欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • STA32813TR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • STA32813TR 现货库存
  • 数量26800 
  • 厂家ST 
  • 封装22+ 
  • 批号PowerSO-36 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • STA32813TR图
  • 深圳市科时进电子有限公司

     该会员已使用本站11年以上
  • STA32813TR 现货库存
  • 数量289 
  • 厂家ST/意法 
  • 封装HSSOP36 
  • 批号21+ 
  • 全新进口现货▊一手货源▊热卖支持实单▊bom配单专家
  • QQ:2355850215QQ:2355850215 复制
  • 0755-83997989 QQ:2355850215
  • STA32813TR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • STA32813TR 现货库存
  • 数量3792 
  • 厂家ST 
  • 封装PowerSO-36 
  • 批号 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • STA328图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • STA328
  • 数量65000 
  • 厂家原厂 
  • 封装原厂封装 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • STA328图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • STA328
  • 数量23480 
  • 厂家ST 
  • 封装SSOP36 
  • 批号全新环保批次 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • STA32813TR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • STA32813TR
  • 数量3541 
  • 厂家ST/意法 
  • 封装NA/ 
  • 批号23+ 
  • 原厂直销,现货供应,账期支持!
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • STA32813TR图
  • 集好芯城

     该会员已使用本站13年以上
  • STA32813TR
  • 数量19902 
  • 厂家ST 
  • 封装HSOP36 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • STA32813TR图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • STA32813TR
  • 数量10000 
  • 厂家ST 
  • 封装中航军工 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • STA328图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • STA328
  • 数量5000 
  • 厂家
  • 封装ST 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • STA328图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • STA328
  • 数量865720 
  • 厂家原厂 
  • 封装原厂封装 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • STA328图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • STA328
  • 数量5000 
  • 厂家ST 
  • 封装SSOP 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • STA328图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • STA328
  • 数量5000 
  • 厂家ST 
  • 封装SSOP 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • STA328图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • STA328
  • 数量23755 
  • 厂家ST 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • STA32813TR图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • STA32813TR
  • 数量3792 
  • 厂家ST 
  • 封装PowerSO-36 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507168QQ:2355507168 复制
    QQ:2355507169QQ:2355507169 复制
  • 86-755-83219286 QQ:2355507168QQ:2355507169
  • STA32813TR图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • STA32813TR
  • 数量5425 
  • 厂家ST 
  • 封装36-BSSOP(0.433,11.00mm 宽)裸露焊盘 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • STA328图
  • 深圳市创芯联科技有限公司

     该会员已使用本站9年以上
  • STA328
  • 数量15000 
  • 厂家STM 
  • 封装SOP-36 
  • 批号24+ 
  • 原厂货源/正品保证,诚信经营,欢迎询价
  • QQ:1219895042QQ:1219895042 复制
    QQ:3061298850QQ:3061298850 复制
  • 0755-23606513 QQ:1219895042QQ:3061298850
  • STA328图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • STA328
  • 数量19759 
  • 厂家STM 
  • 封装 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • STA328图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • STA328
  • 数量28 
  • 厂家ST 
  • 封装SSOP36 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • STA32813TR图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • STA32813TR
  • 数量5425 
  • 厂家ST 
  • 封装36-BSSOP(0.433,11.00mm 宽)裸露焊盘 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • STA328图
  • 长荣电子

     该会员已使用本站14年以上
  • STA328
  • 数量
  • 厂家 
  • 封装SMD 
  • 批号05+ 
  • 原装现货
  • QQ:172370262QQ:172370262 复制
  • 754-4457500 QQ:172370262
  • STA328图
  • 深圳市亿智腾科技有限公司

     该会员已使用本站8年以上
  • STA328
  • 数量16258 
  • 厂家ST 
  • 封装原厂直销 
  • 批号1636+ 
  • 全新原装现货★★特价供应★★。★★特价★★假一赔十,工厂客户可放款
  • QQ:799387964QQ:799387964 复制
    QQ:2777237833QQ:2777237833 复制
  • 0755-82566711 QQ:799387964QQ:2777237833
  • STA328图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • STA328
  • 数量600 
  • 厂家ST 
  • 封装SOP 
  • 批号24+ 
  • ★★专业IC现货,诚信经营,市场最优价★★
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • STA32813TR图
  • 深圳市昌和盛利电子有限公司

     该会员已使用本站11年以上
  • STA32813TR
  • 数量28000 
  • 厂家ST【原装正品专卖★价格最低】 
  • 封装HSSOP36 
  • 批号▊ NEW ▊ 
  • ◆★█【专注原装正品现货】★价格最低★!量大可定!欢迎惠顾!(长期高价回收全新原装正品电子元器件)
  • QQ:1551106297QQ:1551106297 复制
    QQ:3059638860QQ:3059638860 复制
  • 0755-23125986 QQ:1551106297QQ:3059638860
  • STA328 VJ图
  • 深圳市双微电子科技有限公司

     该会员已使用本站10年以上
  • STA328 VJ
  • 数量1678 
  • 厂家ST 
  • 封装HSSOP36 
  • 批号20+ 
  • 询货请加QQ 全新原装 现货库存
  • QQ:1965209269QQ:1965209269 复制
    QQ:1079402399QQ:1079402399 复制
  • 15889219681 QQ:1965209269QQ:1079402399
  • STA328图
  • 深圳市捷兴胜微电子科技有限公司

     该会员已使用本站13年以上
  • STA328
  • 数量
  • 厂家ST 
  • 封装专业全新原装汽车机顶盒IC,光电耦合,电源管理等集成电路 
  • 批号SOP-36 
  • QQ:838417624QQ:838417624 复制
    QQ:929605236QQ:929605236 复制
  • 0755-23997656(现货库存配套一站采购及BOM优化) QQ:838417624QQ:929605236
  • STA32813TR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • STA32813TR
  • 数量6980 
  • 厂家ST 
  • 封装22+ 
  • 批号HSOP36 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • STA32813TR图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • STA32813TR
  • 数量3827 
  • 厂家ST 
  • 封装PowerSO-36 
  • 批号24+ 
  • 原装现货
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • STA328图
  • 深圳市宏诺德电子科技有限公司

     该会员已使用本站8年以上
  • STA328
  • 数量68000 
  • 厂家ST 
  • 封装HSSOP36 
  • 批号22+ 
  • 全新进口原厂原装,优势现货库存,有需要联系电话:18818596997 QQ:84556259
  • QQ:84556259QQ:84556259 复制
    QQ:783839662QQ:783839662 复制
  • 0755- QQ:84556259QQ:783839662
  • STA328图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • STA328
  • 数量10000 
  • 厂家ST 
  • 封装SSOP36 
  • 批号21+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • STA328-PB FREE图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • STA328-PB FREE
  • 数量16000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • STA328图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • STA328
  • 数量16000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • STA328 VJ图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • STA328 VJ
  • 数量16000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • STA32813TR图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • STA32813TR
  • 数量10070 
  • 厂家STMicroelectronics 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • STA328VJ图
  • 深圳市一线半导体有限公司

     该会员已使用本站15年以上
  • STA328VJ
  • 数量16000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • STA32813TR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • STA32813TR
  • 数量98500 
  • 厂家ST/意法 
  • 封装HSOP36 
  • 批号23+ 
  • 真实库存全新原装正品!专业配单
  • QQ:308365177QQ:308365177 复制
  • 0755-13418564337 QQ:308365177

产品型号STA328的概述

STA328芯片概述 STA328是一种高质量的音频解码器和数字放大器,专为便携式和家用音频设备设计。其主要应用于车载音响系统、家居影院、音响播放设备及其他需要高保真音频输出的设备。该芯片能够实现高效的数字音频处理,并且与多种音频源兼容,提供清晰、丰富的声音体验。 STA328的详细参数 在探讨STA328的性能及优势之前,首先应了解其详细参数。STA328具有以下关键特性: - 输入格式:支持I2S、DSP和PCM输入格式。 - 采样率:支持最大192 kHz的采样率,能够确保音频信号的清晰度和细腻度。 - 信噪比:拥有高达100 dB的信噪比,保证音质无失真。 - 总谐波失真:低于0.01%,确保频率响应准确,播放高保真音频。 - 输出功率:在8Ω负载下提供达22W的输出功率,适合不同类型的扬声器。 - 工作电源范围:支持从4.5V到26V的宽电压输入,增加适用场景的多样性。 厂...

产品型号STA328的Datasheet PDF文件预览

STA328  
2.1 HIGH EFFICIENCY  
DIGITAL AUDIO SYSTEM  
1 FEATURES  
Figure 1. Package  
Wide supply voltage range (10-36V)  
3 Power Output Configurations  
– 2x40W + 1x80W  
PowerSO36 SLUG UP  
– 2x80W  
– 1x160W  
Table 1. Order Codes  
Power SO-36 Package  
2.1 Channels of 24-Bit DDX®  
100dB SNR and Dynamic Range  
32kHz to 192kHz Input Sample Rates  
Part Number  
STA328  
Package  
PowerSO36 (Slug Up)  
Tape & Reel  
STA32813TR  
PWM output + Variable PWM Speeds  
Digital Gain/Attenuation +48dB to -80dB in  
Selectable De-emphasis  
0.5dB steps  
Post-EQ User Programmable Mix with default  
428-bit User Programmable Biquads (EQ) per  
Channel  
I2C Control  
2.1 Bass Management settings  
Variable Max Power Correction for lower full-  
power THD  
2-Channel I2S Input Data Interface  
4 Output Routing Configurations  
Selectable Clock Input Ratio  
Individual Channel and Master Gain/  
Attenuation  
96kHz Internal Processing Sample Rate, 24 to  
Individual Channel and Master Soft and Hard  
28-bit precision  
Mute  
QXpander  
Individual Channel Volume and EQ Bypass  
Bass/Treble Tone Control  
Video Application: 576 fs input mode suporting  
Dual Independent Programmable Limiters/  
2 DESCRIPTION  
Compressors  
The STA328 is an integrated solution of digital au-  
dio processing, digital amplifier control, and DDX-  
Power Output Stage, thereby creating a high-pow-  
er single-chip DDX® solution comprising of high-  
quality, high-efficiency, all digital amplification.  
Automodes™  
– 32 Preset EQ Curves  
– 15 Preset Crossover Settings  
– Auto Volume Controlled Loudness  
– 3 Preset Volume Curves  
– 2 Preset Anti-Clipping Modes  
– Preset Nighttime Listening Mode  
– Preset TV AGC  
The STA328 power section consists of four inde-  
pendent half-bridges. These can be configured via  
digital control to operate in different modes. 2.1  
channels can be provided by two half-bridges and  
a single full-bridge, providing up to 2x40W +  
1x80W of power output. 2 Channels can be provid-  
ed by two full-bridges, providing up to 2x80W of  
power. The IC can also be configured as a single  
paralelled full-bridge capable of high-current oper-  
ation and 1x160W output.  
Input and Output Channel Mapping  
AM Noise Reduction and PWM Frequency  
Shifting Modes  
Soft Volume Update and Muting  
Also provided in the STA328 are a full assortment  
of digital processing features. This includes up to  
4 programmable 28-bit biquads (EQ) per channel,  
Auto Zero Detect and Invalid Input Detect  
Muting Selectable DDX® Ternary or Binary  
Rev. 3  
1/41  
May 2006  
STA328  
and bass/treble tone control. Automodes™ enable a time-to-market advantage by substantially reducing  
the amount of software development needed for certain functions. This includes Auto Volume loudness,  
preset volume curves, preset EQ settings, etc. New advanced AM radio inerference reduction modes.  
The serial audio data input interface accepts all possible formats, including the popular I2S format.  
Three channels of DDX® processing are provided. This high quality conversion from PCM audio to DDX's  
patented tri-state PWM switching waveform provides over 100dB SNR and dynamic range.  
3 ORDERING INFORMATION  
Figure 2. Block Diagram  
SDA  
SCL  
DDX-SPIRIT  
I2C  
l
System Contro  
LRCKI  
BICKI  
OUT1A  
OUT1B  
Serial Data  
Input,  
Channel  
Mapping &  
Resampling  
Audio EQ, Mix,  
Crossver,  
Volume, Limiter  
Processing  
Quad  
Half-Bridge  
Power Stage  
DDX®  
Processing  
OUT2A  
OUT2B  
SDI_12  
EAPD  
System Timing  
PLL  
TWARN  
FAULT  
Power-Down  
CLK  
Figure 3. Channel Signal Flow Diagram through the Digital Core  
I2S  
Channel  
Mapping  
EQ  
Processing  
Crossover  
Filter  
Volume  
Limiter  
4X  
Interp  
Input  
DDX®  
Re-sampling  
Mix  
DDX  
Output  
3.1 EQ Processing  
Two channels of input data (re-sampled if necessary) at 96 kHz are provided to the EQ processing block.  
In this block, upto 4 user-defined Biquads can be appplied to each of the two channels.  
Pre-scaling, dc-blocking high-pass, de-emphasis, bass, and tone control filters can also be applied based  
on various configuration parameter settings.  
The entire EQ block can be bypassed for all channels simulatneously by setting the DSPB bit to '1'. And  
the CxEQBP bits can be used to bypass the EQ functionality on a per channel basis. Figure below shows  
the internal signal flow through the EQ block.  
2/41  
STA328  
Figure 4. Channel Signal Flow through the EQ Block  
Re-sampled  
Input  
Pre  
Scale  
High-Pass  
Filter  
De-  
Emphasis  
Bass  
Filter  
Treble  
Filter  
BQ#1  
BQ#2  
BQ#3  
BQ#4  
To  
Mix  
4 Biquads  
If CxTCB = 0  
User defined if AMEQ = 00  
Preset EQ if AMEQ = 01  
Auto Loudness if AMEQ = 10  
BT C: Bass Boost/Cut  
TTC: Treble Boost/Cut  
If HPB = 0  
If DEMP = 1  
If DSPB = 0 & CxEQB = 0  
Figure 5. 2-Channel (Full-bridge) Power, OCFG(1…0) = 00  
OUT1A  
Half  
Bridge  
Channel 1  
Half  
Bridge  
OUT1B  
OUT2A  
Half  
Bridge  
Channel 2  
Half  
Bridge  
OUT2B  
Figure 6. - 2.1-Channel Power Configuration OCFG(1…0) = 01  
Half  
Bridge  
Channel 1  
Channel 2  
OUT1A  
Half  
Bridge  
OUT1B  
OUT2A  
Half  
Bridge  
Channel 3  
Half  
Bridge  
OUT2B  
Figure 7. 1-Channel Mono-Parallel Configuration, OCFG(1…0) = 11  
OUT1A  
Half  
Bridge  
OUT1B  
Half  
Bridge  
Channel 3  
Half  
Bridge  
OUT2A  
Half  
Bridge  
OUT2B  
3/41  
STA328  
Figure 8. Block Diagram (refer to Stereo Application Circuit)  
+VCC  
V
CC1A  
15  
16  
VDD REG  
C30  
100nF  
C55  
1000µF  
19  
35  
36  
M3  
M2  
M5  
M4  
L18 22µH  
C20  
VSS  
OUT1A  
GND1A  
Vcc Sign  
REGULATORS  
100nF  
13  
11  
C52  
330pF  
C99  
100nF  
R98  
6
C23  
470nF  
GND REG  
18  
VCC1B  
R63 R100  
C101  
100nF  
20  
6
C31  
1µF  
V
L
20  
21  
C21  
100nF  
3.3V  
10  
12  
8
PROTECTION  
CONFIG  
OUT1B  
GND1B  
L19 22µH  
&
LOGIC  
GNDCLEAN  
17  
23  
24  
22  
32  
SCL  
SDA  
VCC2A  
C32  
100nF  
M17  
M15  
M16  
M14  
RESET  
BICKI  
L113 22µH  
9
7
DIGITAL  
PWM  
MODULATOR  
OUT2A  
30  
31  
26  
27  
C110  
100nF  
SDI  
LRCKI  
GND2A  
C107  
100nF  
R103  
6
550pF  
XTI  
7250  
20pF  
C108  
470nF  
4
VCC2B  
R104  
20  
R102  
6
C106  
100nF  
VDDA  
C33  
1µF  
29  
3.3V  
C111  
100nF  
GNDA  
VDD  
3
6
28  
34  
OUT2B  
GND2B  
L112 22µH  
3.3V  
GND  
33  
1, 2, 5, 14,  
N.C.  
25  
D00AU1541  
RES  
Figure 9. Pin Connection  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
1
2
VCCSign  
VSS  
N.C.  
N.C.  
3
V
OUT2B  
DD  
4
GND  
BICKI  
LRCKI  
SDI  
VCC  
2B  
5
N.C.  
6
GND2B  
GND2A  
7
8
V
VCC  
2A  
DDA  
9
GNDA  
XTI  
OUT2A  
OUT1B  
10  
11  
12  
13  
14  
15  
16  
17  
18  
PLL FILTER  
RES  
VCC  
1B  
GND1B  
GND1A.  
N.C.  
SDA  
SCL  
RESET  
CONFIG  
VL  
VCC  
1A  
OUT1A  
GNDCLEAN  
GND REG  
V
DD REG  
D04AU1540  
4/41  
STA328  
Table 2. Pin Description  
PIN  
1
TYPE  
N.C.  
N.C.  
O
NAME  
DESCRIPTION  
N.C.  
N.C.  
2
3
OUT2B  
VCC2B  
Output half bridge 2B  
Positive supply  
4
I/O  
N.C.  
I/O  
I/O  
I/O  
O
5
N.C.  
6
GND2B  
GND2A  
VCC2A  
OUT2A  
OUT1B  
VCC1B  
GND1B  
GND1A  
Negative Supply  
Negative Supply  
Positive supply  
7
8
9
Output half bridge 2A  
Output half bridge 1B  
Positive supply  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
O
I/O  
I/O  
I/O.  
N.C.  
I/O  
O
Negative Supply  
Negative Supply  
N.C.  
VCC1A  
OUT1A  
Positive supply  
Output half bridge 1A  
Logical ground  
I/O  
I/O  
I/O  
I/O  
I
GNDCLEAN  
GNDREG  
VDD DIGITAL  
VL  
Substrate ground  
Logic Supply  
Logic Supply  
CONFIG  
Logic Levels  
I
RESET  
Reset  
I
SCL  
I²C Serial Clock  
I/O  
RES  
I
SDA  
I²C Serial Data  
Reserved  
PLL FILTER  
XTI  
This pin must be connected to GND  
Connection to PLL filter  
PLL Input Clock  
I
I/O  
I/O  
I
Analog Ground  
Analog Supply  
SDI_12  
Analog Ground  
Analog Supply 3.3  
I²S Serial Data Channels 1 & 2  
I²S Left/Right Clock,  
I²S Serial Clock  
I/O  
I
LRCKI  
BICKI  
I/O  
I/O  
I/O  
I/O  
Digital Ground  
Digital Supply  
VSS DIGITAL  
VCCDIGITAL  
Digital Ground  
Digital Supply 3.3V  
5V Regulator referred to +Vcc  
5V Regulator referred to ground  
5/41  
STA328  
Table 3. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
-0.5 to 4  
Unit  
V
V
3.3V I/O Power Supply  
Voltage on input pins  
DD_3.3  
V
-0.5 to (VDD+0.5)  
-0.5 to (VDD+0.5)  
-40 to +150  
-20 to +85  
40  
V
i
V
o
Voltage on output pins  
Storage Temperature  
V
T
°C  
°C  
V
stg  
T
amb  
Ambient Operating Temperature  
DC Supply Voltage  
V
CC  
V
Maximum voltage on pins 20  
5.5  
V
MAX  
Table 4. Thermal Data  
Symbol  
Parameter  
Min  
Typ  
Max  
2.5  
Unit  
°C/W  
°C  
R
Thermal resistance Junction to case (thermal pad)  
Thermal Shut-down Junction Temperature  
Thermal Warning Temperature  
thj-case  
T
150  
130  
25  
j-SD  
T
°C  
WARN  
T
Thermal Shut-down Hysteresis  
°C  
h-SD  
Table 5. Recommended DC Operating Conditions  
Symbol  
Parameter  
Value  
Unit  
V
V
I/O Power Supply  
Operating Junction Temperature  
3.0 to 3.6  
-20 to +125  
DD_3.3  
T
°C  
j
4 ELECTRICAL CHARACTERISTCS  
(VDD3 = 3.3V 0.3V; Tamb = 25°C; unless otherwise specified)  
4.1 General Interface Electrical Characteristics  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Note  
I
Low Level Input no pull-up  
High Level Input no pull-down  
V = 0V  
1
2
2
µA  
µA  
µA  
1
1
1
il  
i
I
ih  
V = V  
i
DD3  
DD3  
I
Tristate output leakage without  
pullup/down  
V = V  
OZ  
i
V
esd  
Electrostatic Protection  
Leakage < 1µA  
2000  
V
2
Note 1: The leakage currents are generally very small, < 1na. The values given here are maximum after an electrostatic stress on the pin.  
Note 2: Human Body Model  
4.2 DC Electrical Characteristics: 3.3V Buffers  
Symbol  
Parameter  
Low Level Input Voltage  
High Level Input Voltage  
Schmitt Trigger Hysteresis  
Low Level Output  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
V
V
0.8  
IL  
V
IH  
2.0  
0.4  
V
V
V
hyst  
V
ol  
IoI = 2mA  
0.15  
V
V
oh  
High Level Output  
Ioh = -2mA  
VDD -0.15  
V
6/41  
STA328  
4.3 Power Electrical Characteristcs (VL = 3.3V; Vcc = 30V; Tamb = 25°C unless otherwise specified  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
R
Power Pchannel/Nchannel  
MOSFET RdsON  
Id=1A  
200  
270  
mΩ  
dsON  
I
Power Pchannel/Nchannel  
leakage Idss  
Vcc=35V  
50  
µA  
dss  
g
g
Power Pchannel RdsON Matching Id=1A  
95  
95  
%
%
N
Power Nchannel RdsON  
Matching  
Id=1A  
P
Dt_s  
Low current Dead Time (static)  
Turn-on delay time  
see test circuit no.1; see fig. 1  
Resistive load  
10  
20  
100  
100  
25  
ns  
ns  
ns  
ns  
ns  
V
t
d ON  
t
Turn-off delay time  
Resistive load  
d OFF  
t
r
Rise time  
Resistive load  
t
Fall time  
Resistive load; as fig. 1  
25  
f
V
Supply voltage operating voltage  
Low logical state voltage VL  
High logical state voltage VH  
10  
36  
CC  
V
VL = 3.3V  
VL = 3.3V  
PWRDN = 0  
0.8  
V
L
V
1.7  
3
V
H
I
Supply Current from Vcc in  
PWRDN  
mA  
VCC-  
PWRDN  
I
Supply current from Vcc in Tri-  
state  
Vcc=30V; Tri-state  
22  
80  
mA  
mA  
VCC-hiz  
I
Supply current from Vcc in  
operation  
(both channel switching)  
Input pulse width = 50% Duty;  
Switching Frequency = 384Khz;  
No LC filters;  
VCC  
I
Overcurrent protection threshold  
(short circuit current limit)  
4.5  
70  
6
7
A
out-sh  
V
UV  
Undervoltage protection threshold  
Output minimum pulse width  
V
t
No Load  
150  
ns  
pw-min  
P
o
Output Power (refer to test circuit THD = 10%  
R = 4; V = 21V  
50  
80  
W
W
L
S
R = 8; V = 36V  
L
S
P
o
Output Power (refer to test circuit THD = 1%  
R = 4; V = 21V  
40  
62  
W
W
L
S
R = 8; V = 36V  
L
S
7/41  
STA328  
5 FUNCTIONAL DESCRIPTION  
5.1 PIN DESCRIPTION  
5.1.1 OUT1A, 1B, 2A & 2B (Pins 16, 10, 9 & 3)  
Output Half Bridge PWM Outputs 1A, 1B, 2A & 2B provide the inputs signals to the speaker devices.  
5.1.2 RESET (Pin 22)  
Driving RESET low sets all outputs low and returns all register settings to their defaults. The reset is asyn-  
chronous to the internal clock.  
5.1.3 I2C Signals (Pins 23 & 24)  
The SDA (I2C Data) and SCL (I2C Clock) pins operate per the I2C specification. See Section 4.0. Fast-  
mode (400kB/sec) I2C communication is supported.  
5.1.4 GNDA & VDDA: Phase Locked Loop Power (Pins 28-29)  
The phase locked loop power is applied here. This +3.3V supply must be well bypassed and filtered for  
noise immunity. The audio performance of the device is critically dependent upon the PLL circuit.  
5.1.5 CLK: Master Clock In (Pin 27)  
This is the master clock in required for the operation of the digital core. The master clock must be an in-  
teger multiple of the LR clock frequency. Typically, the master clock frequency is 12.288 MHz (256*Fs) for  
a 48kHz sample rate, which is the default at power-up. Care must be taken to avoid over-clocking the  
device i.e provide the device with the nominally required system clock; otherwise, the device may not prop-  
erly operate or be able to communicate.  
5.1.6 FILTER_PLL: PLL Filter (Pin 26)  
PLL Filter connects to external filter components for PLL loop compensation. Refer to the schematic dia-  
gram for the recommended circuit.  
5.1.7 BICKI: Bit Clock In (Pin 32)  
The serial or bit clock input is for framing each data bit. The bit clock frequency is typically 64*Fs, for ex-  
ample using I2S serial format.  
5.1.8 SDI_12: Serial Data Input (Pin 30)  
PCM audio information enters the device here. Six format choices are available including I2S, left- or right-  
justified, LSB or MSB first, with word widths of 16, 18, 20 and 24 bits.  
5.1.9 LRCKI: Left/Right Clock In (Pin 31)  
The Left/Right clock input is for data word framing. The clock frequency will be at the input sample rate Fs.  
5.2 AUDIO PERFORMANCE  
TBD  
5.3 PIN CONNECTION (Top View)  
6 STA328 I2C BUS SPECIFICATION  
The STA328 supports the I2C protocol. This protocol defines any device that sends data on to the bus as  
a transmitter and any device that reads the data as a receiver. The device that controls the data transfer  
is known as the master and the other as the slave. The master always starts the transfer and provides  
the serial clock for synchronization. The STA328 is always a slave device in all of its communications.  
8/41  
STA328  
6.1 COMMUNICATION PROTOCOL  
6.1.1 Data Transition or change  
Data changes on the SDA line must only occur when the SCL clock is low. SDA transition while the clock  
is high is used to identify a START or STOP condition.  
6.1.2 Start Condition  
START is identified by a high to low transition of the data bus SDA signal while the clock signal SCL is  
stable in the high state. A START condition must precede any command for data transfer.  
6.1.3 Stop Condition  
STOP is identified by a low to high transition of the data bus SDA signal while the clock signal SCL is stable  
in the high state. A STOP condition terminates communication between STA328 and the bus master.  
6.1.4 Data Input  
During the data input the STA328 samples the SDA signal on the rising edge of clock SCL. For correct  
device operation the SDA signal must be stable during the rising edge of the clock and the data can  
change only when the SCL line is low.  
6.2 DEVICE ADDRESSING  
To start communication between the master and the STA328, the master must initiate with a start condi-  
tion. Following this, the master sends 8-bits (MSB first) onto the SDA line corresponding to the device  
select address and read or write mode.  
The 7 most significant bits are the device address identifiers, corresponding to the I2C bus definition. In  
the STA328 the I2C interface uses a device addresse of 0x34 or 0011010x.  
The 8th bit (LSB) identifies read or write operation, RW. This bit is set to 1 in read mode and 0 for write  
mode. After a START condition the STA328 identifies the device address on the bus. If a match is found,  
it acknowledges the identification on the SDA bus during the 9th bit time. The byte following the device  
identification byte is the internal space address.  
6.3 WRITE OPERATION  
Following the START condition the master sends a device select code with the RW bit set to 0. The  
STA328 acknowledges this and then the master writes the internal address byte.  
After receiving the internal byte address the STA328 again responds with an acknowledgement.  
6.3.1 Byte Write  
In the byte write mode the master sends one data byte. This is acknowledged by the STA328. The master  
then terminates the transfer by generating a STOP condition.  
6.3.2 Multi-byte Write  
The multi-byte write modes can start from any internal address. Sequential data byte writes will be written  
to sequential addresses within the STA328.  
The master generating a STOP condition terminates the transfer.  
6.4 READ OPERATION  
6.4.1 Current Address Byte Read  
Following the START condition the master sends a device select code with the RW bit set to 1. The  
STA328 acknowledges this and then responds by sending one byte of data. The master then terminates  
the transfer by generating a STOP condition.  
9/41  
STA328  
6.4.1.1Current Address Multi-byte Read  
The multi-byte read modes can start from any internal address. Sequential data bytes will be read from  
sequential addresses within the STA328. The master acknowledges each data byte read and then gen-  
erates a STOP condition terminating the transfer.  
6.4.2 Random Address Byte Read  
Following the START condition the master sends a device select code with the RW bit set to 0. The  
STA328 acknowledges this and then the master writes the internal address byte. After receiving, the in-  
ternal byte address the STA328 again responds with an acknowledgement. The master then initiates an-  
other START condition and sends the device select code with the RW bit set to 1. The STA328  
acknowledges this and then responds by sending one byte of data. The master then terminates the trans-  
fer by generating a STOP condition.  
6.4.2.1Random Address Multi-byte Read  
The multi-byte read modes could start from any internal address. Sequential data bytes will be read from  
sequential addresses within the STA328. The master acknowledges each data byte read and then gen-  
erates a STOP condition terminating the transfer.  
6.5 Write Mode Sequence  
Figure 10. I2C Write Procedure  
ACK  
ACK  
ACK  
ACK  
ACK  
BYTE  
WRITE  
DEV-ADDR  
DEV-ADDR  
SUB-ADDR  
SUB-ADDR  
DATA IN  
DATA IN  
START  
START  
RW  
STOP  
ACK  
ACK  
MULTIBYTE  
WRITE  
DATA IN  
RW  
STOP  
6.6 Read Mode Sequence  
Figure 11. I2C Read Procedure  
ACK  
NO ACK  
CURRENT  
ADDRESS  
READ  
DEV-ADDR  
DEV-ADDR  
DEV-ADDR  
DEV-ADDR  
DATA  
START  
START  
START  
START  
RW  
STOP  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
NO ACK  
RANDOM  
ADDRESS  
READ  
SUB-ADDR  
DEV-ADDR  
DATA  
RW  
START  
RW  
STOP  
STOP  
RW=  
HIGH  
NO ACK  
SEQUENTIAL  
CURRENT  
READ  
DATA  
DATA  
DATA  
DATA  
ACK  
ACK  
NO ACK  
SEQUENTIAL  
RANDOM  
READ  
SUB-ADDR  
DEV-ADDR  
DATA  
DATA  
RW  
START  
RW  
STOP  
10/41  
STA328  
7 REGISTER DESCRIPTION  
Table 6. Register Summary  
Address  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x1F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
Name  
ConfA  
ConfB  
ConfC  
ConfD  
ConfE  
ConfF  
Mmute  
Mvol  
D7  
FDRB  
C2IM  
D6  
D5  
D4  
IR1  
D3  
IR0  
D2  
D1  
MCS1  
SAI1  
D0  
MCS0  
SAI0  
TWAB  
C1IM  
CSZ4  
ZDE  
TWRB  
DSCKE  
CSZ3  
DRC  
MCS2  
SAI2  
CSZ0  
DSPB  
RES  
SAIFB  
CSZ2  
BQL  
SAI3  
CSZ1  
PSL  
OM1  
OM0  
MME  
SVE  
DEMP  
MPC  
HPB  
ZCE  
DCCV  
ECLE  
PWMS  
LDTE  
AME  
BCLE  
MPCV  
OCFG0  
MMute  
MV0  
EAPD  
PWDN  
IDE  
OCFG1  
MV7  
C1V7  
C2V7  
C3V7  
AMPS  
XO3  
MV6  
C1V6  
C2V6  
C3V6  
MV5  
C1V5  
C2V5  
C3V5  
AMGC1  
XO1  
MV4  
C1V4  
MV3  
C1V3  
MV2  
C1V2  
MV1  
C1V1  
C1Vol  
C2Vol  
C3Vol  
Auto1  
Auto2  
Auto3  
C1Cfg  
C2Cfg  
C3Cfg  
Tone  
C1V0  
C2V4  
C2V3  
C2V2  
C2V1  
C2V0  
C3V4  
C3V3  
C3V2  
C3V1  
C3V0  
AMGC0  
XO1  
AMV1  
AMAM2  
PEQ3  
C1BO  
C2BO  
C3BO  
BTC3  
L1R3  
AMV0  
AMAM1  
PEQ2  
C1VBP  
C2VBP  
C3VBP  
BTC2  
AMEQ1  
AMAM0  
PEQ1  
AMEQ0  
AMAME  
PEQ0  
C1TCB  
C2TCB  
XO2  
PEQ4  
C1LS0  
C2LS0  
C3LS0  
TTC0  
C1OM1  
C2OM1  
C3OM1  
TTC3  
C1OM0  
C2OM0  
C3OM0  
TTC2  
C1LS1  
C2LS1  
C3LS1  
TTC1  
C1EQBP  
C2EQBP  
BTC1  
L1R1  
BTC0  
L1R0  
L1ar  
L1A3  
L1A2  
L1A1  
L1A0  
L1R2  
L1atrt  
L2ar  
L1AT3  
L2A3  
L1AT2  
L2A2  
L1AT1  
L2A1  
L1AT0  
L2A0  
L1RT3  
L2R3  
L1RT2  
L2R2  
L1RT1  
L2R1  
L1RT0  
L2R0  
L2atrt  
Cfaddr2  
B1cf1  
B1cf2  
B1cf3  
B2cf1  
B2cf2  
B2cf3  
A1cf1  
A1cf2  
A1cf3  
A2cf1  
A2cf2  
A2cf3  
B0cf1  
B0cf2  
B0cf3  
Cfud  
L2AT3  
CFA7  
L2AT2  
CFA6  
L2AT1  
CFA5  
L2AT0  
CFA4  
L2RT3  
CFA3  
L2RT2  
CFA2  
L2RT1  
CFA1  
C1B17  
C1B9  
C1B1  
C2B17  
C2B9  
C2B1  
C3B17  
C3B9  
C3B1  
C4B17  
C4B9  
C4B1  
C5B17  
C5B9  
C5B1  
WA  
L2RT0  
CFA0  
C1B23  
C1B15  
C1B7  
C1B22  
C1B14  
C1B6  
C1B21  
C1B13  
C1B5  
C1B20  
C1B12  
C1B4  
C1B19  
C1B11  
C1B3  
C1B18  
C1B10  
C1B2  
C1B16  
C1B8  
C1B0  
C2B16  
C2B8  
C2B0  
C3B16  
C3B8  
C3B0  
C4B16  
C4B8  
C4B0  
C5B16  
C5B8  
C5B0  
W1  
C2B23  
C2B15  
C2B7  
C2B22  
C2B14  
C2B6  
C2B21  
C2B13  
C2B5  
C2B20  
C2B12  
C2B4  
C2B19  
C2B11  
C2B3  
C2B18  
C2B10  
C2B2  
C3B23  
C3B15  
C3B7  
C3B22  
C3B14  
C3B6  
C3B21  
C3B13  
C3B5  
C3B20  
C3B12  
C3B4  
C3B19  
C3B11  
C3B3  
C3B18  
C3B10  
C3B2  
C4B23  
C4B15  
C4B7  
C4B22  
C4B14  
C4B6  
C4B21  
C4B13  
C4B5  
C4B20  
C4B12  
C4B4  
C4B19  
C4B11  
C4B3  
C4B18  
C4B10  
C4B2  
C5B23  
C5B15  
C5B7  
C5B22  
C5B14  
C5B6  
C5B21  
C5B13  
C5B5  
C5B20  
C5B12  
C5B4  
C5B19  
C5B11  
C5B3  
C5B18  
C5B10  
C5B2  
MPCC1  
MPCC2  
RES  
MPCC15 MPCC14 MPCC13 MPCC12 MPCC11 MPCC10  
MPCC9  
MPCC1  
RES  
MPCC8  
MPCC0  
RES  
MPCC7  
RES  
MPCC6  
RES  
MPCC5  
RES  
MPCC4  
RES  
MPCC3  
RES  
MPCC2  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
FDRC1  
FDRC2  
Status  
FDRC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10  
FDRC9  
FDRC1  
FAULT  
FDRC8  
FDRC0  
TWARN  
FDRC7  
PLLUL  
FDRC6  
FDRC5  
FDRC4  
FDRC3  
FDRC2  
11/41  
STA328  
7.1 CONFIGURATION REGISTER A (Address 00h)  
D7  
FDRB  
0
D6  
TWAB  
1
D5  
TFRB  
1
D4  
IR1  
0
D3  
IR0  
0
D2  
MCS2  
0
D1  
MCS1  
1
D0  
MCS0  
1
7.1.1 Master Clock Select  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
0
R/W  
1
MCS0  
Master Clock Select: Selects the ratio between the input  
2
I S sample frequency and the input clock.  
1
2
R/W  
R/W  
1
0
MCS1  
MCS2  
The STA328 will support sample rates of 32kHz, 44.1kHz, 48Khz, 88.2kHz, and 96kHz. Therefore the  
internal clock will be:  
32.768Mhz for 32kHz  
45.1584Mhz for 44.1khz, 88.2kHz, and 176.4kHz  
49.152Mhz for 48kHz, 96kHz, and 192kHz  
The external clock frequency provided to the XTI pin must be a multiple of the input sample frequency (fs).  
The correlation between the input clock and the input sample rate is determined by the status of the MCSx  
bits and the IR (Input Rate) register bits. The MCSx bits determine the PLL factor generating the internal  
clock and the IR bit determines the oversampling ratio used internally.  
Table 7. IR and MCS Settings for Input Sample Rate and Clock Rate  
Input Sample Rate  
IR  
MCS(2..0)  
fs (kHz)  
000  
001  
010  
011  
100  
128fs  
64fs  
64fs  
101  
576fs  
x
32, 44.1, 48  
88.2, 96  
00  
01  
1X  
768fs  
384fs  
384fs  
512fs  
256fs  
256fs  
384fs  
192fs  
192fs  
256fs  
128fs  
128fs  
176.4, 192  
x
7.1.2 Interpolation Ratio Select  
BIT  
R/W  
RST  
NAME  
IR (1...0)  
DESCRIPTION  
4...3  
R/W  
00  
Interpolation Ratio Select: Selects internal interpolation ratio based  
2
on input I S sample frequency  
The STA328 has variable interpolation (re-sampling) settings such that internal processing and DDX out-  
put rates remain consistent. The first processing block interpolates by either 2 times or 1 time (pass-  
through) or provides a down-sample by a factor of 2.  
The IR bits determine the re-sampling ratio of this interpolation.  
Table 8. IR bit settings as a function of Input Sample Rate  
st  
Input Sample Rate Fs (kHz)  
IR (1,0)  
00  
1
Stage Interpolation Ratio  
2 times over-sampling  
2 times over-sampling  
2 times over-sampling  
Pass-Through  
32  
44.1  
48  
00  
00  
88.2  
96  
01  
01  
Pass-Through  
176.4  
192  
10  
Down-sampling by 2  
Down-sampling by 2  
10  
12/41  
STA328  
7.1.3 Thermal Warning Recovery Bypass  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
5
R/W  
1
TWRB  
Thermal-Warning Recovery Bypass:  
0 – Thermal warning Recovery enabled  
1 – Thermal warning Recovery disabled  
If the Thermal Warning Adjustment is enabled (TWAB=0), then the Thermal Warning Recovery will deter-  
mine if the adjustment is removed when Thermal Warning is negative. If TWRB=0 and TWAB=0, then  
when a thermal warning disappears the gain adjustment determined by the Thermal Warning Post-  
Scale(default = -3dB) will be removed and the gain will be added back to the system. If TWRB=1 and  
TWAB=0, then when a thermal warning disappears the Thermal Warning Post-Scale gain adjustment will  
remain until TWRB is changed to zero or the device is reset.  
7.1.4 Thermal Warning Adjustment Bypass  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
6
R/W  
1
TWAB  
Thermal-Warning Adjustment Bypass:  
0 – Thermal warning adjustment enabled  
1 – Thermal warning adjustment disabled  
The on-chip STA328 Power Output block provides feedback to the digital controller using inputs to the  
Power Control block. The TWARN input is used to indicate a thermal warning condition. When TWARN  
is asserted (set to 0) for a period greater than 400ms, the power control block will force an adjustment to  
the modulation limit in an attempt to eliminate the thermal warning condition. Once the thermal warning  
volume adjustment is applied, whether the gain is reapplied when TWARN is de-asserted is dependent  
on the TWRB bit.  
7.1.5 Fault Detect Recovery Bypass  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
Fault Detector Recovery Bypass:  
7
R/W  
0
FDRB  
0 – Fault Detector Recovery enabled  
1 – Fault Detector Recovery disabled  
The DDX Power block can provide feedback to the digital controller using inputs to the Power Control  
block. The FAULT input is used to indicate a fault condition (either over-current or thermal). When FAULT  
is asserted (set to 0), the power control block will attempt a recovery from the fault by asserting the tri-  
state output (setting it to 0 which directs the power output block to begin recovery). It holds it at 0 for period  
of time in the range of .1ms to 1 second as defined by the Fault-Detect Recovery Constant register (FDRC  
registers 29-2Ah), then toggle it back to 1. This sequence is repeated as log as the fault indication exists.  
This feature is enabled by default but can be bypassed by setting the FDRB control bit to 1.  
7.2 CONFIGURATION REGISTER B (Address 01h)  
D7  
C1IM  
1
D6  
C1IM  
0
D5  
DSCKE  
0
D4  
SAIFB  
0
D3  
SAI3  
0
D2  
SAI2  
0
D1  
SAI1  
0
D0  
SAI0  
0
7.2.1 Serial Audio Input Interface Format  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
3…0  
R/W  
0000  
SAI (3...0)  
Serial Audio Input Interface Format: Determines the interface format of  
the input serial digital audio interface.  
13/41  
STA328  
7.3 Serial Data Interface  
The STA328 serial audio input was designed to interface with standard digital audio components and to  
accept a number of serial data formats. The STA328 always acts as a slave when receiving audio input  
from standard digital audio components. Serial data for two channels is provided using 3 input pins: left/  
right clock LRCKI (pin 33), serial clock BICKI (pin 31), and serial data 1 & 2 SDI12 (pin 32).  
The SAI register (Configuration Register B - 01h, Bits D3-D0) and the SAIFB register (Configuration Reg-  
ister B - 01h, Bit D4) are used to specify the serial data format. The default serial data format is I2S, MSB-  
First. Available formats are shown in Figure 11 and the tables that follow.  
Figure 12. General Serial Input and Output Formats  
I2S  
Left  
Right  
LRCLK  
SCLK  
MSB  
LSB  
MSB  
LSB  
MSB  
SDATA  
Left Justified  
Left  
Right  
LRCLK  
SCLK  
SDATA  
MSB  
LSB  
MSB  
LSB  
MSB  
Right Justified  
Left  
Right  
LRCLK  
SCLK  
SDATA  
MSB  
LSB  
MSB  
LSB  
MSB  
For example, SAI=1110 and SAIFB=1 would specify Right-Justified 16-bit data, LSB-First.  
Table 10 below lists the serial audio input formats supported by STA328 as related to BICKI = 32/48/64fs,  
where the sampling rate fs = 32/44.1/48/88.2/96/176.4/192 kHz.  
Table 9. First Bit Selection Table  
SAIFB  
Format  
MSB-First  
LSB-First  
0
1
Note: Serial input and output formats are specified distinctly.  
14/41  
STA328  
Table 10. Supported Serial Audio Input Formats  
BICKI  
SAI (3...0)  
SAIFB  
Interface Format  
2
32fs  
1100  
X
I S 15bit Data  
1110  
0100  
X
X
Left/Right-Justified 16bit Data  
2
48fs  
I S 23bit Data  
2
0100  
1000  
0100  
1100  
X
X
0
1
I S 20bit Data  
2
I S 18bit Data  
2
MSB First I S 16bit Data  
2
LSB First I S 16bit Data  
0001  
0101  
1001  
1101  
0010  
0110  
1010  
1110  
0000  
X
X
X
X
X
X
X
X
X
Left-Justified 24bit Data  
Left-Justified 20bit Data  
Left-Justified 18bit Data  
Left-Justified 16bit Data  
Right-Justified 24bit Data  
Right-Justified 20bit Data  
Right-Justified 18bit Data  
Right-Justified 16bit Data  
2
64fs  
I S 24bit Data  
2
0100  
1000  
0000  
1100  
X
X
0
1
I S 20bit Data  
2
I S 18bit Data  
2
MSB First I S 16bit Data  
2
LSB First I S 16bit Data  
0001  
0101  
1001  
1101  
0010  
0110  
1010  
1110  
X
X
X
X
X
X
X
X
Left-Justified 24bit Data  
Left-Justified 20bit Data  
Left-Justified 18bit Data  
Left-Justified 16bit Data  
Right-Justified 24bit Data  
Right-Justified 20bit Data  
Right-Justified 18bit Data  
Right-Justified 16bit Data  
Table 11. Serial Input Data Timing characteristics (Fs = 32 to 192kHz)  
BICKI FREQUENCY (slave mode)  
BICKI pulse width low (T0) (slave mode)  
BICKI pulse width high (T1) (slave mode)  
BICKI active to LRCKI edge delay (T2)  
BICKI active to LRCKI edge delay (T3)  
SDI valid to BICKI active setup (T4)  
12.5MHz max.  
40 ns min.  
40 ns min.  
20 ns min.  
20 ns min.  
20 ns min.  
20 ns min.  
BICKI active to SDI hold time (T5)  
15/41  
STA328  
Figure 13.  
T2  
T3  
LRCKI  
T1  
T0  
BICKI  
T4  
SDI  
T5  
7.3.1 Delay Serial Clock Enable  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
5
R/W  
0
DSCKE  
Delay Serial Clock Enable:  
0 – No serial clock delay  
1 – Serial clock delay by 1 core clock cycle to tolerate  
anomalies in some I2S master devices  
7.3.2 Channel Input Mapping  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
2
6
R/W  
0
C1IM  
0 – Processing channel 1 receives Left I S Input  
2
1 – Processing channel 1 receives Right I S Input  
2
7
R/W  
1
C2IM  
0 – Processing channel 2 receives Left I S Input  
2
1 – Processing channel 2 receives Right I S Input  
Each channel received via I2S can be mapped to any internal processing channel via the Channel Input  
Mapping registers. This allows for flexibility in processing. The default settings of these registers map  
each I2S input channel to its corresponding processing channel.  
7.4 CONFIGURATION REGISTER C (Address 02h)  
D7  
D6  
CSZ4  
1
D5  
CSZ3  
0
D4  
CSZ2  
0
D3  
CSZ1  
0
D2  
CSZ0  
0
D1  
OM1  
1
D0  
OM0  
0
7.4.1 DDX® Power Output Mode  
BIT  
R/W  
RST  
NAME  
OM (1...0)  
DESCRIPTION  
1...0  
R/W  
10  
DDX Power Output Mode:  
Selects configuration of DDX output.  
®
The DDX® Power Output Mode selects how the DDX® output timing is configured. Different power de-  
vices can use different output modes. The DDX-2060/2100/2160 recommended use is OM = 10. When  
OM=11 the CSZ bits determine the size of the DDX® compensating pulse.  
16/41  
STA328  
Table 12. DDX® Output Modes  
OM (1,0)  
Output Stage – Mode  
Not Used  
00  
01  
10  
11  
Not Used  
DDX-2060/2100/2160  
Variable Compensation  
7.4.2 5.3.2DDX® Variable Compensating Pulse Size  
The DDX® variable compensating pulse size is intended to adapt to different power stage ICs. Contact  
Apogee applications for support when deciding this function.  
Table 13. DDX® Compensating Pulse  
CSZ (4…0)  
00000  
00001  
Compensating Pulse Size  
0 Clock period Compensating Pulse Size  
1 Clock period Compensating Pulse Size  
10000  
16 Clock period Compensating Pulse Size  
11111  
31 Clock period Compensating Pulse Size  
7.5 Configuration Register D (Address 03h)  
D7  
MME  
0
D6  
ZDE  
0
D5  
DRC  
0
D4  
BQL  
0
D3  
PSL  
0
D2  
DSPB  
0
D1  
DEMP  
0
D0  
HPB  
0
7.5.1 High-Pass Filter Bypass  
BIT  
R/W  
RST  
NAME  
HPB  
DESCRIPTION  
High-Pass Filter Bypass Bit.  
0
R/W  
0
0 – AC Coupling High Pass Filter Enabled  
1 – AC Coupling High Pass Filter Disabled  
The STA328 features an internal digital high-pass filter for the purpose of DC Blocking. The purpose of  
this filter is to prevent DC signals from passing through a DDX® amplifier. DC signals can cause speaker  
damage.  
7.5.2 De-Emphasis  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
1
R/W  
0
DEMP  
De-emphasis:  
0 – No De-emphasis  
1 – De-emphasis  
By setting this bit to HIGH, or one (1), de-emphasis will implemented on all channels. DSPB (DSP Bypass,  
Bit D2, CFA) bit must be set to 0 for De-emphasis to function.  
17/41  
STA328  
7.5.3 DSP Bypass  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
2
R/W  
0
DSPB  
DSP Bypass Bit:  
0 – Normal Operation  
1 – Bypass of EQ and Mixing Functionality  
Setting the DSPB bit bypasses all the EQ and Mixing functionality of the STA328 Core.  
7.5.4 Post-Scale Link  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
3
R/W  
0
PSL  
Post-Scale Link:  
0 – Each Channel uses individual Post-Scale value  
1 – Each Channel uses Channel 1 Post-Scale value  
Post-Scale functionality is an attenuation placed after the volume control and directly before the conver-  
sion to PWM. Post-Scale can also be used to limit the maximum modulation index and therefore the peak  
current. A setting of 1 in the PSL register will result in the use of the value stored in Channel 1 post-scale  
for all three internal channels.  
7.5.5 Biquad Coefficient Link  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
4
R/W  
0
BQL  
Biquad Link:  
0 – Each Channel uses coefficient values  
1 – Each Channel uses Channel 1 coefficient values  
For ease of use, all channels can use the biquad coefficients loaded into the Channel 1 Coefficient RAM  
space by setting the BQL bit to 1. Therefore, any EQ updates only have to be performed once.  
7.5.6 Dynamic Range Compression/Anti-Clipping Bit  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
5
R/W  
0
DRC  
Dynamic Range Compression/Anti-Clipping  
0 – Limiters act in Anti-Clipping Mode  
1 – Limiters act in Dynamic Range Compression Mode  
Both limiters can be used in one of two ways, anti-clipping or dynamic range compression. When used in  
anti-clipping mode the limiter threshold values are constant and dependent on the limiter settings. In dy-  
namic range compression mode the limiter threshold values vary with the volume settings allowing a night-  
time listening mode that provides a reduction in the dynamic range regardless of the volume level.  
7.5.7 Zero-Detect Mute Enable  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
6
R/W  
1
ZDE  
Zero-Detect Mute Enable: Setting of 1 enables the automatic zero-  
detect mute  
Setting the ZDE bit enables the zero-detect automatic mute. When ZDE=1, the zero-detect circuit looks  
at the input data to each processing channel after the channel-mapping block. If any channel receives  
2048 consecutive zero value samples (regardless of fs) then that individual channel is muted if this func-  
tion is enabled.  
7.5.8 1.1.5Miami ModeTM Enable  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
7
R/W  
0
MME  
Miami-Mode Enable:  
0 – Sub Mix into Left/Right Disabled  
1 – Sub Mix into Left/Right Enabled  
18/41  
STA328  
7.6 CONFIGURATION REGISTER E (ADDRESS 04H)  
D7  
SVE  
0
D6  
ZCE  
0
D5  
RES  
0
D4  
PWMS  
0
D3  
AME  
0
D2  
RES  
0
D1  
MPC  
0
D0  
MPCV  
0
7.6.1 Max Power Correction Variable  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
0
R/W  
0
MPCV  
Max Power Correction Variable:  
0 – Use Standard MPC Coefficient  
1 – Use MPCC bits for MPC Coefficient  
By enabling MPC and setting MPCV = 1, the max power correction becomes variable. By adjusting the  
MPCC registers (address 0x27-0x28) it becomes possible to adjust the THD at maximum unclipped power  
to a lower value for a particular application.  
7.6.2 Max Power Correction  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
Max Power Correction:  
7
R/W  
1
MPC  
0 – MPC Disabled  
1 – MPC Enabled  
Setting the MPC bit corrects the DDX-2060/2100/2160 power device at high power. This mode will lower  
the THD+N of a full DDX-2060 DDX® system at maximum power output and slightly below.  
7.6.3 AM Mode Enable  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
3
R/W  
0
AME  
AM Mode Enable:  
®
0 – Normal DDX operation.  
®
1 – AM reduction mode DDX operation.  
The STA328 features a DDX® processing mode that minimizes the amount of noise generated in the fre-  
quency range of AM radio. This mode is intended for use when DDX® is operating in a device with an  
active AM tuner. The SNR of the DDX® processing is reduced to ~83dB in this mode, which is still greater  
than the SNR of AM radio.  
7.6.4 PWM Speed Mode  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
4
R/W  
0
PWMS  
PWM Speed Selection: Normal or Odd  
Table 14. PWM Output Speed Selections  
PWMS (1...0)  
PWM Output Speed  
0
1
Normal Speed (384kHz) All Channels  
Odd Speed (341.3kHz) All Channels  
19/41  
STA328  
7.6.5 Zero-Crossing Volume Enable  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
Zero-Crossing Volume Enable:  
6
R/W  
1
ZCE  
1 – Volume adjustments will only occur at digital zero-crossings  
0 – Volume adjustments will occur immediately  
The ZCE bit enables zero-crossing volume adjustments. When volume is adjusted on digital zero-cross-  
ings no clicks will be audible.  
7.6.6 Soft Volume Update Enable  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
7
R/W  
1
SVE  
Soft Volume Enable:  
1 – Volume adjustments will use soft volume  
0 – Volume adjustments will occur immediately  
The STA328 includes a soft volume algorithm that will step through the intermediate volume values at a  
predetermined rate when a volume change occurs. By setting SVE=0 this can be bypassed and volume  
changes will jump from old to new value directly. This feature is only available if individual channel volume  
bypass bit is set to ‘0’.  
7.7 Configuration Register F (Address 05h)  
D7  
EAPD  
0
D6  
PWDN  
1
D5  
ECLE  
0
D4  
RES  
1
D3  
BCLE  
1
D2  
IDE  
1
D1  
OCFG1  
1
D0  
OCFG0  
0
7.7.1 Output Configuration Selection  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
Output Configuration Selection  
00 – 2-channel (Full-bridge) Power, 1-channel DDX is default  
1…0  
R/W  
00  
OCFG  
(1…0)  
Table 15. Output Configuration Selections  
OCFG (1...0)  
Output Power Configuration  
00  
2 Channel (Full-Bridge) Power, 1 Channel DDX:  
1A/1B 1A/1B  
2A/2B 2A/2B  
01  
2(Half-Bridge).1(Full-Bridge) On-Board Power:  
1A 1A  
2A 1B  
Binary  
Binary  
3A/3B 2A/2B Binary  
10  
11  
Reserved  
1 Channel Mono-Parallel:  
3A 1A/1B  
3B 2A/2B  
7.7.2 nvalid Input Detect Mute Enable  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
Invalid Input Detect Auto-Mute Enable:  
2
R/W  
1
IDE  
0 – Disabled  
1 – Enabled  
Setting the IDE bit enables this function, which looks at the input I2S data and clocking and will automati-  
cally mute all outputs if the signals are perceived as invalid.  
20/41  
STA328  
7.7.3 Binary Clock Loss Detection Enable  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
5
R/W  
1
BCLE  
Binary Output Mode Clock Loss Detection Enable  
0 – Disabled  
1 – Enabled  
Detects loss of input MCLK in binary mode and will output 50% duty cycle to prevent audible artifacts when  
input clocking is lost.  
7.7.4 Auto-EAPD on Clock Loss Enable  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
7
R/W  
0
ECLE  
Auto EAPD on Clock Loss  
0 – Disabled  
1 – Enabled  
When ECLE is active, it issues a power device power down signal (EAPD) on clock loss detection.  
7.7.5 External Amplifier Power Down  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
7
R/W  
0
EAPD  
External Amplifier Power Down:  
0 – External Power Stage Power Down Active  
1 – Normal Operation  
EAPD is used to actively power down a connected DDX® Power device. This register has to be written to  
1 at start-up to enable the DDX® power device for normal operation.  
7.8 VOLUME CONTROL  
7.8.1 Master Controls  
7.8.1.1Master Mute Register (Address 06h)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MMUTE  
0
7.8.1.2Master Volume Register (Address 07h)  
D7  
MV7  
1
D6  
MV6  
1
D5  
MV5  
1
D4  
MV4  
1
D3  
MV3  
1
D2  
MV2  
1
D1  
MV1  
1
D0  
MV0  
1
Note : Value of volume derived from MVOL is dependent on AMV AutoMode Volume settings.  
7.8.2 Channel Controls  
7.8.2.1Channel 1 Volume (Address 08h)  
D7  
C1V7  
0
D6  
C1V6  
1
D5  
C1V5  
1
D4  
C1V4  
0
D3  
C1V3  
0
D2  
C1V2  
0
D1  
C1V1  
0
D0  
C1V0  
0
21/41  
STA328  
7.8.2.2Channel 2 Volume (Address 09h)  
D7  
C2V7  
0
D6  
C2V6  
1
D5  
C2V5  
1
D4  
C2V4  
0
D3  
C2V3  
0
D2  
C2V2  
0
D1  
C2V1  
0
D0  
C2V0  
0
7.8.2.3Channel 3 Volume (Address 0Ah)  
D7  
C3V7  
0
D6  
C3V6  
1
D5  
C3V5  
1
D4  
C3V4  
0
D3  
C3V3  
0
D2  
C3V2  
0
D1  
C3V1  
0
D0  
C3V0  
0
7.8.3 Volume Description  
The volume structure of the STA328 consists of individual volume registers for each of the three channels  
and a master volume register, and individual channel volume trim registers. The channel volume settings  
are normally used to set the maximum allowable digital gain and to hard-set gain differences between cer-  
tain channels. These values are normally set at the initialization of the IC and not changed. The individual  
channel volumes are adjustable in 0.5dB steps from +48dB to -80 dB. The master volume control is nor-  
mally mapped to the master volume of the system. The values of these two settings are summed to find  
the actual gain/volume value for any given channel.  
When set to 1, the Master Mute will mute all channels, whereas the individual channel mutes (CxM) will  
mute only that channel. Both the Master Mute and the Channel Mutes provide a “soft mute” with the vol-  
ume ramping down to mute in 4096 samples from the maximum volume setting at the internal processing  
rate (~96kHz). A “hard mute” can be obtained by commanding a value of all 1’s (FFh) to any channel vol-  
ume register or the master volume register. When volume offsets are provided via the master volume reg-  
ister any channel whose total volume is less than –100dB will be muted.  
All changes in volume take place at zero-crossings when ZCE = 1 (configuration register E) on a per chan-  
nel basis as this creates the smoothest possible volume transitions. When ZCE=0, volume updates will  
occur immediately.  
The STA328 also features a soft-volume update function that will ramp the volume between intermediate  
values when the value is updated, when SVE = 1 (configuration register E). This feature can be disabled  
by setting SVE = 0.  
Each channel also contains an individual channel volume bypass. If a particular channel has volume by-  
passed via the CxVBP = 1 register then only the channel volume setting for that particular channel affects  
the volume setting, the master volume setting will not affect that channel. Also, master soft-mute will not  
affect the channel if CxVBP = 1.  
Each channel also contains a channel mute. If CxM = 1 a soft mute is performed on that channel  
Table 16. Master Volume Offset as a Function of MV (7..0).  
MV (7..0)  
00000000 (00h)  
00000001 (01h)  
00000010 (02h)  
Volume Offset from Channel Value  
0dB  
-0.5dB  
-1dB  
-38dB  
01001100 (4Ch)  
11111110 (FEh)  
11111111 (FFh)  
-127dB  
Hard Master Mute  
22/41  
STA328  
Table 17. Channel Volume as a Function of CxV (7..0)  
CxV (7..0)  
00000000 (00h)  
00000001 (01h)  
00000010 (02h)  
Volume  
+48dB  
+47.5dB  
+47dB  
01100001 (5Fh)  
01100000 (60h)  
01011111 (61h)  
+0.5dB  
0dB  
-0.5dB  
11111110 (FEh)  
11111111 (FFh)  
-79.5 dB  
Hard Channel Mute  
7.9 AUTOMODE REGISTERS  
7.9.1 Register – AutoModes EQ, Volume, GC (Address 0Bh)  
D7  
AMPS  
1
D6  
D5  
AMGC1  
0
D4  
AMGC0  
0
D3  
AMV1  
0
D2  
AMV0  
0
D1  
AMEQ1  
0
D0  
AMEQ0  
0
Table 18. AutoMode EQ  
AMEQ (1,0)  
Mode (Biquad 1-4)  
00  
01  
10  
11  
User Programmable  
Preset EQ – PEQ bits  
Auto Volume Controlled Loudness Curve  
Not used  
By setting AMEQ to any setting other than 00 enables AutoMode EQ. When set, biquads 1-4 are not user  
programmable. Any coefficient settings for these biquads will be ignored. Also when AutoMode EQ is used  
the pre-scale value for channels 1-2 becomes hard-set to –18dB.  
Table 19. AutoMode Volume  
AMV (1,0)  
Mode (MVOL)  
MVOL 0.5dB 256 Steps (Standard)  
00  
01  
10  
11  
MVOL Auto Curve 30 Steps  
MVOL Auto Curve 40 Steps  
MVOL Auto Curve 50 Steps  
23/41  
STA328  
Table 20. AutoMode Gain Compression/Limiters  
AMGC (1...0)  
Mode  
00  
01  
10  
11  
User Programmable GC  
AC No Clipping  
AC Limited Clipping (10%)  
DRC Nighttime Listening Mode  
7.9.2 AMPS – AutoMode Auto Prescale  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
0
R/W  
0
AMPS  
AutoMode Pre-Scale  
0 – -18dB used for Pre-scale when AMEQ /= 00  
1 – User Defined Pre-scale when AMEQ /= 00  
7.9.3 Register – AutoMode AM/Pre-Scale/Bass Management Scale (Address 0Ch)  
D7  
XO3  
0
D6  
XO2  
0
D5  
XO1  
0
D4  
XO0  
0
D3  
AMAM2  
0
D2  
AMAM1  
0
D1  
AMAM0  
0
D0  
AMAME  
0
7.9.3.1AutoMode AM Switching Enable  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
0
R/W  
0
AMAME  
AutoMode AM Enable  
0 – Switching Frequency Determined by PWMS Setting  
1 – Switching Frequency Determined by AMAM Settings  
3…1  
R/W  
000  
AMAM (2…0)  
AM Switching Frequency Setting  
Default: 000  
Table 21. AutoMode AM Switching Frequency Selection  
AMAM (2..0)  
000  
48kHz/96kHz Input Fs  
0.535MHz – 0.720MHz  
0.721MHz – 0.900MHz  
0.901MHz – 1.100MHz  
1.101MHz – 1.300MHz  
1.301MHz – 1.480MHz  
1.481MHz – 1.600MHz  
1.601MHz – 1.700MHz  
44.1kHz/88.2kHz Input Fs  
0.535MHz – 0.670Mhz  
0.671MHz – 0.800MHz  
0.801MHz – 1.000MHz  
1.001MHz – 1.180MHz  
1.181MHz – 1.340Mhz  
1.341MHz – 1.500MHz  
1.501MHz – 1.700MHz  
001  
010  
011  
100  
101  
110  
When DDX® is used concurrently with an AM radio tuner, it is advisable to use the AMAM bits to automat-  
ically adjust the output PWM switching rate dependent upon the specific radio frequency that the tuner is  
receiving. The values used in AMAM are also dependent upon the sample rate determined by the ADC  
used.  
7.9.3.2AutoMode Crossover Setting  
BIT  
R/W  
RST  
NAME  
DESCRIPTION  
7…4  
R/W  
0
XO (3…0)  
AutoMode Crossover Frequency Selection  
000 – User Defined Crossover coefficients are used  
Otherwise – Preset coefficients for the crossover setting desired  
24/41  
STA328  
Table 22. Crossover Frequency Selection  
XO (2..0)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Bass Management - Crossover Frequency  
User  
80 Hz  
100 Hz  
120 Hz  
140 Hz  
160 Hz  
180 Hz  
200 Hz  
220 Hz  
240 Hz  
260 Hz  
280 Hz  
300 Hz  
320 Hz  
340 Hz  
360 Hz  
7.9.4 Register - Preset EQ Settings (Address 0Dh)  
D7  
D6  
D5  
D4  
PEQ4  
0
D3  
PEQ3  
0
D2  
PEQ2  
0
D1  
PEQ1  
0
D0  
PEQ0  
0
Table 23. Preset EQ Selection  
PEQ (3..0)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Setting  
Flat  
Rock  
Soft Rock  
Jazz  
Classical  
Dance  
Pop  
Soft  
Hard  
Party  
Vocal  
Hip-Hop  
Dialog  
Bass-Boost #1  
Bass-Boost #2  
Bass-Boost #3  
Loudness 1 (least boost)  
Loudness 2  
Loudness 3  
Loudness 4  
Loudness 5  
Loudness 6  
Loudness 7  
Loudness 8  
Loudness 9  
Loudness 10  
Loudness 11  
Loudness 12  
Loudness 13  
Loudness 14  
Loudness 15  
Loudness 16 (most boost)  
25/41  
STA328  
7.10 Channel Configuration Registers  
7.10.1 Channel 1 Configuration (Address 0Eh)  
D7  
C1OM1  
0
D6  
C1OM0  
0
D5  
C1LS1  
0
D4  
C1LS0  
0
D3  
C1BO  
0
D2  
C1VBP  
0
D1  
C1EQBP  
0
D0  
C1TCB  
0
7.10.2 Channel 2 Configuration (Address 0Fh)  
D7  
C2OM1  
0
D6  
C2OM0  
0
D5  
C2LS1  
0
D4  
C2LS0  
0
D3  
C2BO  
0
D2  
C2VBP  
0
D1  
C2EQBP  
0
D0  
C2TCB  
0
7.10.3 Channel 3 Configuration (Address 10h)  
D7  
C3OM1  
0
D6  
C3OM0  
0
D5  
C3LS1  
0
D4  
C3LS0  
0
D3  
C3BO  
0
D2  
C3VBP  
0
D1  
D0  
EQ control can be bypassed on a per channel basis. If EQ control is bypassed on a given channel the  
prescale and all 9 filters (high-pass, biquads, de-emphasis, bass management cross-over, bass, treble in  
any combination) are bypassed for that channel.  
CxEQBP:  
– 0 Perform EQ on Channel X – normal operation  
– 1 Bypass EQ on Channel X  
Tone control (bass/treble) can be bypassed on a per channel basis. If tone control is bypassed on a given  
channel the two filters that tone control utilizes are bypassed.  
CxTCB:  
– 0 Perform Tone Control on Channel x – (default operation)  
– 1 Bypass Tone Control on Channel x  
Each channel can be configured to output either the patented DDX PWM data or standart binary PWM  
encoded data. By setting the CxBO bit to ‘1’, each channel can be individually controlled to be in binary  
operation mode.  
Also, there is the capability to map each channel independently onto any of the two limiters available within  
the STA328 or even not map it to any limiter at all (default mode).  
Table 24. Channel Limiter Mapping Selection  
CxLS (1,0)  
Channel Limiter Mapping  
Channel has limiting disabled  
00  
01  
10  
Channel is mapped to limiter #1  
Channel is mapped to limiter #2  
Each PWM Output Channel can receive data from any channel output of the volume block. Which channel  
a particular PWM output receives is dependent upon that channel’s CxOM register bits.  
26/41  
STA328  
Table 25. Channel PWM Output Mapping  
CxOM (1...0)  
PWM Output From  
Channel 1  
00  
01  
10  
11  
Channel 2  
Channel 3  
Not used  
7.11 Tone Control (Address 11h)  
D7  
TTC3  
0
D6  
TTC2  
1
D5  
TTC1  
1
D4  
TTC0  
1
D3  
BTC3  
0
D2  
D1  
D0  
BTC0  
1
BTC2  
1
BTC1  
1
Table 26. Tone Control Boost/Cut Selection  
BTC (3...0)/TTC (3...0)  
Boost/Cut  
0000  
0001  
-12dB  
-12dB  
0111  
0110  
0111  
1000  
1001  
-4dB  
-2dB  
0dB  
+2dB  
+4dB  
1101  
1110  
1111  
+12dB  
+12dB  
+12dB  
7.12 DYNAMICS CONTROL  
7.12.1 Limiter 1 Attack/Release Threshold (Address 12h)  
D7  
L1A3  
0
D6  
L1A2  
1
D5  
L1A1  
1
D4  
L1A0  
0
D3  
L1R3  
1
D2  
L1R2  
0
D1  
L1R1  
1
D0  
L1R0  
0
27/41  
STA328  
7.12.2 Limiter 1 Attack/Release Threshold (Address 13h)  
D7  
L1AT3  
0
D6  
L1AT2  
1
D5  
L1AT1  
1
D4  
L1AT0  
0
D3  
L1RT3  
1
D2  
L1RT2  
0
D1  
L1RT1  
0
D0  
L1RT0  
1
7.12.3 Limiter 2 Attack/Release Rate (Address 14h)  
D7  
L2A3  
0
D6  
L2A2  
1
D5  
L2A1  
1
D4  
L2A0  
0
D3  
L2R3  
1
D2  
L2R2  
0
D1  
L2R1  
1
D0  
L2R0  
0
7.12.4 Limiter 2 Attack/Release Threshold (Address 15h)  
D7  
L2AT3  
0
D6  
L2AT2  
1
D5  
L2AT1  
1
D4  
L2AT0  
0
D3  
L2RT3  
1
D2  
L2RT2  
0
D1  
L2RT1  
0
D0  
L2RT0  
1
7.12.5 Dynamics Control Description  
The STA328 includes 2 independent limiter blocks. The purpose of the limiters is to automatically reduce  
the dynamic range of a recording to prevent the outputs from clipping in anti-clipping mode, or to actively  
reduce the dynamic range for a better listening environment (such as a night-time listening mode, which  
is often needed for DVDs.) The two modes are selected via the DRC bit in Configuration Register D, bit  
5 address 0x03. Each channel can be mapped to Limiter1, Limiter2, or not mapped.  
If a channel is not mapped, that channel will clip normally when 0 dB FS is exceeded. Each limiter will  
look at the present value of each channel that is mapped to it, select the maximum absolute value of all  
these channels, perform the limiting algorithm on that value, and then if needed adjust the gain of the  
mapped channels in unison.  
The limiter attack thresholds are determined by the LxAT registers. When the Attack Thesehold has been  
exceeded, the limiter, when active, will automatically start reducing the gain. The rate at which the gain  
is reduced when the attack threshold is exceeded is dependent upon the attack rate register setting for  
that limiter. The gain reduction occurs on a peak-detect algorithm.  
The release of limiter, when the gain is again increased, is dependent on a RMS-detect algorithm. The  
output of the volume/limiter block is passed through an RMS filter. The output of this filter is compared to  
the release threshold, determined by the Release Threshold register.  
When the RMS filter output falls below the release threshold, the gain is increased at a rate dependent  
upon the Release Rate register. The gain can never be increased past its set value and therefore the  
release will only occur if the limiter has already reduced the gain. The release threshold value can be used  
to set what is effectively a minimum dynamic range. This is helpful as over-limiting can reduce the dynam-  
ic range to virtually zero and cause program material to sound “lifeless”.  
In AC mode the attack and release thresholds are set relative to full-scale. In DRC mode the attack thresh-  
old is set relative to the maximum volume setting of the channels mapped to that limiter and the release  
threshold is set relative to the maximum volume setting plus the attack threshold.  
28/41  
STA328  
Figure 14. - Basic Limiter and Volume Flow Diagram  
Limiter  
RMS  
Gain/Volume  
Input  
Output  
Gain  
Attenuation  
Saturation  
Table 27. Limiter Attack Rate Selection  
Table 28. Limiter Release Rate Selection  
LxA (3...0)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Attack Rate dB/ms  
3.1584  
LxR (3...0)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Release Rate dB/ms  
0.5116  
Fast  
Fast  
2.7072  
0.1370  
2.2560  
0.0744  
1.8048  
0.0499  
1.3536  
0.0360  
0.9024  
0.0299  
0.4512  
0.0264  
0.2256  
0.0208  
0.1504  
0.0198  
0.1123  
0.0172  
0.0902  
0.0147  
0.0752  
0.0137  
0.0645  
0.0134  
0.0564  
0.0117  
0.0501  
0.0110  
0.0451  
Slow  
0.0104  
Slow  
29/41  
STA328  
7.12.6 Anti-Clipping Mode  
7.12.7 Dynamic Range Compression Mode  
Table 29. Limiter Attack  
Table 31. Limiter Attack Threshold Selection  
Threshold Selection (AC-Mode)  
(DRC-Mode).  
LxAT (3...0)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
AC (dB relative to FS)  
LxAT (3...0)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
DRC (dB relative to Volume)  
-31  
-29  
-27  
-25  
-23  
-21  
-19  
-17  
-16  
-15  
-14  
-13  
-12  
-10  
-7  
-12  
-10  
-8  
-6  
-4  
-2  
0
+2  
+3  
+4  
+5  
+6  
+7  
+8  
+9  
+10  
-4  
Table 32. Limiter Release Threshold Selection  
(DRC-Mode).(  
Table 30. Limiter Release  
Threshold Selection (AC-Mode).  
DRC (db relative to Volume  
LxRT (3...0)  
+ LxAT)  
LxRT (3...0)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
AC (dB relative to FS)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
-∞  
-∞  
-38dB  
-36dB  
-33dB  
-31dB  
-30dB  
-28dB  
-26dB  
-24dB  
-22dB  
-20dB  
-18dB  
-15dB  
-12dB  
-9dB  
-29dB  
-20dB  
-16dB  
-14dB  
-12dB  
-10dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
-0dB  
-6dB  
30/41  
STA328  
8 USER PROGRAMMABLE PROCESSING  
8.1 EQ - BIQUAD EQUATION  
The biquads use the equation that follows. This is diagrammed in Figure 14 below.  
Y[n] = 2(b0/2)X[n] + 2(b1/2)X[n-1] + b2X[n-2] - 2(a1/2)Y[n-1] - a2Y[n-2]  
= b0X[n] + b1X[n-1] + b2X[n-2] - a1Y[n-1] - a2Y[n-2]  
where Y[n] represents the output and X[n] represents the input. Multipliers are 28-bit signed fractional  
multipliers, with coefficient values in the range of 800000h (-1) to 7FFFFFh (0.9999998808).  
Coefficients stored in the User Defined Coefficient RAM are referenced in the following manner:  
– CxHy0 = b1/2  
– CxHy1 = b2  
– CxHy2 = -a1/2  
– CxHy3 = -a2  
– CxHy4 = b0/2  
The x represents the channel and the y the biquad number. For example C3H41 is the b0/2 coefficient in  
the fourth biquad for channel 3  
Figure 15. - Biquad Filter  
b0 /2  
b1 /2  
2
2
+
+
+
Z -1  
Z -1  
2
-a1 /2  
Z -1  
Z -1  
-a2  
b2  
8.2 PRE-SCALE  
The Pre-Scale block which precedes the first biquad is used for attenuation when filters are designed that  
boost frequencies above 0dBFS. This is a single 28-bit signed multiplier, with 800000h = -1 and 7FFFFFh  
= 0.9999998808. By default, all pre-scale factors are set to 7FFFFFh.  
8.3 POST-SCALE  
The STA328 provides one additional multiplication after the last interpolation stage and before the distor-  
tion compensation on each channel. This is a 24-bit signed fractional multiplier. The scale factor for this  
multiplier is loaded into RAM using the same I2C registers as the biquad coefficients and the mix. All chan-  
nels can use the same settings as channel 1 by setting the post-scale link bit.  
8.4 MIX/BASS MANAGEMENT  
The STA328 provides a post-EQ mixing block per channel. Each channel has 2 mixing coefficients, which  
are each 24-bit signed fractional multipliers, that correspond to the 2 channels of input to the mixing block.  
These coefficients are accessible via the User Controlled Coefficient RAM described below. The mix co-  
efficients are expressed as 24-bit signed; fractional numbers in the range +1.0 (8388607) to -1.0 (-  
8388608) are used used to provide three channels of output from two channels of filtered input.  
31/41  
STA328  
Table 33. Mix/Bass Management Block Diagram  
Channel #1  
from EQ  
C1MX1  
High-Pass  
XO  
Filter  
Channel#1  
to GC/Vol  
+
Channel #2  
from EQ  
C1MX2  
C2MX1  
+
High-Pass  
XO  
Filter  
Channel#2  
to GC/Vol  
C2MX2  
C3MX1  
+
Low-Pass  
XO  
Filter  
Channel#3  
to GC/Vol  
C3MX2  
User-defined Mix Coefficients Crossover Frequency determined  
by XO setting.  
User-defined when XO = 000  
After a mix is achieved, STA328 also provides the capability to implement crossver filters on all channels  
corresponding to 2.1 bass management solution. Channels 1-2 use a 1st order high-pass filter and chan-  
nel 3 uses a 2nd order low-pass filter corresponding to the setting of the XO bits of I2C register 0Ch. If XO  
= 000, user specified crossover filters are used.  
By default these coefficients correspond to pass-through. However, the user can write these coefficients  
in a similar way as the EQ biquads. When user-defined setting is selected, the user can only write 2nd  
order crossover filters. This output is then passed on to the Volume/Limiter block.  
8.5 Calculating 24-Bit Signed Fractional Numbers from a dB Value  
The pre-scale, mixing, and post-scale functions of the STA328 use 24-bit signed fractional multipliers to  
attenuate signals. These attenuations can also invert the phase and therefore range in value from -1 to  
+1. It is possible to calculate the coefficient to utilize for a given negative dB value (attenuation) via the  
equations below.  
– Non-Inverting Phase Numbers 0 to +1 :  
– Coefficient = Round(8388607 * 10^(dB/20))  
– Inverting Phase Numbers 0 to -1 :  
– Coefficient = 16777216 - Round(8388607 * 10^(dB/20))  
As can be seen by the preceding equations, the value for positive phase 0dB is 0x7FFFFF and the value  
for negative phase 0dB is 0x800000.  
32/41  
STA328  
8.6 USER DEFINED COEFFICIENT RAM  
8.6.1 Coefficient Address Register 1 (Address 16h)  
D7  
CFA7  
0
D6  
CFA6  
0
D5  
CFA5  
0
D4  
CFA4  
0
D3  
CFA3  
0
D2  
CFA2  
0
D1  
CFA1  
0
D0  
CFA0  
0
8.6.2 Coefficient b1Data Register Bits 23...16 (Address 17h)  
D7  
C1B23  
0
D6  
C1B22  
0
D5  
C1B21  
0
D4  
C1B20  
0
D3  
C1B19  
0
D2  
C1B18  
0
D1  
C1B17  
0
D0  
C1B16  
0
8.6.3 Coefficient b1Data Register Bits 15...8 (Address 18h)  
D7  
C1B15  
0
D6  
C1B14  
0
D5  
C1B13  
0
D4  
C1B12  
0
D3  
C1B11  
0
D2  
D1  
C1B9  
0
D0  
C1B8  
0
C1B10  
0
8.6.4 Coefficient b1Data Register Bits 7...0 (Address 19h)  
D7  
C1B7  
0
D6  
C1B6  
0
D5  
C1B5  
0
D4  
C1B4  
0
D3  
C1B3  
0
D2  
D1  
C1B1  
0
D0  
C1B0  
0
C1B2  
0
8.6.5 Coefficient b2 Data Register Bits 23...16 (Address 1Ah)  
D7  
C2B23  
0
D6  
C2B22  
0
D5  
C2B21  
0
D4  
C2B20  
0
D3  
C2B19  
0
D2  
C2B18  
0
D1  
C2B17  
0
D0  
C2B16  
0
8.6.6 Coefficient b2 Data Register Bits 15...8 (Address 1Bh)  
D7  
C2B15  
0
D6  
C2B14  
0
D5  
C2B13  
0
D4  
C2B12  
0
D3  
C2B11  
0
D2  
D1  
C2B9  
0
D0  
C2B8  
0
C2B10  
0
8.6.7 Coefficient b2 Data Register Bits 7...0 (Address 1Ch)  
D7  
C2B7  
0
D6  
C2B6  
0
D5  
C2B5  
0
D4  
C2B4  
0
D3  
C2B3  
0
D2  
D1  
C2B1  
0
D0  
C2B0  
0
C2B2  
0
8.6.8 Coefficient a1 Data Register Bits 23...16 (Address 1Dh)  
D7  
C1B23  
0
D6  
C1B22  
0
D5  
C1B21  
0
D4  
C1B20  
0
D3  
C1B19  
0
D2  
C1B18  
0
D1  
C1B17  
0
D0  
C1B16  
0
33/41  
STA328  
8.6.9 1.1.9Coefficient a1 Data Register Bits 15...8 (Address 1Eh)  
D7  
C3B15  
0
D6  
C3B14  
0
D5  
C3B13  
0
D4  
C3B12  
0
D3  
C3B11  
0
D2  
C3B10  
0
D1  
C3B9  
0
D0  
C3B8  
0
8.6.10 Coefficient a1 Data Register Bits 7...0 (Address 1Fh)  
D7  
C3B7  
0
D6  
C3B6  
0
D5  
C3B5  
0
D4  
C3B4  
0
D3  
C3B3  
0
D2  
C3B2  
0
D1  
D0  
C3B0  
0
C3B1  
0
8.6.11 Coefficient a2 Data Register Bits 23...16 (Address 20h)  
D7  
C4B23  
0
D6  
C4B22  
0
D5  
C4B21  
0
D4  
C4B20  
0
D3  
C4B19  
0
D2  
C4B18  
0
D1  
C4B17  
0
D0  
C4B16  
0
8.6.12 Coefficient a2 Data Register Bits 15...8 (Address 21h)  
D7  
C4B15  
0
D6  
C4B14  
0
D5  
C4B13  
0
D4  
C4B12  
0
D3  
C4B11  
0
D2  
C4B10  
0
D1  
C4B9  
0
D0  
C4B8  
0
8.6.13 Coefficient a2 Data Register Bits 7...0 (Address 22h)  
D7  
C4B7  
0
D6  
C4B6  
0
D5  
C4B5  
0
D4  
C4B4  
0
D3  
C4B3  
0
D2  
C4B2  
0
D1  
C4B1  
0
D0  
C4B0  
0
8.6.14 Coefficient b0 Data Register Bits 23...16 (Address 23h)  
D7  
C5B23  
0
D6  
C5B22  
0
D5  
C5B21  
0
D4  
C5B20  
0
D3  
C5B19  
0
D2  
C5B18  
0
D1  
C5B17  
0
D0  
C5B16  
0
8.6.15 Coefficient b0 Data Register Bits 15...8 (Address 24h)  
D7  
C5B15  
0
D6  
C5B14  
0
D5  
C5B13  
0
D4  
C5B12  
0
D3  
C5B11  
0
D2  
C5B10  
0
D1  
C5B9  
0
D0  
C5B8  
0
8.6.16 Coefficient b0 Data Register Bits 7...0 (Address 25h)  
D7  
C5B7  
0
D6  
C5B6  
0
D5  
C5B5  
0
D4  
C5B4  
0
D3  
C5B3  
0
D2  
C5B2  
0
D1  
C5B1  
0
D0  
C5B0  
0
34/41  
STA328  
8.6.17 Coefficient Write Control Register (Address 26h)  
D7  
D6  
D5  
D4  
D3  
RA  
0
D2  
R1  
0
D1  
WA  
0
D0  
W1  
0
Coefficients for EQ, Mix and Scaling are handled internally in the STA328 via RAM. Access to this RAM  
is available to the user via an I2C register interface. A collection of I2C registers are dedicated to this func-  
tion. First register contains the coefficient base address, five sets of three registers store the values of the  
24-bit coefficients to be written or that were read, and one contains bits used to control the read or write  
of the coefficient (s) to RAM. The following are instructions for reading and writing coefficients.  
8.7 Reading a coefficient from RAM  
write 8-bits of address to I2C register 16h  
write ‘1’ to bit R1 (D2) of I2C register 26h  
read top 8-bits of coefficient in I2C address 17h  
read middle 8-bits of coefficient in I2C address 18h  
read bottom 8-bits of coefficient in I2C address 19h  
8.8 Reading a set of coefficients from RAM  
write 8-bits of address to I2C register 16h  
write ‘1’ to bit RA (D3) of I2C register 26h  
read top 8-bits of coefficient in I2C address 17h  
read middle 8-bits of coefficient in I2C address 18h  
read bottom 8-bits of coefficient in I2C address 19h  
read top 8-bits of coefficient b2 in I2C address 1Ah  
read middle 8-bits of coefficient b2 in I2C address 1Bh  
read bottom 8-bits of coefficient b2 in I2C address 1Ch  
read top 8-bits of coefficient a1 in I2C address 1Dh  
read middle 8-bits of coefficient a1 in I2C address 1Eh  
read bottom 8-bits of coefficient a1 in I2C address 1Fh  
read top 8-bits of coefficient a2 in I2C address 20h  
read middle 8-bits of coefficient a2 in I2C address 21h  
read bottom 8-bits of coefficient a2 in I2C address 22h  
read top 8-bits of coefficient b0 in I2C address 23h  
read middle 8-bits of coefficient b0 in I2C address 24h  
read bottom 8-bits of coefficient b0 in I2C address 25h  
8.9 Writing a single coefficient to RAM  
write 8-bits of address to I2C register 16h  
write top 8-bits of coefficient in I2C address 17h  
write middle 8-bits of coefficient in I2C address 18h  
write bottom 8-bits of coefficient in I2C address 19h  
write 1 to W1 bit in I2C address 26h  
35/41  
STA328  
8.10 Writing a set of coefficients to RAM  
write 8-bits of starting address to I2C register 16h  
write top 8-bits of coefficient b1 in I2C address 17h  
write middle 8-bits of coefficient b1 in I2C address 18h  
write bottom 8-bits of coefficient b1 in I2C address 19h  
write top 8-bits of coefficient b2 in I2C address 1Ah  
write middle 8-bits of coefficient b2 in I2C address 1Bh  
write bottom 8-bits of coefficient b2 in I2C address 1Ch  
write top 8-bits of coefficient a1 in I2C address 1Dh  
write middle 8-bits of coefficient a1 in I2C address 1Eh  
write bottom 8-bits of coefficient a1 in I2C address 1Fh  
write top 8-bits of coefficient a2 in I2C address 20h  
write middle 8-bits of coefficient a2 in I2C address 21h  
write bottom 8-bits of coefficient a2 in I2C address 22h  
write top 8-bits of coefficient b0 in I2C address 23h  
write middle 8-bits of coefficient b0 in I2C address 24h  
write bottom 8-bits of coefficient b0 in I2C address 25h  
write 1 to WA bit in I2C address 26h  
The mechanism for writing a set of coefficients to RAM provides a method of updating the five coefficients  
corresponding to a given biquad (filter) simultaneously to avoid possible unpleasant acoustic side-effects.  
When using this technique, the 8-bit address would specify the address of the biquad b1 coefficient (e.g.  
0, 5, 10, 15, …, 45 decimal), and the STA328 will generate the RAM addresses as offsets from this base  
value to write the complete set of coefficient data.  
36/41  
STA328  
Table 34. RAM Block for Biquads, Mixing, and Scaling  
Index (Decimal)  
Index (Hex)  
00h  
01h  
02h  
03h  
04h  
05h  
Coefficient  
C1H10 (b1/2)  
C1H11 (b2)  
C1H12 (a1/2)  
C1H13 (a2)  
C1H14 (b0/2)  
C1H20  
Default  
000000h  
000000h  
000000h  
000000h  
400000h  
000000h  
0
Channel 1 – Biquad 1  
1
2
3
4
5
Channel 1 – Biquad 2  
19  
20  
21  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
13h  
14h  
15h  
Channel 1 – Biquad 4  
Channel 2 – Biquad 1  
C1H44  
400000h  
000000h  
000000h  
C2H10  
C2H11  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
Channel 2 – Biquad 4  
C2H44  
400000h  
000000h  
000000h  
000000h  
000000h  
400000h  
000000h  
000000h  
000000h  
000000h  
400000h  
7FFFFFh  
7FFFFFh  
7FFFFFh  
7FFFFFh  
7FFFFFh  
5A9DF7h  
7FFFFFh  
000000h  
000000h  
7FFFFFh  
400000h  
400000h  
nd  
C12H0 (b1/2)  
C12H1 (b2)  
C12H2 (a1/2)  
C12H3 (a2)  
C12H4 (b0/2)  
C12L0 (b1/2)  
C12L1 (b2)  
C12L2 (a1/2)  
C12L3 (a2)  
C12L4 (b0/2)  
C1PreS  
High-Pass 2 Order Filter  
For XO = 000  
nd  
Low-Pass 2 Order Filter  
For XO = 000  
Channel 1 – Pre-Scale  
Channel 2 – Pre-Scale  
Channel 1 – Post-Scale  
Channel 2 – Post-Scale  
Channel 3 – Post-Scale  
Thermal Warning – Post Scale  
Channel 1 – Mix 1  
Channel 1 – Mix 2  
Channel 2 – Mix 1  
Channel 2 – Mix 2  
Channel 3 – Mix 1  
Channel 3 – Mix 2  
UNUSED  
C2PreS  
C1PstS  
C2PstS  
C3PstS  
TWPstS  
C1MX1  
C1MX2  
C2MX1  
C2MX2  
C3MX1  
C3MX2  
UNUSED  
37/41  
STA328  
8.11 Variable Max Power Correction (Address 27h-28h):  
MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This coefficient is used in place  
of the default coefficient when MPCV = 1.  
Table 35.  
D7  
MPCC15  
0
D6  
MPCC14  
0
D5  
MPCC13  
1
D4  
MPCC12  
0
D3  
MPCC11  
1
D2  
MPCC10  
1
D1  
MPCC9  
0
D0  
MPCC8  
1
MPCC7  
1
MPCC6  
1
MPCC5  
0
MPCC4  
0
MPCC3  
0
MPCC2  
0
MPCC1  
0
MPCC0  
0
8.12 Fault Detect Recovery (Address 2Bh-2Ch):  
FDRC bits specify the 16-bit Fault Detect Recovery time delay. When FAULT is asserted, the TRISTATE  
output will be immediately asserted low and held low for the time period specified by this constant. A con-  
stant value of 0001h in this register is ~.083ms. The default value of 000C specifies ~.1mSec.  
Table 36.  
D7  
FRDC15  
0
D6  
FDRC14  
0
D5  
FDRC13  
0
D4  
FDRC12  
0
D3  
FDRC11  
0
D2  
FDRC10  
0
D1  
FDRC9  
0
D0  
FDRC8  
0
D7  
FDRC7  
0
D6  
FDRC6  
0
D5  
FDRC5  
0
D4  
FDRC4  
0
D3  
FDRC3  
1
D2  
FDRC2  
1
D1  
FDRC1  
0
D0  
FDRC0  
0
Figure 16.  
OUTY  
Vcc  
(3/4)Vcc  
Low current dead time = MAX(DTr,DTf)  
(1/2)Vcc  
(1/4)Vcc  
+Vcc  
t
DTr  
DTf  
Duty cycle = 50%  
M58  
M57  
OUTY  
R 8  
INY  
+
V67 =  
-
vdc = Vcc/2  
gnd  
D02AU1448  
38/41  
STA328  
Figure 17. PowerSO36 Slug Up Mechanical Data & Package Dimensions  
mm  
inch  
TYP. MAX.  
0.135  
0.126  
0.039  
0.008  
-0.0015  
0.015  
0.012  
0.630  
0.38  
DIM.  
MIN.  
3.25  
3.1  
TYP. MAX. MIN.  
3.43 0.128  
OUTLINE AND  
MECHANICAL DATA  
A
A2  
A4  
A5  
a1  
b
3.2  
1
0.122  
0.031  
0.8  
0.2  
0.030  
0.22  
0.23  
15.8  
9.4  
-0.040 0.0011  
0.38 0.008  
0.32 0.009  
c
D
16  
0.622  
0.37  
D1  
D2  
E
9.8  
1
0.039  
0.57  
13.9  
10.9  
14.5 0.547  
11.1 0.429  
2.9  
E1  
E2  
E3  
E4  
e
0.437  
0.114  
0.244  
1.259  
0.026  
0.435  
0.003  
0.625  
0.043  
0.043  
10˚  
5.8  
2.9  
6.2  
3.2  
0.228  
0.114  
0.65  
e3  
G
11.05  
0
0.075  
15.9  
1.1  
0
H
15.5  
0.61  
h
L
0.8  
1.1  
0.031  
N
10˚  
s
8 ˚  
8˚  
PowerSO36 (SLUG UP)  
(1) “D and E1” do not include mold flash or protusions.  
Mold flash or protusions shall not exceed 0.15mm (0.006”)  
(2) No intrusion allowed inwards the leads.  
7183931 D  
39/41  
STA328  
Table 37. Revision History  
Date  
September 2004  
July 2005  
Revision  
Description of Changes  
1
2
3
First Issue  
Add pin 7 and 25 in Block Diagram  
May 2006  
Changed from product preview to maturity.  
40/41  
STA328  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WAR-  
RANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES  
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURIS-  
DICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,  
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,  
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SE-  
VERE PROPERTY OR ENVIRONMENTAL DAMAGE.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
DDX is a trademark of Apogee tecnology inc.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
41/41  
配单直通车
STA328产品参数
型号:STA328
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Obsolete
零件包装代码:SOIC
包装说明:ROHS COMPLIANT, SOP-36
针数:36
Reach Compliance Code:compliant
HTS代码:8542.39.00.01
风险等级:5.81
商用集成电路类型:CONSUMER CIRCUIT
JESD-30 代码:R-PDSO-G36
长度:15.9 mm
功能数量:1
端子数量:36
最高工作温度:85 °C
最低工作温度:-20 °C
封装主体材料:PLASTIC/EPOXY
封装代码:HSSOP
封装等效代码:SSOP36,.56
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, HEAT SINK/SLUG, SHRINK PITCH
峰值回流温度(摄氏度):NOT SPECIFIED
电源:3.3 V
认证状态:Not Qualified
座面最大高度:3.43 mm
子类别:Other Consumer ICs
最大供电电压 (Vsup):3.6 V
最小供电电压 (Vsup):3 V
表面贴装:YES
温度等级:OTHER
端子形式:GULL WING
端子节距:0.65 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:11 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!