欢迎访问ic37.com |
会员登录 免费注册
发布采购

电磁炉主谐振电路研究与功率控制

日期:2007-4-28标签: (来源:互联网)

摘要:详细分析了电磁炉主谐振电路的拓扑结构和工作过程,基于模糊控制理论,给出了负载变化时控制功率稳定的智能控制方法。

引言

由电力电子电路组成的电磁炉(inductioncooker)是一种利用电磁感应加?原理,对锅体进行涡流加热的新型灶具。由于具有热效率高、使用方便、无烟熏、无煤气污染、安全卫生等优点,非常适合现代家庭使用。电磁炉的主电路是一个ac/dc/ac变换器,由桥式整流器和电压谐振变换器构成,本文分析了电磁炉主谐振电路的拓扑结构和工作过程。图1 当电磁炉负载(锅具)的大小和材质发生变化时,负载的等效电感会发生变化,这将造成电磁炉主电路谐振频率变化,这样电磁炉的输出功率会不稳定,常会使功率管igbt过压损坏。针对这种情况,本文提出了一种双闭环控制结构和模糊控制方法,使负载变化时保持电磁炉的输出功率稳定。实际运行结果证明了该设计的有效性和可靠性。1 电磁炉主电路拓扑结构与工作过程

1.1 电磁炉主电路拓扑结构

电磁炉的主电路如图1所示,市电经桥式整流器变换为直流电,再经电压谐振变换器变换成频率为20~30khz的交流电。电压谐振变换器是低开关损耗的零电压型(zvs)变换器,功率开关管的开关动作由单片机控制,并通过驱动电路完成。 电磁炉的加热线圈盘与负载锅具可以看作是一个空心变压器,次级负载具有等效的电感和电阻,将次级的负载电阻和电感折合到初级,可以得到图2所示的等效电路。其中r*是次级电阻反射到初级的等效负载电阻;l*是次级电感反射到初级并与初级电感l相叠加后的等效电感。

1.2 电磁炉主电路的工作过程

电磁炉主电路的工作过程可以分成3个阶段,各阶段的等效电路如图3所?。研究一个工作周期的情况,定义主开关开通的时刻为t0。时序波形如图4所示。图4 1.2.1 [t0,t1]主开关导通阶段

按主开关零电压开通的特点,t0时刻,主开关上的电压uce=0,则cr上的电压uc=uce-udc=-udc。如图3(a)所示,主开关开通后,电源电压udc加在r*及l*支路和cr两端。由于cr上的电压已经是-udc,故cr中的电流为0。电流仅从r*及l*支路流过。流过igbt的电流is与流过l*的电流il相等。由图3(a)得式(1)。

可见,il按照指数规律单调增加。流过r*形成了功率输出,流过l*而储存了能量。到达t1时刻,igbt关断,il达到最大值im。这时,仍有uc=-udc,uce=0。il换向开始流入cr,但cr两端的电压不能突变,因此,igbt为零电压关断。

1.2.2 [t1,t2]谐振阶段

igbt关断之后,l*和cr相互交换能量而发生谐振,同时在r*上消耗能量,形成功率输出。等效电路如图3(b)及图3(c)所示,我们也将其分为两个阶段来讨论。波形如图4中的il和uc。 由图3(b)、图3(c)的等效电路可得到式(3)方程组。

l*(di/dt)+ilr*+uc=0

cr(duc/dt)=il (3)

由初始条件il(t1)=im,uc(t1)=-udc,

解微分方程组式(3)并代入初始条件,可得下列结果:

igbt上的电压

式中:δ=r/2l为衰减系数;

φ是由电路的初始状态和电路参数决定的初相角;

β是仅由电路参数决定的il滞后于uc的相位角。

由上面的结果可以看到,当igbt关断之后,uc和il呈现衰减的正弦振荡,uce是udc与uc的叠加,它呈现以udc为轴心的衰减正弦振荡,其第一个正峰值是加在igbt上的最高电压。首先是l*释放能量,cr吸收能量,il正向流动,部分能量消耗在r*上。在t1a时刻,ω(t-t1a)=+β,il=0,l*的能量释放完毕,uc达到最大值ucm,于是,igbt上的电压也达到最大值uce=ucm+udc。这时cr开始放电,l*吸收能量,当ω(t-t1)=φ时,uc=0,cr的能量释放完毕,l*又开始释放能量,一部分消耗在r*上,一部分向cr充电,使uc反向上升,如图4所示。 然后,cr开始释放能量,使il反向流动,一部分消耗在r*上,一部分转变成磁场能。在uc接近0之前,ω(t-t1)=φ+2β之时,il达到负的最大值。当ω(t-t1)=π+φ时,uc=0,cr的能量释放完毕,转由l*释放能量,使il继续反向流动,一部分消耗在r*上,一部分向cr反向充电。由于cr左端的电位被电源箝位于udc,故右端电位不断下降。当ω(t-t1)=ω(t2-t1),即t=t2时,uc=-udc,uce=0,二极管d开始导通,使cr左端电位不能再下降而箝位于0。于是,uc不再变化,充电结束。但是,l*中还有剩余能量,il并不为0,t2时刻il(t2)=-i2。这时,在主控制器的控制下,主开关开始导通。因此,是零电压开通。

1.2.3 [t2,t3]电感放电阶段

如图3(d)所示,可得方程:l*+ilr*=udc初始条件为:il(t2)=-i2。

解此微分方程并代入初始条件,可得:

l*中的剩余能量,一部分消耗在r*上,一部分返回电源,il的绝对值按指数规律衰减,在t3时刻,il=0,l*中的能量释放完毕,二极管自然阻断。在uc=-udc即uce=0时,主开关已经开通,在电源udc的激励下,il又从0开始正向流动,重复[t0,t1]阶段的过程。

2 仿真与实验波形

主谐振电路仿真波形如图5所示,实验波形如图6所示,试验参数为:l=144μh,c=0.27μf。3 功率控制

通过上面的分析我们可以看到当负载变化,也就是锅具的等效电感和电阻变化时,电磁炉的谐振频率会发生变化,电磁炉的输出功率会不稳定,实验测得不锈钢锅和铁锅功率可以差别300w,为此,我们采用模糊控制技术来控制电磁炉的输出功率,取得了满意的效果。图7是电磁炉的控制结构图。图8是电磁炉模糊控制器的结构图,控制器的输入分别为给定功率与输出功率的误差信号x和误差的变化量y。为了提高实时响应速度,采用控制表方式的模糊控制器。4 结语

详细分析了电磁炉主谐振电路的工作过程,分析结果与实验波形是一致的。针对负载变化,输出功率变化的情况,本文提出的模糊控制方法取得了满意的效果。在研制的电磁炉中使用这种准谐振电路和本文提出的控制方法,产品已经生产,经长时间测试,效果良好。