欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • SC417MLTRT图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • SC417MLTRT 现货库存
  • 数量8000 
  • 厂家Semtech(商升特) 
  • 封装 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • SC417MLTRT图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • SC417MLTRT
  • 数量98500 
  • 厂家Semtech 
  • 封装原厂封装 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • SC417MLTRT图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • SC417MLTRT
  • 数量85000 
  • 厂家SEMTECH 
  • 封装QFN 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • SC417MLTRT图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • SC417MLTRT
  • 数量57519 
  • 厂家SEMTECH 
  • 封装QFN 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • SC417MLTRT图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • SC417MLTRT
  • 数量3000 
  • 厂家SEMTECH 
  • 封装QFN32 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507168QQ:2355507168 复制
    QQ:2355507169QQ:2355507169 复制
  • 86-755-83219286 QQ:2355507168QQ:2355507169
  • SC417MLTRT图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • SC417MLTRT
  • 数量3685 
  • 厂家SEMTECH 
  • 封装QFN 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • SC417MLTRT图
  • 北京耐芯威科技有限公司

     该会员已使用本站13年以上
  • SC417MLTRT
  • 数量5000 
  • 厂家Semtech Corporation 
  • 封装32-MLPQ(5x5) 
  • 批号21+ 
  • 全新原装、现货库存,欢迎询价
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 86-010-010-62104931 QQ:2880824479QQ:1344056792
  • SC417MLTRT图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • SC417MLTRT
  • 数量2171 
  • 厂家SEMTECH/美国升特 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • SC417MLTRT图
  • 北京耐芯威科技有限公司

     该会员已使用本站12年以上
  • SC417MLTRT
  • 数量5000 
  • 厂家Semtech Corporation 
  • 封装32-MLPQ(5x5) 
  • 批号21+ 
  • 全新原装、现货库存,欢迎询价
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 96-010-62104931 QQ:2880824479QQ:1344056792
  • SC417MLTRT图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • SC417MLTRT
  • 数量19800 
  • 厂家SEMTECH 
  • 封装QFN 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • SC417MLTRT图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • SC417MLTRT
  • 数量3800 
  • 厂家Semtech 
  • 封装32-VFQFN 
  • 批号24+ 
  • 授权分销 现货热卖
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • SC417MLTRT图
  • 集好芯城

     该会员已使用本站13年以上
  • SC417MLTRT
  • 数量16572 
  • 厂家SEMTECH/美国升特 
  • 封装QFN 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • SC417MLTRT图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • SC417MLTRT
  • 数量12500 
  • 厂家SEMTECH 
  • 封装QFN 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • SC417MLTRT 贴片二极管图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • SC417MLTRT 贴片二极管
  • 数量15500 
  • 厂家SEMTECH/美国升特 
  • 封装 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • SC417MLTRT图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • SC417MLTRT
  • 数量19759 
  • 厂家Semtech 
  • 封装32-MLPQ 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • SC417MLTRT图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • SC417MLTRT
  • 数量5000 
  • 厂家Semtech Corporation 
  • 封装32-MLPQ(5x5) 
  • 批号21+ 
  • 全新原装、现货库存,欢迎询价
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • SC417MLTRT图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • SC417MLTRT
  • 数量5000 
  • 厂家Semtech Corporation 
  • 封装32-MLPQ(5x5) 
  • 批号21+ 
  • 全新原装、现货库存,欢迎询价
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • SC417MLTRT图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站6年以上
  • SC417MLTRT
  • 数量6500 
  • 厂家SEMTECH 
  • 封装QFN 
  • 批号24+ 
  • 全新原装★真实库存★含13点增值税票!
  • QQ:2885134615QQ:2885134615 复制
    QQ:2353549508QQ:2353549508 复制
  • 0755-83201583 QQ:2885134615QQ:2353549508
  • SC417MLTRT图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • SC417MLTRT
  • 数量5076 
  • 厂家SEMTECH 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • SC417MLTRT图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • SC417MLTRT
  • 数量6328 
  • 厂家SEMTECH 
  • 封装QFN-32 
  • 批号▉▉:2年内 
  • ▉▉¥47.5元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • SC417MLTRT.图
  • 深圳市誉兴微科技有限公司

     该会员已使用本站4年以上
  • SC417MLTRT.
  • 数量12600 
  • 厂家SEMTECH 
  • 封装原厂封装 
  • 批号22+ 
  • 深圳原装现货,支持实单
  • QQ:2252757071QQ:2252757071 复制
  • 0755-82579431 QQ:2252757071
  • SC417MLTRT图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • SC417MLTRT
  • 数量1112 
  • 厂家SEMTECH 
  • 封装QFN 
  • 批号24+ 
  • 假一罚万,全新原装库存现货,可长期订货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • SC417MLTRT图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • SC417MLTRT
  • 数量18000 
  • 厂家SEMTECH/美国升特 
  • 封装QFN32 
  • 批号23+ 
  • 全新原装现货,假一赔十
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • SC417MLTRT图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • SC417MLTRT
  • 数量2277 
  • 厂家SEMTECH 
  • 封装MLPQ-32 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • SC417MLTRT图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • SC417MLTRT
  • 数量450 
  • 厂家SEMTECH 
  • 封装QFN32 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • SC417MLTRT图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • SC417MLTRT
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • SC417MLTRT图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • SC417MLTRT
  • 数量9000 
  • 厂家SEMTECH 
  • 封装QFN 
  • 批号2021+ 
  • 港瑞电子是实报/实单可以来谈价
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • SC417MLTRT.图
  • 深圳市创德丰电子有限公司

     该会员已使用本站15年以上
  • SC417MLTRT.
  • 数量
  • 厂家SEMTECH 
  • 封装长期收购 
  • 批号0818+ 
  • 长期收购此型号
  • QQ:2851807192QQ:2851807192 复制
    QQ:2851807191QQ:2851807191 复制
  • 86-755-83226910, QQ:2851807192QQ:2851807191
  • SC417MLTRT图
  • 深圳市珩瑞科技有限公司

     该会员已使用本站2年以上
  • SC417MLTRT
  • 数量3000 
  • 厂家SEMTECH 
  • 封装QFN-32 
  • 批号21+ 
  • 只做原装正品,支持实单
  • QQ:2938238007QQ:2938238007 复制
    QQ:1840507767QQ:1840507767 复制
  • -0755-82578309 QQ:2938238007QQ:1840507767
  • SC417MLTRT图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • SC417MLTRT
  • 数量660000 
  • 厂家Semtech(升特) 
  • 封装 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • SC417MLTRT图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • SC417MLTRT
  • 数量5300 
  • 厂家SEMTECH 
  • 封装MLPQ32 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • SC417MLTRT图
  • 深圳市隆鑫创展电子有限公司

     该会员已使用本站15年以上
  • SC417MLTRT
  • 数量30000 
  • 厂家TI 
  • 封装USON-6 
  • 批号2022+ 
  • 电子元器件一站式配套服务QQ:122350038
  • QQ:2355878626QQ:2355878626 复制
    QQ:2850299242QQ:2850299242 复制
  • 0755-82812278 QQ:2355878626QQ:2850299242
  • SC417MLTRT图
  • 深圳市宇川湘科技有限公司

     该会员已使用本站6年以上
  • SC417MLTRT
  • 数量23000 
  • 厂家Semtech 
  • 封装32-MLPQ 
  • 批号23+ 
  • 原装正品现货,郑重承诺只做原装!
  • QQ:2885348305QQ:2885348305 复制
    QQ:2885348305QQ:2885348305 复制
  • 0755-84534256 QQ:2885348305QQ:2885348305
  • SC417MLTRT图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • SC417MLTRT
  • 数量6500000 
  • 厂家Semtech(先科电子) 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • SC417MLTRT图
  • 深圳德田科技有限公司

     该会员已使用本站7年以上
  • SC417MLTRT
  • 数量
  • 厂家新年份 
  • 封装9600 
  • 批号 
  • 原装正品现货,可出样品!!!
  • QQ:229754250QQ:229754250 复制
  • 0755-83254070 QQ:229754250

产品型号SC417MLTRT的概述

SC417MLTRT芯片概述 SC417MLTRT是一款在各类电子应用中广泛使用的集成电路,尤其是在音频处理和传感器应用中。在现代电子设计中,芯片成为了核心组件,其设计的复杂性和多功能性不断提升。SC417MLTRT因其高性能和灵活性而深受设计师欢迎。 该芯片具备多种功能,适用于需要高计算能力和低功耗的应用场景。其内部架构允许从多个输入信号中提取有效信息,通过高效的算法进行处理,并最终输出所需的结果。这使得SC417MLTRT在智能家居、健康监测、以及自动化工业等场景中表现出色。 SC417MLTRT的详细参数 SC417MLTRT具有以下主要技术参数: 1. 工作电压:2.7V至5.5V,确保其能在多种电源条件下稳定运行。 2. 功耗:在工作状态下的功耗仅为20mA,而待机功耗则降至1µA,体现了其优秀的能效比。 3. 工作温度范围:-40℃至85℃,适合于各种恶劣环境下的应用。 4...

产品型号SC417MLTRT的Datasheet PDF文件预览

SC417/SC427  
10A Integrated FET Regulator  
with Programmable LDO  
POWER MANAGEMENT  
Features  
Description  
„
„
„
„
„
„
„
„
„
„
„
„
„
„
„
„
„
„
Input voltage — 3V to 28V  
Internal power MOSFETs — 10A  
Integrated bootstrap switch  
Smart power-save protection  
The SC417/SC427 is a stand-alone synchronous buck  
power supply. It features integrated power MOSFETs, a  
bootstrap switch, and a programmable LDO in a space-  
saving MLPQ-5x5mm 32-pin package. The device is highly  
efficient and uses minimal PCB area. It uses pseudo-fixed  
frequency adaptive on-time operation to provide fast  
transient response.  
Configurable 150mA LDO with bypass capability  
TC compensated RDS(ON) sensed current limit  
Pseudo-fixed frequency adaptive on-time control  
Designed for use with ceramic capacitors  
Programmable VIN UVLO threshold  
Independent enable for switcher and LDO  
Selectable ultra-sonic power-save (SC417)  
Selectable power-save (SC427)  
Internal soft-start and soft-shutdown at output  
Internal reference — 1% tolerance  
Over-voltage/under-voltage fault protection  
Power good output  
The SC417/SC427 supports using standard capacitor types  
such as electrolytic or special polymer in addition to  
ceramic, at switching frequencies up to 1MHz. The pro-  
grammable frequency, synchronous operation, and select-  
able power-save provide high efficiency operation over a  
wide load range.  
The LDO output is programmable from 0.75V to 5.25V  
using external resistors. The bias voltage for the device  
can be supplied by the on-chip LDO when VIN > 4.5V, or by  
an external 5V supply. When a separate source is used as  
the bias supply, the LDO can be programmed to provide a  
different voltage.  
Lead-free 5x5mm, 32 Pin MLPQ package  
Fully WEEE and RoHS compliant  
Applications  
„
„
„
„
„
„
Notebook, desktop, tablet, and server computers  
Networking and telecommunication equipment  
Printers, DSL, and STB applications  
Embedded applications  
Power supply modules  
Point of load power supplies  
Additional features include cycle-by-cycle current limit,  
soft-start, under and over-voltage protection, program-  
mable over-current protection, soft shutdown, and select-  
able power-save. The device also provides separate enable  
inputs for the PWM controller and LDO as well as a power  
good output for the PWM controller.  
The input voltage can range from 3V to 28V. The wide  
input voltage range, programmable frequency, and pro-  
grammable LDO make the device extremely flexible and  
easy to use in a broad range of applications. Support is  
provided for single cell or multi-cell battery systems in  
addition to traditional DC power supply applications.  
© 2008 Semtech Corporation  
November 11, 2008  
1
SC417/SC427  
Typical Application Circuit  
ENABLE/  
PSAVE  
ENABLE  
LDO  
PGOOD  
RILIM  
7.5KΩ  
RTON  
154KΩ  
Note:  
PAD 1  
V5V is tied to VLDO  
AGND  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
LX  
LX  
FB  
FBL  
V5V  
3
4
5
6
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
AGND  
VOUT  
VIN  
RLDO1  
SC417/SC427  
56.2KΩ  
7
8
VLDO  
BST  
RLDO2  
1μF  
100nF  
PAD 3  
10KΩ  
LX  
CBST  
0.1μF  
VIN  
+12V  
RGND  
0
CIN  
22μF  
A separate 5V supply for the  
SC417/SC427 is not required  
if VLDO is used to power the  
device.  
1.05V @ 10A, 250kHz  
L1  
0.88μH  
+
+
COUT1  
220μF  
15mΩ  
COUT2  
220μF  
15mΩ  
VOUT  
10nF  
CFF  
100pF  
RFB1  
11KΩ  
RFB2  
10KΩ  
Key Components  
Manufacturer  
Component  
Value  
Part Number  
Web  
CIN  
COUT1, COUT2  
L1  
22μF/25V  
220μF/15mΩ/6.3V  
0.88μH/20A  
Murata  
Panasonic  
Vishay  
www.murata.com  
www.panasonic.com  
www.vishay.com  
GRM32ER61E226KE15L  
EEFUE0J221R  
IHLP4040DZERR88M11  
All other small signal components (resistors and capacitors) are standard SMT devices.  
2
SC417/SC427  
Pin Configuration  
Ordering Information  
Device  
Package  
SC417MLTRT(1)(2)  
SC427MLTRT(1)(2)  
SC417EVB  
MLPQ-32 5X5  
MLPQ-32 5X5  
Evaluation Board  
Evaluation Board  
32  
31  
30  
29  
28  
27  
26  
25  
Top View  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
LX  
FB  
FBL  
LX  
SC427EVB  
Notes:  
1) Available in tape and reel only. A reel contains 3000 devices.  
2) Lead-free packaging only. Device is WEEE and RoHS compliant.  
AGND  
PAD 1  
V5V  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
AGND  
VOUT  
VIN  
LX  
PAD 3  
VIN  
PAD 2  
VLDO  
BST  
9
10  
11  
12  
13  
14  
15  
16  
MLPQ-32; 5x5, 32 LEAD  
Marking Information  
SC417  
SC427  
yyww.  
xxxxxx  
xxxxxx  
yyww.  
xxxxxx  
xxxxxx  
yyww. = Date Code  
yyww. = Date Code  
xxxxxx = Semtech Lot Number  
xxxxxx = Semtech Lot Number  
xxxxxx = Semtech Lot Number  
xxxxxx = Semtech Lot Number  
3
SC417/SC427  
Absolute Maximum Ratings(1)  
Recommended Operating Conditions  
LX to PGND (V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +30  
LX to PGND (V) (transient — 100ns) . . . . . . . . . . . -2 to +30  
VIN to PGND (V). . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +30  
EN/PSV, PGOOD, ILIM, to GND (V). . . . . . -0.3to+(V5V+0.3)  
VOUT, VLDO, FB, FBL, to GND (V). . . . . . . -0.3to+(V5V+0.3)  
V5V to PGND (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +6  
TON to PGND (V). . . . . . . . . . . . . . . . . . . . . -0.3 to +(V5V - 1.5)  
ENL (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to VIN  
BST to LX (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +6.0  
BST to PGND (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +35  
AGND to PGND (V) . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +0.3  
Input Voltage (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.0 to 28  
V5V to PGND (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 to 5.5  
VOUT to PGND (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 to 5.5  
Thermal Information  
Storage Temperature (°C). . . . . . . . . . . . . . . . . . . . -60 to +150  
Maximum Junction Temperature (°C) . . . . . . . . . . . . . . . 150  
Operating Junction Temperature (°C) . . . . . . -40 to +125  
Thermal resistance, junction to ambient (2) (°C/W)  
High-side MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Low-side MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
PWM controller and LDO thermal resistance . . . . . 50  
Peak IR Reflow Temperature (°C) . . . . . . . . . . . . . . . . . . . . 260  
Exceeding the above specifications may result in permanent damage to the device or device malfunction. Operation outside of the parameters  
specified in the Electrical Characteristics section is not recommended.  
NOTES:  
(1) This device is ESD sensitive. Use of standard ESD handling precautions is required.  
(2) Calculated from package in still air, mounted to 3 x 4.5 (in), 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards.  
Electrical Characteristics  
Unless specified: VIN =12V, TA = +25°C for Typ, -40 to +85 °C for Min and Max, TJ < 125°C, V5V = +5V, Typical Application Circuit  
Parameter  
Conditions  
Min  
Typ  
Max Units  
Input Supplies  
Input Supply Voltage  
V5V Voltage  
3
28  
5.5  
V
V
4.5  
Sensed at ENL pin, rising edge  
Sensed at ENL pin, falling edge  
EN/PSV = High  
2.40  
2.235  
2.60  
2.40  
0.2  
2.95  
2.565  
VIN UVLO Threshold(1)  
VIN UVLO Hysteresis  
V5V UVLO Threshold  
V5V UVLO Hysteresis  
VIN Supply Current  
V
V
Measured at V5V pin, rising edge  
Measured at V5V pin, falling edge  
3.7  
3.5  
3.9  
4.1  
V
3.6  
3.75  
0.3  
V
ENL , EN/PSV = 0V, VIN = 28V  
8.5  
20  
μA  
Standby mode; ENL=V5V, EN/PSV = 0V  
130  
4
SC417/SC427  
Electrical Characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max Units  
Input Supplies (continued)  
ENL , EN/PSV = 0V  
3
2
7
μA  
SC417, EN/PSV = V5V, no load (fSW = 25kHz),  
FB > 500mV(2)  
V
V5V Supply Current  
mA  
SC427, EN/PSV = V5V, no load, VFB > 500mV(2)  
fSW = 250kHz, EN/PSV = floating , no load(2)  
static VIN and load, 0 to +85 °C  
0.7  
10  
0.496  
0.495  
200  
0.500  
0.504  
0.505  
1000  
V
V
FB On-Time Threshold  
Frequency Range  
static VIN and load, -40 to +85 °C  
continuous mode operation  
kHz  
Ω
minimum fSW, (SC417 only), EN/PSV = V5V, no load  
25  
10  
Bootstrap Switch Resistance  
Timing  
continuous mode operation,  
IN = 15V, VOUT = 5V, fSW= 300kHz, RTON = 133kΩ  
On-Time  
999  
1110  
1220  
ns  
V
Minimum On-Time (2)  
Minimum Off-Time (2)  
Soft-Start  
50  
ns  
ns  
250  
Soft-Start Ramp Time (2)  
Analog Inputs/Outputs  
VOUT Input Resistance  
Current Sense  
850  
500  
0
μs  
kΩ  
mV  
Zero-Crossing Detector Threshold  
Power Good  
LX - PGND  
-3  
+3  
upper limit, VFB > internal 500mV reference  
lower limit, VFB < internal 500mV reference  
+20  
-10  
2
%
%
Power Good Threshold  
Start-Up Delay Time  
ms  
ꢀs  
ꢀA  
Ω
Fault (noise immunity) Delay Time(2)  
Leakage  
5
1
Power Good On-Resistance  
10  
5
SC417/SC427  
Electrical Characteristics (continued)  
Parameter  
Conditions  
RILIM = 5.9k Ω  
Min  
6
Typ  
Max Units  
Fault Protection  
Valley Current Limit  
ILIM Source Current  
ILIM Comparator Offset  
8
10  
0
10  
A
μA  
mV  
with respect to AGND  
-10  
+10  
V
FB with respect to internal 500mV reference,  
8 consecutive clocks  
Output Under-Voltage Fault  
-25  
%
Smart Power-save Protection Threshold (2)  
Over-Voltage Protection Threshold  
Over-Voltage Fault Delay(2)  
Over-Temperature Shutdown(2)  
Logic Inputs/Outputs  
VFB with respect to internal 500mV reference  
VFB with respect to internal 500mV reference  
+10  
+20  
5
%
%
μs  
°C  
10°C hysteresis  
150  
Logic Input High Voltage  
Logic Input Low Voltage  
EN/PSV Input Bias Current  
ENL Input Bias Current  
EN/PSV, ENL  
EN/PSV, ENL  
2.0  
-10  
V
0.4  
+10  
18  
V
EN/PSV= V5V or AGND  
VIN = 28V  
μA  
μA  
μA  
11  
FBL, FB Input Bias Current  
Linear Regulator (LDO)  
FBL Accuracy  
FBL, FB = V5V or AGND  
-1  
+1  
VLDO load = 10mA  
0.735  
0.75  
85  
0.765  
V
Start-up and foldback, VIN = 12V  
operating current limit, VIN = 12V  
LDO Current Limit  
mA  
135  
-140  
-450  
200  
VLDO to VOUT Switch-over Threshold (3)  
VLDO to VOUT Non-switch-over Threshold (3)  
VLDO to VOUT Switch-over Resistance  
+140  
+450  
mV  
mV  
Ω
V
OUT = +5V  
2
LDO Drop Out Voltage (4)  
from VIN to VVLDO, VVLDO = +5V, IVLDO = 100mA  
1.2  
V
Notes:  
(1) VIN UVLO is programmable using a resistor divider from VIN to ENL to AGND. The ENL voltage is compared to an internal reference.  
(2) Guaranteed by design.  
(3) The switch-over threshold is the maximum voltage differential between the VLDO and VOUT pins which ensures that VLDO will internally  
switch-over to VOUT. The non-switch-over threshold is the minimum voltage differential between the VLDO and VOUT pins which ensures  
that VLDO will not switch-over to VOUT.  
(4) The LDO drop out voltage is the voltage at which the LDO output drops 2% below the nominal regulation point.  
6
SC417/SC427  
Typical Characteristics  
Characteristics in this section are based on using the Typical Application Circuit on page 2 (SC417).  
Efficiency vs. Load — Powersave Mode  
Efficiency vs. Load — Forced Continuous Mode  
Internally biased at VLDO = 5V, VIN = 12V, VOUT = 1.050V  
Internally biased at VLDO = 5V, VIN = 12V, VOUT = 1.050V  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
85%  
85%  
2.0  
3.0  
5.0  
0.0  
1.0  
6.0  
7.0  
8.0  
9.0  
4.0  
10.0  
0.10  
1.00  
10.00  
IOUT (A)  
I
OUT (A)  
Efficiency vs. Load — Powersave Mode  
VOUT vs. Load — Forced Continuous Mode  
Externally biased at VIN = 12V, V5V = 5V, VOUT = 1.050V  
100  
90  
80  
70  
60  
50  
Internally biased at VLDO = 5V, VIN = 12V, VOUT = 1.050V  
1.100  
1.075  
1.050  
85%  
+1%  
-1%  
1.025  
1.000  
0.10  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
10.0  
1.00  
10.00  
9.0  
IOUT (A)  
IOUT (A)  
Frequency vs. Load — Forced Continuous Mode  
VRIPPLE vs. Load — Forced Continuous Mode  
Internally biased at VLDO = 5V, VIN = 12V, VOUT = 1.050V  
Internally biased at VLDO = 5V, VIN = 12V, VOUT = 1.050V  
400  
0.20  
0.15  
0.10  
0.05  
0.00  
350  
300  
250  
200  
150  
100  
+15%  
-15%  
50mV  
VOUTP-P  
0.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
1.0  
10.0  
0.0  
4.0  
7.0  
1.0  
2.0  
5.0  
6.0  
9.0  
10.0  
3.0  
8.0  
I
OUT (A)  
IOUT (A)  
7
SC417/SC427  
Typical Characteristics (continued)  
Characteristics in this section are based on using the Typical Application Circuit on page 2 (SC417).  
VOUT vs. Load — Powersave Mode  
VOUT vs. Line — Forced Continuous Mode  
Internally biased at VLDO = 5V, VIN = 12V, VOUT = 1.050V  
Internally biased at VLDO = 5V, VIN = 12V, VOUT = 1.050V  
1.100  
1.075  
1.050  
1.025  
1.000  
1.100  
1.075  
1.050  
1.025  
1.000  
+1%  
-1%  
+1%  
-1%  
6.0  
8.0  
12.0  
0.10  
10.00  
10.0  
14.0  
16.0  
18.0  
20.0  
22.0  
24.0  
1.00  
IOUT (A)  
VIN (V)  
Ultrasonic Powersave Mode — No Load  
Forced Continuous Mode — No Load  
VIN = 12V, VOUT = 1.05V, IOUT = 0A, VLDO = V5V = ENL = 5V, EN/PSV= float  
V
IN = 12V, VOUT = 1.05V, IOUT = 0A, VLDO = V5V = EN/PSV= ENL = 5V  
1.078V  
Δ V ~ 30mV  
Δ V ~ 29mV  
1.073V  
1.044V  
(50mV/div)  
(50mV/div)  
(10V/div)  
1.048V  
f=227.4kHz  
f=26.22kHz  
(10V/div)  
(10V/div)  
(5V/div)  
(10V/div)  
(5V/div)  
Time (10μs/div)  
Time (2μs/div)  
Enabled Loaded Output — Full Scale  
Enabled Loaded Output — Power Good True  
V
IN = 12V, VOUT = 1.05V, IOUT = 1A, VLDO = V5V = ENL = 5V. EN/PSV= 5V  
V
IN = 12V, VOUT = 1.05V, IOUT = 1A, VLDO = V5V = ENL = 5V. EN/PSV= 5V  
1.05V  
1.05V  
ΔV/ΔT ~  
1.4V/ms  
0V  
(50mV/div)  
0V  
(500mV/div)  
(10V/div)  
(5V/div)  
(10V/div)  
(5V/div)  
~2ms  
Time (400μs/div)  
Time (100μs/div)  
8
SC417/SC427  
Typical Characteristics (continued)  
Characteristics in this section are based on using the Typical Application Circuit on page 2 (SC417).  
Transient Response — Load Falling  
Transient Response — Load Rising  
V
IN = 12V, VOUT = 1.05V, IOUT = 10A to 0A, VLDO = V5V = EN/PSV= ENL = 5V  
V
IN = 12V, VOUT = 1.05V, IOUT = 0A to 10A, VLDO = V5V = EN/PSV= ENL = 5V  
1.101V  
1.063V  
(50mV/div)  
(50mV/div)  
(10V/div)  
1.055V  
1.025V  
(10V/div)  
(10A/div)  
(10A/div)  
(5V/div)  
(5V/div)  
Time (10μs/div)  
Time (10μs/div)  
Output Under-voltage Response — Normal Operation  
Output Over-current Response — Normal Operation  
VIN = 12V, VOUT = 1.05V, IOUT = 0A, VLDO = V5V = ENL = 5V, floating EN/PSV  
VIN = 12V, VOUT = 1.05V, VLDO = V5V = ENL = 5V, EN/PSV= floating; IOUT ramped to trip point  
1.05V  
(500mV/div)  
(10V/div)  
0V  
(500mV/div)  
(10A/div)  
V2~710mV  
I
OUT = 10.37A  
(10V/div)  
(5V/div)  
(5V/div)  
Time (100μs/div)  
Time (100μs/div)  
Self-Biased Start-Up — Power Good True  
VIN = 0V to 12V step, VOUT = 1.05V, IOUT = 0A, VLDO = V5V = EN/PSV= ENL = 5V  
(10V/div)  
1.05V  
ΔV/ΔT ~  
(500mV/div)  
1.4 V/ms  
0V  
(2V/div)  
(5V/div)  
Time (400μs/div)  
9
SC417/SC427  
Typical Characteristics (continued)  
Characteristics in this section are based on using the Typical Application Circuit on page 2.  
Shorted Output Response — Power-UP Operation  
Shorted Output Response — Normal Operation  
VIN = 12V, VOUT = 1.05V, IOUT = 0A, VLDO = V5V = EN/PSV= ENL = 5V  
VIN = 12V, VOUT = 1.05V, IOUT = 0A, VLDO = V5V = EN/PSV= ENL = 5V  
1.05V  
~1.7ms  
(500mV/div)  
(500mV/div)  
0V  
(10A/div)  
(10V/div)  
(10A/div)  
(10V/div)  
(5V/div)  
(5V/div)  
Time (400μs/div)  
Time (40μs/div)  
10  
SC417/SC427  
Pin Descriptions  
Pin #  
Pin Name  
Pin Function  
Feedback input for switching regulator used to program the output voltage — connect to an external resis-  
tor divider from VOUT to AGND.  
1
FB  
Feedback input for the LDO — connect to an external resistor divider from VLDO to AGND — used to pro-  
gram the LDO output.  
2
3
FBL  
V5V  
5V power input for internal analog circuits and gate drives — connect to external 5V supply or configure  
the LDO for 5V and connect to VLDO.  
4, 30, PAD 1  
5
AGND  
VOUT  
Analog ground  
Switcher output voltage sense pin — also the input to the internal switch-over between VOUT and VLDO.  
6, 9-11,  
PAD 2  
VIN  
VLDO  
BST  
DH  
Input supply voltage  
LDO output  
7
8
Bootstrap pin — connect a capacitor from BST to LX to develop the floating supply for the high-side gate  
drive.  
12  
High-side gate drive — do not connect this pin  
Switching (phase) node  
13, 23-25, 28,  
PAD 3  
LX  
14  
DL  
Low-side gate drive — do not connect this pin  
Power ground  
15-22  
PGND  
Open-drain power good indicator — high impedance indicates power is good. An external pull-up  
resistor is required.  
26  
27  
PGOOD  
ILIM  
Current limit sense pin — used to program the current limit by connecting a resistor from ILIM to LX.  
Enable/power-save input for the switching regulator — connect to AGND to disable the switching regulator.  
Float to operate in forced continuous mode (power-save disabled). SC417 — connect to V5V to operate with  
ultra-sonic power-save mode enabled. SC427 — connect to V5V to operate with power-save mode enabled  
with no minimum frequency.  
29  
EN/PSV  
31  
32  
TON  
ENL  
On-time programming input — set the on-time by connecting through a resistor to AGND  
Enable input for the LDO — connect ENL to AGND to disable the LDO. Drive with logic to +3V for logic con-  
trol, or program the VIN UVLO with a resistor divider between VIN, ENL, and AGND.  
11  
SC417/SC427  
Block Diagram  
VIN  
A
V5V  
3
EN/PSV  
29  
PGOOD  
26  
V5V  
VIN  
V5V  
Bootstrap  
Switch  
8
BST  
AGND  
D
Control & Status  
Reference  
Soft Start  
DL  
12 DH  
Hi-side  
MOSFET  
B
LX  
Gate Drive  
Control  
On- time  
Generator  
1
FB  
V5V  
Lo-side  
MOSFET  
FB Comparator  
C
PGND  
ILIM  
31  
5
TON  
Zero Cross Detector  
Valley Current Limit  
VOUT  
27  
Bypass Comparator  
A
VIN  
14  
DL  
7
2
VLDO  
FBL  
Y
B
LDO  
VLDO Switchover MUX  
32  
A = connected to pins 6, 9-11, PAD 2  
ENL  
B = connected to pins 13, 23-25, 28, PAD 3  
C = connected to pins 15-22  
D = connect to pins 4, 30, PAD 1  
12  
SC417/SC427  
Applications Information  
The adaptive on-time is determined by an internal one-  
shot timer. When the one-shot is triggered by the output  
ripple, the device sends a single on-time pulse to the high-  
side MOSFET. The pulse period is determined by VOUT and  
VIN; the period is proportional to output voltage and  
inversely proportional to input voltage. With this adaptive  
on-time arrangement, the device automatically antici-  
pates the on-time needed to regulate VOUT for the present  
VIN condition and at the selected frequency.  
Synchronous Buck Converter  
The SC417/SC427 is a step down synchronous DC-DC buck  
converter with integrated power MOSFETs and a program-  
mable LDO. The device is capable of 10A operation at very  
high efficiency. A space saving 5x5 (mm) 32-pin package  
is used. The programmable operating frequency range of  
200kHz to 1MHz enables optimizing the configuration for  
PCB area and efficiency.  
The buck controller uses a pseudo-fixed frequency adap-  
tive on-time control. This control method allows fast tran-  
sient response which permits the use of smaller output  
capacitors.  
The advantages of adaptive on-time control are:  
Predictable operating frequency compared to  
other variable frequency methods.  
Reduced component count by eliminating the  
error amplifier and compensation components.  
Reduced component count by removing the  
need to sense and control inductor current.  
Fast transient response — the response time is  
controlled by a fast comparator instead of a typi-  
cally slow error amplifier.  
Input Voltage Requirements  
The SC417/SC427 requires two input supplies for normal  
operation: VIN and V5V. VIN operates over the wide range  
from 3V to 28V. V5V requires a 5V supply input that can be  
an external source or the internal LDO configured to  
supply 5V.  
Reduced output capacitance due to fast tran-  
Psuedo-fixed Frequency Adaptive On-time Control  
The PWM control method used by the SC417/SC427 is  
pseudo-fixed frequency, adaptive on-time, as shown in  
Figure 1. The ripple voltage generated at the output  
capacitor ESR is used as a PWM ramp signal. This ripple is  
used to trigger the on-time of the controller.  
sient response  
One-Shot Timer and Operating Frequency  
The one-shot timer operates as shown in Figure 2. The FB  
Comparator output goes high when VFB is less than the  
internal 500mV reference. This feeds into the gate drive  
and turns on the high-side MOSFET, and also starts the  
one-shot timer. The one-shot timer uses an internal com-  
parator and a capacitor. One comparator input is con-  
nected to VOUT, the other input is connected to the  
capacitor. When the on-time begins, the internal capaci-  
tor charges from zero volts through a current which is  
proportional to VIN. When the capacitor voltage reaches  
TON  
VIN  
VLX  
CIN  
Q1  
Q2  
VFB  
FB Threshold  
VOUT  
VLX  
L
V
OUT, the on-time is completed and the high-side MOSFET  
turns off.  
ESR  
FB  
+
COUT  
Figure 1 — PWM Control Method, VOUT Ripple  
13  
SC417/SC427  
Applications Information (continued)  
Note that this control method regulates the valley of the  
output ripple voltage, not the DC value. The DC output  
voltage VOUT is offset by the output ripple according to the  
following equation.  
Gate  
Drives  
VIN  
FB Comparator  
FB  
-
500mV  
+
Q1  
DH  
VOUT  
FB  
L
VLX  
Q2  
VOUT  
VIN  
ESR  
COUT  
§
·
R1  
R2  
V
RIPPLE  
§
¨
·
¸
¨
¸
¸
VOUT   0.5u 1  
One-Shot  
Timer  
¨
©
+
DL  
2
©
¹
¹
RTON  
Enable and Power-save Inputs  
On-time = K x RTON x (VOUT/VIN)  
The EN/PSV and ENL inputs are used to enable or disable  
the switching regulator and the LDO. When EN/PSV is low  
(grounded), the switching regulator is off and in its lowest  
power state. When off, the output of the switching regula-  
tor soft-discharges the output into a 15Ω internal resistor  
via the VOUT pin. When EN/PSV is allowed to float, the pin  
voltage will float to 1.5V. The switching regulator turns on  
with power-save disabled and all switching is in forced  
continuous mode.  
Figure 2 — On-Time Generation  
This method automatically produces an on-time that is  
proportional to VOUT and inversely proportional to VIN.  
Under steady-state conditions, the switching frequency  
can be determined from the on-time by the following  
equation.  
VOUT  
fSW  
 
TON u V  
IN  
When EN/PSV is high (above 2.0V) for SC417, the switch-  
ing regulator turns on with ultra-sonic power-save  
enabled. The SC417 ultra-sonic power-save operation  
maintains a minimum switching frequency of 25kHz, for  
applications with stringent audio requirements.  
The SC417/SC427 uses an external resistor to set the on-  
time which indirectly sets the frequency. The on-time can  
be programmed to provide operating frequency from  
200kHz to 1MHz using a resistor between the TON pin and  
ground. The resistor value is selected by the following  
equation.  
When EN/PSV is high (above 2.0V) for SC427, the switch-  
ing regulator turns on with power-save enabled. The  
SC427 power-save operation is designed to maximize  
efficiency at light loads with no minimum frequency limits.  
This makes the SC427 an excellent choice for portable and  
battery-operated systems.  
(TON10ns)uVIN  
RTON  
 
25pFuVOUT  
The maximum RTON value allowed is shown by the follow-  
ing equation.  
The ENL input is used to control the internal LDO. This  
input serves a second function by acting as a VIN ULVO  
sensor for the switching regulator.  
V
IN_MIN  
RTON_MAX  
 
15PA  
VOUT Voltage Selection  
When ENL is low (grounded), the LDO is off. When ENL is  
a logic high but below the VIN UVLO threshold (2.6V  
typical), then the LDO is on and the switcher is off. When  
ENL is above the VIN UVLO threshold, the LDO is enabled  
and the switcher is also enabled if the EN/PSV pin is not  
grounded.  
The switcher output voltage is regulated by comparing  
V
OUT as seen through a resistor divider at the FB pin to the  
internal 500mV reference voltage, see Figure 3.  
VOUT  
To FB pin  
R1  
R2  
Forced Continuous Mode Operation  
The SC417/SC427 operates the switcher in Forced  
Continuous Mode (FCM) by floating the EN/PSV pin (see  
Figure 4). In this mode one of the power MOSFETs is  
Figure 3 — Output Voltage Selection  
14  
SC417/SC427  
Applications Information (continued)  
always on, with no intentional dead time other than to  
avoid cross-conduction. This feature results in uniform  
frequency across the full load range with the trade-off  
being poor efficiency at light loads due to the high-fre-  
quency switching of the MOSFETs.  
Because the on-times are forced to occur at intervals no  
greater than 40ꢀs, the frequency will not fall below  
~25kHz. Figure 5 shows ultra-sonic power-save  
operation.  
FB Ripple  
Voltage (VFB)  
FB threshold  
(500mV)  
minimum fSW ~ 25kHz  
FB Ripple  
Voltage (VFB  
)
FB threshold  
(500mV)  
DC Load Current  
Inductor  
Current  
(0A)  
Inductor  
Current  
DH on-time is triggered when  
VFB reaches the FB Threshold.  
On-time  
(TON  
DH On-time is triggered when  
VFB reaches the FB Threshold  
On-time  
(TON  
)
)
DH  
DL  
DH  
DL  
40μs time-out  
After the 40μsec time-out, DL drives high if VFB  
DL drives high when on-time is completed.  
DL remains high until VFB falls to the FB threshold.  
has not reached the FB threshold.  
Figure 5 — Ultrasonic Power-save Operation  
Figure 4 — Forced Continuous Mode Operation  
Power-save Mode Operation (SC427)  
Ultra-sonic Power-save Operation (SC417)  
The SC427 provides power-save operation at light loads  
with no minimum operating frequency. With power-save  
enabled, the internal zero crossing comparator monitors  
the inductor current via the voltage across the low-side  
MOSFET during the off-time. If the inductor current falls to  
zero for 8 consecutive switching cycles, the controller  
enters power-save operation. It will turn off the low-side  
MOSFET on each subsequent cycle provided that the  
current crosses zero. At this time both MOSFETs remain  
off until VFB drops to the 500mV threshold. Because the  
MOSFETs are off, the load is supplied by the output capaci-  
tor. If the inductor current does not reach zero on any  
switching cycle, the controller immediately exits power-  
save and returns to forced continuous mode. Figure 6  
shows power-save operation at light loads.  
The SC417 provides ultra-sonic power-save operation at  
light loads, with the minimum operating frequency fixed  
at 25kHz. This is accomplished using an internal timer that  
monitors the time between consecutive high-side gate  
pulses. If the time exceeds 40ꢀs, DL drives high to turn the  
low-side MOSFET on. This draws current from VOUT through  
the inductor, forcing both VOUT and VFB to fall. When VFB  
drops to the 500mV threshold, the next DH on-time is trig-  
gered. After the on-time is completed the high-side  
MOSFET is turned off and the low-side MOSFET turns on.  
The low-side MOSFET remains on until the inductor  
current ramps down to zero, at which point the low-side  
MOSFET is turned off.  
15  
SC417/SC427  
Applications Information (continued)  
VOUT drifts up to due to leakage  
current flowing into COUT  
Dead time varies  
according to load  
VOUT discharges via inductor  
and low-side MOSFET  
FB Ripple  
Smart Power Save  
Threshold (550mV)  
Voltage  
Normal VOUT ripple  
FB threshold  
(VFB)  
FB  
threshold  
(500mV)  
DH and DL off  
Inductor  
Current  
Zero (0A)  
High-side  
Drive (DH)  
Single DH on-time pulse  
after DL turn-off  
On-time (TON  
)
Low-side  
DH On-time is triggered when  
VFB reaches the FB Threshold.  
Drive (DL)  
DH  
DL turns on when Smart  
PSAVE threshold is reached  
Normal DL pulse after DH  
on-time pulse  
DL turns off when FB  
threshold is reached  
DL  
Figure 7 — Smart Power-save  
DL drives high when on-time is completed.  
DL remains high until inductor current reaches zero.  
Figure 6 — Power-save Operation  
Current Limit Protection  
Smart Power-save Protection  
The device features programmable current limiting, which  
is accomplished by using the RDSON of the lower MOSFET  
for current sensing. The current limit is set by RILIM resistor.  
The RILIM resistor connects from the ILIM pin to the LX pin  
which is also the drain of the low-side MOSFET. When the  
low-side MOSFET is on, an internal ~10μA current flows  
from the ILIM pin and through the RILIM resistor, creating a  
voltage drop across the resistor. While the low-side  
MOSFET is on, the inductor current flows through it and  
creates a voltage across the RDS(ON). The voltage across the  
MOSFET is negative with respect to ground. If this MOSFET  
voltage drop exceeds the voltage across RILIM, the voltage  
at the ILIM pin will be negative and current limit will acti-  
vate. The current limit then keeps the low-side MOSFET on  
and will not allow another high-side on-time, until the  
current in the low-side MOSFET reduces enough to bring  
the ILIM voltage back up to zero. This method regulates  
the inductor valley current at the level shown by ILIM in  
Figure 8.  
Active loads may leak current from a higher voltage into  
the switcher output. Under light load conditions with  
power-save enabled, this can force VOUT to slowly rise and  
reach the over-voltage threshold, resulting in a hard shut-  
down. Smart power-save prevents this condition. When  
the FB voltage exceeds 10% above nominal (exceeds  
550mV), the device immediately disables power-save, and  
DL drives high to turn on the low-side MOSFET. This draws  
current from VOUT through the inductor and causes VOUT to  
fall. When VFB drops back to the 500mV trip point, a normal  
TON switching cycle begins. This method prevents a hard  
OVP shutdown and also cycles energy from VOUT back to  
VIN. It also minimizes operating power by avoiding forced  
conduction mode operation. Figure 7 shows typical wave-  
forms for the Smart Power-save feature.  
16  
SC417/SC427  
Applications Information (continued)  
This prevents negative inductor current, allowing the  
device to start into a pre-biased output.  
IPEAK  
ILOAD  
ILIM  
Power Good Output  
The power good (PGOOD) output is an open-drain output  
which requires a pull-up resistor. When the output voltage  
is 10% below the nominal voltage, PGOOD is pulled low. It  
is held low until the output voltage returns above -8% of  
nominal. PGOOD is held low during start-up and will not  
be allowed to transition high until soft-start is completed  
(when VFB reaches 500mV) and typically 2ms has passed.  
Time  
Figure 8 — Valley Current Limit  
Setting the valley current limit to 10A results in a peak  
inductor current of 10A plus peak ripple current. In this  
situation, the average (load) current through the inductor  
is 10A plus one-half the peak-to-peak ripple current.  
PGOOD will transition low if the VFB pin exceeds +20% of  
nominal, which is also the over-voltage shutdown thresh-  
old (600mV). PGOOD also pulls low if the EN/PSV pin is  
low when V5V is present.  
The internal 10μA current source is temperature compen-  
sated at 4100ppm in order to provide tracking with the  
Output Over-Voltage Protection  
RDS(ON)  
.
Over-voltage protection becomes active as soon as the  
device is enabled. The threshold is set at 500mV + 20%  
(600mV). When VFB exceeds the OVP threshold, DL latches  
high and the low-side MOSFET is turned on. DL remains  
high and the controller remains off, until the EN/PSV input  
is toggled or V5V is cycled. There is a 5μs delay built into  
the OVP detector to prevent false transitions. PGOOD is  
also low after an OVP event.  
The RILIM value is calculated by the following equation.  
RILIM = 735 x ILIM  
Note that because the low-side MOSFET with low RDS(ON)  
is used for current sensing, the PCB layout, solder connec-  
tions, and PCB connection to the LX node must be done  
carefully to obtain good results. Refer to the layout guide-  
lines for information.  
Output Under-Voltage Protection  
When VFB falls 25% below its nominal voltage (falls to  
375mV) for eight consecutive clock cycles, the switcher is  
shut off and the DH and DL drives are pulled low to tri-  
state the MOSFETs. The controller stays off until EN/PSV is  
toggled or V5V is cycled.  
Soft-Start of PWM Regulator  
Soft-start is achieved in the PWM regulator by using an  
internal voltage ramp as the reference for the FB  
Comparator. The voltage ramp is generated using an  
internal charge pump which drives the reference from  
zero to 500mV in ~1.2mV increments, using an internal  
~500kHz oscillator. When the ramp voltage reaches  
500mV, the ramp is ignored and the FB comparator  
switches over to a fixed 500mV threshold. During soft-start  
the output voltage tracks the internal ramp, which limits  
the start-up inrush current and provides a controlled soft-  
start profile for a wide range of applications. Typical soft-  
start ramp time is 850μs.  
V5V UVLO, and POR  
Under-Voltage Lock-Out (UVLO) circuitry inhibits switch-  
ing and tri-states the DH/DL drivers until V5V rises above  
3.9V. An internal Power-On Reset (POR) occurs when V5V  
exceeds 3.9V, which resets the fault latch and soft-start  
counter to prepare for soft-start. The SC417/SC427 then  
begins a soft-start cycle. The PWM will shut off if V5V falls  
below 3.6V.  
LDO Regulator  
The device features an integrated LDO regulator with a  
programmable output voltage from 0.75V to 5.25V using  
During soft-start the regulator turns off the low-side  
MOSFET on any cycle if the inductor current falls to zero.  
17  
SC417/SC427  
Applications Information (continued)  
external resistors. The feedback pin (FBL) for the LDO is  
regulated to 750mV. There is also an enable pin (ENL) for  
the LDO that provides independent control. The LDO  
voltage can also be used to provide the bias voltage for  
the switching regulator.  
VVLDO Final  
Voltage regulating with  
~200mA current limit  
90% of VVLDO Final  
Constant current startup  
VLDO  
To FBL pin  
RLDO1  
Figure 10 — LDO Start-Up  
RLDO2  
LDO Switch-Over Operation  
The SC417/SC427 includes a switch-over function for the  
LDO. The switch-over function is designed to increase  
efficiency by using the more efficient DC-DC converter to  
power the LDO output, avoiding the less efficient LDO  
regulator when possible. The switch-over function con-  
nects the VLDO pin directly to the VOUT pin using an  
internal switch. When the switch-over is complete the  
LDO is turned off, which results in a power savings and  
maximizes efficiency. If the LDO output is used to bias the  
SC417/SC427, then after switch-over the device is self-  
powered from the switching regulator with the LDO  
turned off.  
Figure 9 — LDO Start-Up  
The LDO output voltage is set by the following equation.  
§
·
RLDO1  
RLDO2  
¨
¸
¸
VLDO   750mV u 1  
¨
©
¹
A minimum capacitance of 1μF referenced to AGND is  
normally required at the output of the LDO for stability. If  
the LDO is providing bias power to the device, then a  
minimum 0.1μF capacitor referenced to AGND is required  
along with a minimum 1.0μF capacitor referenced to  
PGND to filter the gate drive pulses. Refer to the layout  
guidelines section.  
The switch-over logic waits for 32 switching cycles before  
it starts the switch-over. There are two methods that  
determine the switch-over of VLDO to VOUT  
.
In the first method, the LDO is already in regulation and  
the DC-DC converter is later enabled. As soon as the  
PGOOD output goes high, the 32 cycles are started. The  
voltages at the VLDO and VOUT pins are then compared;  
if the two voltages are within 300mV of each other, the  
VLDO pin connects to the VOUT pin using an internal  
switch, and the LDO is turned off.  
LDO Start-up  
Before start-up, the LDO checks the status of the following  
signals to ensure proper operation can be maintained.  
1. ENL pin  
2. VLDO output  
3. VIN input voltage  
In the second method, the DC-DC converter is already  
running and the LDO is enabled. In this case the 32 cycles  
are started as soon as the LDO reaches 90% of its final  
value. At this time, the VLDO and VOUT pins are compared,  
and if within 300mV the switch-over occurs and the LDO  
is turned off.  
When the ENL pin is high and VIN is above the UVLO point,  
the LDO will begin start-up. During the initial phase, when  
the LDO output voltage is near zero, the LDO initiates a  
current-limited start-up (typically 85mA) to charge the  
output capacitor. When VLDO has reached 90% of the final  
value (as sensed at the FBL pin), the LDO current limit is  
increased to ~200mA and the LDO output is quickly driven  
to the nominal value by the internal LDO regulator.  
18  
SC417/SC427  
Applications Information (continued)  
Switch-over Limitations on VOUT and VLDO  
Because the internal switch-over circuit always compares  
the VOUT and VLDO pins at start-up, there are limitations  
on permissible combinations of VOUT and VLDO. Consider  
the case where VOUT is programmed to 1.5V and VLDO is  
programmed to 1.8V. After start-up, the device would  
connect VOUT to VLDO and disable the LDO, since the two  
voltage are within the 300mV switch-over window. To  
avoid unwanted switch-over, the minimum difference  
between the voltages for VOUT and VLDO should be  
500mV.  
ENL pin and VIN UVLO  
The ENL pin also acts as the switcher under-voltage  
lockout for the VIN supply. The VIN UVLO voltage is pro-  
grammable via a resistor divider at the VIN, ENL and AGND  
pins.  
ENL is the enable/disable signal for the LDO. In order to  
implement the VIN UVLO there is also a timing require-  
ment that needs to be satisfied.  
If the ENL pin transitions low within 2 switching cycles and  
is < 1V, then the LDO will turn off but the switcher remains  
on. If ENL goes below the VIN UVLO threshold and stays  
above 1V, then the switcher will turn off but the LDO  
remains on.  
It is not recommended to use the switch-over feature for  
an output voltage less than 3V since this does not provide  
sufficient voltage for the gate-source drive to the internal  
p-channel switch-over MOSFET.  
The VIN UVLO function has a typical threshold of 2.6V on  
the VIN rising edge. The falling edge threshold is 2.4V.  
Switch-over MOSFET Parasitic Diodes  
The switch-over MOSFET contains parasitic diodes that  
are inherent to its construction, as shown in Figure 11.  
Note that it is possible to operate the switcher with the  
LDO disabled, but the ENL pin must be below the logic  
low threshold (0.4V maximum).  
Switchover  
Switchover  
control  
MOSFET  
VOUT  
VLDO  
ENL Logic Control of PWM Operation  
When the ENL input is driven above 2.6V, it is impossible  
to determine if the LDO output is going to be used to  
power the device or not. In self-powered operation where  
the LDO will power the device, it is necessary during the  
LDO start-up to hold the PWM switching off until the LDO  
has reached 90% of the final value. This is to prevent over-  
loading the current-limited LDO output during the LDO  
start-up. However, if the switcher was previously operat-  
ing (with EN/PSV high but ENL at ground, and V5V sup-  
plied externally), then it is undesirable to shut down the  
switcher.  
Parasitic diode  
Parasitic diode  
V5V  
Figure 11— Switch-over MOSFET Parasitic Diodes  
There are some important design rules that must be fol-  
lowed to prevent forward bias of these diodes. The fol-  
lowing two conditions need to be satisfied in order for the  
parasitic diodes to stay off.  
V5V ≥ VLDO  
V5V ≥ VOUT  
To prevent this, when the ENL input is taken above 2.6V  
(above the VIN UVLO threshold), the internal logic checks  
the PGOOD signal. If PGOOD is high, then the switcher is  
already running and the LDO will run through the start-up  
cycle without affecting the switcher. If PGOOD is low, then  
the LDO will not allow any PWM switching until the LDO  
output has reached 90% of it’s final value.  
If either VLDO or VOUT is higher than V5V, then the respective  
diode will turn on and the SC417/SC427 operating current  
will flow through this diode. This has the potential of  
damaging the device.  
19  
SC417/SC427  
Applications Information (continued)  
fSW = 250kHz  
Using the On-chip LDO to Bias the SC417/SC427  
The following steps must be followed when using the on-  
chip LDO to bias the device.  
Load = 10A maximum  
Frequency Selection  
Selection of the switching frequency requires making a  
trade-off between the size and cost of the external filter  
components (inductor and output capacitor) and the  
power conversion efficiency.  
Connect V5V to VLDO before enabling the LDO.  
The LDO has an initial current limit of 40mA at  
start-up, therefore, do not connect any external  
load to VLDO during start-up.  
When VLDO reaches 90% of its final value, the  
LDO current limit increases to 200mA. At this  
time the LDO may be used to supply the required  
bias current to the device.  
The desired switching frequency is 250kHz which results  
from using component selected for optimum size and  
cost .  
A resistor (RTON) is used to program the on-time (indirectly  
setting the frequency) using the following equation.  
Attempting to operate in self-powered mode in any other  
configuration can cause unpredictable results and may  
damage the device.  
(TON 10ns)u V  
IN  
RTON  
 
25pFu VOUT  
Design Procedure  
When designing a switch mode supply the input voltage  
range, load current, switching frequency, and inductor  
ripple current must be specified.  
To select RTON, use the maximum value for VIN, and for TON  
use the value associated with maximum VIN.  
VOUT  
TON  
 
VINMAXu fSW  
The maximum input voltage (VINMAX) is the highest speci-  
fied input voltage. The minimum input voltage ( VINMIN) is  
determined by the lowest input voltage after evaluating  
the voltage drops due to connectors, fuses, switches, and  
PCB traces.  
TON = 318 ns at 13.2VIN, 1.05VOUT, 250kHz  
Substituting for RTON results in the following solution.  
RTON = 154.9kΩ, use RTON = 154kΩ  
The following parameters define the design.  
Inductor Selection  
Nominal output voltage (VOUT  
Static or DC output tolerance  
Transient response  
)
In order to determine the inductance, the ripple current  
must first be defined. Low inductor values result in smaller  
size but create higher ripple current which can reduce  
efficiency. Higher inductor values will reduce the ripple  
current/voltage and for a given DC resistance are more  
efficient. However, larger inductance translates directly  
into larger packages and higher cost. Cost, size, output  
ripple, and efficiency are all used in the selection process.  
Maximum load current (IOUT  
)
There are two values of load current to evaluate — con-  
tinuous load current and peak load current. Continuous  
load current relates to thermal stresses which drive the  
selection of the inductor and input capacitors. Peak load  
current determines instantaneous component stresses and  
filtering requirements such as inductor saturation, output  
capacitors, and design of the current limit circuit.  
The ripple current will also set the boundary for power-  
save operation. The switching will typically enter power-  
save mode when the load current decreases to 1/2 of the  
ripple current. For example, if ripple current is 4A then  
Power-save operation will typically start for loads less than  
2A. If ripple current is set at 40% of maximum load current,  
then power-save will start for loads less than 20% of  
maximum current.  
The following values are used in this design.  
VIN = 12V + 10%  
VOUT = 1.05V + 4%  
20  
SC417/SC427  
Applications Information (continued)  
The inductor value is typically selected to provide a ripple  
current that is between 25% to 50% of the maximum load  
current. This provides an optimal trade-off between cost,  
efficiency, and transient performance.  
The design goal is that the output voltage regulation be  
4% under static conditions. The internal 500mV refer-  
ence tolerance is 1%. Allowing 1% tolerance from the FB  
resistor divider, this allows 2% tolerance due to VOUT ripple.  
Since this 2% error comes from 1/2 of the ripple voltage,  
the allowable ripple is 4%, or 42mV for a 1.05V output.  
During the DH on-time, voltage across the inductor is (VIN  
- VOUT). The equation for determining inductance is shown  
next.  
The maximum ripple current of 4.4A creates a ripple  
voltage across the ESR. The maximum ESR value allowed  
is shown by the following equations.  
(V  VOUT )u TON  
IN  
L   
IRIPPLE  
VRIPPLE  
42mV  
4.4A  
ESRMAX  
 
 
Example  
IRIPPLEMAX  
In this example, the inductor ripple current is set equal to  
50% of the maximum load current. Thus ripple current  
will be 50% x 10A or 5A. To find the minimum inductance  
needed, use the VIN and TON values that correspond to  
ESRMAX = 9.5 mΩ  
The output capacitance is usually chosen to meet tran-  
sient requirements. A worst-case load release, from  
maximum load to no load at the exact moment when  
inductor current is at the peak, determines the required  
capacitance. If the load release is instantaneous (load  
changes from maximum to zero in < 1ꢀs), the output  
capacitor must absorb all the inductor’s stored energy.  
This will cause a peak voltage on the capacitor according  
to the following equation.  
VINMAX  
.
(13.2 1.05)u318ns  
L   
  0.77PH  
5A  
A slightly larger value of 0.88ꢀH is selected. This will  
decrease the maximum IRIPPLE to 4.4A.  
Note that the inductor must be rated for the maximum DC  
load current plus 1/2 of the ripple current.  
2
1
2
§
©
·
¸
L I  
uIRIPPLEMAX  
¨
OUT  
¹
The ripple current under minimum VIN conditions is also  
checked using the following equations.  
COUTMIN  
 
VPEAK 2  
VOUT 2  
Assuming a peak voltage VPEAK of 1.150 (100mV rise upon  
load release), and a 10A load release, the required capaci-  
tance is shown by the next equation.  
25pFuRTON u VOUT  
TON_ VINMIN  
 
10ns   384ns  
V
INMIN  
(V  VOUT )u TON  
IN  
IRIPPLE  
 
2
1
§
©
·
¸
L
0.88PH 10  u 4.4  
¨
2
¹
COUTMIN  
 
1.152 1.052  
(10.8 1.05)u384ns  
0.88PH  
IRIPPLE _ VIN  
 
  4.25A  
COUTMIN = 595μF  
Capacitor Selection  
The output capacitors are chosen based on required ESR  
and capacitance. The maximum ESR requirement is con-  
trolled by the output ripple requirement and the DC toler-  
ance. The output voltage has a DC value that is equal to  
the valley of the output ripple plus 1/2 of the peak-to-peak  
ripple. Change in the output ripple voltage will lead to a  
change in DC voltage at the output.  
If the load release is relatively slow, the output capacitance  
can be reduced. At heavy loads during normal switching,  
when the FB pin is above the 500mV reference, the DL  
output is high and the low-side MOSFET is on. During this  
time, the voltage across the inductor is approximately  
-VOUT. This causes a down-slope or falling di/dt in the  
21  
SC417/SC427  
Applications Information (continued)  
inductor. If the load di/dt is not much faster than the -di/  
dt in the inductor, then the inductor current will tend to  
track the falling load current. This will reduce the excess  
inductive energy that must be absorbed by the output  
capacitor, therefore a smaller capacitance can be used.  
Stability Considerations  
Unstable operation is possible with adaptive on-time con-  
trollers, and usually takes the form of double-pulsing or  
ESR loop instability.  
Double-pulsing occurs due to switching noise seen at the  
FB input or because the FB ripple voltage is too low. This  
causes the FB comparator to trigger prematurely after the  
250ns minimum off-time has expired. In extreme cases  
the noise can cause three or more successive on-times.  
Double-pulsing will result in higher ripple voltage at the  
output, but in most applications it will not affect opera-  
tion. This form of instability can usually be avoided by  
providing the FB pin with a smooth, clean ripple signal  
that is at least 10mVp-p, which may dictate the need to  
increase the ESR of the output capacitors. It is also impera-  
tive to provide a proper PCB layout as discussed in the  
Layout Guidelines section.  
The following can be used to calculate the needed capaci-  
tance for a given dILOAD/dt:  
Peak inductor current is shown by the next equation.  
ILPK = IMAX + 1/2 x IRIPPLEMAX  
ILPK = 10 + 1/2 x 4.4 = 12.2A  
dlLOAD  
Rate of change of Load Current   
dt  
IMAX = maximum load release = 10A  
Another way to eliminate doubling-pulsing is to add a  
small (~ 10pF) capacitor across the upper feedback resis-  
tor, as shown in Figure 13. This capacitor should be left  
unpopulated until it can be confirmed that double-pulsing  
exists. Adding the CTOP capacitor will couple more ripple  
into FB to help eliminate the problem. An optional con-  
nection on the PCB should be available for this capacitor.  
ILPK  
IMAX  
Lu  
u dt  
VOUT dlLOAD  
VPK  VOUT  
COUT   ILPK  
u
2
Example  
dlLOAD 2.5A  
Load  
 
CTOP  
dt  
Ps  
This would cause the output current to move from 10A to  
zero in 4ꢀs as shown by the following equation.  
To FB pin  
VOUT  
R1  
12.2 10  
R2  
0.88PHu  
u1Ps  
1.05 2.5  
1.15 1.05  
COUT   12.2u  
COUT = 379 μF  
2
Figure 13 — Capacitor Coupling to FB Pin  
Note that COUT is much smaller in this example, 379ꢀF  
compared to 595ꢀF based on a worst-case load release. To  
meet the two design criteria of minimum 379ꢀF and  
maximum 9mΩ ESR, select two capacitors rated at 220ꢀF  
and 15mΩ ESR.  
ESR loop instability is caused by insufficient ESR. The  
details of this stability issue are discussed in the ESR  
Requirements section. The best method for checking sta-  
bility is to apply a zero-to-full load transient and observe  
the output voltage ripple envelope for overshoot and  
ringing. Ringing for more than one cycle after the initial  
step is an indication that the ESR should be increased.  
It is recommended that an additional small capacitor be  
placed in parallel with COUT in order to filter high frequency  
switching noise.  
22  
SC417/SC427  
Applications Information (continued)  
One simple way to solve this problem is to add trace resis-  
tance in the high current output path. A side effect of  
adding trace resistance is output decreased load  
regulation.  
L
High-  
side  
CL  
RL  
CC  
ESR Requirements  
R1  
A minimum ESR is required for two reasons. One reason is  
to generate enough output ripple voltage to provide  
10mVp-p at the FB pin (after the resistor divider) to avoid  
double-pulsing.  
COUT  
Low-  
side  
R2  
FB  
pin  
The second reason is to prevent instability due to insuffi-  
cient ESR. The on-time control regulates the valley of the  
output ripple voltage. This ripple voltage is the sum of the  
two voltages. One is the ripple generated by the ESR, the  
other is the ripple due to capacitive charging and dis-  
charging during the switching cycle. For most applica-  
tions the minimum ESR ripple voltage is dominated by the  
output capacitors, typically SP or POSCAP devices. For  
stability the ESR zero of the output capacitor should be  
lower than approximately one-third the switching fre-  
quency. The formula for minimum ESR is shown by the  
following equation.  
Figure 14 — Virtual ESR Ramp Current  
Dropout Performance  
The output voltage adjust range for continuous-conduc-  
tion operation is limited by the fixed 250ns (typical)  
minimum off-time of the one-shot. When working with  
low input voltages, the duty-factor limit must be calcu-  
lated using worst-case values for on and off times.  
The duty-factor limitation is shown by the next equation.  
3
TON(MIN)  
DUTY   
ESRMIN  
 
2u SuCOUT u fsw  
TON(MIN)  TOFF(MAX)  
For applications using ceramic output capacitors, the ESR  
is normally too small to meet the above ESR criteria. In  
these applications it is necessary to add a small virtual ESR  
network composed of two capacitors and one resistor, as  
shown in Figure 14. This network creates a ramp voltage  
across CL, analogous to the ramp voltage generated across  
the ESR of a standard capacitor. This ramp is then capaci-  
tively coupled into the FB pin via capacitor CC.  
The inductor resistance and MOSFET on-state voltage  
drops must be included when performing worst-case  
dropout duty-factor calculations.  
System DC Accuracy (VOUT Controller)  
Three factors affect VOUT accuracy: the trip point of the FB  
error comparator, the ripple voltage variation with line  
and load, and the external resistor tolerance. The error  
comparator offset is trimmed so that under static condi-  
tions it trips when the feedback pin is 500mV, 1%.  
The on-time pulse from the SC417/SC427 in the design  
example is calculated to give a pseudo-fixed frequency of  
23  
SC417/SC427  
Applications Information (continued)  
250kHz. Some frequency variation with line and load is  
expected. This variation changes the output ripple  
voltage. Because constant on-time converters regulate to  
the valley of the output ripple, ½ of the output ripple  
appears as a DC regulation error. For example, if the  
output ripple is 50mV with VIN = 6 volts, then the measured  
DC output will be 25mV above the comparator trip point.  
If the ripple increases to 80mV with VIN = 25V, then the  
measured DC output will be 40mV above the comparator  
trip. The best way to minimize this effect is to minimize  
the output ripple.  
Switching Frequency Variations  
The switching frequency will vary depending on line and  
load conditions. The line variations are a result of fixed  
propagation delays in the on-time one-shot, as well as  
unavoidable delays in the external MOSFET switching. As  
VIN increases, these factors make the actual DH on-time  
slightly longer than the ideal on-time. The net effect is  
that frequency tends to falls slightly with increasing input  
voltage.  
The switching frequency also varies with load current as a  
result of the power losses in the MOSFETs and the induc-  
tor. For a conventional PWM constant-frequency con-  
verter, as load increases the duty cycle also increases  
slightly to compensate for IR and switching losses in the  
MOSFETs and inductor. A constant on-time converter  
must also compensate for the same losses by increasing  
the effective duty cycle (more time is spent drawing  
energy from VIN as losses increase). The on-time is essen-  
tially constant for a given VOUT/VIN combination, to offset  
the losses the off-time will tend to reduce slightly as load  
increases. The net effect is that switching frequency  
increases slightly with increasing load.  
To compensate for valley regulation, it may be desirable to  
use passive droop. Take the feedback directly from the  
output side of the inductor and place a small amount of  
trace resistance between the inductor and output capaci-  
tor. This trace resistance should be optimized so that at  
full load the output droops to near the lower regulation  
limit. Passive droop minimizes the required output capaci-  
tance because the voltage excursions due to load steps  
are reduced as seen at the load.  
The use of 1% feedback resistors contributes up to 1%  
error. If tighter DC accuracy is required, 0.1% resistors  
should be used.  
The output inductor value may change with current. This  
will change the output ripple and therefore will have a  
minor effect on the DC output voltage. The output ESR  
also affects the output ripple and thus has a minor effect  
on the DC output voltage.  
24  
SC417/SC427  
Applications Information (continued)  
AGND should connect to PGND (power ground) using an  
external zero ohm resistor or using a short PCB trace.  
Connect AGND to PGND only at one place, as near to the  
AGND and PGND pins as is practical.  
PCB Layout Guidelines  
The optimum layout for the SC417/SC427 is shown in  
Figure 15. The layout highlights the device as a space  
saving and high performance solution. This layout shows  
an integrated FET buck regulator with a maximum current  
of 10A. The total PCB area is approximately 20 x 25 mm.  
Power ground (PGND) should be a separate plane which is  
not used for routing analog traces.  
This figure shows the total area and optimum layout for  
the device. If optimum layout is not possible due to PCB  
limitations, the following generic guidelines should be  
followed.  
All PGND connections should connect directly to the  
PGND plane. Indirect connections between AGND and  
GND which will create ground loops should be avoided.  
The V5V input provides power to the internal analog cir-  
cuits and the upper and lower gate drivers. The V5V supply  
decoupling capacitors should be tied between V5V and  
PGND with short traces.  
Generic Layout Guidelines  
One or more ground planes are recommended to mini-  
mize the effect of switching noise, resistive losses, and to  
maximize heat removal. The analog ground reference  
AGND should connect directly to the AGND pad and pins.  
An AGND plane or island should be used near the device.  
All components that are referenced to AGND should  
connect directly to this plane and mounted on the IC side  
of the PCB.  
The switcher power section should be connected directly  
to the PGND plane(s) using multiple vias as required for  
RGND — AGND connects to  
PGND close to SC417/SC427  
AGND plane on  
inner layer  
RILIM  
Pin 1 marking  
RLDO2  
RLDO1  
CLDO  
RFB2  
SC417/SC427  
with vias for LX,  
AGND, VIN  
All components  
shown Top Side  
RFB1  
CFF  
CIN  
VIN plane on inner  
or bottom layer  
PGND  
VOUT Plane  
on Top layer  
PGND on inner  
or bottom layer  
COUT  
L
LX plane on inner  
or bottom layer  
PGND on  
Top layer  
Figure 15 — PCB Layout  
25  
SC417/SC427  
Applications Information (continued)  
current handling (including the chip power ground con-  
nections). Power components should be placed to mini-  
mize current loops and reduce losses. Make all the power  
connections on one side of the PCB using wide copper  
areas if possible. Do not use minimum land patterns for  
power components.  
Control Section  
Locate all components referenced to AGND on the sche-  
matic and place these components near the device and  
on the same side if possible. Connect AGND to the AGND  
pad and pins using a plane or island if possible.  
The device supply decoupling capacitor (V5V to PGND)  
should be located as close as possible to the pins. The V5V  
decoupling capacitor preferred placement is on the oppo-  
site side of the PCB. It should be routed with traces as  
short as possible, using at least two vias when connecting  
through the PCB.  
Current Limit  
Obtaining an accurate current limit for the SC417/SC427  
requires careful PCB layout. The device uses the RDS(ON) of  
the low-side MOSFET for current sensing. The ILIM com-  
parator that performs the current limit function monitors  
the ILIM pin with respect to AGND, but the low-side  
MOSFET is internally connected to PGND. The PCB layout  
needs to following these guidelines.  
There are two sensitive feedback-related pins at the device  
— VOUT and FB. Proper routing is essential to keep noise  
away from these signals. All components connected to FB  
should be located directly at the chip, and the copper area  
of the FB node must be minimized. The VOUT trace that  
feeds into the VOUT pin, which also feeds the FB resistor  
divider, must be kept as far away as possible from noise  
sources such as all switching signals (LX, DH, DL, BST) and  
the inductor. Route the VOUT trace in a quiet layer if pos-  
sible, from the output capacitor back to the chip.  
AGND and PGND must be connected together  
directly at the pins of the IC and not anywhere  
else. This can be done through PCB copper or a  
zero ohm resistor. Keep the traces short and  
direct. The preferred connection for PGND is at  
pin 19. The preferred connection for AGND is at  
the PAD1.  
The PGND path from the device to the input and  
output capacitors requires a wide copper areas.  
Use multiple vias and copper areas if available.  
Do not break up these copper areas with inter-  
vening components. The goal is to minimize  
the IR drop between all PGND connections.  
Provide multiple vias and multiple copper areas  
between the LX pins and the inductor. The goal  
is to minimize any IR drop that might contrib-  
uted to the RDS(ON). This is also good to carry  
heat away from the device.  
For the connection from the RLIM resistor to the  
LX node, use a direct Kelvin connection to pin 28  
(LX), as near to the pin as possible. Do not  
connect to a place further in the copper between  
the LX pins and the inductor — the intervening  
copper will appear as increased RDS(ON) and will  
reduce the operating current limit.  
Power Section  
The switcher power section key guidelines are as follows.  
There should be a very small input loop between  
the input capacitors, inductor, and output  
capacitors. Locate the input decoupling capaci-  
tors directly at the VIN pad on the device.  
The LX phase node should be a large enough to  
carry the required current. Careful sizing is  
required since this is the noisiest node.  
The PGND connection between the input capaci-  
tors, low-side MOSFET, and output capacitors  
should be as small as possible, with wide traces  
or planes and multiple vias.  
The impedance of the PGND connection  
between the low-side MOSFET and the PGND  
pin should be minimized. This connection must  
carry the DL drive current, which has high peaks  
at both rising and falling edges. Use multiple  
layers and multiple vias to minimize impedance  
and keep the distance as short as practical.  
The layout can be considered in two parts; the control  
section referenced to AGND, and the switcher power  
section referenced to GND.  
26  
SC417/SC427  
Applications Information (continued)  
LDO Section  
Connect the control and switcher power sections as  
follows.  
There are three components for the LDO that need to be  
optimized for this layout, the two feedback resistors and  
the output capacitor. Use the following guidelines to  
locate these components.  
Route the VOUT feedback trace in a quiet layer,  
away from noise sources.  
BST is a noisy node and should be kept as short  
as possible. The high-side DH driver uses the  
boost capacitor to provide the DH drive current.  
The boost capacitor must be placed near the  
device and connected to the BST and LX pins  
using short, wide traces to minimize  
impedance.  
Connect the PGND pin on the chip to the V5V  
decoupling capacitor and then insert vias  
directly to the ground plane.  
The feedback resistors should be placed as close  
to the FBL pin as possible. This minimizes the  
trace length for the FBL pin.  
For the feedback divider connection, the top  
resistor must connect directly to the LDO output  
capacitor. There should be no PCB inductance  
between the top of the resistor divider and the  
LDO output capacitor.  
If VLDO is not used to power the device, then a  
minimum 1.0μF capacitor referenced to AGND is  
required.  
If VLDO is used to power-up the device by con-  
necting it to V5V, then the LDO output capacitor  
also becomes the decoupling capacitor for the  
V5V input. A minimum 0.1μF capacitor refer-  
enced to AGND is required along with a  
minimum 1.0μF capacitor referenced to PGND  
to filter the gate drive pulses. Each capacitor  
should be placed near the V5V pin and con-  
nected with short, direct traces. Each capacitor  
should connect directly to its respective  
ground.  
27  
SC417/SC427  
Outline Drawing — MLPQ-5x5-32  
DIMENSIONS  
INCHES MILLIMETERS  
B
E
A
D
DIM  
A
A1 .000  
A2  
b
D
D1  
E
MIN NOM MAX MIN NOM MAX  
-
-
-
-
.031  
.039  
.002 0.00  
1.00  
0.05  
-
0.80  
-
-
-
(.008)  
(0.20)  
0.25 0.30  
4.90 5.00 5.10  
1.92 1.97  
.193 .197 .201 4.90 5.00 5.10  
.007  
.010 .012 0.18  
PIN 1  
INDICATOR  
(LASER MARK)  
.193 .197 .201  
.076 .078  
.080  
2.02  
3.43  
E1  
e
3.48  
.135  
3.53  
.137 .139  
.020 BSC  
0.50 BSC  
L
N
.012 .016 .020 0.30 0.40 0.50  
A2  
32  
32  
aaa  
bbb  
.003  
.004  
0.08  
0.10  
A
SEATING  
PLANE  
aaa  
C
C
A1  
3.48  
D1  
0.76  
1.05  
LxN  
1.49  
E1  
3.61  
1.66  
2
1
0.76  
bxN  
N
R0.20  
PIN 1  
IDENTIFICATION  
e
bbb  
C
A
B
NOTES:  
1.  
2.  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.  
28  
SC417/SC427  
Land Pattern — MLPQ-5x5-32  
3.48  
K1  
K
DIMENSIONS  
1.74  
DIM  
INCHES  
MILLIMETERS  
(.195)  
.165  
.137  
.059  
.065  
.078  
.041  
.020  
.012  
.030  
.224  
(4.95)  
4.20  
3.48  
1.49  
1.66  
1.97  
1.05  
0.50  
0.30  
0.75  
5.70  
C
G
H
H2  
1.74  
H1  
H2  
K
(C)  
G
H
3.61  
Z
H1  
K1  
P
Y
X
Y
X
Z
P
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2.  
THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
3. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD  
SHALL BE CONNECTED TO A SYSTEM GROUND PLANE.  
FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR  
FUNCTIONAL PERFORMANCE OF THE DEVICE.  
4. SQUARE PACKAGE-DIMENSIONS APPLY IN BOTH X AND Y DIRECTIONS.  
Contact Information  
Semtech Corporation  
Power Mangement Products Division  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805) 498-2111 Fax: (805) 498-3804  
www.semtech.com  
29  
配单直通车
SC417MLTRT产品参数
型号:SC417MLTRT
是否Rohs认证: 符合
生命周期:Active
零件包装代码:QFN
包装说明:HVQCCN, LCC32,.2SQ,20
针数:32
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:1.7
其他特性:OUTPUT VOLTAGE IS ADJUSTABLE FROM 0.5V TO 5.5V
模拟集成电路 - 其他类型:DUAL SWITCHING CONTROLLER
控制模式:VOLTAGE-MODE
控制技术:PULSE WIDTH MODULATION
最大输入电压:28 V
最小输入电压:3 V
标称输入电压:12 V
JESD-30 代码:S-XXMA-N32
长度:5 mm
功能数量:1
端子数量:32
最高工作温度:125 °C
最低工作温度:-40 °C
最大输出电流:10 A
标称输出电压:5 V
封装主体材料:UNSPECIFIED
封装代码:HVQCCN
封装等效代码:LCC32,.2SQ,20
封装形状:SQUARE
封装形式:MICROELECTRONIC ASSEMBLY
峰值回流温度(摄氏度):260
认证状态:Not Qualified
座面最大高度:1 mm
子类别:Switching Regulator or Controllers
表面贴装:YES
切换器配置:BUCK
最大切换频率:1000 kHz
温度等级:AUTOMOTIVE
端子形式:NO LEAD
端子节距:0.5 mm
端子位置:UNSPECIFIED
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:5 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!