQ:778039761 复制
  • -0755-82710221 QQ:778039761
  • PGA280AIPWR图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • PGA280AIPWR
  • 数量13232 
  • 厂家TI 
  • 封装TSSOP24 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • PGA280AIPWR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • PGA280AIPWR
  • 数量5680 
  • 厂家TI 
  • 封装TSSOP24 
  • 批号23+ 
  • 原装正品特价销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • PGA280AIPWR图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • PGA280AIPWR
  • 数量3000 
  • 厂家TI 
  • 封装TSSOP24 
  • 批号23+ 
  • 原装正品长期供货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • PGA280AIPWR图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • PGA280AIPWR
  • 数量5600 
  • 厂家TI 
  • 封装TSSOP24 
  • 批号23+ 
  • 100%深圳原装现货库存
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • PGA280AIPWR图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • PGA280AIPWR
  • 数量18500 
  • 厂家TI(德州仪器) 
  • 封装TSSOP-24 
  • 批号22+ 
  • 全网低价,原装正品
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • PGA280AIPWR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • PGA280AIPWR
  • 数量723 
  • 厂家TI/德州仪器 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • PGA280AIPWR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • PGA280AIPWR
  • 数量28000 
  • 厂家TI/德州仪器 
  • 封装TSSOP 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • PGA280AIPWR图
  • 深圳市芯达科技有限公司

     该会员已使用本站9年以上
  • PGA280AIPWR
  • 数量44300 
  • 厂家TI 
  • 封装TSSOP24 
  • 批号2019+ 
  • TI一级代理专营品牌绝对进口原装假一赔十
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • PGA280AIPWR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • PGA280AIPWR
  • 数量7470 
  • 厂家TI(德州仪器) 
  • 封装TSSOP24 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • PGA280AIPWR图
  • 集好芯城

     该会员已使用本站13年以上
  • PGA280AIPWR
  • 数量19492 
  • 厂家TI/德州仪器 
  • 封装TSSOP24 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • PGA280AIPWR图
  • 深圳市西源信息科技有限公司

     该会员已使用本站9年以上
  • PGA280AIPWR
  • 数量8800 
  • 厂家TI 
  • 封装TSSOP24 
  • 批号最新批号 
  • 原装现货零成本有接受价格就出
  • QQ:3533288158QQ:3533288158 复制
    QQ:408391813QQ:408391813 复制
  • 0755-84876394 QQ:3533288158QQ:408391813
  • PGA280AIPWR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • PGA280AIPWR
  • 数量26088 
  • 厂家TI 
  • 封装TSSOP24 
  • 批号2023+ 
  • 绝对原装正品全新进口深圳现货
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • PGA280AIPWR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • PGA280AIPWR
  • 数量12500 
  • 厂家TI/德州仪器 
  • 封装TSSOP-24 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • PGA280AIPWR图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • PGA280AIPWR
  • 数量11500 
  • 厂家TI/德州仪器 
  • 封装TSSOP-24 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • PGA280AIPWR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • PGA280AIPWR
  • 数量11631 
  • 厂家TI/德州仪器 
  • 封装TSSOP24 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • PGA280AIPWR图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • PGA280AIPWR
  • 数量4000 
  • 厂家★TI★德州仪器 
  • 封装TSSOP(PW)|24 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • PGA280AIPWR图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • PGA280AIPWR
  • 数量12300 
  • 厂家TI/德州仪器 
  • 封装TSSOP24 
  • 批号24+ 
  • ★原装真实库存★13点税!
  • QQ:2353549508QQ:2353549508 复制
    QQ:2885134615QQ:2885134615 复制
  • 0755-83201583 QQ:2353549508QQ:2885134615
  • PGA280AIPWR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • PGA280AIPWR
  • 数量8800 
  • 厂家TI/德州仪器 
  • 封装TSSOP24 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • PGA280AIPWR图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • PGA280AIPWR
  • 数量9500 
  • 厂家TI(德州仪器) 
  • 封装24-TSSOP(0.173,4.40mm 宽) 
  • 批号23+/24+ 
  • 绝对原装正品,可开13%专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • PGA280AIPWR图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • PGA280AIPWR
  • 数量865000 
  • 厂家TI/德州仪器 
  • 封装20+ 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • PGA280AIPWR图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • PGA280AIPWR
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装贴/插片 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • PGA280AIPWR图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • PGA280AIPWR
  • 数量12245 
  • 厂家TI/德州仪器 
  • 封装TSSOP24 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • PGA280AIPWR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • PGA280AIPWR
  • 数量13500 
  • 厂家TEXAS INSTRUMENTS 
  • 封装2000 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • PGA280AIPWR图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • PGA280AIPWR
  • 数量6328 
  • 厂家TI-德州仪器 
  • 封装TSSOP-24 
  • 批号▉▉:2年内 
  • ▉▉¥47一一有问必回一一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • PGA280AIPWR图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • PGA280AIPWR
  • 数量5280 
  • 厂家TI(德州仪器) 
  • 封装TSSOP-24 
  • 批号23+ 
  • ▉原装正品▉力挺实单可含税可拆样
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050

产品型号PGA280AIPWR的概述

芯片PGA280AIPWR的概述 PGA280AIPWR是一款由德州仪器(Texas Instruments, TI)公司推出的微型调压放大器。作为一款专门设计用于数据采集和信号处理的芯片,PGA280AIPWR被广泛应用于测量和控制系统中,以提高模拟信号的分辨率和精度。该芯片具备高性能和高集成度,能够满足多种测量需求,在工业、汽车以及医疗设备等领域得到了广泛的应用。 芯片PGA280AIPWR的详细参数 PGA280AIPWR具有优良的线性特性、低噪声和高带宽等优点,以下是该芯片的主要参数: - 输入电压范围:无源模式下为±10V,支持多种信号源输入。 - 增益:具有可编程增益,通过内置增益控制电路,可调增益范围从1到128,适应多种信号强度的检测需求。 - 带宽:工作带宽可以达到1MHz,这使得其能够处理动态信号,特别适用于快速变化的测量场合。 - 电源电压:工作电源电压范围为±2...

产品型号PGA280AIPWR的Datasheet PDF文件预览

PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
Zerø-Drift, High-Voltage,  
Programmable Gain INSTRUMENTATION AMPLIFIER  
Check for Samples: PGA280  
1
FEATURES  
DESCRIPTION  
23  
WIDE INPUT RANGE: ±15.5V at ±18V SUPPLY  
The PGA280 is a high-precision instrumentation  
amplifier with digitally-controllable gain and signal  
integrity test capability. This device offers low offset  
voltage, near-zero offset and gain drift, excellent  
linearity, and nearly no 1/f noise with superior  
common-mode and supply rejection to support  
high-resolution precision measurement. The 36V  
supply capability and wide, high-impedance input  
range comply with requirements for universal signal  
measurement.  
BINARY GAIN STEPS: 128V/V to 1/8V/V  
ADDITIONAL SCALING FACTOR: 1V/V and  
1V/V  
LOW OFFSET VOLTAGE: 3μV at G = 128  
NEAR-ZERO LONG-TERM DRIFT OF OFFSET  
VOLTAGE  
NEAR-ZERO GAIN DRIFT: 0.5ppm/°C  
EXCELLENT LINEARITY: 1.5ppm  
EXCELLENT CMRR: 140dB  
Special circuitry prevents inrush currents from  
multiplexer (MUX) switching. In addition, the input  
switch matrix enables easy reconfiguration and  
system-level diagnostics—overload conditions are  
indicated.  
HIGH INPUT IMPEDANCE  
VERY LOW 1/f NOISE  
DIFFERENTIAL SIGNAL OUTPUT  
OVERLOAD DETECTION  
The configurable general-purpose input/output  
(GPIO) offers several control and communication  
features. The SPI can be expanded to communicate  
with more devices, supporting isolation with only four  
INPUT CONFIGURATION SWITCH MATRIX  
WIRE BREAK TEST CURRENT  
EXPANDABLE SPI™ WITH CHECKSUM  
GENERAL-PURPOSE I/O PORT  
TSSOP-24 PACKAGE  
ISO couplers. The PGA280 is available in  
a
TSSOP-24 package and is specified from –40°C to  
+105°C.  
RELATED PRODUCTS  
FEATURES  
APPLICATIONS  
PRODUCT  
HIGH-PRECISION SIGNAL INSTRUMENTATION  
MULTIPLEXED DATA ACQUISITION  
HIGH-VOLTAGE ANALOG INPUT AMPLIFIER  
UNIVERSAL INDUSTRIAL ANALOG INPUT  
23-bit resolution, ΔΣ analog-to-digital converter  
ADS1259  
Chopper-stabilized instrumentation amplifier,  
RR I/O, 5V single-supply  
INA333  
High-precision PGA, G = 1, 10, 100, 1000  
PGA204  
PGA206  
High-precision PGA, JFET Input, G = 1, 2, 4, 8  
+15V  
-15V  
+5V  
PGA280  
INP2  
Switch  
Matrix  
and  
INN2  
ADC  
(ADS1259)  
Gain  
Network  
100mA  
Source  
Sink and  
INP1  
Buffer  
MUX  
INN1  
Control Register  
Address  
7xGPIO  
SPI Interface  
SPI  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
SPI is a trademark of Motorola.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009, Texas Instruments Incorporated  
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
PACKAGE INFORMATION(1)  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
PRODUCT  
PACKAGE-LEAD  
PGA280  
TSSOP-24  
PW  
PGA280A  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range, unless otherwise noted.  
PGA280  
UNIT  
V
VSN to VSP  
40  
Supply Voltage  
VSON to VSOP, and DGND to DVDD  
6
VSN – 0.5 to VSP + 0.5  
±10  
V
Signal Input Terminals, Voltage(2)  
Signal Input Terminals, Current(2)  
Output Short-Circuit(3)  
V
mA  
Continuous  
Operating Temperature  
–55 to +140  
–65 to +150  
+150  
°C  
°C  
°C  
V
Storage Temperature  
Junction Temperature  
ESD Ratings  
Human Body Model (HBM)  
2000  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) Terminals are diode-clamped to the power-supply (VON and VOP) rails. Signals that can swing more than 0.5V beyond the supply rails  
must be current-limited.  
(3) Short-circuit to VSON or VSOP, respectively, DGND or DVDD.  
2
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
ELECTRICAL CHARACTERISTICS  
Boldface limits apply over the specified temperature range, TA = –40°C to +105°C.  
At TA = +25°C, VSP = +15V, VSN = –15V, VSON = 0V, VSOP = 5V, DVDD = +3V, DGND = 0V, RL = 2.5kto VSOP/2 =  
VOCM, G = 1V/V, using internal clock, BUF inactive, VCM = 0V, and differential input and output, unless otherwise noted.  
PGA280  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
Offset Voltage, RTI(1)  
VOS  
Gain = 1V/V, 1.375V/V  
Gain = 128V/V  
±50  
±3  
±250  
±15  
μV  
μV  
vs Temperature(2)  
dVOS/dT  
Gain = 1V/V  
±0.2  
±0.03  
±0.6  
±0.17  
μV/°C  
μV/°C  
Gain = 128V/V  
VSP – VSN = 10 and 36V,  
Gain = 1V/V, 128V/V  
vs Power Supply, RTI  
PSR  
±0.3  
±3  
μV/V  
vs External Clock, RTI(3)  
dVOS/df  
0.8MHz to 1.2MHz, Gain = 1V/V  
0.8MHz to 1.2MHz, Gain = 128V/V  
Gain=128  
±0.05  
±0.001  
3.5  
μV/kHz  
μV/kHz  
nV/month  
GΩ  
Long-Term Stability(4)  
Input Impedance  
Single-ended and Differential  
Single-ended  
>1  
Input Capacitance, IN1 / IN2  
Input Voltage Range  
12 / 8  
pF  
Gain = 1V/V, Gain = 128V/V  
Gain = 1V/V  
(VSN) + 2.5  
(VSP) – 2.5  
±3  
V
Common-Mode Rejection, RTI  
CMR  
±0.3  
±0.08  
±0.1  
μV/V  
μV/V  
μV/V  
Gain = 128V/V  
±0.8  
Over Temperature  
Gain = 128V/V  
±1.5  
SINGLE-ENDED OUTPUT  
CONNECTION  
Offset Voltage, RTI, SE Out  
VOS  
Gain = 1V/V, 1.375V/V, SE  
Gain = 128V/V, SE  
Gain = 1V/V, SE  
±120  
±3  
μV  
μV  
vs Temperature, SE Out  
dVOS/dT  
0.6  
μV/°C  
μV/°C  
Gain = 64V/V, SE  
0.05  
INPUT BIAS CURRENT(3)  
Bias Current  
IB  
Gain = 1V/V  
±0.3  
±0.8  
±0.6  
±0.1  
±0.9  
±1  
±2  
nA  
nA  
nA  
nA  
nA  
Gain = 128V/V  
Over Temperature  
Offset Current  
IB  
IOS  
IOS  
Gain = 1V/V, Gain = 128V/V  
Gain = 1V/V, Gain = 128V/V  
Gain = 1V/V, Gain = 128V/V  
±2  
±0.5  
±2  
Over Temperature  
NOISE  
Voltage Noise, RTI; Target  
f = 0.01Hz to 10Hz  
f = 1kHz  
eNI  
RS = 0, G = 128  
RS = 0, G = 128  
RS = 0, G = 1  
RS = 0, G = 1  
420  
22  
nVPP  
nV/Hz  
μVPP  
f = 0.01Hz to 10Hz  
f = 1kHz  
4.5  
240  
nV/Hz  
Current Noise, RTI  
f = 0.01Hz to 10Hz  
f = 1kHz  
IN  
RS = 10M, G = 128  
RS = 10M, G = 128  
1.7  
90  
pAPP  
fA/Hz  
(1) RTI: Referred to input.  
(2) Specified by design; not production tested.  
(3) See Application Information section and typical characteristic graphs.  
(4) 300-hour life test at +150°C demonstrated randomly distributed variation in the range of measurement limits.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): PGA280  
 
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
Boldface limits apply over the specified temperature range, TA = –40°C to +105°C.  
At TA = +25°C, VSP = +15V, VSN = –15V, VSON = 0V, VSOP = 5V, DVDD = +3V, DGND = 0V, RL = 2.5kto VSOP/2 =  
VOCM, G = 1V/V, using internal clock, BUF inactive, VCM = 0V, and differential input and output, unless otherwise noted.  
PGA280  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GAIN  
Output Swing: ±4.5V(5)  
Range of Input Gain  
to 128  
1 and 1⅜  
±0.03  
-0.5  
V/V  
V/V  
Range of Output Gain: 1V/V and 1⅜  
Gain Error, All Binary Steps  
All Gains  
No Load, All Gains Except G = 128V/V  
No Load, G = 128V/V  
±0.15  
±2  
%
vs Temperature(6)  
ppm/°C  
ppm/°C  
(7)  
-1  
±3  
Gain Step Matching(8) (Gain to gain)  
Nonlinearity  
No Load, All Gains  
No Load, All Gains(9)  
See Typical Characteristics  
1.5  
10  
ppm  
Over Temperature(6)  
No Load, All Gains  
3
ppm  
OUTPUT  
Voltage Output Swing from Rail(8)  
VSOP = 5V, Load Current 2mA  
40  
100  
100  
mV  
mV  
pF  
VSOP = 2.7V, Load Current 1.5mA  
Capacitive Load Drive  
Short-Circuit Current  
Output Resistance  
500  
15  
ISC  
To VSOP/2, Gain = 1.375V/V  
Each output VOP and VON  
7
25  
mA  
mΩ  
200  
(VSON) +  
0.1  
(VSOP) –  
0.1  
VOLTAGE RANGE FOR VOCM  
VSP–2V > VOCM  
V
Bias Current into VOCM  
VOCM Input Resistance  
INTERNAL OSCILLATOR  
IB  
3
1
100  
nA  
GΩ  
(8)  
Frequency of Internal Clock(6)  
0.8  
0.8  
1
1
1.2  
1.2  
MHz  
MHz  
Ext. Oscillator Frequency Range  
FREQUENCY RESPONSE  
Gain Bandwidth Product(8)  
GBP  
SR  
G > 4  
6
1
2
1
MHz  
V/μs  
V/μs  
V/μs  
Slew Rate(8), 4VPP Output Step  
G = 1, CL = 100pF, BUF On  
G = 8, CL = 100pF  
G = 128, CL = 100pF  
Settling Time(8)  
tS  
0.01%  
G = 8, VO = 8VPP Step  
G = 8, VO = 8VPP Step  
20  
30  
40  
40  
8
μs  
μs  
μs  
μs  
μs  
μs  
0.001%  
0.01%  
G = 128, VO = 8VPP Step  
G = 128, VO = 8VPP Step  
0.5V Over Supply, G = to 128  
±5.5VP Input, G = 1V/V  
0.001%  
Overload Recovery, Input(8)  
Overload Recovery, Output(8)  
INPUT MULTIPLEXER (Two-Channel)  
Crosstalk, INP1 to INP2  
Series-Resistance(8)—see Figure 44  
Switch On-Resistance(8)  
Current Source and Sink(8)  
INPUT CURRENT BUFFER (BUF)  
Offset Voltage(8)  
6
At dc; Gain = 128V/V  
< –130  
600  
dB  
450  
To GND  
70  
95  
125  
μA  
VOS  
Buffer Active  
15  
mV  
(5) Gains smaller than ½ are measured with smaller output swing.  
(6) Specified by design; not production tested.  
(7) See Figure 10 for typical gain error drift of various gain settings.  
(8) See Application Information section and typical characteristic graphs.  
(9) Only G = 1 is production tested.  
4
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
ELECTRICAL CHARACTERISTICS (continued)  
Boldface limits apply over the specified temperature range, TA = –40°C to +105°C.  
At TA = +25°C, VSP = +15V, VSN = –15V, VSON = 0V, VSOP = 5V, DVDD = +3V, DGND = 0V, RL = 2.5kto VSOP/2 =  
VOCM, G = 1V/V, using internal clock, BUF inactive, VCM = 0V, and differential input and output, unless otherwise noted.  
PGA280  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL I/O  
Supply: 2.7V to 5.5V  
Input (Logic Low Threshold)  
Input (Logic High Threshold)  
Output (Logic Low)  
0
(DVDD)x0.2  
DVDD  
V
V
0.8x(DVDD)  
IOUT = 4mA, Sink  
0.7  
V
Output (Logic High)  
IOUT = 2mA, Source  
DVDD – 0.5  
V
SCLK, Frequency  
10  
MHz  
POWER SUPPLY: Input Stage (VSN – VSP)  
Specified Voltage Range  
10  
36  
V
Operating Voltage Range  
10 to 38  
2.4  
V
Quiescent Current (VSP)  
IQ  
IQ  
3
3
mA  
mA  
Quiescent Current (VSN)  
2.1  
POWER SUPPLY: Output Stage (VSOP – VSON)  
Specified Voltage Range  
VSP – 1.5V VSOP  
2.7  
2.7  
5.5  
V
Voltage Range for VSOP, Upper Limit  
(VSP – 2V) > VOCM, (VSP – 5V) > VSON  
(VSP)  
V
(VSN) to  
(VSP) – 5  
Voltage Range for VSON  
(VSP – 2V) > VOCM, VSP VSOP  
V
Quiescent Current  
IQ  
VSOP  
0.75  
1
mA  
POWER SUPPLY: Digital (DVDD – DGND)  
Specified Voltage Range  
5.5  
V
V
V
Voltage Range for DVDD, Upper Limit  
Voltage Range for DGND, Lower Limit  
(VSP) – 1  
(VSN)  
Static Condition, No External Load,  
DVDD = 3V  
Quiescent Current(10)  
IQ  
0.07  
0.13  
mA  
TEMPERATURE RANGE  
Specified Range  
Operating Range  
Thermal Resistance  
SSOP  
–40  
–55  
+105  
+140  
°C  
°C  
θJA  
High-K Board, JESD51  
80  
°C/W  
(10) See Application Information section and typical characteristic graphs.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): PGA280  
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
PIN CONFIGURATION  
TSSOP-24  
DW PACKAGE  
(TOP VIEW)  
VON  
VOP  
1
2
24 GPIO0  
23 GPIO1  
22 GPIO2  
21 GPIO3  
20 GPIO4  
19 GPIO5  
18 GPIO6  
VOCM  
VSOP  
VSON  
VSP  
3
4
5
6
PGA280  
INP2  
7
INN2  
INP1  
8
17  
CS  
9
16 SCLK  
15 SDI  
INN1  
10  
VSN 11  
14 SDO  
13 DVDD  
DGND 12  
PIN DESCRIPTIONS  
PIN NO.  
NAME  
VON  
DESCRIPTION  
Inverting signal output  
Noninverting signal output  
PIN NO.  
NAME  
DVDD  
SDO  
DESCRIPTION  
Digital supply  
1
2
13  
VOP  
14  
SPI slave data output  
3
VOCM  
VSOP  
VSON  
VSP  
Input, output common-mode voltage  
Positive supply for output  
Negative supply for output, AGND  
Positive high-voltage supply  
AUX input, noninverting  
AUX input, inverting  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
SDI  
SPI slave data input  
4
SCLK  
CS  
SPI clock input  
5
SPI chip select input; active low  
GPIO 6, SYNC (in), OSC (out), ECS6  
GPIO 5, BUFA (out), ECS5  
GPIO 4, BUFT (in), ECS4  
GPIO 3, EF (out), ECS3  
GPIO 2, ECS2, MUX2  
6
GPIO6  
GPIO5  
GPIO4  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
7
INP2  
8
INN2  
INP1  
9
Signal input, noninverting  
Signal input, inverting  
10  
11  
12  
INN1  
VSN  
Negative high-voltage supply  
Digital ground  
GPIO 1, ECS1, MUX1  
DGND  
GPIO 0, ECS0, MUX0  
6
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
TYPICAL CHARACTERISTICS  
At TA = +25°C, VSP = +15V, VSN = –15V, VSON = 0V, VSOP = 5V, DVDD = +3V, DGND = 0V, RL = 2.5kto VSOP/2 =  
VOCM, G = 1V/V, using internal clock, BUF inactive, VCM = 0V, and differential input and output, unless otherwise noted.  
OFFSET VOLTAGE PRODUCTION DISTRIBUTION (G = 128)  
OFFSET VOLTAGE PRODUCTION DISTRIBUTION (G = 1)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
Offset Voltage (mV)  
Offset Voltage (mV)  
Figure 1.  
Figure 2.  
OFFSET VOLTAGE DRIFT DISTRIBUTION (G = 128)  
OFFSET VOLTAGE DRIFT DISTRIBUTION (G = 1)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
Offset Voltage Drift (mV/°C)  
Offset Voltage Drift (mV/°C)  
Figure 3.  
Figure 4.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): PGA280  
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VSP = +15V, VSN = –15V, VSON = 0V, VSOP = 5V, DVDD = +3V, DGND = 0V, RL = 2.5kto VSOP/2 =  
VOCM, G = 1V/V, using internal clock, BUF inactive, VCM = 0V, and differential input and output, unless otherwise noted.  
COMMON-MODE REJECTION DISTRIBUTION (G = 128)  
COMMON-MODE REJECTION DISTRIBUTION (G = 1)  
80  
120  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
Common-Mode Rejection Ratio (mV/V)  
Common-Mode Rejection Ratio (mV/V)  
Figure 5.  
Figure 6.  
GAIN ERROR DISTRIBUTION (G = 128)  
GAIN ERROR DISTRIBUTION (G = 1)  
30  
70  
60  
50  
40  
30  
20  
10  
0
25  
20  
15  
10  
5
0
Gain Error (%)  
Gain Error (%)  
Figure 7.  
Figure 8.  
8
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VSP = +15V, VSN = –15V, VSON = 0V, VSOP = 5V, DVDD = +3V, DGND = 0V, RL = 2.5kto VSOP/2 =  
VOCM, G = 1V/V, using internal clock, BUF inactive, VCM = 0V, and differential input and output, unless otherwise noted.  
GAIN ERROR DRIFT DISTRIBUTION vs  
GAIN ERROR vs GAIN SETTING  
GAIN SETTING (MEAN with ±3σ)  
0.15  
0.10  
0.05  
0
3
2
Selected samples with typical performance  
1
0
-0.05  
-0.10  
-0.15  
-1  
-2  
-3  
1
13  
8
2
4
8
16 32 64 128  
1/8 1/4 1/2  
Gain Setting (V/V)  
Gain Setting (V/V)  
Figure 9.  
Figure 10.  
MAXIMUM GAIN ERROR DEVIATION BETWEEN  
GAIN ERROR DISTRIBUTION vs  
SEQUENTIAL GAIN SETTINGS (MEAN with ±3σ)  
GAIN SETTING (MEAN with ±3σ)  
0.20  
0.15  
0.10  
0.05  
0
0.20  
0.15  
0.10  
0.05  
0
-0.05  
-0.10  
-0.15  
-0.20  
-0.05  
-0.10  
-0.15  
-0.20  
Gain Setting (V/V)  
Gain Setting Change  
Figure 11.  
Figure 12.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): PGA280  
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VSP = +15V, VSN = –15V, VSON = 0V, VSOP = 5V, DVDD = +3V, DGND = 0V, RL = 2.5kto VSOP/2 =  
VOCM, G = 1V/V, using internal clock, BUF inactive, VCM = 0V, and differential input and output, unless otherwise noted.  
POWER-SUPPLY REJECTION vs FREQUENCY  
COMMON-MODE REJECTION vs FREQUENCY  
140  
120  
100  
80  
140  
120  
100  
80  
VSN  
VSP  
60  
60  
40  
40  
20  
20  
0
0
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Figure 13.  
Figure 14.  
INPUT-REFERRED NOISE SPECTRUM  
SMALL-SIGNAL GAIN vs FREQUENCY  
60  
50  
100  
10  
40  
G = 1/8  
30  
20  
1
G = 1  
10  
G = 4  
0
0.1  
0.01  
G = 128  
1
-10  
-20  
10  
100  
1k  
10k  
100k  
1M  
10M  
0.1  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Figure 15.  
Figure 16.  
BIAS CURRENT vs GAIN SETTING  
INPUT VOLTAGE RANGE LIMITS vs TEMPERATURE  
2.0  
3.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5  
2.0  
IR+  
1.5  
1.0  
IR-  
0.5  
0
1
2
4
8
16  
32  
64  
128  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Gain Setting (V/V)  
Figure 17.  
Figure 18.  
10  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VSP = +15V, VSN = –15V, VSON = 0V, VSOP = 5V, DVDD = +3V, DGND = 0V, RL = 2.5kto VSOP/2 =  
VOCM, G = 1V/V, using internal clock, BUF inactive, VCM = 0V, and differential input and output, unless otherwise noted.  
INPUT BIAS CURRENT DISTRIBUTION (G = 128)  
INPUT BIAS CURRENT DISTRIBUTION (G = 1)  
80  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
Bias Current (nA)  
Bias Current (nA)  
Figure 19.  
Figure 20.  
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT  
vs TEMPERATURE  
INPUT OFFSET CURRENT DISTRIBUTION (G = 1, G = 128)  
10  
70  
8
60  
50  
40  
30  
20  
10  
0
6
IBIAS  
4
2
0
-2  
-4  
-6  
-8  
-10  
IOFFSET  
IN1_IBIAS_1  
IN1_IBIAS_128  
IN1_IOFFSET_1  
IN1_IOFFSET_128  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Input Offset Current (nA)  
Figure 21.  
Figure 22.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): PGA280  
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VSP = +15V, VSN = –15V, VSON = 0V, VSOP = 5V, DVDD = +3V, DGND = 0V, RL = 2.5kto VSOP/2 =  
VOCM, G = 1V/V, using internal clock, BUF inactive, VCM = 0V, and differential input and output, unless otherwise noted.  
DIGITAL SUPPLY CURRENT  
QUIESCENT CURRENT FROM SUPPLIES (VSP AND VSOP)  
vs TEMPERATURE  
WITH AND WITHOUT SPI COMMUNICATION  
vs TEMPERATURE  
3.0  
90  
85  
80  
75  
70  
65  
60  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
IDVDD (with SPI)  
2.5  
IQ VSP  
2.0  
IDVDD (no SPI)  
1.5  
IQ VSOP  
1.0  
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Temperature (°C)  
Figure 23.  
Figure 24.  
GAIN NONLINEARITY WITH END-POINT CALIBRATION (G = 1)  
GAIN NONLINEARITY vs TEMPERATURE  
10  
9
8
7
6
5
4
3
2
1
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
Selected samples with typical performance  
-10  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-4  
-3  
-2  
-1  
0
1
2
3
4
Temperature (°C)  
Input/Output Voltage (V)  
Figure 25.  
Figure 26.  
12  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VSP = +15V, VSN = –15V, VSON = 0V, VSOP = 5V, DVDD = +3V, DGND = 0V, RL = 2.5kto VSOP/2 =  
VOCM, G = 1V/V, using internal clock, BUF inactive, VCM = 0V, and differential input and output, unless otherwise noted.  
POSITIVE OUTPUT CURRENT LIMIT DISTRIBUTION  
NEGATIVE OUTPUT CURRENT LIMIT DISTRIBUTION  
16  
14  
14  
12  
10  
8
12  
10  
8
6
6
4
4
2
2
0
0
Positive Current Limit (mA)  
Negative Current Limit (mA)  
Figure 27.  
Figure 28.  
OUTPUT SWING TO RAIL vs TEMPERATURE  
(VSOP – VSON = 5V)  
OUTPUT CURRENT LIMIT vs TEMPERATURE  
20  
19  
18  
17  
100  
90  
80  
70  
60  
16  
Negative  
15  
14  
13  
50  
40  
30  
20  
10  
0
Positive Rail  
Negative Rail  
Positive  
12  
11  
10  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Temperature (°C)  
Figure 29.  
Figure 30.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): PGA280  
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VSP = +15V, VSN = –15V, VSON = 0V, VSOP = 5V, DVDD = +3V, DGND = 0V, RL = 2.5kto VSOP/2 =  
VOCM, G = 1V/V, using internal clock, BUF inactive, VCM = 0V, and differential input and output, unless otherwise noted.  
SWITCH-ON RESISTANCE AND SERIES INPUT RESISTANCE  
vs COMMON-MODE VOLTAGE AT VARIOUS SUPPLY  
VOLTAGES  
SWITCH-ON RESISTANCE AND SERIES INPUT RESISTANCE  
vs TEMPERATURE  
800  
1600  
Series In R  
Switch On  
Switch On  
1400  
700  
600  
at VS = ±10V  
at VS = ±5V  
1200  
Switch On  
at VS = ±15V  
Switch On  
VS = ±15V  
Series Input  
Resistance  
500  
1000  
800  
600  
400  
200  
0
400  
300  
200  
100  
0
Switch On  
at VS = ±18V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Temperature (°C)  
Common-Mode Voltage (V)  
Figure 31.  
Figure 32.  
WIRE BREAK CURRENT DISTRIBUTION  
WIRE BREAK CURRENT MAGNITUDE vs TEMPERATURE  
100  
45  
40  
35  
30  
25  
20  
15  
10  
5
Wire Break +  
Wire Break -  
98  
96  
Wire Break Positive  
94  
92  
90  
Wire Break Negative  
88  
86  
84  
82  
80  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Wire Break Current (mA)  
Figure 33.  
Figure 34.  
14  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VSP = +15V, VSN = –15V, VSON = 0V, VSOP = 5V, DVDD = +3V, DGND = 0V, RL = 2.5kto VSOP/2 =  
VOCM, G = 1V/V, using internal clock, BUF inactive, VCM = 0V, and differential input and output, unless otherwise noted.  
INFLUENCE OF EXTERNAL CLOCK FREQUENCY TO  
VOS PERFORMANCE (G = 128)  
INFLUENCE OF EXTERNAL CLOCK FREQUENCY TO  
VOS PERFORMANCE (G = 1)  
80  
70  
60  
50  
40  
30  
20  
10  
0
25  
20  
15  
10  
5
0
DVOS (mV/kHz)  
DVOS (mV/kHz)  
Figure 35.  
Figure 36.  
STEP RESPONSE (G = 128)  
STEP RESPONSE (G = 8)  
Diff Signal  
Output  
(Right Scale)  
Diff Signal  
Output  
(Right Scale)  
INN1  
(Left Scale)  
INN1 Single-Ended  
(INP1 to GND)  
(Left Scale)  
Error Flag  
Error Flag  
10ms/div  
10ms/div  
Figure 37.  
Figure 38.  
STEP RESPONSE (G = 1)  
OUTPUT OVERLOAD RECOVERY  
G = 1, VSOP (5V)  
Diff Signal Output  
(Right Scale)  
VON (1V/div)  
INN1 (5V/div)  
INN1  
(INP1 to GND)  
(Left Scale)  
VOP (1V/div)  
VSON (GND)  
EF_OUTERR  
Error Flag (Not Latched)  
10ms/div  
10ms/div  
Figure 39.  
Figure 40.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): PGA280  
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VSP = +15V, VSN = –15V, VSON = 0V, VSOP = 5V, DVDD = +3V, DGND = 0V, RL = 2.5kto VSOP/2 =  
VOCM, G = 1V/V, using internal clock, BUF inactive, VCM = 0V, and differential input and output, unless otherwise noted.  
OSCILLATOR FREQUENCY vs  
TEMPERATURE  
INPUT CURRENT BUFFER OFFSET VOLTAGE DISTRIBUTION  
30  
1.20  
1.15  
1.19  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
25  
20  
15  
10  
5
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Buffer Offset Voltage (mV)  
Figure 41.  
Figure 42.  
16  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
APPLICATION INFORMATION  
DESCRIPTION  
The PGA280 is a universal high-voltage instrumentation amplifier with digital gain control. It offers excellent dc  
precision and long-term stability using modern chopper technology with internal filters that minimize  
chopper-related noise. The input gain extends from V/V (attenuation) to 128V/V in binary steps. The output  
stage offers a gain multiplying factor of 1V/V and 1V/V for optimal gain adjustment. The output stage connects  
to the low-voltage (5V or 3V) supply. Figure 43 shows a block diagram of the device.  
VSP  
VSOP  
VSN  
INP1  
INN1  
INP2  
INN2  
VOP  
MUX  
Switch Network,  
Current Source  
and Sink,  
Gain  
VOCM  
VON  
and Buffer  
SPI  
Digital I/O  
Control Registers  
7x GPIO  
DGND  
DVDD  
VSON  
Figure 43. PGA280 Block Diagram  
A signal multiplexer provides two differential inputs. Several signal switches allow signal diagnosis of wire break,  
input disconnect, single-ended (versus differential), and shorted inputs.  
The supply voltage of up to ±18V offers a wide common-mode range with high input impedance; therefore, large  
common-mode noise signals and offsets can be suppressed.  
A pair of high-speed current buffers can be activated to avoid inrush currents during fast signal transients, such  
as those generated from switching the signal multiplexers. This feature minimizes discharge errors in passive  
signal input filters in front of the multiplexer.  
The fully differential signal output matches the inputs of modern high-resolution and high-accuracy  
analog-to-digital converters (ADCs), including Delta-Sigma (ΔΣ) as well as successive-approximation response  
(SAR) converters. The supply voltage for the output stage is normally connected together with the converter  
supply, thus preventing signal overloads from the high-voltage analog supply.  
Internal error detection in the input and output stage provides individual information about the signal condition.  
Integrating ADCs may hide momentary overloads. Together with the input switch matrix, extensive signal and  
error diagnosis is made possible.  
The serial peripheral interface (SPI) provides write and read access to internal registers. These registers control  
gain, the current buffer, input switches, and the general-purpose input/output (GPIO) or special function pins, as  
well as configuration and diagnostics.  
The GPIO port controls the multiplexer (MUX) and switches and indicates internal conditions; it can also be  
individually configured for output or input. A special CS mode for the GPIO extends the communication to other  
external SPI devices, such as data converters or shift registers. This special function is intended for SPI  
communication via a minimum number of isolation couplers. Additional proof for communication integrity is  
provided by an optional checksum byte following each communication block.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): PGA280  
 
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
FUNCTIONAL BLOCKS  
Both high-impedance input amplifiers are symmetrical, and have low noise and excellent dc precision. These  
amplifiers are connected to a resistor network and provide a gain range from 128V/V down to an attenuation of  
. The PGA280 architecture rejects common-mode offsets and noise over a wide bandwidth.  
The PGA280 features additional current buffers placed in front of the precision amplifier that can be activated on  
demand. When activated, these additional current buffers avoid problems that result from input current during  
dynamic overloads, such as the fast signal transient that follows the channel switching from a multiplexer.  
Without the use of the additional current buffers, the fast signal transient would overload the precision amplifiers  
and high bias currents could flow into the protection clamp until the amplifiers recover from the overload. This  
momentary current can influence the signal source or passive filters in front of the multiplexer and generate long  
settling tails. Activating this current buffer avoids such an overload current pulse. The buffer disconnects  
automatically after an adjustable time. For continuous signal measurement, the additional current buffers are not  
used.  
The switches in the input provide signal diagnostic capability and offer an auxiliary input channel (INP2 and  
INN2; see Figure 44). Both channels can be switched to diagnose or test conditions, such as a ground-referred,  
single-ended voltage measurement for either input. In this mode, each of the signal inputs can be observed to  
analyze common-mode offsets and noise.  
The primary input channel [INP1 and INN1] provides switches and current sources for a wire break test. A switch  
can short both inputs. It can also discharge a filter capacitor after a wire break test, for example.  
The signal inputs are diode-clamped to the supply rails. External resistors can be placed in series to the inputs to  
provide overvoltage protection. Current into the input pins should be limited to 10mA.  
The output stage offers a fully-differential signal around the output reference pin, VOCM. The VOCM pin is a  
high-impedance input and expects an external voltage, typically close to midsupply. The 3V or 5V supply of the  
converter or amplifier, following the PGA280 outputs, is normally connected to VSOP and VSON; this  
configuration shares a common supply voltage and protects the circuit from overloads. The fully-differential signal  
avoids coupling of noise and errors from the supply and ground, and allows large signal swing without the risk of  
nonlinearities that arise when driving near the supply rails.  
The PGA280 signal path has several test points for critical overload conditions. The input amplifiers detect signal  
overvoltage and overload as a result of high gain. The output stage also detects clipping. These events are  
filtered with adjustable suppression delays and then stored for readout. A GPIO pin can be dedicated for external  
indication either as an interrupt or in a monitor mode.  
A serial peripheral interface (SPI) controls the gain setting and switches, as well as the operation modes and the  
GPIO port pins. The SPI allows read and write access to the internal registers. These registers contain  
conditions, flags, and settings, as described in the SPI and Register Description section. They represent the gain  
setting for the input stage from 128V/V to the attenuation of V/V in binary steps and the output stage gain of  
1V/V and 1.375V/V (1). The input MUX and switches and the input buffers are also controlled by registers.  
Internal error conditions are stored and may be masked to activate an external pin in the GPIO port.  
This GPIO port can be configured individually for either input or output or for a special function. In special  
function mode, the port indicates an error condition, generates CS signal, controls an external MUX, and  
connects to the buffer control and oscillator.  
The port pin can act as a CS for an external SPI device. This mode connects other SPI devices [such as an  
analog-to-digital (A/D) converter] to the primary four-wire SPI. This feature is especially desirable when using  
galvanically-isolated SPI communication. An optional checksum byte further improves communications integrity.  
18  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
Input Switch Network  
Figure 44 shows the arrangement of the input switches. They are controlled individually via the digital SPI. The  
switches B1b, B2b, A1b, and A2b are controlled automatically with the buffer (BUF) operation.  
VSP  
100mA  
VSON  
G1  
Source  
F1  
VSON  
C1  
B1  
B1b  
A1b  
A1  
600W  
600W  
INP2  
INP1  
BUF  
D12  
B2  
B2b  
A2b  
A2  
Gain  
Network  
600W  
600W  
INN2  
INN1  
BUF  
C2  
F2  
G2  
VSON  
100mA  
Sink  
VSON  
Serial Peripheral Interface  
and Controls  
VSN  
DVDD  
DGND  
Figure 44. Input Switch Diagram  
Switches A and B select the signal input. Input 1 (INP1 and INN1) provides two current sources and two switches  
that connect to VSON (which is typically the analog ground). This configuration is intended for wire break  
diagnosis. D12 can discharge an external capacitor or generate a starting condition.  
Switches C1 and C2 are used to measure the input voltage referred to GND (VSON); for example, with A1 and  
C2 closed. This scheme measures the voltage signal connected to the input pin (INP1) referred to a common  
ground. The BUF output is protected against a short to VSON. See the SPI and Register Description section for  
more information about switch control.  
Input Amplifier, Gain Network and Buffer  
The high-precision input amplifiers present very low dc error and drift as a result of a modern chopper technology  
with an embedded synchronous filter that removes virtually all chopping noise. This topology reduces flicker  
noise to a minimum and therefore enables the precise measurement of small dc-signals with high resolution,  
accuracy, and repeatability. The chopper frequency of 250kHz is derived from an internal 1MHz clock. An  
external clock can also be connected, if desired.  
The gain network for the binary gain steps connects to the input amplifiers, thus providing the best possible  
signal-to-noise ratio (SNR) and dc accuracy up to the highest gains. Gain is controlled by Register 0. This  
register can control the gain and address for an external MUX in one byte. Selectable gains (in V/V) are : 128,  
64, 32, 16, 8, 4, 2, 1, ½, ¼, and . The gain is set to 1/8V/V after device reset or power-on.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): PGA280  
 
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
Programmable gain amplifiers such as the PGA280 use internal resistors to set the gain. Consequently,  
quiescent current is increased by the current that passes through these resistors. The largest amplitude could  
increase the supply current by ±0.4mA. In maximum overload, gain of 128V/V and each or the inputs connected  
to the opposite supply voltage, a current of approximately 27mA was measured. External resistors in series with  
the input pins that are normally present avoid this extreme condition. This current is only limited by the internal  
600and the switch-on resistance (see Figure 44).  
Current Buffer  
Designed for highest accuracy and low noise, both amplifier inputs are protected from dynamic overvoltages  
through clamps. The amplifier fast input slew rate (approximately 1V/µs) normally prevents these clamps from  
turning on, provided adequate signal filtering is placed before the input. However, the fast channel  
switching-transient of a multiplexer or switch is much steeper, and cannot be filtered; this type of transient  
generates a dynamic overload. The current buffers (BUF) prevent this dynamic overload condition of the input.  
With the buffers not activated, Figure 45 indicates the clamp current flowing as a result of a fast signal change.  
The ramp in the signal, measured at the input pins (INP1), is the resulting voltage drop across the 1.5kresistor.  
In the example measurement, this resistor is placed between the signal generator and the input pin of the  
PGA280.  
Signal Input  
to INP1  
Ch 4, 2V/div  
1.5kW Connecting to INP1  
Ch 2, 2V/div  
Diff Signal Output  
Ch 1, 1V/div  
1ms/div  
Figure 45. Buffer OFF: Input Clamp Current Flowing  
Figure 46 shows a typical block diagram for multiplexed data acquisition. The transient from channel 1 to channel  
2 , shown as a voltage step, dynamically overloads the amplifier. A current pulse results from the input protection  
clamp. Without the activation of the buffers (see BUF, Figure 44), the clamp current charges the filter and the  
signal source. Input low-pass filters are often set to settling times in the millisecond range; therefore, discharge  
currents from dynamic overload would produce long settling delays.  
20  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
 
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
Low-Pass  
Filters  
Ch 1  
S1  
Ch 2  
S2  
Ch 3  
S3  
Instrumentation  
Amplifier  
Mux  
Ch x  
Sx  
Ideal  
Ch 2  
Actual  
Change of Mux  
Output Voltage  
Ch 1  
Current into  
Protection Clamp  
Long Settling of  
Voltage on Ch 2  
Note: Current from the protection clamp into the signal source and filter produces a long settling delay.  
Figure 46. Typical Block Diagram for Multiplexed Data Acquisition  
Together with the switching command of the multiplexer or internal switching, the current buffers (BUF) can be  
activated to prevent such clamp currents. The buffers do not have clamps as long as the signal remains within  
the supply boundaries. Figure 47 shows an example of the input signal settling for both conditions: without and  
with the buffer activated.  
Without the buffer, there is an obvious long settling, depending on signal and filter impedance. With the buffer  
activated, only the amplifier has to settle and no distorting current is reflected into the signal source and filter; no  
glitch is visible in this plot. The plot shows the resulting settling of the input signal for a positive and a negative  
signal step as indicated in Figure 46; also shown are the SPI signal and the BUFA signal.  
Inputs to PGA  
with Buffer OFF  
Inputs to PGA  
with Buffer ON  
Mux Switching  
Buffer Activated  
100ms/div  
t1  
t2  
Figure 47. Example for Amplifier Settling Without (t1) and With (t2) Buffer (BUF) Activated  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): PGA280  
 
 
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
The buffers turn off automatically after a preset time (see Register 3, BUFTIM). They are activated from bit 5 ('T')  
within the command byte. They can also be triggered by an external pin (BUFTin on GPIO4). The BUFA bit is  
active in conjunction with the buffer, indicating that the buffer is busy (see Figure 55).  
Error detection circuits observe the signal path for signal overvoltage (IOVerr), amplifier output clipping (IARerr),  
and gain overload (GAINerr). The Input Clamp Activation indicator ICAerr indicates that current was conducted  
into the dynamic clamp circuit. These indicators help prevent misinterpretation of the analog signal and diagnose  
critical input signal conditions, such as those that occur with integrating analog-to-digital converters that may hide  
momentary overloads and present inaccurate results.  
The buffers (BUF) prevent current flowing from the signal source with a compromise of offset voltage. As soon as  
the buffers are turned off, the amplifiers settle back to high precision. For signal measurement without  
(multiplexer) switching transients, the buffer is not used.  
Input Protection  
The input terminals are protected with internal diodes connected to VSP and VSN. If the input signal voltage  
exceeds the power-supply voltage (VSP and VSN), the current should be limited to less than 10mA to protect the  
internal clamp diodes. This current-limiting can generally be accomplished with a series input resistor.  
EMI Susceptibility  
Amplifiers vary in susceptibility to electromagnetic interference (EMI), but good layout practices play a critical  
role. EMI can generally be identified as a variation in offset voltage shifts. The PGA280 has been specifically  
designed to minimize susceptibility to EMI by incorporating an internal low-pass filter. Additional EMI filters may  
be required next to the signal inputs of the system, as well as known good practices such as using short traces,  
low-pass filters, and damping resistors combined with parallel and shielded signal routing, depending on the end  
system requirements.  
Output Stage  
The output stage power is connected to the low-voltage supply (normally 3V or 5V) that is used by the  
subsequent signal path of the system. This design prevents overloading of the low-voltage signal path.  
The output signal is fully differential around a common-mode voltage (VOCM). The VOCM input pin is typically  
connected to midsupply voltage to offer the widest signal amplitude range. VOCM is a high-impedance input that  
requires an external connection to a voltage within the supply boundaries. The usable voltage range for the  
VOCM input is specified in the Electrical Characteristics and must be observed.  
The output stage can be set to a gain of 1V/V and 1V/V. It is set to 1V/V after device reset or power-on, and is  
controlled by the gain multiplication factor.  
Both signal outputs, VOP and VON, swing symmetrically around VOCM. The signal is represented as the voltage  
between the two outputs and does not require an accurate VOCM. Therefore, the signal output does not include  
ground noise or grounding errors. Noise or drift on VOCM is normally rejected by the common-mode rejection  
capability of the subsequent signal stage.  
The signal that passes through the output stage is internally monitored for two error conditions: clipping of the  
signal to the supply rail and overcurrent. In fault conditions, an error flag bit is set (OUTerr).  
22  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
Output Filter  
The PGA280 uses chopper technology for excellent dc stability over temperature and life of operation. It also  
avoids 1/f frequency (flicker) noise, and therefore enables both high resolution and high repeatability for dc  
measurements. While the chopper noise components are internally filtered, a minimal residual amount of  
high-frequency switching noise appears at the signal outputs. An external, passive, low-pass filter after the output  
stage is recommended to remove this switching noise; Figure 48 shows two examples. This filter can also be  
used to isolate or decouple the charge switching pulses of an A/D converter input.  
R1  
R3  
50W  
100W  
VOP  
VON  
VOP  
VON  
C1  
R2  
R4  
10nF  
50W  
100W  
C2  
10nF  
C3  
10nF  
Figure 48. Typical Examples of Recommended Output Filters  
Single-Ended Output  
The output stage of PGA280 is designed for highest precision. The fully-differential output avoids grounding  
errors and noise, and delivers twice the signal amplitude compared to single-ended signals. However, if desired,  
the output can be taken single-ended from one of the output pins referred to the voltage at the VOCM pin. The  
output stage errors now relate to half the signal amplitude and half the signal gain. The unused output is  
unconnected, but not disconnected from error detection. The usable voltage range for the VOCM input is  
specified in the Electrical Characteristics and must be observed: the output swing (of both outputs) should not  
saturate to the supply. Separate specifications for offset voltage and drift indicate higher offset voltage at lower  
gains, because some error sources are not cancelled in the output stage connected in single-ended mode. Note  
that the gain is one-half of the gain set in reference to the gain table (see Table 2).  
Error Detection  
The PGA280 is designed for high dc precision and universal use, but it also allows monitoring of signal integrity.  
The device contains an input switch network for signal tests and sense points that can indicate critical conditions.  
These added features support fully automated system setup and diagnostic capability. Out-of linear range  
conditions are detected and stored in the Error Status Register (Register 4) until reset. The input switches shown  
in Figure 44 can be used to short the input to GND, disconnect the signal, insert a 100µA test current, discharge  
external capacitance, and switch to a ground (VSON)-referenced signal measurement to observe the signal at  
the pin (versus the differential measurement). Figure 49 illustrates the diagnostic points available for error  
detection in the device architecture.  
All switches are controlled through the SPI. The error signals can be combined using a logic OR function to an  
output pin and eventually be used as an error interrupt signal. Errors are normally latched, unless the LTD bit  
(latch disable) is set.  
The error sensors are filtered with a suppression delay (Register 11). These error signals are normally  
suppressed during the buffer (BUFA) active time.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): PGA280  
 
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
VSOP  
VSP  
VSP  
VSN  
VSP  
VSN  
VSOP  
VSON  
Error:  
Input over-voltage  
Error:  
Input amp saturation  
Error:  
Output amplifier  
Error:  
Clamp condition  
Clamp  
A1  
MUX  
Switch Network,  
Current Source  
and Sink,  
Gain  
A3  
and Buffer  
Clamp  
A2  
Error:  
Gain network  
overload  
Digital I/O  
VSN  
VSON  
Note: The signal path is observed for possible limitations; flags are stored and indicated in Register 4.  
Figure 49. Diagnostic Points for Error Detection  
ERROR INDICATORS  
Input Clamp Conduction (ICAerr)  
The input clamp protects the precision input amplifier from large voltages between the inputs that occur from a  
fast signal slew rate in the input. This clamp circuit pulls current from the input pins while active. Current flowing  
through the clamp can influence the signal source and cause long settling delays on passive signal filters. The  
current is limited by internal resistors of approximately 2.4kΩ. Dynamic overload can result from the difference  
signal as well as the common-mode signal.  
The input clamp turns on when the input signal slew rate is faster than the amplifier slew rate (see the Electrical  
Characteristics specification) and larger than ±1V. Appropriate input filtering avoids the activation. However,  
transients from MUX switching, internal switches, and gain switching action cannot be filtered; therefore, to avoid  
these transients, it is recommended that the current buffer (BUF) be activated. The buffer isolates the signal input  
from the clamp, and therefore avoids the current pulse (see Figure 44).  
Input Overvoltage (IOVerr)  
The input amplifier can only operate at high performance within a certain input voltage range to the supply rail.  
The IOVerr flag indicates a loss of performance because of the input voltage or the amplifier output approaching  
the rail.  
Gain Network Overload (GAINerr)  
The gain setting network is protected against overcurrent conditions that arise because of an improper gain  
setting. The current into the resistors is proportional to the voltage between both inputs and the internal resistor;  
a low resistor value results in high gains. This error flag indicates such an overload condition that is the result of  
an improper gain setting.  
Output Amplifier (OUTerr)  
The output stage is monitored for signal clipping to the supply rail and for overcurrent conditions.  
24  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
CheckSum Error (CRCerr)  
SPI communication can include a checksum byte for increased data integrity, when enabled. It is especially  
useful for an isolated SPI. This error detection is only active with the checksum activated. See the Checksum  
section for details.  
POWER SUPPLY  
The PGA280 can connect to three supply voltages: the high-voltage analog supply, the low-voltage output  
amplifier supply, and the digital I/O supply. This architecture allows an optimal interface (level-shift) to the  
different supply domains.  
The high-voltage analog supply, VSP and VSN, powers the high-voltage input section. The substrate of the IC is  
connected to VSN; therefore, it must be connected to the most negative potential.  
The low-voltage analog output supply, VSOP and VSON, can operate within the high-voltage supply boundaries  
with two minimal limitations:  
1. The usable range for VSON is from a minimum 5V below VSP to as low as VSN. This 5V provides the  
headroom for the output supply voltage of +2.7V to +5V. Even with less than 5V supply, this voltage  
difference is required for proper operation.  
2. The common-mode control input, VOCM, requires a voltage at least 2V from VSP, in order to support  
internal rail-to-rail performance.  
These limits may only come into consideration when using a minimum supply or an extremely asymmetrical  
high-voltage supply. In most practical cases, VSON is connected to the ground of the system 3V or 5V supply.  
VSOP can be turned on first or can be higher than VSP without harm, but operation fails if VSP and VSN are not  
present.  
Observe the maximum voltage applied between VSOP and VSON, because there is no internal protection. This  
consideration is the same as with other standard operational amplifier devices.  
The digital supply, DGND and DVDD, can also be set within the boundaries of VSP and VSN. Only the positive  
supply, DVDD, cannot be closer than 1V below VSP. It can be turned on without the analog supply being present  
and is operational, but limited to digital functions in this case. The maximum supply voltage must be observed  
because there is no internal protection. VSOP and VSON can be connected with DVDD and DGND, if desired.  
Current consumption of the digital supply is very low under static conditions, but increases with communications  
activity. Assuming no external load except the 20pF load to SDO, with an SCLK = 10MHz and a 3V supply, the  
current momentarily increases by approximately 0.6mA when reading a register (for example, reading Register  
14). With a 5V digital supply, the increase is in the range of 0.8mA. This additional current is only required during  
communication; a larger bypass capacitor can supply this current. Driving current into SDO would further  
increase the current demand.  
VSN is connected to the substrate; therefore, the voltage at VSON or DGND must not turn on the substrate  
diode to VSN. Use external Schottky diodes from VSON to VSN and from DGND to VSN (refer to Figure 50) to  
prevent such a condition.  
The PGA280 uses an internal chopper technology and therefore works best with good supply decoupling. Series  
resistors in the supply are recommended to build an RC low-pass filter. With the small supply current, these  
series resistors can be in the range of 15to 22. The RC filter also prevents a very fast rise time of the supply  
voltage, thus avoiding parasitic currents in the IC. Connecting supply wires into an already-turned on supply (very  
fast rise time) without such a filter can damage the IC as a result of voltage overshoot and parasitic charge  
currents. Figure 50 shows an example of a supply connection using RC bypass filters. DVDD may not need  
decoupling, but if the digital supply is noisy, a filter is recommended at C4 and R4.  
NOTE  
Rise and fall times for the high-voltage supplies must be slower than 1V/μs.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): PGA280  
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
+15V  
-15V  
+5V  
+3V  
R1  
22W  
R2  
R3  
R4  
22W  
10W  
10W  
C1  
C2  
C3  
C4  
SD1  
470nF  
470nF  
470nF  
100nF  
SD2  
VSP  
VSN  
VSON  
VSOP  
DGND  
DVDD  
PGA280  
Supply Connections  
Note: In this example, the Schottky diodes prevent substrate reversing. The supply voltages shown are only example  
values.  
Figure 50. Supply Connection Example Using RC Bypass Filters for Good Decoupling  
External Clock Synchronization  
The PGA280 uses an internal oscillator of 1MHz, nominally. This clock can be brought out to pin GPIO6 if  
configured by the internal register setting to allow synchronization of external systems to this clock. If the  
PGA280 must be controlled by an external clock, GPIO06 can be configured as an oscillator input, thus  
overriding the internal oscillator. The frequency range must be within the specified range shown in the Electrical  
Characteristics in order to maintain stable device performance. The clock pulse width is not critical, because it is  
internally divided down; however, less than 30% deviation is recommended. The GPIO6 input assumes a  
standard logic signal. Prevent overshoot at this pin, and provide approximately equal rise and fall time for the  
lowest influence on offset voltage as a result of coupled noise.  
Expect a small amount of additional noise during the transition from internal to external clock, or vice-versa, for  
approximately eight clock periods because of phase mismatch.  
Quiescent Current  
The PGA280 uses internal resistor networks and switches to set the signal gain. Consequently, the current  
through the resistor network may vary with the gain and signal amplitude. Under normal operation, the  
gain-related current is low (less than 400μA). However, in signal overload conditions while a high gain is  
selected, this amount of current can increase.  
Settling Time  
The PGA280 provides very low drift and low noise, and therefore allows repeatable settling to a precise value  
with a negligible tail. Signal-related load and power dissipation variables have minimal effect on the device  
accuracy.  
Overload Recovery  
Overload conditions can vary widely, and there are multiple points in an instrumentation amplifier that can be  
overloaded. During input overload, the PGA280 folds the output signal partially back as a result of the differential  
signal structure and summing, but the error flags indicate such fault conditions. The amplifier recovers safely  
after removing the overload condition, as long as it is within the specified operating range as shown in Figure 51.  
Avoid dynamic overload by using adequate signal filtering that reduces the input slew rate to the slew rate of the  
amplifier. Fast signal jumps produced from multiplexed signal sources or gain changes cannot normally be  
filtered, but the current buffer (BUF) stage can be activated to prevent current flowing through the input into the  
protection clamp in such situations.  
26  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
Overload Error Flag  
(IOVerr), Ch 4  
2V/div  
Output Signal  
Ch 3, 2V/div  
VSN  
Ch 2, 5V/div  
INN1 Clipped to  
VSN, Ch 1, 5V/div  
25ms/div  
Figure 51. Input Clipping: Negative Side  
SPI and Register Description  
The serial peripheral interface uses four wires: CS (input), clock (SCLK, input), data in (SDI, or slave data input),  
and data out (SDO, or slave data output) and operates as a slave.  
CS is active low; data are sampled with the negative clock edge. It is insensitive to the starting condition of SCLK  
polarity (SPOL = 1 or 0). See Figure 52 and Figure 53.  
The SPI communicates to the internal registers, starting with a byte for command and address. It is followed by a  
single data byte (exception: 11tx 0ccc requires no data byte). The communication can include a checksum byte.  
When enabled, this byte follows the last valid byte. Either power on reset or software reset (SftwrRst) disables  
the checksum mode. Writing to Register 11 enables or disables checksum mode.  
On a read command, the device responds with the data byte and the checksum byte. If the checksum is not  
desired, setting CS to high terminates the transmission.  
Multiple commands can be chained by holding CS low and sending the additional commands after the checksum  
byte (if checksum is disabled, send a dummy byte). In this mode, read and write instructions can be mixed.  
This interface allows clock rates up to 10MHz. Such high clock rates require careful board layout, short wire  
lengths, and low parasitic capacitance and inductance. Observe delays and distortion generated from isolation  
couplers. External drivers may be required to drive long and terminated cables.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): PGA280  
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
COMMAND STRUCTURE AND REGISTER OVERVIEW  
Bit 7 is the most significant bit (MSB); bit 0 is the least significant bit (LSB). Binary numbers are denoted with 'b'.  
'aaaa' is used to denote the encoded register pointer, 0000b to 1111b. 'T' denotes the buffer trigger bit. Writing to  
unassigned bits is ignored, but it is recommend to write a '0' for all unassigned bits. PGA280 registers,  
addresses, and functional information are summarized in the Register Map (Table 1).  
Command Byte  
01T0 aaaa dddd dddd: Write  
Write 'dddd dddd' to internal PGA280 register at address aaaa  
1000 aaaa 0000 0000: Read  
Read from specified internal PGA280 register at address aaaa [no BUFT on read]. The number of trailing  
zeros provides the clock for reading data. 16 SCLK pulses are required when reading the data byte plus  
checksum.  
00T0 aaaa:  
Factory-reserved commands.  
11T0 0ccc: Direct CS Command  
Controls CS to pin (all pins are CS-capable, but not simultaneously; only one at a time) for ccc = 0 to 6,  
corresponding to GPIO0 to GPIO6, if CS mode is activated.  
Within the command byte, T = 1 triggers the current buffer (BUF). Each command is terminated with setting CS  
to high; commands can be chained within a period of CS active low, but require a checksum byte, or a dummy  
byte when checksum mode is disabled.  
NOTE  
BUF cannot be triggered during a read command.  
Here are several examples (discrete commands):  
Read Register 3:  
Send 0x8300; response: 0xzz19 (this value is the initial setting of BUFTIM).  
The first byte zz contains the line state (3-state) of SDO. The second byte is data.  
NOTE  
The PGA280 sends the CHKsum, if clocks are available while CS: Send 0x830000.  
Response: 0xzz1937  
Write Register 0:  
Send 0x4018; set gain to 1V/V.  
Write Register 4:  
Send 0x44FF; reset all error flags.  
Read Register 4:  
Send 0x8400; response: 0xzz00 (no error flags set).  
28  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
Extended CS  
The PGA280 can generate an extended chip select (ECS) for other devices that are connected to the same SPI  
wires: SDO, SDI, and SCLK. This ECS signal redirects the SPI communication to the connected device, while  
the PGA280 ignores data and SCLK. The CS signal to the PGA280 must stay low during such communication;  
as soon as CS returns high, SPI communication is terminated. See the GPIO Operation Mode section for details.  
Table 1. REGISTER MAP(1)  
REGISTER  
(Decimal,  
[Hex])  
aaaa  
(Binary)  
RESET  
VALUES  
(2)  
(3)  
R/W  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DESCRIPTION  
0
1
2
3
4
5
0000  
0001  
0010  
0011  
0100  
0101  
W/R  
G4  
G3  
G2  
G1  
G0  
MUX2  
MUX1  
MUX0  
Gain and optional MUX register  
0000 0000b  
0000 0000b  
0000 0000b  
0001 1001b  
0000 0000b  
0000 0000b  
SftwrRst  
Note2x  
W
Write-only register, soft reset, write 1  
SPI-MODE selection to GPIO-pin  
Set BUF time-out  
W/R  
W/R  
W/R  
W/R  
CP6  
CP5  
BUFTIM5  
BUFA  
CP4  
CP3  
BUFTIM3  
EF  
CP2  
CP1  
CP0  
BUFTIM  
4
BUFTIM  
2
BUFTIM  
0
BUFTIM1  
GAINerr  
GPIO1  
CHKerr  
IARerr  
GPIO6  
SW-A1  
ICAerr  
GPIO4  
SW-B1  
OUTerr  
GPIO2  
IOVerr  
GPIO0  
Error Register; reset error bit: write 1  
GPIO Register Data force out or  
sense  
GPIO5  
SW-A2  
GPIO3  
6
7
8
9
0110  
0111  
1000  
1001  
W/R  
W/R  
W/R  
W/R  
SW-B2  
SW-F1  
DIR3  
SW-C1  
SW-F2  
DIR2  
SW-C2  
SW-G1  
DIR1  
SW-D12  
SW-G2  
DIR0  
Input switch control  
Input switch control  
0110 0000b  
0000 0000b  
0000 0000b  
0000 0000b  
DIR6  
DIR5  
DIR4  
Configure pin to out = 1 or in = 0  
Extended CS mode (1 = enable)  
ECS6  
ECS5  
ECS4  
ECS3  
ECS2  
ECS1  
ECS0  
MUX-D  
dis  
IARerr  
dis  
BUFAPol  
at pin  
ICAerr  
dis  
ED BUFA  
suppress  
OUTerr  
dis  
GAINerr  
dis  
IOVerr  
dis  
10 [A]  
1010  
1011  
W/R  
Various configuration settings  
Various configuration settings  
0000 0000b  
FLGTIM  
2
FLGTIM  
0
CHKsu  
mE  
11 [B]  
12 [C]  
W/R  
W/R  
LTD  
FLGTIM3  
FLGTIM1  
Reserved  
0001 0000b  
0000 0000b  
1100  
PIN  
OSCout SYNCin  
GPIO6  
BUFAout  
GPIO5  
BUFTin  
GPIO4  
EFout  
MUX2  
MUX1  
MUX0  
Special function register  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
Register bit reference to GPIO pin(4)  
(1) Blank register bits are ignored and undefined.  
(2) Registers 13 to 15 are for test purposes; read-only.  
(3) Power-on reset values are SftwrRst values.  
(4) Details for GPIO pin assignments are shown in Figure 54 .  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): PGA280  
 
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
SPI Timing Diagrams (Read and Write)  
(SCLK—Data—CS)  
SDO  
Z
Z
Z
SDI  
C7  
C6  
C5  
C4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SCLK  
CS  
GPX  
Sampled Here  
Figure 52. Write (to Device) Timing (GPX: Command Decoding); No Checksum Enabled.  
With Checksum, Command Decoding Occurs After 24th Falling Edge of SCLK  
SDO  
SDI  
Z
Z
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
Z
CB7  
B6  
B5  
B4  
A3  
A2  
A1  
A0  
X
X
X
X
X
X
X
X
SCLK  
CS  
GPX  
Sampled Here  
Figure 53. Read (From Register) Timing (GPX: Command Decoding); No Checksum Enabled.  
Falling Edge of SCLK Controls Logic  
30  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
GPIO Pin Reference  
As shown in Figure 54, the PGA280 has seven multi-function pins labeled GPIO0 through GPIO6. These pins  
can function as general purpose input-output (GPIO) pins either to read a digital input or to output a digital signal  
as an interrupt or control. GPIO functions are controlled through Register 5 and Register 8.  
These pins can also be programmed to have additional special functions for the PGA280. Each of these seven  
pins can be used as an output for the extended chip select function (ECS), using the PGA280 to redirect the SPI  
communications to other connected devices. CS Configuration Mode is enabled through Register 9. Additionally,  
Register 2 controls the clock polarity (CP) of each ECS. For each bit set to '1', a positive edge of SCLK follows  
CS (CP = 0); for each bit set to '0', a negative edge of SCLK follows CS (CP = 1).  
Together with the GPIO and ECS functions, the seven pins can perform more specialized input and output tasks  
as controlled by Register 12, the Special Functions Register.  
GPIO0, GPIO1, and GPIO2 can be used to control an external multiplexer. If the MUX function is enabled in the  
first three bits of Register 12, the output value on the MUX pins is controlled through Register 0. This  
configuration allows for simultaneous control of the PGA280 gain and external multiplexer settings by writing to a  
single register.  
GPIO3 can be used to output an error flag. As with bit 3 of Register 4, this option would be the logical OR of the  
error bits in Register 10 (IARerr, ICAerr, OUTerr, GAINerr, and IOVerr).  
GPIO4 can be used as an input to trigger the current buffer. The low-to-high edge of a pulse starts the buffer with  
a delay of three to four clock cycles. If held high, the buffer [BUFA] remains active. It is extended by a minimum  
of three to four clock cycles in addition to the time set with FLAGTIM.  
GPIO5 can be configured as an output to indicate a buffer active condition. The polarity is controlled by BUFApol  
of bit 5 in Register 10.  
GPIO6 can be configured as either an output or an input with the Special Functions Register. With Bit 7,  
OSCOUT connects the internal oscillator to GPIO6. With Bit 6, SYNCIN allows an external oscillator to provide  
the master clock to the PGA280.  
To use any of these functions, Register 8 must first be set to '0' for input or to '1' for an output (for GPIO, ECS, or  
special function).  
Once set, any 1s in Register 9 supersede the GPIO function for the related pin, allowing for CS configuration.  
Likewise, any 1s in Register 12 supersede the GPIO function and CS configuration, allowing for any of the  
pin-specific special functions to operate.  
GPO/ECS6/OSCout  
GPIO6  
GPI/SYNCin  
GPO/ECS5/BUFout  
GPIO5  
GPI  
GPO/ECS4  
GPIO4  
GPI/BUFTin  
GPO/ECS3/EFout  
GPIO3  
GPI  
GPO/ECS2/MUX2  
GPIO2  
GPI  
GPO/ECS1/MUX1  
GPIO1  
GPI  
GPO/ECS0/MUX0  
GPIO0  
GPI  
Figure 54. Special Function to Pin Assignment Reference  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): PGA280  
 
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
REGISTER INFORMATION  
REGISTER DETAILS  
Register 0: Gain and External MUX Address (Read = 0x8000; Write with BUF Off = 0x40, Write with BUF  
On = 0x60)  
Bit #  
D7  
G4  
0
D6  
G3  
0
D5  
G2  
0
D4  
G1  
0
D3  
G0  
0
D2  
MUX2  
0
D1  
MUX1  
0
D0  
MUX0  
0
Bit Name  
POR Value  
Bit Descriptions:  
G4: Output stage gain setting. This setting is independent of the gain selected in the input stage and acts as  
a multiplication factor to the input gain.  
0 = 1V/V output gain (power-on default)  
1 = 1.375V/V output gain (= 1V/V)  
G[3:0]: Input stage gain setting. Refer to Table 2.  
MUX[2:0]: These ports can be used to control an external multiplexer.  
Table 2. INPUT STAGE GAIN SETTINGS  
G3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
G2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
G1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
G0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Gain  
1/8  
1/4  
½
1
2
4
8
16  
32  
64  
128  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
32  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
 
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
Register 1: Software Reset Register (Write = 0x4101; Write with Checksum = 0x4101DD)  
Bit #  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
SftwrRst  
0
Bit Name  
POR Value  
Bit Descriptions:  
SftwrRst: Software Reset.  
Setting this bit to '1' generates a system reset that has the same effect as a power-on reset. All registers are  
reset to the respective default values; this bit self-clears.  
Register 2: SPI: MODE Selection to GPIO-Pin (Read = 0x8200, Write = 0x012)  
Bit #  
D7  
0
D6  
CP6  
0
D5  
CP5  
0
D4  
CP4  
0
D3  
CP3  
0
D2  
CP2  
0
D1  
CP1  
0
D0  
CP0  
0
Bit Name  
POR Value  
Bit Descriptions:  
CP[6:0] SPI mode1 or mode2 can be configured for each individual ECS (extended CS) output if activated in  
Register 9. See CS Mode in GPIO Operation Mode for details. CP6 controls ECS6, for example. For SPI  
mode1, set the respective bit to '1': a positive edge of SCLK follows CS (Clock Polarity, CP = 0). For SPI  
mode2, set the respective bit to '0': a negative edge of SCLK follows CS (CP = 1). See also Figure 56.  
Register 3: BUF Timeout Register (Read = 0x8300, Write = 0x43)  
Bit #  
D7  
0
D6  
0
D5  
BUFTIM5  
0
D4  
BUFTIM4  
1
D3  
BUFTIM3  
1
D2  
BUFTIM2  
0
D1  
BUFTIM1  
0
D0  
BUFTIM0  
1
Bit Name  
POR Value  
Bit Descriptions:  
BUFTIM[5:0] Defines BUF timeout length. The LSB equivalent is 4*t CLK (nominal value is 4μs with a 1MHz  
clock). Setting this register to 0x00 disables the BUF. The minimum timeout length that can be set is  
approximately 6μs. The default/POR setting sets BUFA time on to 100μs. The BUFA bit of the Error Register  
[D5] indicates the buffer active status. See Figure 55.  
Register 4: Error Register (Read = 0x8400, Write = 0x44)  
Bit #  
D7  
CHKerr  
0
D6  
IARerr  
0
D5  
BUFA  
0
D4  
ICAerr  
0
D3  
EF  
0
D2  
OUTerr  
0
D1  
GAINerr  
0
D0  
IOVerr  
0
Bit Name  
POR Value  
The Error Register flags activate whenever an error condition is detected. These flags are cleared when a '1' is  
written to the error bit.  
Bit Descriptions:  
CHKerr: Checksum error in SPI. This bit is only active if checksum is enabled. This bit is set to '1' when the  
checksum byte is incorrect.  
IARerr: Input Amplifier Saturation  
BUFA: Buffer Active  
ICAerr: Input Clamp Active  
EF: Error Flag. Logic OR combination of error bits of Register 10. This bit can be connected to GPIO3 pin if it  
is configured for output (Register 8) and as a special function (Register 12).  
OUTerr: Output Stage Error (allow approximately 6µs activation delay).  
GAINerr: Gain Network Overload  
IOerr: Input Overvoltage  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): PGA280  
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
Register 5: GPIO Register (Read = 0x8500, Write = 0x45)  
Bit #  
D7  
0
D6  
GPIO6  
0
D5  
GPIO5  
0
D4  
GPIO4  
0
D3  
GPIO3  
0
D2  
GPIO2  
0
D1  
GPIO1  
0
D0  
GPIO0  
0
Bit Name  
POR Value  
Bit Descriptions:  
GPIO[6:0]: The GPIO bits correspond to GPIO6 through GPIO0, respectively. The function of each bit  
depends on whether the GPIO pin is configured as an input pin or an output pin, which is determined by the  
setting in Register 8. When the GPIO pin is configured as an input, reading this register samples the GPIO  
pin. When the GPIO pin is configured as an output, reading from this register reads back the forced data.  
Register 6: Input Switch Control Register 1 (Read = 0x8600, Write = 0x46)  
Bit #  
D7  
0
D6  
SW-A1  
1
D5  
SW-A2  
1
D4  
SW-B1  
0
D3  
SW-B2  
0
D2  
SW-C1  
0
D1  
SW-C2  
0
D0  
SW-D12  
0
Bit Name  
POR Value  
Bit Descriptions:  
Switch control; see Figure 44 for switch designation (switch closed = 1).  
Example: Select INP2 and INN2: 0x18 // opens A1 and A2, and closes B1 and B2.  
Register 7: Input Switch Control Register 2 (Read = 0x8700, Write = 0x47)  
Bit #  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
SW-F1  
0
D2  
SW-F2  
0
D1  
SW-G1  
0
D0  
SW-G2  
0
Bit Name  
POR Value  
Bit Descriptions:  
Switch control; see Figure 44 for switch designation.  
Register 8: GPIO Configuration Register (Read = 0x8800, Write = 0x48)  
Bit #  
D7  
0
D6  
DIR6  
0
D5  
DIR5  
0
D4  
DIR4  
0
D3  
DIR3  
0
D2  
DIR2  
0
D1  
DIR1  
0
D0  
DIR0  
0
Bit Name  
POR Value  
Bit Descriptions:  
DIR[6:0]: GPIO configuration for input or output; 0 for input; 1 for output. Power-on default is all inputs  
(requires external termination or set to output ).  
Register 9: CS Configuration Mode Register (Read = 0x8900, Write = 0x49)  
Bit #  
D7  
0
D6  
ECS6  
0
D5  
ECS5  
0
D4  
ECS4  
0
D3  
ECS3  
0
D2  
ECS2  
0
D1  
ECS1  
0
D0  
ECS0  
0
Bit Name  
POR Value  
Bit Descriptions:  
ECS[6:0]: Configure CS function to respective pins. See CS Mode, in the GPIO Operation Mode section (a  
single byte command applies).  
34  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
 
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
Register 10: Configuration Register 1 (Read = 0x8A00, Write = 0x4A)  
Bit #  
D7  
MUX-D  
0
D6  
IARerr  
0
D5  
BUFA Pol  
0
D4  
ICAerr  
0
D3  
ED BUFA  
0
D2  
OUTerr  
0
D1  
GAINerr  
0
D0  
IOVerr  
0
Bit Name  
POR Value  
Bit Descriptions:  
MUX-D: Set this bit to '1' to disable MUX control from Register 0; set to '0' after reset.  
BUFA Pol: Controls BUF active indication polarity. Set to '0' for high = active; set to '1' for low = active.  
ED BUFA Suppress: Error detection is normally disabled during BUFA active. Errors are not suppressed if  
ED BUFA = 1.  
Error flags are logic OR-combined and connected to the ‘EFout’ in Register 12 as well as connected to the  
GPIO3 output pin if configured. The EFout signal is active high. Assigned errors can be disabled individually  
using this OR function, with the exception of ‘CHKerr’, by writing a '1' to the error bit position. [IARerr; ICAerr;  
OUTerr; GAINerr; IOVerr]  
Register 11: Configuration Register 2 (Read = 0x8B00, Write = 0x4B)  
Bit #  
D7  
LTD  
0
D6  
0
D5  
FLGTIM3  
0
D4  
FLGTIM2  
1
D3  
FLGTIM1  
0
D2  
FLGTIM0  
0
D1  
Reserved  
0
D0  
CHKsumE  
0
Bit Name  
POR Value  
Bit Descriptions:  
LTD: Individual error signals are not latched if this bit is set to '1'. With EFout activated on GPIO3, the error  
condition can be observed in real time, but error suppression time is applied. Clear errors in Register 4 after  
writing '1' to this bit.  
FLAGTIM0 to 3: Choose the number of clock cycles (nominally 1MHz) according to Table 3 for suppression  
of the error flags in Register 4. The timeout starts after the end of BUFA. Alternatively, it can start with the  
event if the buffer is not active or Register 10, bit 3 is set high. Allow delayed activation for the individual  
error sources in the microsecond range.  
Table 3. Error Flag Suppression Time  
(1)  
FLGTIM [3:0]  
0000  
CLOCK CYCLES  
0
1
0001  
0010  
2
0011  
3
0100  
4
0101  
5
0110  
6
0111  
7
1000  
8
1001  
12  
16  
24  
32  
48  
64  
127  
1010  
1011  
1100  
1101  
1110  
1111  
(1) Clock cycles refer to internal clock or SYNCin; nominally 1MHz.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): PGA280  
 
 
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
CHKsum is enabled by writing a '1' to this bit. A correct checksum is always required for enabling. Once set, all  
communication to the device requires a valid checksum, until '0' is written to this bit. Alternatively, a software  
reset [0x4101DD] or power-on reset can be performed to reset this function.  
Register 12: Special Functions Register (Read = 0x8C00, Write = 0x4C)  
Bit #  
D7  
OSCout  
0
D6  
SYNCin  
0
D5  
BUFAout  
0
D4  
BUFTin  
0
D3  
EFout  
0
D2  
MUX2  
0
D1  
MUX1  
0
D0  
MUX0  
0
Bit Name  
POR Value  
Bit Descriptions:  
Special function pin designation: Set to '1' for activation.  
OSCout: Internal oscillator connected to pin GPIO6 for output (GPIO6 configured as an output).  
SYNCin: External connection for external oscillator input to pin GPIO6 (GPIO6 configured as an input).  
BUFAout: Pin GPIO5 indicates a buffer active condition (if configured as an output). The BUFA output signal  
is active high by default, but can be inverted to active low by BUFA Pol.  
BUFTin: The current buffer can be triggered externally by pin GPIO4, if configured as an input. The  
low-to-high edge of a pulse starts the buffer with a delay of three to four clock cycles. If held high, the buffer  
[BUFA] remains active. It is extended by a minimum of three to four clock cycles plus the time set with  
FLAGTIM.  
EFout: A logic OR combination of error bits; see Register 10. This flag can control GPIO3 if this pin is  
configured as an output and EFout = 1.  
MUX2 to MUX0: If the GPIO pins are configured as outputs and these bits are set to '1', the GPIO pins are  
controlled from Register 0 (if MUX-D = 0).  
GPIO Configuration  
Register priority: If GPIO pins are used, follow this procedure:  
First, configure individual I/O bits as either inputs or outputs (Register 8); '0' = input, '1' = output. Bits B0 to  
B6 are connected to GPIO0 to GPIO6, respectively.  
Then, configure individual bits to the desired function. When configuring for output, set the Data Register  
(Register 5) first to avoid glitches.  
To configure the GPIO pins for the CS function (see Register 9):  
Configure ECS ('0' = disable, '1' = enable). If set to '1' and the I/O configuration is set to output as well, this  
pin becomes ECS. Details of this configuration are described in GPIO Operation Mode, CS Mode.  
Configure for clock polarity (CP), relative to ECS in Register 2; see Register 9. Set this bit to '0': a negative  
edge of SCLK follows ECS (CP = 1). Set this bit to '1': a positive edge of SCLK follows ECS (CP = 0).  
Configure for special function (Register 12): Special function signals can be assigned to the GPIO pins in this  
manner: 0 = disable, 1 = enable. Pins xxout must be configured as outputs, and xxin must be configured as  
inputs in Register 8.  
GPIO data to force (Register 5) GPIO data (1 = low, 0 = high). Forcing a bit, which is assigned to a special  
function, may be stored until GPIO is enabled.  
NOTE  
Data may be stored in internal registers and therefore may show on a given GPIO pin  
after the configuration is changed.  
36  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
Buffer Timing  
The buffer is used to isolate fast transients from the overload protection of the high-precision amplifier. It avoids  
current into the overload clamp. Fast transients result from the switching transient of a signal multiplexer or a  
gain change; these transients cannot be filtered in the signal path.  
The buffer can be turned on by software using the 'T' bit in the SPI command or by activating a GPIO pin. The  
on-time of the buffer is set in Register 3 (BUFTIM).  
If controlled by software command, the buffer turns active (indicated by BUFA shown in Figure 55) with the last  
falling edge of SCLK.  
Controlling an external MUX through Register 0 activates the GPIO pins after the rising edge of CS, providing an  
extra delay.  
Alternatively, the buffer can be controlled by GPIO4, after configuration (Register 8, bit 4 = 0, and 0x4C10). A  
rising edge triggers the buffer with a delay of three to four clock cycles. If held high, the buffer [BUFA] remains  
active. It is extended by a minimum of three to four clock cycles plus FLAGTIM.  
The buffer active condition can be observed at GPIO5, after configuration for output and special function  
(0x4820, 0x4C20). The time reference is the end of CS. The buffer is turned on with the 16th falling edge of the  
SCLK and writing to Register 0 (0x6018). BUFA stays high for 6μs (BUFTIM0) after CS.  
SDI  
BUFA  
SCLK  
CS  
2.5ms/div  
Figure 55. BUFA Timing  
GPIO Operation Mode  
The six GPIO port pins can be configured individually in several modes: as inputs or outputs; a special CS mode;  
and a connection to the PGA280 internal special function register that contains control signals or indications. See  
Table 1 for details. The GPIO can be accessed through SPI as soon as supply voltage is connected to DVDD  
and DGND.  
Input: Standard CMOS high-impedance input, no internal termination. Terminate externally if not used or set to  
output. Note: The GPIOs are all set as inputs after a device reset.  
Output: Push-pull output. Output current is derived from DVDD and from DGND. Avoid I/O activity and high  
current during high-precision measurements to avoid coupled noise.  
Special Function I/O: The configuration allows connecting a designated pin to the special function register  
(Register 12): OSCout, SYNCin, BUFAout, BUFTin, EFout, MUX2, MUX1, and MUX0. The pin must be  
configured as an input or output according to the pin function.  
Example (CHKsum not enabled):  
0x480B GPIO0, GPIO1. and GPIO3 set to output  
0x4C0B GPIO0 and GPIO1 connected to MUX0 and MUX1, EFout connected to GPIO3. MUX0 and MUX1  
are controlled from Register 0.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): PGA280  
 
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
CS Mode  
A special CS mode for the GPIO extends the device communications to other external SPI devices, such as data  
converters or shift registers. This CS function is intended for SPI communication using four isolation couplers. To  
use this mode, follow this procedure:  
Configure the desired GPIO pins as outputs in Register 8, then configure the respective ECS (extended CS)  
bits in Register 9.  
Register 2 allows control of the clock mode by CPn (n for the individual ECS pins). CP = 1 asserts ECS after the  
last negative SCLK edge of the command; CP = 0 asserts ECS after the positive SCLK, as Figure 56 shows.  
Use the CS command 1100 0cccb [ccc = CS coded for 0 to 7] to activate ECS on a single GPIO pin.  
Example for ECS on pin GPIO1 (CHKsum disabled):  
0x4802 GPIO1 configured output (Note: GPIO may output a previously stored state; default is all zeroes)  
0x4902 Assign CS (ECS) mode to GPIO1  
0xC1 Single byte command to activate CS on GPIO1  
CS  
CS to PGA280  
SCLK  
CPOL = 1  
SDI  
SDO  
0xC1  
Data to external device  
PGA280 3-State  
GPIO  
(1)  
ECS  
(1) CPn = 0; the red edge applies if CPn = 1.  
Figure 56. Timing for GPIO Pin Acting as CS (ECS) to External Device  
This CS pin (ECS) stays low as long as CS to the PGA280 is held low. The PGA280 SDO is turned to a  
high-impedance output (and requires external termination). The PGA280 ignores both clock and data signals  
during this time. Therefore, data can be read and written to another device selected by the ECS port.  
Communication is terminated by setting CS (to the PGA280) to high; this toggle also sets the port ECS to high  
and terminates the I/O transfer with the other device.  
Figure 56 shows the timing for the GPIO-generated ECS pulse in clock mode SPOL = 1 (SCLK is high after CS  
asserts low). Register 2 allows activating SPOL = 0 by writing a '1' to the CP bit, according to SPI mode1. The  
initial setting is SPOL = 1.  
Mode1; set bit to '1': a positive edge of SCLK follows after ECS asserts low (CP = 0). See the red edge of the  
GPIO trace in Figure 56.  
Mode2; set bit to '0': a negative edge of SCLK follows after ECS asserts high (CP = 1). See the black edge of the  
GPIO trace in Figure 56.  
The negative edge of SCLK senses data. The positive edge of SCLK sets data on the data out line (if  
applicable).  
For SPI modes 0 or 3, SCLK must be inverted to indirectly sense data with the positive edge of SCLK. Figure 57  
shows an example of connecting additional SPI devices, addressed by the ECS. The OR connection for SDO  
can be a wired-OR if all devices provide a 3-state output option with the respective device CS (ECS) set high.  
The SPI interface allows clock rates higher than 10MHz. Clock rates less than10MHz are recommended when  
using the ECS mode for less critical printed circuit board (PCB) layout and timing. Observe delays and distortion  
generated from isolation couplers. External drivers may be required to drive long and terminated cables.  
38  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
 
PGA280  
www.ti.com................................................................................................................................................ SBOS487A JUNE 2009REVISED SEPTEMBER 2009  
With only four isolation couplers (digital galvanic isolation) connected in the SPI wires, the SPI can provide  
galvanic isolation for input and output channels. Figure 57 shows a block diagram of how to connect SPI devices  
selected by the ECS (extended CS) signal.  
Isolation couples or long SPI cables in harsh industrial environment are sensitive to impairments. For improved  
communication integrity, the communication can be extended with a checksum byte.  
Figure 57 shows an example of the GPIO pins used for both the extended chip select and special functions.  
The chip select (CS) is connected to the PGA280 alone. The serial data input (SDI) and the serial clock (SCLK)  
are shared connections, and are connected to all devices [PGA280, A/D converter, and the shift register or  
digital-to-analog converter (DAC)]. The serial data output comes from each of the devices and are OR-connected  
or sent to an OR gate, to be received by the master. An OR gate is only required if the connected devices do not  
support 3-state operation. The PGA280 provides a 3-state output if not active. Pullup resistors may be required.  
As mentioned previously, the GPIO pins are used to control an external multiplexer. In Figure 57, the three pins  
from GPIO0, GPIO1, and GPIO2 are used as a MUX address. Two other GPIO pins are used as ECS to enable  
communications with other slave devices.  
CS  
SCLK  
MOSI  
MISO  
CS  
Addressing  
MUX0  
SCLK  
SDI  
SPI  
Master  
External  
MUX  
PGA280  
MUX1  
GPIO  
SDO  
MUX2  
Extended Chip-Select  
CS  
External MUX Control  
SCLK  
SDI  
A/D  
Converter  
OR  
SDO  
CS  
SCLK  
SDI  
Shift Register  
or DAC  
SDO  
Figure 57. Example for Connecting Two Additional SPI Devices Selected by ECS  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): PGA280  
 
PGA280  
SBOS487A JUNE 2009REVISED SEPTEMBER 2009................................................................................................................................................ www.ti.com  
Checksum  
SPI communication can be secured by adding a checksum byte to the write and read data. If this mode is  
activated by setting CHKsumE (bit 0 in Register 11), the PGA280 expects a valid checksum; otherwise, the  
device ignores the received data and sets CHKerr in Register 4. This event may require a Register 4 read after  
each write completes. The PGA280 always responds to a read with checksum if sufficient SCLK pulses (16) are  
provided after the command byte.  
A straight checksum (ignore carry) with a starting value of 0x9B, an 8-bit byte, is used. Polynomial value: 1001  
1010b = 0x9B (b denotes binary, 0x denotes hex coding)  
Write to device: Command byte + Data byte + CHKsum byte  
CHKsum = Polynomial value + Command byte + Data byte*;  
space  
Read command to device = Command byte + CHKsum byte  
Response: Data byte + CHKsum byte  
CHKsum = Polynomial value + Command byte + Data byte  
*The command for activating the CS on a GPIO pin (after configuration) is only a command byte: ‘11Tx 0ccc’.  
Example: 0xC15C. This instruction activates CS on GPIO1. The 5C is the checksum [(0x9B + 0xC1) mod  
0x100 = 0x5C]  
The checksum is calculated only for the communication to or from the PGA280. In extended SPI mode, if  
connecting the CS (ECS) for other SPI devices to the PGA280 port, the external device has to provide its own  
checksum character, if available.  
Examples:  
0x4101DD Send Reset [CHKsum calculation: (0x9B + 0x41 + 0x01) mod 0x100 = 0xDD]  
0x4B11F7 Activate CHKsum bit 0 of Register 11. Note that activation of the CHK bit requires proper  
Checksum.  
0x8B260000 Read Configuration Register 11 (contains 0x11) [0x9B + 0x8B = 0x26]  
0x1137 Response includes the CHKsum [0x9B + 0x8B + 0x11 = 0x37]  
0x44FFDF Reset all error flags in Register 4 [0x9B + 0x44 + 0xFF = 0xDF]  
0x841F0000 Read Register 4 [0x9B + 0x84 = 0x1F]  
0x001F No errors indicated if 00 [0x9B + 0x84 + 0x00 = 0x1F]  
Commands can be chained while CS is active low; all bytes are added for checksum:  
Examples:  
0x4C 07 EE; Activate MUX0, MUX1, and MUX2 to GPIO0, GPIO1, and GPIO2, respectively  
0x64 FF FE 40 1B 59 80 D9 00 00; Write to Register 4 with BUF trigger and reset all error flags  
: Write to Register 0 and set gain 1V/V; MUX0 and MUX1 set high  
: Read Register 0, provide 16 SCLKs  
40  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): PGA280  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Sep-2009  
PACKAGING INFORMATION  
Orderable Device  
PGA280AIPW  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TSSOP  
PW  
24  
60 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
PGA280AIPWR  
TSSOP  
PW  
24  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Sep-2009  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PGA280AIPWR  
TSSOP  
PW  
24  
2000  
330.0  
16.4  
6.95  
8.3  
1.6  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Sep-2009  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 24  
SPQ  
Length (mm) Width (mm) Height (mm)  
346.0 346.0 33.0  
PGA280AIPWR  
2000  
Pack Materials-Page 2  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  
配单直通车
PGA280AIPWR产品参数
型号:PGA280AIPWR
Brand Name:Texas Instruments
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
零件包装代码:TSSOP
包装说明:TSSOP-24
针数:24
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.33.00.01
风险等级:1.32
放大器类型:INSTRUMENTATION AMPLIFIER
最大平均偏置电流 (IIB):0.002 µA
最大输入失调电流 (IIO):0.002 µA
最大输入失调电压:15 µV
JESD-30 代码:R-PDSO-G24
JESD-609代码:e4
长度:7.8 mm
湿度敏感等级:2
负供电电压上限:-20 V
标称负供电电压 (Vsup):-15 V
最大非线性:0.001%
功能数量:4
端子数量:24
最高工作温度:125 °C
最低工作温度:-40 °C
封装主体材料:PLASTIC/EPOXY
封装代码:TSSOP
封装等效代码:TSSOP24,.25
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, THIN PROFILE, SHRINK PITCH
包装方法:TR
峰值回流温度(摄氏度):260
电源:3,+-15 V
认证状态:Not Qualified
座面最大高度:1.2 mm
标称压摆率:1 V/us
子类别:Instrumentation Amplifier
供电电压上限:20 V
标称供电电压 (Vsup):15 V
表面贴装:YES
温度等级:AUTOMOTIVE
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:GULL WING
端子节距:0.65 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:4.4 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!