欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • SI5335A-B10319-GMR
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • SI5335A-B10319-GMR图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • SI5335A-B10319-GMR
  • 数量6500000 
  • 厂家芯科 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483

产品型号SI5335B-B01250-GM的Datasheet PDF文件预览

Si5335  
WEB-CUSTOMIZABLE, ANY-FREQUENCY, ANY-OUTPUT  
QUAD CLOCK GENERATOR/BUFFER  
Features  
Low power MultiSynth™ technology  
enables independent, any-frequency  
synthesis of four frequencies  
Configurable as a clock generator or  
clock buffer device  
Three independent, user-assignable,  
pin-selectable device configurations  
Highly-configurable output drivers with  
up to four differential outputs, eight  
single-ended clock outputs, or a  
combination of both  
Single supply core with excellent  
PSRR: 1.8, 2.5, 3.3 V  
Up to five user-assignable pin  
functions simplify system design:  
SSENB (spread spectrum control),  
RESET, Master OEB or OEB per pin,  
and Frequency plan select  
(FS1, FS0)  
Loss of signal alarm  
PCIe-compliant spread spectrum  
clocking (SSC):  
Ordering Information:  
See page 41.  
Low phase jitter of 0.7 ps RMS  
Flexible input reference:  
100 MHz  
0.5% down spread  
External crystal: 25 or 27 MHz  
CMOS input: 10 to 200 MHz  
SSTL/HSTL input: 10 to 350 MHz  
Differential input: 10 to 350 MHz  
Independently configurable outputs  
support any frequency or format:  
LVPECL/LVDS/CML: 1 to 350 MHz  
HCSL: 1 to 250 MHz  
31.5 kHz modulation rate  
Two selectable loop bandwidth  
settings: 1.6 MHz or 475 kHz  
Easy to customize with web-based  
utility  
Small size: 4 x 4 mm, 24-QFN  
Low power (core):  
45 mA (PLL mode)  
Pin Assignments  
Top View  
24  
23  
22  
21  
20  
19  
CMOS: 1 to 200 MHz  
12 mA (Buffer mode)  
Wide temperature range: –40 to  
+85 °C  
1
2
3
4
XA/CLKIN  
18  
17  
16  
15  
CLK1A  
SSTL/HSTL: 1 to 350 MHz  
Independent output voltage per driver:  
1.5, 1.8, 2.5, or 3.3 V  
XB/CLKINB  
P3  
CLK1B  
VDDO1  
GND  
Pad  
GND  
VDDO2  
CLK2A  
CLK2B  
Applications  
5
6
14  
13  
P5  
P6  
Ethernet switch/router  
PCI Express 3.0/2.1/1.1  
PCIe jitter attenuation  
DSL jitter attenuation  
Processor and FPGA clocking  
MSAN/DSLAM/PON  
Fibre Channel, SAN  
Telecom line cards  
7
8
9
10  
12  
11  
Broadcast video/audio timing  
1 GbE and 10 GbE  
Description  
The Si5335 is a highly flexible clock generator capable of synthesizing four  
completely non-integer-related frequencies up to 350 MHz. The device has four  
banks of outputs with each bank supporting one differential pair or two single-ended  
outputs. Using Silicon Laboratories' patented MultiSynth fractional divider  
technology, all outputs are guaranteed to have 0 ppm frequency synthesis error  
regardless of configuration, enabling the replacement of multiple clock ICs and  
crystal oscillators with a single device. The Si5335 supports up to three independent,  
pin-selectable device configurations, enabling one device to replace three separate  
clock generators or buffer ICs. To ease system design, up to five user-assignable  
and pin-selectable control pins are provided, supporting PCIe-compliant spread  
spectrum control, master and/or individual output enables, frequency plan selection,  
and device reset. Two selectable PLL loop bandwidths support jitter attenuation in  
applications, such as PCIe and DSL. Through its flexible ClockBuilder™  
(www.silabs.com/ClockBuilder) web configuration utility, factory-customized, pin-  
controlled devices are available in two weeks without minimum order quantity  
restrictions.  
Rev. 1.2 1/13  
Copyright © 2013 by Silicon Laboratories  
Si5335  
Si5335  
Functional Block Diagram  
Osc  
VDDO0  
CLK0A  
CLK0B  
PLL Bypass  
÷MultiSynth0  
PLL Bypass  
XA / CLKIN  
XB / CLKINB  
PLL  
OEB0  
OEB1  
VDDO1  
CLK1A  
CLKIN  
÷MultiSynth1  
PLL Bypass  
÷MultiSynth2  
PLL Bypass  
CLK1B  
Programmable  
Pin Function  
Options:  
VDDO2  
CLK2A  
P1  
P2  
P3  
P5  
P6  
CLK2B  
OEB0/1/2/3  
OEB_all  
SSENB  
Control  
OEB2  
OEB3  
VDDO3  
CLK3A  
FS[1:0]  
RESET  
÷MultiSynth3  
CLK3B  
LOS  
2
Rev. 1.2  
Si5335  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical PCIe System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.2. MultiSynth Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.3. ClockBuilder Web-Customization Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.4. Input Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.5. Input and Output Frequency Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.6. Multi-Function Control Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.7. Output Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
3.8. Frequency Select/Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
3.9. Loss-of-Signal Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
3.10. Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
4. Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
5. Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
6. Jitter Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
7. Power Supply Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
8. Loop Bandwidth Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
9. Applications of the Si5335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
9.1. Free-Running Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
9.2. Synchronous Frequency Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
9.3. Configurable Universal Buffer and Level Translator . . . . . . . . . . . . . . . . . . . . . . . . .37  
10. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
11. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
12. Package Outline: 24-Lead QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
13. Recommended PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
14. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
14.1. Si5335 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
14.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Rev. 1.2  
3
Si5335  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
–40  
2.97  
2.25  
1.71  
1.4  
Typ  
25  
Max  
85  
Unit  
°C  
V
Ambient Temperature  
T
A
3.3  
2.5  
1.8  
3.63  
2.75  
1.98  
3.63  
V
V
Core Supply Voltage  
DD  
V
Output Buffer Supply  
Voltage  
V
V
DDOn  
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.  
Table 2. DC Characteristics  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
100 MHz on all outputs,  
25 MHz refclk,  
clock generator mode  
Core Supply Current  
(Clock Generator Mode)  
I
45  
60  
mA  
DDCG  
Core Supply Current  
(Buffer Mode)  
I
50 MHz refclk  
12  
mA  
DDB  
LVPECL, 350 MHz  
CML, 350 MHz  
12  
30  
8
mA  
mA  
mA  
LVDS, 350 MHz  
HCSL, 250 MHz  
2 pF load  
6
20  
19  
9
mA  
mA  
mA  
SSTL, 350 MHz  
CMOS, 50 MHz  
1
Output Buffer Supply Current  
I
DDOx  
15 pF load  
1,2  
CMOS, 200 MHz  
13  
10  
18  
14  
mA  
mA  
3.3 V VDD0  
1,2  
CMOS, 200 MHz  
2.5 V  
1,2  
CMOS, 200 MHz  
7
10  
19  
mA  
mA  
1.8 V  
HSTL, 350 MHz  
Notes:  
1. Single CMOS driver active.  
2. Measured into a 5” 50 trace with 2 pF load.  
4
Rev. 1.2  
Si5335  
Table 3. Performance Characteristics  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
PLL Acquisition Time  
t
1.6 MHz loop bandwidth  
25  
ms  
ACQ  
475 kHz or 1.6 MHz loop  
bandwidth  
PLL Tracking Range  
PLL Loop Bandwidth  
f
5000 20000  
ppm  
TRACK  
f
f
High bandwidth option  
Low bandwidth option  
0
1.6  
475  
0
1
MHz  
kHz  
ppb  
BW1  
BW2  
MultiSynth Frequency  
Synthesis Resolution  
f
Output frequency < Fvco/8  
RES  
CLKIN Loss of Signal Detect  
Time  
t
2.6  
0.2  
5
1
µs  
µs  
LOS  
CLKIN Loss of Signal Release  
Time  
t
0.01  
LOSRLS  
POR to Output Clock Valid  
t
2
4
ms  
ns  
RDY  
Input-to-Output Propagation  
Delay  
t
Buffer Mode  
(PLL Bypass)  
2.5  
PROP  
Reset Minimum Pulse Width  
t
200  
100  
–0.5  
ns  
ps  
%
RESET  
1
F
> 5 MHz  
Output-Output Skew  
t
DSKEW  
OUT  
Spread Spectrum PP  
SS  
F
= 100 MHz  
= 100 MHz  
–0.45  
DEV  
OUT  
OUT  
2
Frequency Deviation  
Spread Spectrum Modulation  
SS  
F
30  
31.5  
33  
kHz  
DEV  
3
Rate  
Notes:  
1. Outputs at integer-related frequencies and using the same driver format.  
2. Default value is 0.5% down spread.  
3. Default value is 31.5 kHz for PCI compliance.  
Rev. 1.2  
5
Si5335  
Table 4. Input and Output Clock Characteristics  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1
Input Clock (AC Coupled Differential Input Clocks on Pins 1 and 2)  
2
Frequency  
f
LVDS, LVPECL,  
HCSL, CML  
10  
0.4  
350  
2.4  
1.0  
60  
IN  
MHz  
Differential Voltage  
Swing  
V
350 MHz input  
PP  
V
PP  
3
Rise/Fall Time  
t /t  
20%–80%  
ns  
R F  
DC  
(PLL  
< 1 ns t /t  
40  
%
%
R F  
mode)  
3
Duty Cycle  
DC  
(PLL  
bypass  
mode)  
< 1 ns t /t  
45  
55  
R F  
1
Input Impedance  
R
10  
k  
IN  
Input Capacitance  
C
3.5  
pF  
IN  
Input Clock (AC-Coupled Single-Ended Input Clock on Pin 1)  
2
Frequency  
f
CMOS, HSTL, SSTL  
200 MHz  
10  
200  
1.2  
MHz  
Vpp  
IN  
CMOS Input Voltage  
Swing  
V
0.8  
I
CMOS Rise/Fall Time t /t  
10%–90%  
20%–80%  
4
ns  
ns  
R F  
CMOS Rise/Fall Time t /t  
2.3  
R F  
HSTL/SSTL Input  
Voltage  
V
I(HSTL/  
200 MHz  
0.4  
1.2  
1.4  
V
PP  
SSTL)  
HSTL/SSTL Rise/Fall  
Time  
t /t  
10%–90%  
ns  
R F  
Notes:  
1. Use an external 100 resistor to provide load termination for a differential clock. See "3.4.2. Differential Input Clocks"  
on page 19.  
2. Minimum input frequency in clock buffer mode (PLL bypass) is 5 MHz. Operation to 1 MHz is also supported in buffer  
mode, but loss-of-signal (LOS) status is not functional.  
3. Applies to differential inputs. For best jitter performance, keep the midpoint peak-to-peak differential input slew rate on  
pins 1 and 2 faster than 0.3 V/ns.  
4. CML output format requires ac-coupling of the differential outputs to a differential 100 load at the receiver. See  
"3.10.6. CML Outputs" on page 31.  
5. Includes effect of internal series 22 resistor.  
6
Rev. 1.2  
Si5335  
Table 4. Input and Output Clock Characteristics (Continued)  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
< 1 ns t /t  
Min  
Typ  
Max  
Unit  
DC  
(PLL  
40  
60  
%
R F  
mode)  
Duty Cycle  
DC  
(PLL  
bypass  
mode)  
< 1 ns t /t  
45  
55  
%
R F  
Input Capacitance  
C
3.5  
pF  
IN  
Output Clocks (Differential)  
LVPECL, LVDS, CML  
HCSL  
1
1
350  
250  
MHz  
MHz  
Frequency  
f
OUT  
V
DDO  
V
common mode  
V
OC  
1.45 V  
LVPECL  
Output Voltage  
peak-to-peak single-  
ended swing  
V
V
V
V
V
0.55  
1.125  
0.25  
0.8  
0.8  
0.96  
1.275  
0.45  
0.95  
0.45  
0.400  
0.85  
V
PP  
SEPP  
V
common mode  
1.2  
V
OC  
LVDS Output Voltage  
(2.5/3.3 V)  
peak-to-peak single-  
ended swing  
0.35  
V
PP  
SEPP  
V
common mode  
0.875  
0.35  
V
OC  
LVDS Output  
Voltage (1.8 V)  
peak-to-peak single-  
ended swing  
0.25  
0.35  
0.575  
V
PP  
SEPP  
V
common mode  
0.375  
0.725  
See Note  
0.860  
V
OC  
HCSL Output Voltage  
CML Output Voltage  
peak-to-peak single-  
ended swing  
V
SEPP  
PP  
4
V
Common Mode  
V
OC  
Peak-to-Peak Single-  
ended Swing  
0.67  
1.07  
V
PP  
SEPP  
20% to 80%  
LVPECL, LVDS,  
HCSL, CML  
Rise/Fall Time  
t /t  
450  
ps  
R F  
Notes:  
1. Use an external 100 resistor to provide load termination for a differential clock. See "3.4.2. Differential Input Clocks"  
on page 19.  
2. Minimum input frequency in clock buffer mode (PLL bypass) is 5 MHz. Operation to 1 MHz is also supported in buffer  
mode, but loss-of-signal (LOS) status is not functional.  
3. Applies to differential inputs. For best jitter performance, keep the midpoint peak-to-peak differential input slew rate on  
pins 1 and 2 faster than 0.3 V/ns.  
4. CML output format requires ac-coupling of the differential outputs to a differential 100 load at the receiver. See  
"3.10.6. CML Outputs" on page 31.  
5. Includes effect of internal series 22 resistor.  
Rev. 1.2  
7
Si5335  
Table 4. Input and Output Clock Characteristics (Continued)  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Duty Cycle  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
LVPECL, LVDS,  
HCSL, CML  
DC  
45  
55  
%
Output Clocks (Single-Ended)  
CMOS  
1
1
200  
350  
MHz  
MHz  
Frequency  
f
OUT  
SSTL, HSTL  
CMOS 20%–80%  
Rise/Fall Time  
t /t  
2 pF load  
0.45  
0.85  
2.0  
ns  
ns  
R F  
CMOS 20%–80%  
Rise/Fall Time  
t /t  
15 pF load  
R F  
V
4 mA load  
4 mA load  
VDDO – 0.3  
V
V
OH  
CMOS  
Output Voltage  
5
V
0.3  
OL  
CMOS  
Output Resistance  
50  
5
HSTL, SSTL  
20%–80%  
t /t  
See Figure 16.  
0.35  
ns  
R F  
Rise/Fall Time  
V
0.5xVDDO+0.3  
0.5xVDDO –0.3  
V
V
V
OH  
HSTL Output Voltage  
SSTL Output Voltage  
VDDO = 1.4 to 1.6 V  
V
OL  
V
SSTL-3  
VDDOx = 2.97 to  
3.63 V  
0.45xVDDO+0.41  
OH  
V
0.45xVDDO–0.41  
V
OL  
V
0.5xVDDO+0.41  
V
V
V
OH  
SSTL-2 VDDOx =  
2.25 to 2.75 V  
V
0.5xVDDO–0.41  
OL  
V
SSTL-18  
VDDOx = 1.71 to  
1.98 V  
0.5xVDDO+0.34  
OH  
V
0.5xVDDO–0.34  
V
OL  
HSTL, SSTL  
Output Resistance  
45  
50  
55  
Duty Cycle  
DC  
%
Notes:  
1. Use an external 100 resistor to provide load termination for a differential clock. See "3.4.2. Differential Input Clocks"  
on page 19.  
2. Minimum input frequency in clock buffer mode (PLL bypass) is 5 MHz. Operation to 1 MHz is also supported in buffer  
mode, but loss-of-signal (LOS) status is not functional.  
3. Applies to differential inputs. For best jitter performance, keep the midpoint peak-to-peak differential input slew rate on  
pins 1 and 2 faster than 0.3 V/ns.  
4. CML output format requires ac-coupling of the differential outputs to a differential 100 load at the receiver. See  
"3.10.6. CML Outputs" on page 31.  
5. Includes effect of internal series 22 resistor.  
8
Rev. 1.2  
Si5335  
Table 5. Control Pins*  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
Input Control Pins (P1, P2, P3, P5*, P6*)  
Pins P1, P2, P3  
Pins P5 and P6  
Pins P1, P2, P3  
Pins P5* and P6*  
–0.1  
20  
0.3 x V  
0.3  
V
V
DD  
V
V
Input Voltage Low  
Input Voltage High  
IL  
0.7 x V  
0.85  
3.73  
1.2  
V
DD  
IH  
V
C
4
pF  
k  
Input Capacitance  
IN  
R
Input Resistance  
IN  
Output Control Pins (LOS, Pin 8)  
V
I
= 3 mA  
0
0.4  
10  
V
Output Voltage Low  
OL  
SINK  
t /t  
C < 10 pf, pull up 1 k  
ns  
Rise/Fall Time 20–80%  
R F  
L
*Note: For more information, see "3.6.1. P5 and P6 Input Control" on page 24.  
Table 6. Crystal Specifications for 25 MHz  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Crystal Frequency  
f
25  
18  
MHz  
pF  
XTAL  
Load Capacitance (on-chip differential)  
Crystal Output Capacitance  
Equivalent Series Resistance  
Crystal Max Drive Level  
c
5
L
c
pF  
O
r
100  
ESR  
d
100  
µW  
L
Table 7. Crystal Specifications for 27 MHz  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Crystal Frequency  
f
27  
MHz  
XTAL  
Load Capacitance (on-chip differential)  
Crystal Output Capacitance  
Equivalent Series Resistance  
Crystal Max Drive Level  
c
18  
5
pF  
pF  
L
c
O
r
75  
ESR  
d
100  
µW  
L
Rev. 1.2  
9
Si5335  
Table 8. Jitter Specifications, Clock Generator Mode (Loop Bandwidth = 1.6 MHz)1,2,3  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
GbE Random Jitter  
(12 kHz–20 MHz)  
CLKIN = 25 MHz  
All CLKn at 125 MHz  
J
0.7  
1
ps RMS  
GbE  
4
5
5
GbE Random Jitter  
(1.875–20 MHz)  
CLKIN = 25 MHz  
All CLKn at 125 MHz  
R
0.38  
0.7  
0.79  
1
ps RMS  
ps RMS  
JGbE  
CLKIN = 19.44 MHz  
All CLKn at  
OC-12 Random Jitter  
(12 kHz–5 MHz)  
J
OC12  
5
155.52 MHz  
PCI Express 1.1 Common  
Clocked (with spread  
spectrum)  
6
Total Jitter  
20.1  
33.6  
ps pk-pk  
6
RMS Jitter , 10 kHz to  
1.5 MHz  
0.15  
0.58  
1.47  
0.75  
ps RMS  
ps RMS  
PCI Express 2.1 Common  
Clocked (no spread spec-  
trum)  
6
RMS Jitter , 1.5 MHz to  
50 MHz  
PCI Express 3.0 Common  
Clocked (no spread spec-  
trum)  
6
RMS Jitter  
0.15  
10  
0.45  
30  
ps RMS  
ps pk-pk  
7
J
Period Jitter  
N = 10,000 cycles  
PER  
N = 10,000 cycles  
Output MultiSynth  
operated in integer or  
8
J
9
29  
ps pk  
Cycle-Cycle Jitter  
CC  
7
fractional mode  
Output and feedback  
MultiSynth in integer or  
Random Jitter  
(12 kHz–20 MHz)  
R
0.7  
1.5  
ps RMS  
J
7
fractional mode  
Notes:  
1. All jitter measurements apply for LVDS/HCSL/LVPECL/CML output format with a low noise differential input clock and  
are made with an Agilent 90804 oscilloscope. All RJ measurements use RJ/DJ separation.  
2. All jitter data in this table is based upon all output formats being differential. When single-ended outputs are used, there  
is the potential that the output jitter may increase due to the nature of single-ended outputs. If your configuration  
implements any single-ended output and any output is required to have jitter less than 2 ps rms, contact Silicon Labs  
for support to validate your configuration and ensure the best jitter performance. In many configurations, CMOS  
outputs have little to no effect upon jitter.  
3. For best jitter performance, keep the single-ended clock input slew rates at pins 1 and 2 greater that 1.0 V/ns and the  
differential clock input slew rates greater than 0.3 V/ns.  
4. DJ for PCI and GbE is < 5 ps pp  
5. Output MultiSynth in Integer mode.  
6. All output clocks 100 MHz HCSL format. Jitter is from the PCIE jitter filter combination that produces the highest jitter.  
See AN562 for details. Jitter is mesured with the Intel Clock Jitter Tool, Ver.1.6.4.  
7. For any output frequency > 10 MHz.  
8. Measured in accordance with JEDEC standard 65.  
9. Rj is multiplied by 14; estimate the pp jitter from Rj over 212 rising edges.  
10  
Rev. 1.2  
Si5335  
Table 8. Jitter Specifications, Clock Generator Mode (Loop Bandwidth = 1.6 MHz)1,2,3 (Continued)  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output MultiSynth  
operated in fractional  
3
15  
ps pk-pk  
7
mode  
D
Deterministic Jitter  
J
Output MultiSynth  
operated in integer  
2
10  
ps pk-pk  
7
mode  
Output MultiSynth  
13  
12  
36  
20  
ps pk-pk  
ps pk-pk  
operated in fractional  
7
mode  
T = D +14xR  
J
(See Note )  
Total Jitter  
(12 kHz–20 MHz)  
J
J
9
Output MultiSynth  
operated in integer  
7
mode  
Notes:  
1. All jitter measurements apply for LVDS/HCSL/LVPECL/CML output format with a low noise differential input clock and  
are made with an Agilent 90804 oscilloscope. All RJ measurements use RJ/DJ separation.  
2. All jitter data in this table is based upon all output formats being differential. When single-ended outputs are used, there  
is the potential that the output jitter may increase due to the nature of single-ended outputs. If your configuration  
implements any single-ended output and any output is required to have jitter less than 2 ps rms, contact Silicon Labs  
for support to validate your configuration and ensure the best jitter performance. In many configurations, CMOS  
outputs have little to no effect upon jitter.  
3. For best jitter performance, keep the single-ended clock input slew rates at pins 1 and 2 greater that 1.0 V/ns and the  
differential clock input slew rates greater than 0.3 V/ns.  
4. DJ for PCI and GbE is < 5 ps pp  
5. Output MultiSynth in Integer mode.  
6. All output clocks 100 MHz HCSL format. Jitter is from the PCIE jitter filter combination that produces the highest jitter.  
See AN562 for details. Jitter is mesured with the Intel Clock Jitter Tool, Ver.1.6.4.  
7. For any output frequency > 10 MHz.  
8. Measured in accordance with JEDEC standard 65.  
9. Rj is multiplied by 14; estimate the pp jitter from Rj over 212 rising edges.  
Rev. 1.2  
11  
Si5335  
Table 9. Jitter Specifications, Clock Generator Mode (Loop Bandwidth = 475 kHz)1,2  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
CLKIN = 70.656 MHz  
All CLKn at  
70.656 MHz  
DSL Random Jitter  
(10 kHz–400 kHz)  
R
0.8  
2
ps RMS  
JDSL1  
4
CLKIN = 70.656 MHz  
All CLKn at  
70.656 MHz  
DSL Random Jitter  
(100 kHz–10 MHz)  
R
0.9  
1.95  
20  
2
ps RMS  
ps RMS  
ps pk-pk  
JDSL2  
4
CLKIN = 70.656 MHz  
All CLKn at  
DSL Random Jitter  
(10 Hz–30 MHz)  
R
2.2  
34  
JDSL3  
4
70.656 MHz  
PCI Express 1.1  
Common Clocked  
(with spread spectrum)  
5
Total Jitter  
5
RMS Jitter , 10 kHz to  
0.3  
0.5  
0.5  
1.0  
ps RMS  
ps RMS  
PCI Express 2.1  
Common Clocked  
(no spread spectrum)  
1.5 MHz  
5
RMS Jitter , 1.5 MHz to  
50 MHz  
PCI Express 3.0  
Common Clocked  
(no spread spectrum)  
5
RMS Jitter  
0.15  
10  
0.45  
30  
ps RMS  
ps pk-pk  
6
J
Period Jitter  
N = 10,000 cycles  
PER  
N = 10,000 cycles  
Output MultiSynth  
operated in integer or  
7
J
9
1
29  
ps pk  
Cycle-Cycle Jitter  
CC  
6
fractional mode  
Output and feedback  
MultiSynth in integer or  
Random Jitter  
(12 kHz–20 MHz)  
R
2.5  
ps RMS  
J
6
fractional mode  
Notes:  
1. All jitter measurements apply for LVDS/HCSL/LVPECL/CML output format with a low noise differential input clock and  
are made with an Agilent 90804 oscilloscope. All RJ measurements use RJ/DJ separation.  
2. All jitter data in this table is based upon all output formats being differential. When single-ended outputs are used, there  
is the potential that the output jitter may increase due to the nature of single-ended outputs. If your configuration  
implements any single-ended output and any output is required to have jitter less than 2 ps rms, contact Silicon Labs  
for support to validate your configuration and ensure the best jitter performance. In many configurations, CMOS  
outputs have little to no effect upon jitter.  
3. DJ for PCI and GbE is < 5 ps pp  
4. Output MultiSynth in Integer mode.  
5. All output clocks 100 MHz HCSL format. Jitter is from the PCIE jitter filter combination that produces the highest jitter.  
See AN562 for details. Jitter is mesured with the Intel Clock Jitter Tool, Ver.1.6.4.  
6. For any output frequency > 5 MHz.  
7. Measured in accordance with JEDEC standard 65.  
8. Rj is multiplied by 14; estimate the pp jitter from Rj over 212 rising edges.  
12  
Rev. 1.2  
Si5335  
Table 9. Jitter Specifications, Clock Generator Mode (Loop Bandwidth = 475 kHz)1,2 (Continued)  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output MultiSynth  
3
15  
ps pk-pk  
operated in fractional  
6
mode  
D
Deterministic Jitter  
J
Output MultiSynth  
operated in integer  
2
10  
ps pk-pk  
6
mode  
Output MultiSynth  
13  
15  
36  
30  
ps pk-pk  
ps pk-pk  
operated in fractional  
6
mode  
T = D +14xR  
J
(See Note )  
Total Jitter  
(12 kHz–20 MHz)  
J
J
8
Output MultiSynth  
operated in integer  
6
mode  
Notes:  
1. All jitter measurements apply for LVDS/HCSL/LVPECL/CML output format with a low noise differential input clock and  
are made with an Agilent 90804 oscilloscope. All RJ measurements use RJ/DJ separation.  
2. All jitter data in this table is based upon all output formats being differential. When single-ended outputs are used, there  
is the potential that the output jitter may increase due to the nature of single-ended outputs. If your configuration  
implements any single-ended output and any output is required to have jitter less than 2 ps rms, contact Silicon Labs  
for support to validate your configuration and ensure the best jitter performance. In many configurations, CMOS  
outputs have little to no effect upon jitter.  
3. DJ for PCI and GbE is < 5 ps pp  
4. Output MultiSynth in Integer mode.  
5. All output clocks 100 MHz HCSL format. Jitter is from the PCIE jitter filter combination that produces the highest jitter.  
See AN562 for details. Jitter is mesured with the Intel Clock Jitter Tool, Ver.1.6.4.  
6. For any output frequency > 5 MHz.  
7. Measured in accordance with JEDEC standard 65.  
8. Rj is multiplied by 14; estimate the pp jitter from Rj over 212 rising edges.  
Table 10. itter Specifications, Clock Buffer Mode (PLL Bypass)*  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85°C)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
0.7 V pk-pk differential input  
clock at 350 MHz with  
70 ps rise/fall time  
Additive Phase Jitter  
(12 kHz–20 MHz)  
0.165  
ps RMS  
t
RPHASE  
0.7 V pk-pk differential input  
clock at 350 MHz with  
70 ps rise/fall time  
Additive Phase Jitter  
(50 kHz–80 MHz)  
0.225  
ps RMS  
t
RPHASEWB  
*Note: All outputs are in Clock Buffer mode (PLL Bypass).  
Rev. 1.2  
13  
Si5335  
Table 11. Typical Phase Noise Performance  
Offset  
Loop  
25 MHz XTAL  
27 MHz Ref In 19.44 MHz Ref In 100 MHz Ref In  
Units  
Frequency Bandwidth to 156.25 MHz to 148.3517 MHz to 155.52 MHz  
to 100 MHz  
100 Hz  
1 kHz  
1.6 MHz  
475 kHz  
1.6 MHz  
475 kHz  
1.6 MHz  
475 kHz  
1.6 MHz  
475 kHz  
1.6 MHz  
475 kHz  
1.6 MHz  
475 kHz  
–90  
N/A*  
–120  
N/A*  
–126  
N/A*  
–132  
N/A*  
–132  
N/A*  
–145  
N/A*  
–87  
–110  
–91  
–115  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
–91  
–113  
–117  
–112  
–123  
–124  
–130  
–122  
–132  
–133  
–145  
–152  
–116  
–111  
–123  
–122  
–128  
–121  
–128  
–131  
–145  
–153  
–122  
–122  
–128  
–127  
–136  
–124  
–136  
–135  
–152  
–152  
10 kHz  
100 kHz  
1 MHz  
10 MHz  
*Note: XTAL input mode does not support the 475 kHz loop bandwidth setting.  
Table 12. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Thermal Resistance  
Junction to Ambient  
Still Air  
37  
°C/W  
JA  
Thermal Resistance  
Junction to Case  
Still Air  
25  
°C/W  
JC  
14  
Rev. 1.2  
Si5335  
Table 13. Absolute Maximum Ratings1  
Parameter  
DC Supply Voltage  
Input Voltage  
Symbol  
Test Condition  
Value  
Unit  
V
V
–0.5 to 3.8  
–0.5 to 1.3  
DD  
V
Pins: XA/CLKIN,  
V
IN  
XB/CLKINB, P5, P6  
Pins: P1, P2, P3  
–0.5 to 3.8  
–55 to 150  
2.5  
V
Storage Temperature Range  
ESD Tolerance  
T
°C  
kV  
STG  
HBM  
(100 pF, 1.5 k)  
ESD Tolerance  
CDM  
MM  
550  
175  
V
V
ESD Tolerance  
Latch-up Tolerance  
Junction Temperature  
JESD78 Compliant  
T
150  
260  
°C  
°C  
J
2,3  
Peak Soldering Reflow Temperature  
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
2. Refer to JEDEC J-STD-020 standard for more information.  
3. 24-QFN package is RoHS-compliant. Moisture sensitivity level is MSL3.  
Rev. 1.2  
15  
Si5335  
2. Typical PCIe System Diagram  
Peripheral  
Board  
Main  
Board  
PCIe  
Core  
PCIe  
Link  
FPGA  
B
FPGA  
PCIe  
Link  
A
PCIe  
Core  
PCIe  
Switch  
125MHz  
LVDS  
FPGA  
C
PCIe  
Core  
PCIe  
Link  
Si5335  
Clock  
Generator  
100MHz HCSL  
25MHz LVPECL  
25MHz LVPECL  
Peripheral  
Board  
Figure 1. PCI Express Switching Application Example  
Figure 1 shows the Si5335 in a PCI Express application using the common clock topology. The Si5335 provides  
reference clocks to the three FPGAs, each of which requires a different clock signaling format (LVDS, LVPECL),  
I/O voltage (1.8, 2.5, 3.3 V), or frequency (25, 100, 125 MHz). In addition, the Si5335 provides a PCIe compliant,  
100 MHz HCSL reference clock to the PCIe switch.  
16  
Rev. 1.2  
Si5335  
3. Functional Description  
Osc  
VDDO0  
CLK0A  
CLK0B  
PLL Bypass  
÷MultiSynth0  
PLL Bypass  
XA / CLKIN  
XB / CLKINB  
PLL  
OEB0  
VDDO1  
CLK1A  
CLKIN  
÷MultiSynth1  
PLL Bypass  
÷MultiSynth2  
PLL Bypass  
CLK1B  
OEB1  
OEB2  
OEB3  
Programmable  
Pin Function  
Options:  
VDDO2  
CLK2A  
P1  
P2  
CLK2B  
P3  
P5  
OEB0/1/2/3  
OEB_all  
SSENB  
FS[1:0]  
RESET  
Control  
P6  
VDDO3  
CLK3A  
÷MultiSynth3  
CLK3B  
LOS  
Figure 2. Si5335 Functional Block Diagram  
3.1. Overview  
The Si5335 is a high-performance, low-jitter clock generator or buffer capable of synthesizing four independent  
user-programmable clock frequencies up to 350 MHz. The device supports free-run operation using an external 25  
or 27 MHz crystal, or it can lock to an external clock for generating synchronous clocks. The output drivers support  
four differential clocks or eight single-ended clocks or a combination of both. The output drivers are configurable to  
support common signal formats, such as LVPECL, LVDS, HCSL, CML, CMOS, HSTL, and SSTL. Separate output  
supply pins allow supply voltages of 3.3, 2.5, 1.8, and 1.5 V to support the multi-format output driver. The core  
voltage supply accepts 3.3, 2.5, or 1.8 V and is independent from the output supplies. Using its two-stage  
synthesis architecture and patented high-resolution MultiSynth technology, the Si5335 can generate four  
independent frequencies from a single input frequency. In addition to clock generation, the inputs can bypass the  
synthesis stage enabling the Si5335 to be used as a high-performance clock buffer.  
Spread spectrum* is available on each of the clock outputs for EMI-sensitive applications, such as PCI Express.  
The device includes an interrupt pin that monitors for both loss of PLL lock (LOL) and loss of input signal (LOS)  
conditions while configured in clock generator mode. In clock generator mode, the LOS pin is asserted whenever  
LOL or LOS is true. In clock buffer mode (i.e., when the PLL is bypassed), the LOS pin is asserted whenever the  
input clock is lost. The LOL condition does not apply in clock buffer mode.  
*Note: See " Document Change List" on page 45 for more information.  
Rev. 1.2  
17  
Si5335  
3.2. MultiSynth Technology  
Next-generation timing architectures require a wide range of frequencies which are often non-integer related.  
Traditional clock architectures address this by using a combination of single PLL ICs, 4-PLL ICs and discrete XOs,  
often at the expense of BOM complexity and power. The Si5335 uses patented MultiSynth technology to  
dramatically simplify timing architectures by integrating the frequency synthesis capability of 4 phase-locked loops  
(PLLs) in a single device, greatly minimizing size and power requirements versus traditional solutions. Based on a  
fractional-N PLL, the heart of the architecture is a low phase noise, high-frequency VCO. The VCO supplies a high  
frequency output clock to the MultiSynth block on each of the four independent output paths. Each MultiSynth  
operates as a high-speed fractional divider with Silicon Laboratories' proprietary phase error correction to divide  
down the VCO clock to the required output frequency with very low jitter.  
The first stage of the MultiSynth architecture is a fractional-N divider which switches seamlessly between the two  
closest integer divider values to produce the exact output clock frequency with 0 ppm error. To eliminate phase  
error generated by this process, MultiSynth calculates the relative phase difference between the clock produced by  
the fractional-N divider and the desired output clock and dynamically adjusts the phase to match the ideal clock  
waveform. This novel approach makes it possible to generate any output clock frequency without sacrificing jitter  
performance. Based on this architecture, the output of each MultiSynth can produce any frequency from 1 to  
350 MHz.  
MultiSynth  
Fractional-N  
Divider  
Phase  
Adjust  
fVCO  
fOUT  
Phase Error  
Calculator  
Divider Select  
(DIV1, DIV2)  
Figure 3. Silicon Labs' MultiSynth Technology  
3.3. ClockBuilder Web-Customization Utility  
ClockBuilder is a web-based utility available at www.silabs.com/ClockBuilder that allows hardware designers to  
tailor the Si5335’s flexible clock architecture to meet any application-specific requirements and order custom clock  
samples. Through a simple point-and-click interface, users can specify any combination of input frequency and  
output frequencies and generate a custom part number for each application-specific configuration. There are no  
minimum order quantity restrictions.  
ClockBuilder enables mass customization of clock generators. This allows a broader range of applications to take  
advantage of using application-specific pin controlled clocks, simplifying design while eliminating the firmware  
2
development required by traditional I C-programmable clock generators.  
Based on Silicon Labs’ patented MultiSynth technology, the device PLL output frequency is constant and all clock  
output frequencies are synthesized by the four MultiSynth fractional dividers. All PLL parameters, including divider  
settings, VCO frequency, loop bandwidth, charge pump current, and phase margin are internally set by the device  
during the configuration process. This ensures optimized jitter performance and loop stability while simplifying  
design.  
18  
Rev. 1.2  
Si5335  
3.4. Input Configuration  
The Si5335 input can be driven from either an external crystal or a reference clock. Reference selection is made  
when the device configuration is specified using the ClockBuilder™ web-based utility available at www.silabs.com/  
ClockBuilder.  
3.4.1. Crystal Input  
If the crystal input option is used, the Si5335 operates as a free-running clock generator. In this mode of operation  
the device requires a low-cost 25 or 27 MHz fundamental mode crystal connected across XA and XB as shown in  
Figure 4. Given the Si5335’s frequency flexibility, the same 25 or 27 MHz crystal can be reused to generate any  
combination of output frequencies. Custom frequency crystals are not required. The Si5335 integrates the crystal  
load capacitors on-chip to reduce external component count. The crystal should be placed very close to the device  
to minimize stray capacitance. To ensure stable oscillation, the recommended crystal specifications provided in  
Tables 6 and 7 must be followed. See AN360 for additional details regarding crystal recommendations.  
Si5335  
XA/CLKIN  
XTAL  
XB/CLKINB  
Figure 4. Connecting an XTAL to the Si5335  
3.4.2. Differential Input Clocks  
The multi-format differential clock inputs of the Si5335 will interface with today’s most common differential signals,  
such as LVDS, LVPECL, CML, and HCSL. The differential inputs are internally self-biased and must be ac-coupled  
externally with a 0.1 µF capacitor. The receiver will accept a signal with a voltage swing between 400 mV and  
2.4 V differential. Each half of the differential signal must not exceed 1.2 V at the input to the Si5335 or else  
PP  
PP  
the 1.3 V dc voltage limit may be exceeded.  
3.4.2.1. LVDS Inputs  
When interfacing the Si5335 device to an LVDS signal, a 100 termination is required at the input along with the  
required dc blocking capacitors as shown in Figure 5.  
Must be ac coupled  
Keep termination close to  
input pin of the Si5335  
0.1 uF  
Si5335  
50  
Pin 1  
100  
Pin 2  
50  
LVDS  
0.1 uF  
Figure 5. LVDS Input Signal  
3.4.2.2. LVPECL Input Clocks  
Recommended configurations for interfacing an LVPECL input signal to the Si5335 are shown in Figure 6. Typical  
values for the bias resistors (Rb) range between 120and 200 depending on the LVPECL driver. The 100   
resistor provides line termination. Because the receiver is internally self-biased, no additional external bias is  
required.  
Another solution is to terminate the LVPECL driver with a Thevenin configuration as shown in Figure 6b.The  
Rev. 1.2  
19  
Si5335  
values for R and R are calculated to provide a 50termination to V -2V. Given this, the recommended resistor  
1
2
DD  
values are R = 127 and R = 82.5 for V = 3.3 V, and R = 250 andR = 62.5 for V = 2.5 V.  
1
2
DD  
1
2
DD  
Keep termination close to  
input pin of the Si5335  
3.3 V, 2.5 V  
0.1 uF  
Si5335  
50  
50  
Pin 1  
Pin 2  
100  
LVPECL  
0.1 uF  
Rb  
Rb  
Must be ac coupled  
LVPECL Input Signal with Source Biasing Option  
Keep termination close to  
input pin of the Si5335  
VDD VDD  
Must be ac coupled  
R1  
R1  
VDD  
= 3.3 V, 2.5 V  
Si5335  
0.1 uF  
0.1 uF  
50  
50  
Pin 1  
Pin 2  
LVPECL  
R2  
R2  
VT = VDD – 2 V  
R1 // R2 = 50 Ohm  
LVPECL Input Signal with Load Biasing Option  
Figure 6. Recommended Options for Interfacing to an LVPECL Input Signal  
Since the differential receiver of the Si5335 is internally self biased, an LVPECL signal may not be dc-coupled to  
the device. Figure 7 shows some common LVPECL connections that should not be used because of the dc levels  
they present at the receiver’s input.  
VDD VDD  
VDD VDD  
DC Coupled with  
Thevenin Termination  
AC Coupled with  
Thevenin Re-Biasing  
R1  
R1  
R1  
R1  
50  
50  
50  
50  
LVPECL  
LVPECL  
R2  
R2  
R2  
Rb  
R2  
Rb  
Not Recommended  
Figure 7. Common LVPECL Connections that May be Destructive to the Si5335 Input  
20  
Rev. 1.2  
Si5335  
3.4.2.3. CML Input Clocks  
CML signals may be applied to the differential inputs of the Si5335. Since the Si5335 differential inputs are  
internally self-biased, a CML signal may not be dc-coupled to the device.  
The recommended configurations for interfacing a CML input signal to the Si5335 are shown in Figure 8. The  
100 resistor provides line termination, and, since the receiver is internally-biased, no additional external biasing  
components are required.  
Keep termination close to  
input pin of the Si5335  
0.1 uF  
Si5335  
50  
Pin 1  
100  
Pin 2  
CML  
50  
0.1 uF  
Must be ac coupled  
Figure 8. CML Input Signal  
3.4.2.4. HCSL Input Clocks  
A typical HCSL driver has an open source output, which requires an external series resistor and a resistor to  
ground. The values of these resistors depend on the driver but are typically equal to 33 (Rs) and 50 (Rt). Note  
that the HCSL driver in the Si5335 requires neither Rs nor Rt resistors. Other than two ac-coupling capacitors, no  
additional external components are necessary when interfacing an HCSL signal to the Si5335.  
Must be ac coupled  
3.3V, 2.5V, 1.8V  
0.1 uF  
Rs  
Si5335  
50  
Pin 1  
Pin 2  
Rs  
50  
HCSL  
0.1 uF  
Rt  
Rt  
Figure 9. HCSL Input Signal to Si5335  
Rev. 1.2  
21  
Si5335  
3.4.3. Single-Ended CMOS Input Clocks  
For synchronous timing applications, the Si5335 can lock to a 10 to 200 MHz CMOS reference clock. A typical  
interface circuit is shown in Figure 10. A series termination resistor may be required if the CMOS driver impedance  
does not match the trace impedance.  
Keep Rse and Rsh close to  
the receiver  
0.1 uF  
Rse  
Si5335  
CMOS Input Signal  
1.8 V CMOS  
50  
Pin 1  
Pin 2  
Rsh  
3.3 V CMOS  
Rse = 249  
Rsh = 464   
Rse = 499   
Rsh = 274   
2.5 V CMOS  
0.1 uF  
Rse = 402   
Rsh = 357   
Figure 10. Interfacing CMOS Reference Clocks to the Si5335  
3.4.4. Single-Ended SSTL and HSTL Input Clocks  
HSTL and SSTL single-ended inputs can be input to the differential inputs, pins 1 and 2, of the Si5335 with the  
circuit shown in Figure 11.  
Some drivers may require a series 25 resistor. If the SSTL/HSTL input is being driven by another Si5335 device,  
the 25 series resistor is not required as this is integrated on-chip. The maximum recommended input frequency  
in this case is 350 MHz.  
Keep termination close to  
input pin of the Si5335  
VTT  
50  
0.1 uF  
Si5335  
Pin 1  
50  
0.4 to 1.2 V pk-pk  
Differential  
Input  
VDD  
Pin 2  
R1  
R2  
0.1 uF  
VTT  
0.1 uF  
SSTL_2, SSTL_18, HSTL  
R1 = 2.43 k  
R2 = 2 k  
SSTL_3  
R1 = 2.43 k  
R2 = 2 k  
Figure 11. Single-Ended SSTL/HSTL Input Clocks to the Si5335  
22  
Rev. 1.2  
Si5335  
3.4.5. Applying a Single-Ended Clock to the Differential Input Clock Pins  
It is possible to interface any single-ended clock signal to the differential input pins (XA/CLKIN, XB/CLKINB). The  
recommended interface for a signal that requires a 50 load is shown in Figure 12. On these inputs, it is important  
that the signal level be less than 1.2 V SE and greater than 0.4 V SE. The maximum recommended input  
PP  
PP  
frequency in this case is 350 MHz.  
Keep termination close to  
input pin of the Si5335  
0.1 uF  
Si5335  
Pin 1  
50  
0.4 to 1.2V pk-pk  
50  
Pin 2  
0.1 uF  
Figure 12. Single-Ended Input Signal with 50 Termination  
3.5. Input and Output Frequency Configuration  
The Si5335 utilizes a single PLL-based architecture, four independent MultiSynth fractional output dividers, and a  
MultiSynth fractional feedback divider such that a single device provides the clock generation capability of 4  
independent PLLs. Unlike competitive multi-PLL solutions, the Si5335 can generate four unique non-integer  
related output frequencies with 0 ppm frequency error for any combination of output frequencies. In addition, any  
combination of output frequencies can be generated from a single reference frequency without having to change  
the crystal or reference clock frequency between frequency configurations.  
The Si5335 frequency configuration is set when the device configuration is specified using the ClockBuilder web-  
based utility available at www.silabs.com/ClockBuilder. Any combination of output frequencies ranging from 1 to  
350 MHz can be configured on each of the device outputs. Up to three unique device configurations can be  
specified in a single device, enabling the Si5335 to replace 3 different clock generators or clock buffers.  
3.6. Multi-Function Control Inputs  
The Si5335 supports five user-defined input pins (pins 3, 5, 6, 12, 19) that are customizable to support the  
functions listed below. The pinout of each device is customized using the ClockBuilder utility. This enables the  
device to be custom tailored to a specific application. Each of the different functions is described in further detail  
below.  
Table 14. Multi-Function Control Inputs  
Pin Function  
Description  
Assignable Pin Name  
OEB_all  
Output Enable All.  
P1, P2, P3, P5*, P6*  
All outputs enabled when low.  
Output Enable Bank 0.  
CLK0A/0B enabled when low.  
Output Enable Bank 1.  
CLK1A/1B enabled when low.  
Output Enable Bank 2.  
CLK2A/2B enabled when low.  
Output Enable Bank 3.  
OEB0  
OEB1  
OEB2  
OEB3  
P1, P2, P3, P5*, P6*  
P1, P2, P3, P5*, P6*  
P1, P2, P3, P5*, P6*  
P1, P2, P3, P5*, P6*  
CLK3A/3B enabled when low.  
Rev. 1.2  
23  
Si5335  
FS0  
Table 14. Multi-Function Control Inputs (Continued)  
Frequency Select.  
P1  
Selects active device frequency plan from factory-configured  
profiles. See “3.8. Frequency Select/Device Reset” for more  
information.  
FS1  
Frequency Select.  
P1 (for 2-plan devices)  
P2 (for 3-plan devices)  
Selects active device frequency plan from factory-configured  
profiles. See “3.8. Frequency Select/Device Reset” for more  
information.  
RESET  
SSENB  
Reset.  
P1, P2, P3  
Asserting this pin (driving high) is required to change  
FS1,FS0 pin setting. Reset is not required if FS1,FS0 pins are  
unassigned.  
Spread Spectrum Enable.  
P1, P2, P3, P5*, P6*  
Enables PCI-compliant spread spectrum clocking on all 100  
MHz clock outputs when low.  
*Note: See “3.6.1. P5 and P6 Input Control” for recommended termination circuits for these pins.  
3.6.1. P5 and P6 Input Control  
Control input signals to P5 and P6 cannot exceed 1.2 V. When these inputs are driven from CMOS sources, a  
resistive attenuator is required for pins 5 and 6, as shown in Figure 13.  
Keep Rse and Rsh close to pin 5 and pin 6  
Si5335  
Rse  
Pin 5, Pin 6  
CMOS input signal  
50  
Rsh  
1.8 V CMOS  
Rse = 1 k  
Rsh = 1.58 k  
2.5 V CMOS  
1.96 k  
1.58 k  
3.3 V CMOS  
3.09 k  
1.58 k  
Figure 13. P5, P6 Control Pin Termination  
3.7. Output Enable  
Each of the device’s four banks of clock outputs can be individually disabled using OEB0, OEB1, OEB2 and OEB3,  
respectively. Alternatively, all clock outputs can be disabled using the master output enable OEB_all. When a  
Si5335 clock output bank is disabled, the output disable state is determined by the configuration specified in the  
ClockBuilder web utility. When one or more banks of clock outputs are enabled or disabled, clock start and stop  
transitions are handled glitchlessly.  
3.8. Frequency Select/Device Reset  
The device frequency plan is customized using the ClockBuilder web utility. The Si5335 optionally supports up to  
three unique, pin-selectable configurations per device, enabling one device to replace up to three separate clock  
ICs. To select a particular frequency plan, set the FS pins as outlined below:  
For custom Si5335 devices configured to support two frequency plans, the FS1 pin should be set as follows:  
FS1  
Profile  
24  
Rev. 1.2  
Si5335  
0
1
1
2
For custom Si5335 devices configured to support three frequency plans, the FS1 and FS0 pins should be set as  
follows:  
FS1  
0
FS0  
0
Profile  
Reserved  
0
1
1
2
3
1
0
1
1
If a change is made to the FS pin settings, the device reset pin (RESET) must be held high for the minimum pulse  
width specified in Table 3 on page 5 to change the device configuration. The output clocks will be momentarily  
squelched until the device begins operation with the new frequency plan.  
If the RESET pin is not selected in ClockBuilder as one of the five programmable pins, a power-on reset must be  
applied for an FS pin change to take effect.  
3.9. Loss-of-Signal Alarm  
The Si5335 supports a loss of signal (LOS) output indicator for monitoring the condition of the crystal/clock  
reference input. The LOS condition occurs when there is no input clock to the device or the PLL has lost lock (in  
clock generator mode). When an input clock is removed, the LOS pin will assert and the output clocks may drift up  
to 5% (in clock generator mode). When the input clock with an appropriate frequency is reapplied, the LOS pin will  
deassert. In clock buffer mode, LOS is driven high when the input clock is lost.  
LOS Output State  
Description  
0
Input clock present and  
PLL is locked  
1
Input clock not present and  
PLL is not locked  
Rev. 1.2  
25  
Si5335  
3.10. Output Stage  
The output stage consists of programmable output drivers as shown in Figure 14.  
Output  
Stage  
VDDO0  
CLK0A  
CLK0B  
VDDO1  
CLK1A  
CLK1B  
VDDO2  
CLK2A  
CLK2B  
VDDO3  
CLK3A  
CLK3B  
Figure 14. Output Stage  
The Si5335 devices provide four outputs that can be differential or single-ended. When configured as single-  
ended, the driver generates two signals that can be configured as in-phase or complementary. Each of the outputs  
has its own output supply pin, allowing the device to be used in mixed supply applications without the need for  
external level translators. The CML output driver generates a similar output swing as the LVPECL driver but  
consumes half the current. CML outputs must be ac-coupled.  
3.10.1. CMOS/LVTTL Outputs  
The CMOS output driver has a controlled impedance of about 50 , which includes an internal series resistor of  
approximately 22 . For this reason, an external Rs series resistor is not recommended when driving 50 traces.  
If the trace impedance is higher than 50 , a series resistor, Rs, should be used. A typical configuration is shown in  
Figure 15. A CMOS output driver can be configured with ClockBuilder as a single- or dual-output driver. Dual  
otuput configurations support in-phase or complementary outputs. The output supports 3.3, 2.5, and 1.8 V CMOS  
signal levels when the appropriate voltage is supplied to the external VDDO pin and the device is configured  
accordingly.  
3.3, 2.5, or 1.8 V  
VDDOx  
LVTTL/  
Si5335  
CMOS  
CLKxA  
CLKxB  
50  
50  
CMOS  
Figure 15. Interfacing to a CMOS Receiver  
26  
Rev. 1.2  
Si5335  
3.10.2. SSTL and HSTL Outputs  
The Si5335 supports both SSTL and HSTL outputs, which can be single-ended or differential. The recommended  
termination scheme for SSTL is shown in Figure 16. The V supply can be generated using a simple voltage  
TT  
divider as shown below (note that Rt = 50 ).  
SSTL (3.3, 2.5, or 1.8 V)  
VTT  
VTT  
HSTL (1.5 V)  
VDDOx  
SSTL_3  
SSTL_2  
SSTL_18  
HSTL  
Rt  
Rt  
Si5335  
50  
50  
CLKxA  
CLKxB  
SSTL  
or  
HSTL  
VDDO  
R1  
R2  
VTT  
SSTL_3  
SSTL_2, SSTL_18, HSTL  
0.1 µF  
R1 = 2.43 k  
R2 = 2 k  
R1 = 2 k  
R2 = 2 k  
Figure 16. Interfacing the Si5335 to an SSTL or HSTL Receiver  
3.10.3. LVPECL Outputs  
The LVPECL driver is configurable in both 3.3 V or 2.5 V standard LVPECL modes. The output driver can be ac-  
coupled or dc-coupled to the receiver.  
3.10.3.1. DC-Coupled LVPECL Outputs  
The standard LVPECL driver supports two commonly used dc-coupled configurations. Both of these are shown in  
Figure 17a and Figure 17b. LVPECL drivers were designed to be terminated with 50 to VDD–2 V, which is  
illustrated in Figure 17a. V can be supplied with a simple voltage divider as shown.  
TT  
An alternative method of terminating LVPECL is shown in Figure 17b, which is the Thevenin equivalent to the  
termination in Figure 17a. It provides a 50 load terminated to V –2.0 V. For 3.3 V LVPECL, use R = 127 and  
DD  
1
R = 82.5 ; for 2.5 V LVPECL, use R = 250 and R = 62.5 The only disadvantage to this type of termination  
2
1
2
is that the Thevenin circuit consumes additional power from the V  
supply.  
DDO  
Rev. 1.2  
27  
Si5335  
Keep termination close to  
the receiver  
3.3 V, 2.5 V  
VDDOx  
50  
3.3 V LVPECL  
2.5 V LVPECL  
Si5335  
50  
50  
CLKxA  
CLKxB  
LVPECL  
VTT = VDDO – 2.0  
50  
a. DC-Coupled Termination of 50 to VDDO – 2.0 V  
VDDO VDDO  
Keep termination close to  
3.3 V, 2.5 V  
VDDOx  
the receiver  
R1  
R1  
3.3 V LVPECL  
2.5 V LVPECL  
Si5335  
50  
50  
CLKxA  
CLKxB  
LVPECL  
3.3 V LVPECL  
R1 = 127  
R2 = 82.5   
VT = VDDO – 2.0 V  
R2  
R2  
R1 // R2 = 50   
2.5 V LVPECL  
R1 = 250   
R2 = 62.5   
b. DC-Coupled with Thevenin Termination  
Figure 17. Interfacing the Si5335 to an LVPECL Receiver Using DC Coupling  
28  
Rev. 1.2  
Si5335  
3.10.3.2. AC Coupled LVPECL Outputs  
AC coupling is necessary when a receiver and a driver have compatible voltage swings but different common-  
mode voltages. AC coupling works well for dc-balanced signals, such as for 50% duty cycle clocks. Figure 18  
describes two methods for ac coupling the standard LVPECL driver. The Thevenin termination shown in Figure 18a  
is a convenient and common approach when a V (V  
– 1.3 V) supply is not available; however, it does  
BB  
DD  
consume additional power. The termination method shown in Figure 18b consumes less power. A V supply can  
BB  
be generated from a simple voltage divider circuit as shown in Figure 18b.  
VDDO VDDO  
Keep termination close to  
the receiver  
3.3 V, 2.5 V  
VDDOx  
R1  
R1  
3.3 V LVPECL  
2.5 V LVPECL  
0.1 µF  
0.1 µF  
Si5335  
50  
50  
CLKxA  
CLKxB  
LVPECL  
VDDO – 1.3 V  
R1 // R2 = 50  
3.3 V LVPECL  
R1 = 82.5   
R2 = 127   
R2  
R2  
Rb  
Rb  
2.5 V LVPECL  
Rb = 130 (2.5 V LVPECL)  
Rb = 200 (3.3 V LVPECL)  
R1 = 62.5   
R2 = 250   
a. AC-Coupled with Thevenin Termination  
Keep termination close to  
3.3 V, 2.5 V  
VDDOx  
the receiver  
0.1 µF  
50  
3.3 V LVPECL  
2.5 V LVPECL  
Si5335  
50  
50  
CLKxA  
CLKxB  
VBB  
LVPECL  
0.1 µF  
50  
VDDO  
V
DDO – 1.3 V  
Rb  
Rb  
R1  
Rb = 130 (2.5 V LVPECL)  
Rb = 200 (3.3 V LVPECL)  
VBB  
R2  
0.1 µF  
b. AC Coupled with 100 Termination  
Figure 18. Interfacing to an LVPECL Receiver Using AC Coupling  
Rev. 1.2  
29  
Si5335  
3.10.4. LVDS Outputs  
The LVDS output option provides a very simple and power-efficient interface that requires no external biasing when  
connected to an LVDS receiver. An ac-coupled LVDS driver is often useful as a CML driver. The LVDS driver may  
be dc-coupled or ac-coupled to the receiver in 3.3 V or 2.5 V output mode.  
3.10.4.1. AC-Coupled LVDS Outputs  
The Si5335 LVDS output can drive an ac-coupled load. The ac coupling capacitors may be placed at either the  
driver or receiver end, as long as they are placed prior to the 100 termination resistor. Keep the 100   
termination resistor as close to the receiver as possible, as shown in Figure 19. When a 1.8 V output supply  
voltage is used, the LVDS output of the Si5335 produces a common-mode voltage of ~0.875 V, which does not  
support the LVDS standard. In this case, it is best to ac-couple the output to the load.  
Keep termination close to  
the receiver  
3.3 V or 2.5 V  
VDDO  
x
Si5335  
50  
50  
LVDS  
CLKxA  
CLKxB  
LVDS  
100  
DC-Coupled LVDS Output  
Keep termination close to  
the receiver  
3.3 V, 2.5 V, or 1.8 V  
VDDO  
x
0.1 µF  
100   
0.1 µF  
Si5335  
50  
50  
CLKxA  
CLKxB  
LVDS  
AC-Coupled LVDS Output  
Figure 19. Interfacing to an LVDS Receiver  
30  
Rev. 1.2  
Si5335  
3.10.5. HCSL Outputs  
Host clock signal level (HCSL) outputs are commonly used in PCI Express applications. A typical HCSL driver has  
an open source output that requires an external series resistor and a resistor to ground. The Si5335 HCSL driver  
has integrated these resistors to simplify the interface to an HCSL receiver. No external components are necessary  
when connecting the Si5335 HCSL driver to an HCSL receiver.  
3.3, 2.5, or 1.8 V  
VDDOx  
Rs  
Rs  
50  
50  
HCSL  
CLKxA  
CLKxB  
HCSL  
Rt  
Rt  
Si5335  
Figure 20. Interfacing the Si5335 to an HCSL Receiver  
3.10.6. CML Outputs  
Current mode logic (CML) is transmitted differentially and terminated to 50 to Vcc as shown in Figure 20. A CML  
receiver can be driven with either an LVPECL, CML, or LVDS output. To drive a CML receiver, an Si5335 output  
configured in LVPECL or CML mode generates a single-ended output swing of 550 mV to 960 mV. However, to  
reduce power consumption by approximately 15 mA per output driver pair (compared to an LVPECL-configured  
output), the Si5335's CML output mode can be selected without affecting the output voltage swing. For even lower  
power consumption, depending on the input signal swing required, CML receivers can be driven with an Si5335  
output configured in LVDS mode. CML output format is not available when the Si5335 is in PLL bypass (clock  
buffer) mode.  
Driving a CML Receiver Using the LVPECL Output  
550 mV to 960 mVp-p  
Si5335  
CML  
Receiver  
0.1 µF  
0.1 µF  
50  
50  
Vcc  
50  
LVPECL  
50  
Rb  
Rb  
Rb = 130 (2.5 V LVPECL)  
Rb = 200 (3.3 V LVPECL)  
Driving a CML Receiver Using the CML or LVDS Output  
CML  
Receiver  
670 mV to 1070 mVp-p (CML)  
250 mV to 450 mVp-p (LVDS)  
Si5335  
0.1 µF  
0.1 µF  
50  
50  
Vcc  
50  
CML or  
LVDS  
50  
Figure 21. Terminating an LVPECL or an LVDS Output to a CML Receiver  
Rev. 1.2  
31  
Si5335  
4. Power Consumption  
In clock generator mode, the Si5335 Power consumption is a function of the following:  
Supply voltage  
Frequency of output Clocks  
Number of output Clocks  
Format of output Clocks  
Because of internal voltage regulation, the current from the core V is independent of the V voltage and hence  
DD  
DD  
the plot shown in Figure 5 can be used to estimate the V core (pins 7 and 24) current.  
DD  
The current from the output supply voltages can be estimated from the values provided in Table 2, “DC  
Characteristics,” on page 4. To get the most accurate value for V  
Desktop software should be used.  
currents, the Si5338-EVB with ClockBuilder  
DD  
To do this, go to the “Power” tab of ClockBuilder Desktop and press “Measure”. In this manner, a specific  
configuration can be implemented on the EVB and the actual current for each supply voltage measured. When  
doing this it is critical that the output drivers have the proper load impedance for the selected format.  
When testing for output driver current with HSTL and SSTL, it is required to have load circuitry as shown in "3.10.2.  
SSTL and HSTL Outputs" on page 27. The Si5338 EVB has layout pads that can be used for this purpose. When  
testing for output driver current with LVPECL the same layout pads can be used to implement the LVPECL bias  
resistor of 130 (2.5 V VDDx) or 200 (3.3 V VDDx). See the schematic in the Si5338-EVB data sheet and  
AN408 for additional information.  
80  
4 Active Outputs, Fractional Output MS  
4 Active Outputs, Integer Output MS  
3 Active Outputs, Fractional Output MS  
3 Active Outputs, Integer Output MS  
2 Active Outputs, Fractional Output MS  
2 Active Outputs, Integer Output MS  
1 Active Output, Fractional Output MS  
1 Active Output, Integer Output MS  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
0
50  
100  
150  
200  
250  
300  
350  
400  
Output Frequency (MHz)  
Figure 22. Core VDD Supply Average Current vs Output Frequency  
32  
Rev. 1.2  
Si5335  
5. Spread Spectrum  
To help reduce electromagnetic interference (EMI), the Si5335 supports spread spectrum modulation in clock  
generator mode only. The output clock frequencies can be modulated to spread energy across a broader range of  
frequencies, lowering system EMI. Spread spectrum modulation is generated digitally in the output MultiSynth  
dividers, which means that the spread spectrum parameters are virtually independent of process, voltage, and  
temperature variations.  
If the SSENB function is assigned to a pin in ClockBuilder and asserted (driven low), PCIe-compliant spread  
spectrum is applied to all 100 MHz output clocks with a default spreading rate of 31.5 kHz and 0.5% down spread.  
If no 100 MHz output clocks are defined but the SSENB is assigned and asserted, none of the output clocks will  
have spread spectrum clocking applied. Some custom spread-spectrum clocking profiles are available. If the  
Si5335's default PCIe spread spectrum profile is not suitable for your application, submit your custom spread  
spectrum requirements for review by visiting the Silicon Labs Technical Support web page at https://  
www.silabs.com/support/pages/contacttechnicalsupport.aspx, or contact your local Silicon Labs sales  
representative for more information.  
Clock with  
SSC Off  
Reduced  
Amplitude and  
EMI  
Clock with  
SSC On  
(downspread)  
Carrier Frequency  
f
Figure 23. Spread Spectrum Clocking Impact on Output Power Spectrum  
Rev. 1.2  
33  
Si5335  
6. Jitter Performance  
The Si5335 provides consistently low jitter for any combination of output frequencies. The device leverages a low  
phase noise single PLL architecture and Silicon Laboratories’ patented MultiSynth fractional output divider  
technology to deliver period jitter of 10 ps pk-pk (typ). The Si5335 provides superior performance to conventional  
multi-PLL solutions which may suffer from degraded jitter performance depending on frequency plan and the  
number of active PLLs.  
7. Power Supply Considerations  
The Si5335 has 2 core supply voltage pins (V ) and 4 clock output bank supply voltage pins (V  
–V  
),  
DDO3  
DD  
DDO0  
enabling the device to be used in mixed supply applications. The Si5335 does not typically require ferrite beads for  
power supply filtering. The device has extensive on-chip power supply regulation to minimize the impact of power  
supply noise on output jitter. Figure 24 shows that the additive jitter created when a significant amount of noise is  
applied to the device power supply is very low.  
10  
VDDO  
VDD  
9
8
7
6
5
4
3
2
1
0
0.0001  
0.001  
0.01  
0.1  
1
Modulation Frequency (MHz)  
Figure 24. Peak-to-Peak Additive Jitter from 100 mV Sine Wave on Supply  
34  
Rev. 1.2  
Si5335  
8. Loop Bandwidth Considerations  
For synchronous reference clock applications, two user-selectable loop bandwidth settings (1.6 MHz and 475 kHz)  
are available to allow designers to optimize their timing system to support jitter attenuation of the reference clock.  
In general, the 1.6 MHz setting provides the lowest output jitter and should be selected for most applications. The  
1.6 MHz option provides faster PLL tracking of the input clock but less jitter attenuation of the input clock than the  
475 kHz loop bandwidth option. The 1.6 MHz loop bandwidth option must be selected for all applications which use  
a crystal reference input on the XA/XB pins (pins 1 and 2) and for all applications which provide a low jitter input  
clock reference to the Si5335.  
The 475 kHz setting reduces the clock generator's loop bandwidth, which has the benefit of attenuating some of  
jitter that would normally pass through the 1.6 MHz setting. As the PLL loop bandwidth decreases, the intrinsic jitter  
of the device increases and is reflected in higher jitter generation specifications, but total output jitter is the best  
measure of system performance. Total output jitter includes both the generated jitter as well as the transferred jitter.  
This lower loop bandwidth option can be useful in some applications, such as PCIe, DSL or other systems which  
may utilize backplane distributed reference clocks. In these systems, the input clock may have appreciable low  
frequency jitter (e.g., < 1.6 MHz). The source of the reference clock jitter can arise from suboptimal PCB trace  
layouts, impedance mismatches and connectors. Input clock jitter may also be generated from an IC which has  
poor power supply rejection performance, resulting in switching power supply noise and jitter coupling onto the  
clock input of the Si5335. In these applications, designers may opt to use the 475 kHz loop bandwidth to help  
attenuate the input clock jitter. Proper selection of PLL loop bandwidth involves a number of application-specific  
considerations. Refer to “AN513: Jitter Attenuation—Choosing the Right Phase-Locked Loop Bandwidth” for more  
information.  
Please also refer to “AN624: Si5335 Solves Timing Challenges in PCI Express, Computing, Communications and  
FPGA-Based Systems”.  
Rev. 1.2  
35  
Si5335  
9. Applications of the Si5335  
Because of its flexible architecture, the Si5335 can be configured to serve several functions in the timing path. The  
following sections describe some common applications.  
9.1. Free-Running Clock Generator  
Using the internal oscillator (Osc) and an inexpensive external crystal (XTAL), the Si5335 can be configured as a  
free-running clock generator for replacing high-end and long-lead-time crystal oscillators found on many printed  
circuit boards (PCBs). Replacing several crystal oscillators with a single IC solution helps consolidate the bill of  
materials (BOM), reduces the number of suppliers, and reduces the number of long-lead-time components on the  
PCB. In addition, since crystal oscillators tend to be the least reliable aspect of many systems, the overall failure-in-  
time (FIT) rate improves with the elimination of each oscillator.  
Up to four independent clock frequencies can be generated at any rate within its supported frequency range and  
with any of supported output types. Figure 25 shows the Si5335 configured as a free-running clock generator.  
ref  
Osc  
PLL  
XTAL  
MS0  
MS1  
MS2  
MS3  
F0  
F1  
F2  
F3  
Si5335  
Figure 25. Si5335 as a Free-Running Clock Generator  
9.2. Synchronous Frequency Translation  
In other cases, it is useful to generate an output frequency that is synchronous (or phase-locked) to another clock  
frequency. The Si5335 is the ideal choice for generating up to four clocks with different frequencies with a fixed  
phase relationship to an input reference. Because of its highly precise frequency synthesis, the Si5335 can  
generate all four output frequencies with 0 ppm error to the input reference. The Si5335 is an ideal choice for  
applications that have traditionally required multiple stages of frequency synthesis to achieve complex frequency  
translations. Examples are in broadcast video (e.g., 148.5 MHz to 148.3516483 MHz), WAN/LAN applications (e.g.  
155.52 MHz to 156.25 MHz), and Forward Error Correction (FEC) applications (e.g., 156.25 MHz to  
161.1328125 MHz). Figure 26 shows the Si5335 configured as a synchronous clock generator. Frequencies may  
be entered into the ClockBuilder Web utility with up to seven decimal points to ensure that the exact frequencies  
can be achieved.  
Si5335  
MS0  
MS1  
MS2  
MS3  
F0  
F1  
F2  
F3  
CLKIN  
PLL  
Figure 26. Si5335 as a Synchronous Clock Generator or Frequency Translator  
36  
Rev. 1.2  
Si5335  
9.3. Configurable Universal Buffer and Level Translator  
Using the ClockBuilder web utility, the synthesis stage can be entirely bypassed allowing the Si5335 to act as a  
configurable clock buffer with level translation. Because of its highly selectable configuration, virtually any output  
format and I/O voltage combination is possible. The configurable output drivers allow four differential outputs, eight  
single-ended outputs, or a combination of both. Figure 27 shows the Si5335 configured as a flexible clock buffer  
supporting mixed I/O supplies.  
Si5335  
3.3 V LVDS  
2.5 V CMOS  
CLKIN  
1.8 V LVPECL  
3.3 V HCSL  
Figure 27. Si5335 as a Configurable Clock Buffer with Level Translation  
Rev. 1.2  
37  
Si5335  
10. Pin Descriptions  
Top View  
24  
23  
22  
21  
20  
19  
1
2
3
4
XA/CLKIN  
18  
17  
16  
15  
CLK1A  
XB/CLKINB  
P3  
CLK1B  
VDDO1  
GND  
Pad  
GND  
VDDO2  
CLK2A  
CLK2B  
5
6
14  
13  
P5  
P6  
7
8
9
10  
12  
11  
Note: Center pad must be tied to GND for normal operation.  
Table 15. Si5335 Pin Descriptions  
Pin #  
Pin Name  
I/O  
Signal Type  
Description  
XA/CLKIN, XB/CLKINB.  
These pins are used as the main differential or single-ended clock  
input or as the XTAL input. See "3.4. Input Configuration" on page  
19 and Figures 10, 11, and 12 for connection details. Clock inputs  
to these pins must be ac-coupled. Keep the traces from pins 1,2 to  
the crystal as short as possible and keep other signals and radiat-  
ing sources away from the crystal. The single-ended input voltage  
swing must be limited to 1.2 Vpp.  
XA/CLKIN,  
XB/CLKINB  
1,2  
I
Multi  
Multi-Function Input. 3.3 V tolerant.  
This pin functions as a multi-function input pin. The pin function  
(OEB_all, OEB0, OEB1, OEB2, OEB3, SSENB, or RESET) is  
user-selectable at time of configuration using the ClockBuilder web  
configuration utility.  
3
4
P3  
I
Multi  
GND  
Ground.  
GND  
GND  
Must be connected to system ground for proper device operation.  
Multi-Function Input.  
These pins function as multi-function input pins. The pin functions  
(OEB_all, OEB0, OEB1, OEB2, OEB3, or SSENB) are user-  
selectable at time of configuration using the ClockBuilder configu-  
ration utility. A resistor voltage divider is required when driven by a  
signal greater than 1.2 V. See "3.6.1. P5 and P6 Input Control" on  
page 24 for details.  
5,6  
P5, P6  
VDD  
I
Multi  
Core Supply Voltage.  
This is the core supply voltage, which can operate from a 1.8, 2.5,  
or 3.3 V supply. A 0.1 µF bypass capacitor should be located very  
close to this pin.  
7
VDD  
Supply  
38  
Rev. 1.2  
Si5335  
Table 15. Si5335 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Type  
Description  
Loss of Signal.  
A typical pullup resistor of 1–4 kis used on this pin. This pin can  
be pulled up to a supply voltage as high as 3.6 V regardless of the  
other supply voltages on pins 7, 11, 15, 16, 20, and 24. The LOS  
condition allows the pull up resistor to pull the output up to the  
supply voltage. See "3.9. Loss-of-Signal Alarm" on page 25.  
8
LOS  
O
Open Drain  
This pin functions as an input clock loss-of-signal and PLL lock  
status pin in clock generator mode:  
0 = Input clock present and PLL locked.  
1 = Input clock not present or PLL not locked.  
In clock buffer mode, LOS is asserted when the input clock is not  
present.  
Output Clock B for Channel 3.  
May be a single-ended output or half of a differential output with  
CLK3A being the other differential half. If unused, leave this pin  
floating.  
9
CLK3B  
CLK3A  
VDDO3  
O
O
Multi  
Multi  
Output Clock A for Channel 3.  
May be a single-ended output or half of a differential output with  
CLK3B being the other differential half. If unused, leave this pin  
floating.  
10  
11  
Output Clock Supply Voltage.  
Supply voltage (3.3, 2.5, 1.8, or 1.5 V) for CLK3A,B. A 0.1 µF  
capacitor must be located very close to this pin. If CLK3 is not  
used, this pin must be tied to VDD (pin 7, 24).  
VDD  
Supply  
Multi-Function Input. 3.3 V tolerant.  
This pin functions as a multi-function input pin. The pin function  
(OEB_all, OEB0, OEB1, OEB2, OEB3, SSENB, FS0, FS1, or  
RESET) is user-selectable at time of configuration using the Clock-  
Builder web configuration utility  
12  
P1  
I
Multi  
Output Clock B for Channel 2.  
May be a single-ended output or half of a differential output with  
CLK2A being the other differential half. If unused, leave this pin  
floating.  
13  
14  
15  
16  
CLK2B  
CLK2A  
VDDO2  
VDDO1  
O
Multi  
Multi  
Output Clock A for Channel 2.  
May be a single-ended output or half of a differential output with  
CLK2B being the other differential half. If unused, leave this pin  
floating.  
O
Output Clock Supply Voltage.  
Supply voltage (3.3, 2.5, 1.8, or 1.5 V) for CLK2A,B.  
A 0.1 µF capacitor must be located very close to this pin. If CLK2 is  
not used, this pin must be tied to VDD (pin 7, 24).  
VDD  
VDD  
Supply  
Supply  
Output Clock Supply Voltage.  
Supply voltage (3.3, 2.5, 1.8, or 1.5 V) for CLK1A,B.  
A 0.1 µF capacitor must be located very close to this pin. If CLK1 is  
not used, this pin must be tied to VDD (pin 7, 24).  
Rev. 1.2  
39  
Si5335  
Table 15. Si5335 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Type  
Description  
Output Clock B for Channel 1.  
May be a single-ended output or half of a differential output with  
CLK1A being the other differential half. If unused, leave this pin  
floating.  
17  
CLK1B  
CLK1A  
O
Multi  
Output Clock A for Channel 1.  
May be a single-ended output or half of a differential output with  
CLK1B being the other differential half. If unused, leave this pin  
floating.  
18  
19  
O
I
Multi  
Multi  
Multi-Function Input. 3.3 V tolerant.  
This pin functions as a multi-function input pin. The pin function  
(OEB_all, OEB0, OEB1, OEB2, OEB3, SSENB, FS1, or RESET)  
is user-selectable at time of configuration using the ClockBuilder  
web configuration utility.  
P2  
Output Clock Supply Voltage.  
Supply voltage (3.3, 2.5, 1.8, or 1.5 V) for CLK0A,B.  
A 0.1 µF capacitor must be located very close to this pin. If CLK0 is  
not used, this pin must be tied to VDD (pin 7, 24).  
20  
21  
VDDO0  
CLK0B  
VDD  
O
Supply  
Multi  
Output Clock B for Channel 0.  
May be a single-ended output or half of a differential output with  
CLK0A being the other differential half. If unused, leave this pin  
floating.  
22  
CLK0A  
O
Multi  
Output Clock A for Channel 0.  
May be a single-ended output or half of a differential output with  
CLK0B being the other differential half. If unused, leave this pin  
floating.  
23  
24  
RSVD_GND GND  
GND  
Supply  
GND  
Ground.  
Must be connected to system ground. Minimize the ground path  
impedance for optimal performance of this device.  
VDD  
GND  
VDD  
GND  
Core Supply Voltage.  
The device operates from a 1.8, 2.5, or 3.3 V supply. A 0.1 µF  
bypass capacitor should be located very close to this pin.  
GND  
PAD  
Ground Pad.  
This is the large pad in the center of the package. The device will  
not function unless the ground pad is properly connected to a  
ground plane on the PCB. See Table 17, “PCB Land Pattern,” on  
page 43 for ground via requirements.  
40  
Rev. 1.2  
Si5335  
11. Ordering Information  
GMR  
Si5335X  
BXXXXX  
Operating Temp Range: -40 to +85 °C  
Package: 4 x 4 mm QFN, RoHS6, Pb-free  
R = Tape & Reel (ordering option)  
Non Tape & Reel shipment media is trays  
B = Product Revision B  
XXXXX = NVM code.  
Custom NVM configuration code. A unique 5-digit ordering code  
will be assigned by the ClockBuilder web utility.  
Frequency/Configuration:  
Si5335A - 1 MHz to 350 MHz output with XTAL input  
Si5335B - 1 MHz to 200 MHz output with XTAL input  
Si5335C - 1 MHz to 350 MHz output with Differential/Single-ended input clock  
Si5335D - 1 MHz to 200 MHz output with Differential/Single-ended input clock  
Evaluation Boards  
Si5335 Evaluation Board  
Si5338  
EVB  
The Si5338-EVB with ClockBuilder Desktop software includes the ability to evaluate Si5335 output  
frequency and format configurations. The EVB does not currently include the ability to control the  
programmable function pins (P1, P2, P3, P5, and P6).  
Rev. 1.2  
41  
Si5335  
12. Package Outline: 24-Lead QFN  
Figure 28. 24-Lead Quad Flat No-lead (QFN)  
Table 16. Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
b
0.02  
0.25  
D
4.00 BSC.  
2.50  
D2  
e
2.35  
2.65  
0.50 BSC.  
4.00 BSC.  
2.50  
E
E2  
L
2.35  
0.30  
2.65  
0.50  
0.40  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.08  
0.10  
0.05  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Outline MO-220, variation VGGD-8.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
5. J-STD-020 MSL rating: MSL3.  
6. Terminal base alloy: Cu  
7. Terminal plating/grid array material: Au/NiPd.  
8. Visit www.silabs.com/support/quality/pages/RoHSInformation.aspx for more information.  
42  
Rev. 1.2  
Si5335  
13. Recommended PCB Land Pattern  
Table 17. PCB Land Pattern  
Dimension  
Min  
Nom  
Max  
2.60  
2.60  
0.30  
0.85  
P1  
P2  
X1  
Y1  
C1  
C2  
E
2.50  
2.50  
0.20  
0.75  
2.55  
2.55  
0.25  
0.80  
3.90  
3.90  
0.50  
Notes  
General:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on the IPC-7351 guidelines.  
4. Connect the center ground pad to a ground plane with no less than five vias. These 5 vias should have a length of no  
more than 20 mils to the ground plane. Via drill size should be no smaller than 10 mils. A longer distance to the ground  
plane is allowed if more vias are used to keep the inductance from increasing.  
Solder Mask Design:  
5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to  
be 60 µm minimum, all the way around the pad.  
Stencil Design:  
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder  
paste release.  
7. The stencil thickness should be 0.125 mm (5 mils).  
8. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pins.  
9. A 2x2 array of 1.0 mm square openings on 1.25 mm pitch should be used for the center ground pad.  
Card Assembly:  
10. A No-Clean, Type-3 solder paste is recommended.  
11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
Rev. 1.2  
43  
Si5335  
14. Top Marking  
14.1. Si5335 Top Marking  
Si5335  
Xxxxxx  
RTTTTT  
YYWW  
14.2. Top Marking Explanation  
Line  
Characters  
Description  
Line 1  
Si5335  
Base part number.  
X = Frequency and configuration code. See "11. Ordering Information"  
on page 41 for more information.  
xxxxx = NVM code assigned by ClockBuilder web utility.  
See "11. Ordering Information" on page 41.  
Line 2  
Line 3  
Xxxxxx  
R = Product revision.  
TTTTT = Manufacturing trace code.  
RTTTTT  
Circle with 0.5 mm diameter;  
left-justified  
Pin 1 indicator.  
YY = Year.  
Line 4  
WW = Work week.  
YYWW  
Characters correspond to the year and work week of package assem-  
bly.  
44  
Rev. 1.2  
Si5335  
Revision 1.0 to Revision 1.1  
DOCUMENT CHANGE LIST  
Revision 0.4 to Revision 0.9  
Updated Table 8 on page 10 and Table 9 on  
page 12.  
Updated Table 2, “DC Characteristics,” on page 4.  
Added core power supply specification in buffer mode.  
Updated Table 3, “Performance Characteristics,” on  
page 5.  
Updated typical specifications for total jitter for PCI  
Express 1.1 Common clocked topology.  
Updated typical specifications for RMS jitter for PCI  
Express 2.1 Common clocked topology.  
Updated Table 10 on page 13.  
Added T  
specification.  
RESET  
Updated typical additive jitter (12 kHz–20MHz) from  
Updated Table 4, “Input and Output Clock  
0.150 to 0.165 ps RMS.  
Characteristics,” on page 6.  
Added " Document Change List" on page 45.  
Corrected V on pin 1 to 1.3 V (max).  
I
Revision 1.1 to Revision 1.2  
Updated CML output voltage specification to 0.86 Vpp.  
Updated Table 6, “Crystal Specifications for  
25 MHz,” on page 9.  
Removed down spread spectrum errata that has  
been corrected in revision B.  
Corrected CL to 18 pF (typical).  
Updated ordering information to refer to revision B  
Updated Table 7, “Crystal Specifications for  
27 MHz,” on page 9.  
silicon.  
Updated top marking explanation in Section 14.2.  
Corrected CL to 18 pF (typical).  
Updated "3.4. Input Configuration" on page 19.  
Revised text in Section 3.4.2.  
Updated "3.6.1. P5 and P6 Input Control" on page  
24.  
Added Figure 13 to replace Table 15.  
Updated Figure 21 on page 31.  
Updated Table 14 on page 23.  
Corrected Assignable Pin Name column entries.  
Updated "3.10. Output Stage" on page 26.  
Revised throughout and included termination circuit  
diagrams and text.  
Removed references to P4 as a programmable pin  
option throughout document. Pin 4 is now a ground  
pin.  
Revision 0.9 to Revision 1.0  
Updated Table 9 on page 12.  
DSL random jitter from 2.1 ps RMS (typ) to 1.95 ps RMS  
(typ) and from "—" (max) to 2.2 ps RMS (max).  
Corrected text in “9.2. Synchronous Frequency  
Translation” to match the capabilities of the  
ClockBuilder web utility.  
Rev. 1.2  
45  
Si5335  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
Patent Notice  
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-  
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
46  
Rev. 1.2  
配单直通车
SI5335B-B01250-GM产品参数
型号:SI5335B-B01250-GM
是否Rohs认证: 符合
生命周期:Active
包装说明:HVQCCN,
Reach Compliance Code:unknown
风险等级:5.8
其他特性:ALSO OPERATES WITH 2.5V AND 3.3V NOMINAL SUPPLY
JESD-30 代码:S-XQCC-N24
JESD-609代码:e4
长度:4 mm
湿度敏感等级:3
端子数量:24
最高工作温度:85 °C
最低工作温度:-40 °C
最大输出时钟频率:200 MHz
封装主体材料:UNSPECIFIED
封装代码:HVQCCN
封装形状:SQUARE
封装形式:CHIP CARRIER, HEAT SINK/SLUG, VERY THIN PROFILE
峰值回流温度(摄氏度):260
主时钟/晶体标称频率:350 MHz
座面最大高度:0.9 mm
最大供电电压:1.98 V
最小供电电压:1.71 V
标称供电电压:1.8 V
表面贴装:YES
技术:CMOS
温度等级:INDUSTRIAL
端子面层:Gold (Au)
端子形式:NO LEAD
端子节距:0.5 mm
端子位置:QUAD
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:4 mm
uPs/uCs/外围集成电路类型:CLOCK GENERATOR, PROCESSOR SPECIFIC
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!