欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • SI5356B-A00322-GMR
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • SI5356B-A00322-GMR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • SI5356B-A00322-GMR
  • 数量4873 
  • 厂家SILON LABS/芯科 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • SI5356B-A00322-GMR图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • SI5356B-A00322-GMR
  • 数量4873 
  • 厂家SILICON 
  • 封装QFN 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507168QQ:2355507168 复制
    QQ:2355507169QQ:2355507169 复制
  • 86-755-83219286 QQ:2355507168QQ:2355507169
  • SI5356B-A00322-GMR图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • SI5356B-A00322-GMR
  • 数量973 
  • 厂家SILICON 
  • 封装QFN 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • SI5356B-A00322-GMR图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • SI5356B-A00322-GMR
  • 数量5369 
  • 厂家SILICON 
  • 封装QFN 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • SI5356B-A00322-GMR图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • SI5356B-A00322-GMR
  • 数量20000 
  • 厂家SILICON 
  • 封装QFN 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • SI5356B-A00322-GMR图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • SI5356B-A00322-GMR
  • 数量30000 
  • 厂家SILICON 
  • 封装QFN 
  • 批号23+ 
  • 代理全新原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • SI5356B-A00322-GMR图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • SI5356B-A00322-GMR
  • 数量8500 
  • 厂家SILICON 
  • 封装QFN 
  • 批号20+ 
  • 全新原装挺实单欢迎来撩/可开票
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • SI5356B-A00322-GMR图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • SI5356B-A00322-GMR
  • 数量39496 
  • 厂家SILICON 
  • 封装QFN 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414

产品型号Si5356B-B00322-GM的Datasheet PDF文件预览

Si5356B  
I2C PROGRAMMABLE, ANY-FREQUENCY 1–200 MHZ,  
QUAD FREQUENCY 8-OUTPUT CLOCK GENERATOR  
Features  
Generates any frequency from 1 to  
200 MHz on each of the 4 output banks  
Eight CMOS clock outputs  
Programmable frequency configuration  
0 ppm frequency synthesis error for any  
combination of frequencies  
OEB pin disables all outputs or per  
bank OEB control via I2C  
Low jitter: 1.5 ps rms phase jitter  
Excellent PSRR performance  
eliminates need for external power  
supply filtering  
19 to 30 MHz xtal or 5–200 MHz input clk  
Easy to use programming software  
Configurable “triple A” spread spectrum:  
any clock, any frequency, and with any  
spread amount  
Programmable output phase adjustment  
with <20 ps error  
Interrupt pin indicates LOS or LOL  
Low power: 45 mA (core)  
Core VDD: 1.8, 2.5, or 3.3 V  
Separate VDDO for each bank of  
outputs: 1.8, 2.5, or 3.3 V  
Small size: 4x4 mm 24-QFN  
Pb-free, RoHS-6 compliant  
Industrial temperature range:  
–40 to +85 °C  
Ordering Information:  
See page 25.  
Pin Assignments  
Applications  
Printers  
Storage  
Switches/routers  
Computing  
Servers  
OC-3/OC-12 line cards  
Audio/video  
Networking  
Communications  
Description  
The Si5356B is a highly flexible, I2C programmable clock generator capable of  
synthesizing four completely non-integer related frequencies up to 200 MHz. The  
device has four banks of outputs with each bank supporting two CMOS outputs at  
the same frequency. Using Silicon Laboratories' patented MultiSynth fractional  
divider technology, all outputs have 0 ppm frequency synthesis error regardless of  
configuration, enabling the replacement of multiple clock ICs and crystal  
oscillators with a single device. Each output bank is independently configurable to  
support 1.8, 2.5, or 3.3 V. The device is programmable via an I2C/SMBus-  
compatible serial interface and supports operation from a 1.8, 2.5, or 3.3 V core  
supply.  
Functional Block Diagram  
Si5356B  
*Refer to Ordering Guide for custom part numbers.  
Rev. 1.4  
Copyright © 2017 by Silicon Laboratories  
Si5356B  
Si5356B  
2
Rev. 1.4  
Si5356B  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.1. Input Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.2. MultiSynth Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.3. Input and Output Frequency Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.4. Configuring the Si5356B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.5. ClockBuilder Desktop Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.6. Output Phase Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.7. CMOS Output Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.8. Jitter Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.9. Status Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.10. Output Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.11. Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.12. Power Supply Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4. I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.1. Custom Device Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
6. Package Outline: 24-Lead QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
7. Recommended PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
8.1. Custom Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
9. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
9.1. Si5356B Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
9.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
10. Device Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Rev. 1.4  
3
Si5356B  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
(VDD = 1.8 V –5% to +10%, 2.5 or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Ambient Temperature  
Core Supply Voltage  
Symbol  
Test Condition  
Min  
–40  
Typ  
Max  
85  
Unit  
o
T
C
A
V
2.97  
2.25  
1.71  
1.71  
3.3  
2.5  
1.8  
3.63  
2.75  
1.98  
3.63  
V
DD  
V
V
Output Buffer Supply Voltage  
DDO  
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating  
conditions. Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless  
otherwise noted.  
Table 2. DC Characteristics  
(VDD = 1.8 V –5% to +10%, 2.5 or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
I
100 MHz on all outputs,  
25 MHz refclk  
45  
60  
mA  
Core Current Consumption  
DD  
I
CMOS, 50 MHz 15 pF  
6
13  
10  
7
9
mA  
mA  
mA  
Output Buffer Supply Current  
DDOX  
1
load  
1,2  
CMOS, 200 MHz  
3.3 V  
,
,
,
18  
14  
10  
1,2  
CMOS, 200 MHz  
2.5 V  
1,2  
CMOS, 200 MHz  
1.8 V  
V
CLKIN, I2C_LSB  
SSC_DIS, OEB  
CLKIN, I2C_LSB  
SSC_DIS, OEB  
Pins: CLK0-7  
0.8 x V  
0.85  
–0.2  
3.63  
1.2  
V
V
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
IH  
DD  
V
0.2 x V  
0.3  
IL  
DD  
V
V
– 0.3  
DDO  
Clock Output High Level  
Output Voltage  
OH  
I
= –4 mA  
OH  
V
Pins: CLK0-7  
20  
0.3  
0.4  
V
V
Clock Output Low Level  
Output Voltage  
OL  
I
= +4 mA  
OH  
V
Pin: LOS  
= +3 mA  
0
INTR Low Level Output  
Voltage  
OLINTR  
I
OH  
R
k  
SSC_DIS, OEB Input  
Resistance  
IN  
Notes:  
1. Single CMOS driver active.  
2. Measured into a 5”, 50 trace with a 2 pF load.  
4
Rev. 1.4  
Si5356B  
Table 3. AC Characteristics  
(VDD = 1.8 V –5% to +10%, 2.5 or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Input Clock  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
F
5
2
200  
2.3  
60  
MHz  
ns  
Clock Input Frequency  
Clock Input Rise/Fall Time  
Clock Input Duty Cycle  
Clock Input Capacitance  
Output Clocks  
IN  
T /T  
20 to 80% V  
40  
R
F
DD  
DC  
< 2 ns tr/tf  
%
C
pF  
IN  
F
1
200  
1
MHz  
ppb  
Clock Output Frequency  
O
F
See "3.3. Input and Output  
Frequency Configuration"  
on page 11  
Clock Output Frequency Synthesis  
Resolution  
RES  
C
15  
pF  
ns  
Output Load Capacitance  
Clock Output Rise/Fall Time  
L
T /T  
20 to 80% V  
,
,
2.0  
R
F
DD  
C = 15 pF  
L
T /T  
20 to 80% V  
DD  
0.45  
0.85  
ns  
Clock Output Rise/Fall Time  
R
F
C = 2 pF  
L
DC  
T
Measured at V /2  
45  
50  
55  
2
%
ms  
μs  
ps  
Clock Output Duty Cycle  
Powerup Time  
DD  
POR to output clock valid  
PU  
OE  
T
10  
Output Enable Time  
Output-Output Skew  
T
Outputs at same  
–150  
+150  
SKEW  
frequency, f  
> 5 MHz  
OUT  
J
10000 cycles  
10000 cycles  
50  
40  
75  
70  
ps pk-pk  
ps pk  
Period Jitter  
PPKPK  
1
J
Cycle-Cycle Jitter  
CCPK  
2
J
MultiSynth in integer  
mode, 5 kHz to 1 MHz  
1.5  
ps rms  
Phase Jitter  
PH  
F
1.6  
MHz  
PLL Loop Bandwidth  
BW  
Interrupt Status Timing  
t
2.6  
0.2  
5
1
μs  
μs  
CLKIN Loss of Signal Assert Time  
LOS  
t
0.01  
CLKIN Loss of Signal Deassert  
Time  
LOS_b  
Notes:  
1. Measured in accordance to JEDEC standard 65.  
2. Phase Jitter only guaranteed for Multisynth0.  
Rev. 1.4  
5
Si5356B  
Table 4. Crystal Specifications for 19 to 26 MHz  
Parameter  
Crystal Frequency  
Symbol  
Min  
Typ  
Max  
Unit  
f
19  
25  
26  
MHz  
XTAL  
c (supported)*  
11  
12  
13  
pF  
L
Load Capacitance (on-chip differential)  
c (recommended)  
17  
18  
19  
5
pF  
pF  
L
Crystal Output Capacitance  
Equivalent Series Resistance  
Crystal Max Drive Level  
c
O
r
100  
ESR  
d
100  
μW  
L
*Note: See “AN360: Crystal Selection Guide for Si533x and Si5355/56 Devices” for how to adjust the registers to  
accommodate a 12 pF crystal CL.  
Table 5. Crystal Specifications for 26 to 30 MHz  
Parameter  
Crystal Frequency  
Symbol  
Min  
Typ  
Max  
Unit  
f
26  
27  
30  
MHz  
XTAL  
c (supported)*  
11  
12  
13  
pF  
L
Load Capacitance (on-chip differential)  
c (recommended)  
17  
18  
19  
5
pF  
pF  
L
Crystal Output Capacitance  
Equivalent Series Resistance  
Crystal Max Drive Level  
c
O
r
75  
ESR  
d
100  
μW  
L
*Note: See “AN360: Crystal Selection Guide for Si533x and Si5355/56 Devices” for how to adjust the registers to  
accommodate a 12 pF crystal CL.  
6
Rev. 1.4  
Si5356B  
2
1
Table 6. I C Specifications (SCL,SDA)  
Parameter  
Symbol  
Test Condition  
Standard Mode  
Fast Mode  
Max  
0.3 x V  
DDI2C  
Unit  
Min  
Max  
Min  
2
LOW Level  
Input Voltage  
V
–0.5  
0.3 x V  
–0.5  
V
V
V
ILI2C  
DDI2  
C
2
HIGH Level  
Input Voltage  
V
0.7 x V  
3.63  
N/A  
0.7 x V  
3.63  
IHI2C  
DDI2  
DDI2C  
C
Hysteresis of  
Schmitt Trigger  
Inputs  
V
N/A  
0.1  
HYS  
2
2
LOW Level Out- V  
put Voltage  
(open drain or  
open collector)  
at 3 mA Sink  
Current  
V
= 2.5/3.3 V  
0
0.4  
0
0
0.4  
V
V
OLI2C  
DDI2C  
2
V
= 1.8 V  
N/A  
N/A  
0.2 x V  
DDI2C  
DDI2C  
Input Current  
I
–10  
10  
4
–10  
10  
4
μA  
II2C  
Capacitance for  
each I/O Pin  
C
V
= –0.1 to V  
DDI2C  
pF  
II2C  
IN  
2
I C Bus Time-  
Timeout Enabled  
25  
35  
25  
35  
ms  
out  
Data rate  
100  
400  
kbps  
Notes:  
1. Refer to NXP’s UM10204 I2C-bus specification and user manual, Revision 03, for further details:  
www.nxp.com/acrobat_download/usermanuals/UM10204_3.pdf.  
2. Only I2C pullup voltages (VDDI2C) of 1.71 to 3.63 V are supported. Must write register 27[7] = 1 if the I2C bus voltage  
is less than 2.5 V to maintain compatibility with the I2C bus standard.  
Rev. 1.4  
7
Si5356B  
Table 7. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Thermal Resistance  
Junction to Ambient  
Still Air  
37  
°C/W  
JA  
Thermal Resistance  
Junction to Case  
Still Air  
25  
°C/W  
JC  
1,2,3,4  
Table 8. Absolute Maximum Ratings  
Parameter  
Symbol  
Rating  
Unit  
V
Supply Voltage Range  
V
–0.5 to +3.8  
–0.5 to 3.8  
–0.5 to 1.3  
DD  
Input Voltage Range (all pins except pins 1,2,5,6)  
Input Voltage Range (pins 1,2,5,6)  
Output Voltage Range  
V
V
I
V
V
I2  
O
V
–0.5 to V + 0.3  
V
DD  
o
Junction Temperature  
T
–55 to +150  
2.5  
C
J
ESD Tolerance  
HBM  
CDM  
MM  
kV  
V
550  
175  
V
Latch-up Tolerance  
LU  
JESD78 Compliant  
4
o
Soldering Temperature (Pb-free profile)  
T
260  
C
PEAK  
T
20–40  
sec  
Soldering Temperature Time at T  
(Pb-free profile)  
P
PEAK  
4
Notes:  
1. Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to maximum rating  
conditions for extended periods may affect device reliability.  
2. 24-QFN package is RoHS compliant.  
3. For more packaging information, go to www.silabs.com/support/quality/pages/RoHSInformation.aspx.  
4. The device is compliant with JEDEC J-STD-020.  
8
Rev. 1.4  
Si5356B  
2. Typical Application Circuits  
Rev. 1.4  
9
Si5356B  
Suggested standard 1% resistor values for R  
and  
SE  
3. Functional Description  
R
, when using a CMOS source, are given below.  
SH  
3.1. Input Configuration  
CMOS Level  
R
()  
R
()  
SE  
SH  
The Si5356B input can be driven from either an external  
crystal or a reference clock. If the crystal input option is  
used, the Si5356B operates as a free-running clock  
generator. In this mode of operation the device requires  
a low cost fundamental mode crystal connected across  
XA and XB as shown in Figure 1. The crystal must meet  
the minimum requirements specified in section “1.  
1.8 V  
2.5 V  
3.3 V  
1000  
1960  
3090  
1580  
1580  
1580  
3.2. MultiSynth Technology  
Electrical Specifications”  
.
Given the Si5356B’s  
Modern timing architectures require a wide range of  
frequencies which are often non-integer related.  
Traditional clock architectures address this by using a  
combination of single PLL ICs, 4-PLL ICs and discrete  
XOs, often at the expense of BOM complexity and  
power. The Si5356B uses patented MultiSynth  
technology to dramatically simplify timing architectures  
by integrating the frequency synthesis capability of 4  
phase-locked loops (PLLs) in a single device, greatly  
minimizing size and power requirements versus  
traditional solutions. Based on a fractional-N PLL, the  
heart of the architecture is a low phase noise, high-  
frequency VCO. The VCO supplies a high frequency  
output clock to the MultiSynth block on each of the four  
independent output paths. Each MultiSynth operates as  
a high-speed fractional divider with Silicon Laboratories'  
proprietary phase error correction to divide down the  
VCO clock to the required output frequency with very  
low jitter.  
frequency flexibility, the same crystal can be reused to  
generate any combination of output frequencies.  
Custom frequency crystals are not required. The  
Si5356B integrates the crystal load capacitors on-chip  
to reduce external component count. The crystal should  
be placed very close to the device to minimize stray  
capacitance. To ensure a stable and accurate output  
frequency, the recommended crystal specifications  
provided in Table 4 on page 6 must be followed. See  
AN360 for additional details regarding crystal  
recommendations.  
Figure 1. Connecting an XTAL to the Si5356B  
The first stage of the MultiSynth architecture is a  
fractional-N divider which switches seamlessly between  
the two closest integer divider values to produce the  
exact output clock frequency with 0 ppm error. To  
eliminate phase error generated by this process,  
MultiSynth calculates the relative phase difference  
between the clock produced by the fractional-N divider  
and the desired output clock and dynamically adjusts  
the phase to match the ideal clock waveform. This novel  
approach makes it possible to generate any output  
clock frequency without sacrificing jitter performance.  
Based on this architecture, each clock output can  
produce any frequency from 1 to 200 MHz.  
For synchronous timing applications, the Si5356B can  
lock to a 5 to 200 MHz CMOS reference clock. A typical  
interface circuit is shown in Figure 2. A series  
termination resistor matching the driver’s output  
impedance to the impedance of the transmission line is  
recommended to reduce reflections.  
Figure 2. Interfacing CMOS Reference Clocks  
to the Si5356B  
Control input signals to SSC_DIS and OEB cannot  
exceed 1.2 V yet also need to meet the V and V  
IH  
IL  
specifications outlined in Table 2 on page 4. When  
these inputs are driven from CMOS sources, a resistive  
attenuator as shown in the Typical Application Circuits  
must be used.  
10  
Rev. 1.4  
Si5356B  
Figure 3. Silicon Labs' MultiSynth Technology  
3.3. Input and Output Frequency Configu- 3.4. Configuring the Si5356B  
ration  
Refer to the Si5356B Programming Guidelines for  
details on how to configure/program the device.  
The Si5356B utilizes a single PLL-based architecture,  
four independent MultiSynth fractional output dividers,  
and a MultiSynth fractional feedback divider such that a  
single device provides the clock generation capability of  
4 independent PLLs. Unlike competitive multi-PLL  
solutions, the Si5356B can generate four unique non-  
integer related output frequencies with 0 ppm frequency  
error for practically any combination of output  
frequencies. In addition, any combination of output  
frequencies can be generated from a single reference  
frequency without having to change the crystal or  
reference clock frequency between frequency  
configurations.  
3.5. ClockBuilderDesktop Software  
To simplify device configuration, Silicon Labs provides  
ClockBuilder Desktop software, which can operate  
standalone or in conjunction with an evaluation board  
1
(EVB) . When the software is connected to the EVB,  
ClockBuilder will control both the core and I/O buffer  
supply voltages to the Si5356B, as well as the entire  
clock path within the Si5356B. Clockbuilder Desktop  
can also measure the current delivered by the EVB  
regulators to each supply voltage of the Si5356B. An  
Si5356B configuration can be written to a text file to be  
2
used by any system to configure the Si5356B via I C.  
Frequency configurations are fully programmable by  
writing to device registers using the I C interface. Any  
combination of output frequencies ranging from 1 to  
200 MHz can be configured on each of the device  
outputs.  
2
ClockBuilder Desktop can be downloaded from  
www.silabs.com/ClockBuilder and runs on Windows XP,  
2
Windows Vista, and Windows 7 .  
Notes:  
1. An Si5338-EVB (evaluation board) is used as the  
hardware platform for the Si5356B device. Contact  
your local Silicon Labs sales representative to order  
this evaluation platform for use with the Si5356B  
devices, or submit a request to www.silabs.com/  
support/Pages/contacttechnicalsupport.aspx.  
2. For Si5356B evaluations, a custom ClockBuilder  
configuration file must be installed for proper operation  
of the Si5338-EVB. Contact Silicon Labs for access to  
the Si5356BClockBuilder configuration file, or submit a  
request to www.silabs.com/support/Pages/  
contacttechnicalsupport.aspx.  
The following equation governs how the output  
frequency is calculated.  
fIN N  
fOUT = -----------------  
P Mi  
where f is the reference frequency, N is the MultiSynth  
IN  
feedback divider value, P is the reference divider value,  
M is the MultiSynth output divider value and f  
is the  
i
OUT  
resulting output frequency. The MultiSynth output and  
feedback dividers are fractional dividers expressed in  
terms of an integer and a fraction. The integer portion  
has 10-bit resolution and the fractional portion has 30-  
bit resolution in both the numerator and denominator,  
meaning that any output frequency can be defined  
exactly from the input frequency with exact (0 ppm)  
frequency synthesis error.  
Rev. 1.4  
11  
Si5356B  
inverted. This feature enables each output pair to  
operate as a differential CMOS clock. Each of the  
output banks can operate from a different VDDO supply  
(1.8 V, 2.5 V, 3.3 V), simplifying usage in mixed supply  
applications. All clock outputs between 5 and 200 MHz  
are in-phase with minimal output-output skew.  
3.6. Output Phase Adjustment  
The Si5356B has  
a
digitally-controlled phase  
adjustment feature that allows the user to adjust the  
phase of each output clock in relation to the other output  
clocks. The phase of each output clock can be adjusted  
with an error of <20 ps over a range of ±45 ns. This  
feature is available on any clock output that does not  
have Spread Spectrum enabled.  
The CMOS output driver has a controlled impedance of  
about 50 which includes an internal 22 series  
resistor. An external series resistor is not needed when  
driving 50 traces. If higher impedance traces are used  
then a series resistor may be added. A typical  
configuration is shown in Figure 4.  
3.7. CMOS Output Drivers  
The Si5356B has 4 banks of outputs with each bank  
comprised of 2 clocks for a total of 8 CMOS outputs per  
device. By default, each bank of CMOS output clocks  
are in-phase. Alternatively, each output clock can be  
Figure 4. CMOS Output Driver Configuration  
12  
Rev. 1.4  
Si5356B  
3.8. Jitter Performance  
3.9. Status Indicators  
The Si5356B provides consistently low jitter for any A logic-high interrupt pin (INTR) is available to indicate  
combination of output frequencies. The device a loss of signal (LOS) condition, a PLL loss of lock  
leverages a low phase noise single PLL architecture (PLL_LOL) condition, or that the PLL is in process of  
and Silicon Laboratories’ patented MultiSynth fractional acquiring lock (SYS_CAL). PLL_LOL is held high when  
output divider technology to deliver excellent jitter the input frequency drifts beyond the PLL lock range  
performance for any frequency configuration. This level (approximately 5000 ppm). It is held low during all other  
of jitter performance is guaranteed across process, times and during a POR or soft reset. SYS_CAL is held  
temperature and voltage. The Si5356B provides high during a POR or SOFT reset so that no chattering  
superior performance to conventional multi-PLL occurs during the locking process. As shown in  
solutions which may suffer from degraded jitter Figure 5, a status register at address 218 is available to  
performance depending on frequency plan and the help identify the exact event that caused the interrupt  
number of active PLLs.  
pin to become active.  
Note: It is highly recommended that VDDO0 = 3.3 V when  
phase jitter on CLK0 is critical.  
Figure 5. Status Register  
2
Figure 6 shows a typical connection with the required  
pull-up resistor to VDD.  
3.9.2. Using the INTR Pin in Systems without I C  
The INTR pin also provides a useful function in systems  
that require a pin-controlled fault indicator. Pre-setting  
the interrupt mask register allows the INTR pin to  
become an indicator for a specific event, such as LOS  
and/or LOL. Therefore, the INTR pin can be used to  
indicate a single fault event or even multiple events.  
2
3.9.1. Using the INTR Pin in Systems with I C  
The INTR output pin is not latched and should not be a  
polled input to an MCU but an edge-triggered interrupt.  
An MCU can process an interrupt event by reading the  
status register at address 218, and it can be cleared by  
writing zeros to the bits that were set. Individual  
interrupt bits can be masked by register 6[4:0].  
Figure 6. INTR Pin with Required Pull-Up  
Rev. 1.4  
13  
Si5356B  
3.10. Output Enable  
2
There are two methods of enabling and disabling the output drivers: Pin control, and I C control.  
3.10.1. Enabling Outputs Using Pin Control  
The Si5356B device provides an Output Enable pin (OEB) as shown in Figure 7. Pulling this pin high will turn all  
outputs off. The state of the individual drivers when turned off is controllable. If an individual output is set to always  
on, then the OEB pin will not have an effect on that driver. Drive state options and always on are explained in  
2
“3.10.2. Enabling Outputs through the I C Interface” .  
Figure 7. Output Enable Pin  
2
3.10.2. Enabling Outputs through the I C Interface  
2
Output enable can be controlled through the I C interface. As shown in Figure 8, register 230[3:0] allows control of  
each individual output driver. Register 230[4] controls all drivers at once. When register 230[4] is set to disable all  
outputs, the individual output enables will have no effect. Registers 110[7:6], 114[7:6], 118[7:6], and 112[7:6] control  
the output disabled state as tri-state, low, high, or always on. If always on is set, that output will always be on  
regardless of any other register or chip state.  
Figure 8. Output Enable Control Registers  
14  
Rev. 1.4  
Si5356B  
3.11. Spread Spectrum  
To help reduce electromagnetic interference (EMI), the Si5356B supports spread spectrum modulation. The output  
clock frequencies can be modulated to spread energy across a broader range of frequencies, lowering system  
EMI. The Si5356B implements spread spectrum using its patented MultiSynth technology to achieve previously  
2
unattainable precision in both modulation rate and spreading magnitude as shown in Figure 9. Through I C control,  
the Spread Spectrum can be applied to any output clock, any clock frequency, and any spread amount from ±0.1%  
to ±2.5% center spread and –0.1% to –5% down spread.  
The spreading rate is limited to 30 to 63 kHz.  
The Spread Spectrum is generated digitally in the output MultiSynths which means that the Spread Spectrum  
parameters are virtually independent of process, voltage and temperature variations. Since the Spread Spectrum  
2
is created in the output MultiSynths, through I C each output channel can have independent Spread Spectrum  
2
parameters. Without the use of I C (NVM download only) the only supported Spread Spectrum parameters are for  
PCI Express compliance composing 100 MHz clock, 31.5 kHz spreading frequency with the choice of the  
spreading.  
Rev A devices provide native support for both down and center spread. Center spread is supported in rev B  
devices by up-shifting the nominal frequency and using down-spread register parameters.  
Note: If you currently use center spread on a Revision A and would like to migrate to a Revision B device, you must generate  
a new register map using ClockBuilder Desktop. Center spread configurations for Revisions A and B are not compatible.  
Figure 9. Configurable Spread Spectrum  
Rev. 1.4  
15  
Si5356B  
3.12. Power Supply Considerations  
The Si5356B has two core supply voltage pins (V ) and four clock output bank supply voltage pins (V  
DDOA  
DD  
V
), enabling the device to be used in mixed supply applications. The Si5356B does not typically require ferrite  
DDOD  
beads for power supply filtering. The device has extensive on-chip power supply regulation to minimize the impact  
of power supply noise on output jitter. Figure 10 shows that the additive phase jitter created when a significant  
amount of noise is applied to the device power supply is very small.  
Figure 10. Peak-to-Peak Additive Jitter from 100 mV Sine Wave on Supply  
16  
Rev. 1.4  
Si5356B  
4. I2C Interface  
2
Configuration and operation of the Si5356B is controlled by reading and writing to the RAM space using the I C  
interface. The device operates in slave mode with 7-bit addressing and can operate in Standard-Mode (100 kbps)  
or Fast-Mode (400 kbps) and supports burst data transfer with auto address increments.  
2
The I C bus consists of a bidirectional serial data line (SDA) and a serial clock input (SCL) as shown in Figure 11.  
Both the SDA and SCL pins must be connected to the VDD supply via an external pull-up as recommended by the  
2
I C specification.  
2
Figure 11. I C and Control Signals  
The 7-bit device (slave) address of the Si5356B consists of a 6-bit fixed address plus a user-selectable LSB bit as  
shown in Figure 12. The LSB bit is selectable using the optional I2C_LSB pin which is available as an  
2
programming option for applications that require more than one Si5356B on a single I C bus. Devices without the  
2
I2C_LSB pin option have a fixed 7-bit address of 70h (111 0000) as shown in Figure 12. Other custom I C  
addresses are also possible.  
2
Figure 12. Si5356B I C Slave Address  
2
Data is transferred MSB first in 8-bit words as specified by the I C specification. A write command consists of a 7-  
bit device (slave) address + a write bit, an 8-bit register address, and 8 bits of data as shown in Figure 13. A write  
burst operation is also shown where every additional data word is written using an auto-incremented address.  
Rev. 1.4  
17  
Si5356B  
2
Figure 13. I C Write Operation  
A read operation is performed in two stages. A data write is used to set the register address, then a data read is  
performed to retrieve the data from the set address. A read burst operation is also supported. This is shown in  
Figure 14.  
2
Figure 14. I C Read Operation  
18  
Rev. 1.4  
Si5356B  
AC and DC electrical specifications for the SCL and SDA pins are shown in Table 6. The timing specifications and  
2
2
timing diagram for the I C bus are compatible with the I C-Bus Standard. SDA timeout is supported for  
compatibility with SMBus interfaces.  
2
The I C bus can be operated at a bus voltage of 1.71 to 3.63 V and is 3.3 V tolerant. If a bus voltage of less than  
2
2.5 V is used, register 27[7] = 1 must be written to maintain compatibility with the I C bus standard.  
4.1. Custom Device Configurations  
2
The Si5356B is fully configurable by writing to internal registers through the I C interface. After each power cycle  
the register settings are restored to their factory default values. For applications that require a custom configuration  
at power-up, the Si5356B is orderable with a custom default register setting. See "8. Ordering Guide" on page 25  
more for details.  
Rev. 1.4  
19  
Si5356B  
5. Pin Descriptions  
Note: Center pad must be tied to GND for normal operation.  
Table 9. Si5356B Pin Descriptions  
Pin # Pin Name I/O  
Description  
1
2
3
XA  
I
I
I
External Crystal.  
If a crystal is used as the device frequency reference, connect it across XA and XB. If  
no input clock is used, this pin should be tied to GND.  
XB  
External Crystal.  
If a crystal is used as the device frequency reference, connect it across XA and XB. If  
no input clock is used, this pin should be tied to GND.  
2
I2C_LSB  
I C LSB Address Bit  
2
This pin is the least significant bit of the Si5356B I C address allowing up to two  
Si5356B devices to occupy the same I C bus.  
2
4
CLKIN  
I
Single-Ended Input Clock.  
If a single-ended clock is used as the device frequency reference, connect it to this pin.  
This pin functions as a high-impedance input for CMOS clock signals. The input should  
be dc coupled. If a crystal is used as the device frequency reference, this pin should be  
tied to GND.  
20  
Rev. 1.4  
Si5356B  
Table 9. Si5356B Pin Descriptions (Continued)  
Spread Spectrum Disable.  
5
6
SSC_DIS  
I
I
This pin allows disabling of the spread spectrum feature on the output clocks. Connect  
to 1.2 V to disable spread spectrum on all outputs. Connect to GND to enable spread  
spectrum. Note that the maximum voltage level on this pin must not exceed 1.2 V. A  
resistor voltage divider is recommended when controlled by a signal greater than 1.2 V.  
See the Typical Application Circuit for details.  
OEB  
Output Enable (Active Low)  
This pin allows disabling the output clocks. Connect to 1.2 V to disable all outputs.  
Connect to GND to enable all outputs. Note that the maximum voltage level on this pin  
must not exceed 1.2 V. A resistor voltage divider is recommended when controlled by a  
signal greater than 1.2 V. See the Typical Application Circuit for details.  
7
8
VDD  
VDD Core Supply Voltage.  
The device operates from a 1.8, 2.5, or 3.3 V supply. A 0.1 F bypass capacitor should  
be located very close to this pin.  
INTR  
O
Interrupt  
This pin functions as an maskable interrupt output.  
0 = No interrupt  
1 = Interrupt present  
This pin is open drain and requires an external >1 kpullup resistor.  
9
CLK7  
CLK6  
O
O
Output Clock 7.  
CMOS output clock. If unused, this pin must be left floating.  
10  
11  
Output Clock 6.  
CMOS output clock. If unused, this pin must be left floating.  
VDDOD VDD Clock Output Bank D Supply Voltage.  
Power supply for clock outputs 6 and 7. May be operated from a 1.8, 2.5, or 3.3 V sup-  
ply. A 0.1 F bypass capacitor should be located very close to this pin. If CLK6/7 are not  
used, this pin must be tied to pin 7 and/or pin 24.  
2
12  
13  
SCL  
I
I C Serial Clock Input.  
CLK5  
O
Output Clock 5.  
CMOS output clock. If unused, this pin must be left floating.  
14  
15  
CLK4  
O
Output Clock 4.  
CMOS output clock. If unused, this pin must be left floating.  
VDDOC VDD Clock Output Bank C Supply Voltage.  
Power supply for clock outputs 4 and 5. May be operated from a 1.8, 2.5 or 3.3 V sup-  
ply. A 0.1 F bypass capacitor should be located very close to this pin. If CLK4/5 are not  
used, this pin must be tied to pin 7 and/or pin 24.  
16  
VDDOB VDD Clock Output Bank B Supply Voltage.  
Power supply for clock outputs 2 and 3. May be operated from a 1.8, 2.5, or 3.3 V sup-  
ply. A 0.1 F bypass capacitor should be located very close to this pin. If CLK2/3 are not  
used, this pin must be tied to pin 7 and/or pin 24.  
17  
18  
CLK3  
CLK2  
O
O
Output Clock 3.  
CMOS output clock. If unused, this pin must be left floating.  
Output Clock 2.  
CMOS output clock. If unused, this pin must be left floating.  
Rev. 1.4  
21  
Si5356B  
Table 9. Si5356B Pin Descriptions (Continued)  
2
19  
20  
SDA  
VDDOA VDD Clock Output Bank A Supply Voltage.  
Power supply for clock outputs 0 and 1. May be operated from a 1.8, 2.5, or 3.3 V sup-  
I/O  
I C Serial Data.  
ply. A 0.1 F bypass capacitor should be located very close to this pin. If CLK0/1 are not  
used, this pin must be tied to pin 7 and/or pin 24.  
21  
22  
23  
CLK1  
CLK0  
GND  
O
O
Output Clock 1.  
CMOS output clock. If unused, this pin must be left floating.  
Output Clock 0.  
CMOS output clock. If unused, this pin must be left floating.  
GND Ground.  
Must be connected to system ground. Minimize the ground path impedance for optimal  
performance of the device.  
24  
VDD  
GND  
VDD Core Supply Voltage.  
The device operates from a 1.8, 2.5, or 3.3 V supply. A 0.1 F bypass capacitor should  
be located very close to this pin.  
GND  
PAD  
GND Ground Pad.  
This is the large pad in the center of the package. The device will not function unless the  
ground pad is properly connected to a ground plane on the PCB. See "7. Recom-  
mended PCB Land Pattern" on page 24 for the PCB pad sizes and ground via require-  
ments.  
22  
Rev. 1.4  
Si5356B  
6. Package Outline: 24-Lead QFN  
Figure 15. 24-Lead Quad Flat No-Lead (QFN)  
Table 10. Package Dimensions  
Dimension  
Min  
Nom  
Max  
A
A1  
b
0.80  
0.00  
0.18  
0.85  
0.02  
0.90  
0.05  
0.30  
0.25  
D
4.00 BSC.  
2.50  
D2  
e
2.35  
2.65  
0.50 BSC.  
4.00 BSC.  
2.50  
E
E2  
L
2.35  
0.30  
2.65  
0.50  
0.40  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.08  
0.10  
0.05  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Outline MO-220, variation VGGD-8.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
5. For more packaging information, go to www.silabs.com/support/quality/pages/RoHSInformation.aspx.  
Rev. 1.4  
23  
Si5356B  
7. Recommended PCB Land Pattern  
Table 11. PCB Land Pattern  
Dimension  
Min  
Nom  
Max  
2.60  
2.60  
0.30  
0.85  
P1  
P2  
X1  
Y1  
C1  
C2  
E
2.50  
2.50  
0.20  
0.75  
2.55  
2.55  
0.25  
0.80  
3.90  
3.90  
0.50  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on the IPC-7351 guidelines.  
4. Connect the center ground pad to a ground plane with no less than five vias. These 5 vias should have a length of no more  
than 20 mils to the ground plane. Via drill size should be no smaller than 10 mils. A longer distance to the ground plane is  
allowed if more vias are used to keep the inductance from increasing.  
Solder Mask Design  
5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60  
μm minimum, all the way around the pad.  
Stencil Design  
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste  
release.  
7. The stencil thickness should be 0.125 mm (5 mils).  
8. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pins.  
9. A 2x2 array of 1.0 mm square openings on 1.25 mm pitch should be used for the center ground pad.  
Card Assembly  
10. A No-Clean, Type-3 solder paste is recommended.  
11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
24  
Rev. 1.4  
Si5356B  
8. Ordering Guide  
8.1. Custom Part Numbers  
The Si5356B includes the following part numbers with start-up configurations as listed inTable 12. Refer to the  
Si5365B Programming Guidelines document for additional Si5365B part numbers and validated configurations.  
Table 12. Customer Part Numbers  
Custom Part  
Number  
Input  
CLK0 CLK1  
CLK2  
CLK3 CLK4 CLK5  
CLK6  
CLK7  
Si5356B-B00322-GM 25 MHz 25 MHz 25 MHz 33.333 MHz Unused 48 MHz Unused 27.648 MHz Unused  
XTAL  
2.5 V  
2.5 V  
3.3 V  
CMOS  
50 MHz  
3.3 V  
3.3 V  
3.3 V  
XA/XB CMOS CMOS  
CMOS  
CMOS  
Si5356B-B01139-GM 25 MHz 50 MHz Unused  
Unused 48 MHz Unused 27.648 MHz Unused  
XTAL  
3.3 V  
3.3 V  
3.3 V  
XA/XB CMOS  
CMOS  
CMOS  
CMOS  
Rev. 1.4  
25  
Si5356B  
9. Top Marking  
9.1. Si5356B Top Marking  
9.2. Top Marking Explanation  
Line  
Line 1  
Line 2  
Characters  
Description  
Si5356  
Bxxxxx  
Base part number.  
2
B = 200 MHz, CMOS, I C programmable clock generator series.  
xxxxx = Optional NVM code for custom factory-programmed devices.  
These 5 characters are not included for standard, factory default config-  
ured devices. IBM NVM configuration code #1=00322.  
See Section “8.1. Custom Part Numbers” for configuration details.  
Line 3  
Line 4  
RTTTTT  
R = Product revision.  
TTTTT = Manufacturing trace code.  
Circle with 0.5 mm  
Pin 1 indicator.  
diameter; left-justified  
YYWW  
YY = Year.  
WW = Work week  
Characters correspond to the year and work week of package assembly.  
26  
Rev. 1.4  
Si5356B  
10. Device Errata  
Please visit www.silabs.com to access the device errata document.  
Rev. 1.4  
27  
Si5356B  
Revision 1.0 to Revision 1.1  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 0.2  
Removed down spectrum errata that has been  
corrected in revision B.  
Updated crystal specifications to include crystal  
Updated ordering information to refer to revision B  
frequencies of 19 to 30 MHz.  
silicon.  
Updated section “3.4. Configuring the Si5356B” .  
Removed section 3.10 Reset Options.  
Updated top marking explanation in Section 9.1.  
Added further explanation to describe revision-  
specific behavior of center spread spectrum in  
Section 3.11.  
Moved section 4.2 Spread Spectrum to section  
“3.11. Spread Spectrum” .  
Moved section 4.3 Power Supply Considerations to  
section  
Revision 1.1 to Revision 1.2  
Added link to errata document.  
“3.12. Power Supply Considerations” .  
Added section “9. Top Marking” .  
Revision 1.3 to Revision 1.4  
Removed MSL rating.  
Revision 0.2 to Revision 0.3  
Added Si5356B-A01139-GM to Section 8.1 as a new  
validated part number conforming to data sheet  
specifications.  
Corrected CMOS output clock t /t time (20 to 80%,  
R F  
15 pF load) from 1.7 ns (max) to 2.0 ns (max) to  
better reflect characterization data.  
Clarified crystal specifications in Tables 6 and 7 and  
added reference to AN360.  
Corrected Figure 5. Status Registers to show the  
correct position of LOS_XTAL and LOS_CLK..  
Removed reference to the Si5338K/L/M in the output  
enable control section.  
Updated application circuits to make reference to the  
Si5356B.  
Revision 0.3 to Revision 1.0  
Updated Table 2, “DC Characteristics,” on page 4.  
Corrected IDDOX from "—" (typ) to 6 mA (typ), and  
28 mA (max) to 9 mA (max).  
Corrected RIN from 20 k(min) to 20 k(typ).  
Updated Table 3, “AC Characteristics,” on page 5.  
Input clock TR/TF from 2 ns (max) to 2.3 ns (max).  
Corrected CL from 15 pF (typ) to 15 pF (max).  
Corrected FRES from 0 ppm (max) to 1 ppb (max).  
Added Interrupt Status Timing.  
Added soldering temperature time T  
to Table 8.  
PEAK  
Corrected references to V and V in Section 3.1.  
IH  
IL  
Removed output-output skew reference from text of  
Section 3.7 (see Table 3—AC Characteristics).  
Clarified status alarm register info in Section 3.9.1.  
Removed erroneous reference to ZDB mode.  
28  
Rev. 1.4  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of  
Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or  
brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  
配单直通车
SI5356B-A01139-GM产品参数
型号:SI5356B-A01139-GM
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Obsolete
IHS 制造商:SILICON LABORATORIES INC
零件包装代码:QFN
包装说明:4 X 4 MM, ROHS COMPLIANT, MO-220VGGD-8, QFN-24
针数:24
Reach Compliance Code:unknown
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:5.71
其他特性:ALSO OPERATES 2.5 V AT 25 MHZ
JESD-30 代码:S-XQCC-N24
长度:4 mm
端子数量:24
最高工作温度:85 °C
最低工作温度:-40 °C
最大输出时钟频率:200 MHz
封装主体材料:UNSPECIFIED
封装代码:HVQCCN
封装形状:SQUARE
封装形式:CHIP CARRIER, HEAT SINK/SLUG, VERY THIN PROFILE
峰值回流温度(摄氏度):NOT SPECIFIED
主时钟/晶体标称频率:200 MHz
座面最大高度:0.9 mm
最大供电电压:3.63 V
最小供电电压:2.97 V
标称供电电压:3.3 V
表面贴装:YES
技术:CMOS
温度等级:INDUSTRIAL
端子形式:NO LEAD
端子节距:0.5 mm
端子位置:QUAD
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:4 mm
uPs/uCs/外围集成电路类型:CLOCK GENERATOR, PROCESSOR SPECIFIC
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!