欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • THS8135PHP图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • THS8135PHP 现货库存
  • 数量3678 
  • 厂家TI 
  • 封装HTQFP-48 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755- QQ:2881894392QQ:2881894393
  • THS8135PHP图
  • 深圳市能元时代电子有限公司

     该会员已使用本站10年以上
  • THS8135PHP 现货库存
  • 数量92000 
  • 厂家TI/德州仪器 
  • 封装TQFP 
  • 批号24+ 
  • 原装现货假一罚十!可含税长期供货
  • QQ:2885637848QQ:2885637848 复制
    QQ:2885658492QQ:2885658492 复制
  • 0755-84502810 QQ:2885637848QQ:2885658492
  • THS8135PHP图
  • 北京奕芯科技有限公司

     该会员已使用本站12年以上
  • THS8135PHP 现货库存
  • 数量18 
  • 厂家TI 
  • 封装HTQFP48 
  • 批号23+ 
  • 当天发货原装正品
  • QQ:335885516QQ:335885516 复制
  • 010-81030386 QQ:335885516
  • THS8135PHP图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • THS8135PHP 现货库存
  • 数量12500 
  • 厂家TI 
  • 封装HTQFP-48 
  • 批号24+ 
  • 假一罚百,TI专营!深圳有库存,北美、新加坡可发货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • THS8135PHP图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • THS8135PHP 现货库存
  • 数量250 
  • 厂家TI 
  • 封装HTQFP (PHP) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • THS8135PHP图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • THS8135PHP 现货库存
  • 数量9000 
  • 厂家TI/BB 
  • 封装 
  • 批号2024+ 
  • 全新原装现货,全网最低价
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • THS8135PHP图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • THS8135PHP 优势库存
  • 数量9850 
  • 厂家TI 
  • 封装SMD 
  • 批号24+ 
  • ★★专业IC现货,诚信经营,市场最优价★★
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • THS8135PHP图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • THS8135PHP
  • 数量6328 
  • 厂家TI-德州仪器 
  • 封装QFP-48 
  • 批号▉▉:2年内 
  • ▉▉¥66.3元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • THS8135PHP图
  • 深圳市珩瑞科技有限公司

     该会员已使用本站2年以上
  • THS8135PHP
  • 数量
  • 厂家21+ 
  • 封装12000 
  • 批号 
  • ███全新原装正品,可配单
  • QQ:2938238007QQ:2938238007 复制
    QQ:1840507767QQ:1840507767 复制
  • -0755-82578309 QQ:2938238007QQ:1840507767
  • THS8135PHP图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • THS8135PHP
  • 数量6500 
  • 厂家TI 
  • 封装HTQFP48 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • THS8135PHP图
  • 集好芯城

     该会员已使用本站13年以上
  • THS8135PHP
  • 数量18333 
  • 厂家TI/德州仪器 
  • 封装HTQFP48 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • THS8135PHPG4图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • THS8135PHPG4
  • 数量4845 
  • 厂家TI 
  • 封装TQFP48 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755- QQ:2881894392QQ:2881894393
  • THS8135PHP图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • THS8135PHP
  • 数量72282 
  • 厂家TI/德州仪器 
  • 封装N/A 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • THS8135PHP图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • THS8135PHP
  • 数量12850 
  • 厂家TI 
  • 封装 
  • 批号NEW 
  • 绝对进口原装现货,市场价格最低!!
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • THS8135PHP图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • THS8135PHP
  • 数量3156 
  • 厂家TI 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • THS8135PHP图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • THS8135PHP
  • 数量3275 
  • 厂家TI/德州仪器 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • THS8135PHP图
  • 上海金庆电子技术有限公司

     该会员已使用本站15年以上
  • THS8135PHP
  • 数量102 
  • 厂家TI 
  • 封装HTQFP48L 
  • 批号新 
  • 全新原装 货期两周
  • QQ:1484215649QQ:1484215649 复制
    QQ:729272152QQ:729272152 复制
  • 021-51872561 QQ:1484215649QQ:729272152
  • THS8135PHP图
  • 深圳市西源信息科技有限公司

     该会员已使用本站9年以上
  • THS8135PHP
  • 数量8800 
  • 厂家TI/德州仪器 
  • 封装HTQFP48 
  • 批号最新批号 
  • 原装现货零成本有接受价格就出
  • QQ:840638855QQ:840638855 复制
  • 0755-84876394 QQ:840638855
  • THS8135PHP图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • THS8135PHP
  • 数量45000 
  • 厂家TI(德州仪器) 
  • 封装48-PowerTQFP 
  • 批号1年内 
  • 全新原装 货源稳定 长期供应 提供配单
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • THS8135PHP图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • THS8135PHP
  • 数量5000 
  • 厂家Maxim Integrated Products 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • THS8135PHP图
  • 深圳市华来深电子有限公司

     该会员已使用本站13年以上
  • THS8135PHP
  • 数量8600 
  • 厂家TI 
  • 封装TQFP 
  • 批号17+ 
  • 受权代理!全新原装现货特价热卖!
  • QQ:1258645397QQ:1258645397 复制
    QQ:876098337QQ:876098337 复制
  • 0755-83238902 QQ:1258645397QQ:876098337
  • THS8135PHP图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • THS8135PHP
  • 数量660000 
  • 厂家Texas Instruments(德州仪器) 
  • 封装48-TQFP Exposed Pad 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • THS8135PHP图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • THS8135PHP
  • 数量27894 
  • 厂家TI 
  • 封装QFP 
  • 批号2020+ 
  • 全新原装进口现货特价热卖,长期供应."
  • QQ:1220223788QQ:1220223788 复制
    QQ:1327510916QQ:1327510916 复制
  • 86-0755-28767101 QQ:1220223788QQ:1327510916
  • THS8135PHP图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • THS8135PHP
  • 数量1213 
  • 厂家TI/德州仪器 
  • 封装TQFP48 
  • 批号21+ 
  • 羿芯诚只做原装 原厂渠道 价格优势
  • QQ:2881498351QQ:2881498351 复制
  • 0755-22968581 QQ:2881498351
  • THS8135PHP图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • THS8135PHP
  • 数量15280 
  • 厂家TI 
  • 封装ORIGINAL 
  • 批号23+ 
  • 原装正品现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • THS8135PHP图
  • 首天国际(深圳)科技有限公司

     该会员已使用本站16年以上
  • THS8135PHP
  • 数量6950 
  • 厂家TI 
  • 封装原厂封装 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 0755-82807802 QQ:528164397QQ:1318502189
  • THS8135PHPG4图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • THS8135PHPG4
  • 数量3875 
  • 厂家TI 
  • 封装48-PowerTQFP 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • THS8135PHPG4图
  • 深圳市励创源科技有限公司

     该会员已使用本站2年以上
  • THS8135PHPG4
  • 数量35600 
  • 厂家TI 
  • 封装TQFP48 
  • 批号21+ 
  • 诚信经营,原装现货,假一赔十,欢迎咨询15323859243
  • QQ:815442201QQ:815442201 复制
    QQ:483601579QQ:483601579 复制
  • -0755-82711370 QQ:815442201QQ:483601579
  • THS8135PHP图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • THS8135PHP
  • 数量32189 
  • 厂家TI 
  • 封装QFP 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • THS8135PHP图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • THS8135PHP
  • 数量3000 
  • 厂家TI 
  • 封装HTQFP48 
  • 批号23+ 
  • 全新原装公司现货库存!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • THS8135PHP图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • THS8135PHP
  • 数量5680 
  • 厂家TI 
  • 封装HTQFP-48 
  • 批号23+ 
  • 原装正品特价销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • THS8135PHP图
  • 上海金庆电子技术有限公司

     该会员已使用本站15年以上
  • THS8135PHP
  • 数量35 
  • 厂家TI 
  • 封装HTQFP-48 
  • 批号新 
  • 全新原装 货期两周
  • QQ:1484215649QQ:1484215649 复制
    QQ:729272152QQ:729272152 复制
  • 021-51872153 QQ:1484215649QQ:729272152
  • THS8135PHP图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • THS8135PHP
  • 数量3000 
  • 厂家TI 
  • 封装HTQFP48 
  • 批号23+ 
  • 全新原装公司现货销售
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • THS8135PHP图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • THS8135PHP
  • 数量12245 
  • 厂家TI/德州仪器 
  • 封装HTQFP48 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • THS8135PHP图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • THS8135PHP
  • 数量5400 
  • 厂家TI 
  • 封装TQFP 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • THS8135PHP图
  • 深圳市恒意法科技有限公司

     该会员已使用本站17年以上
  • THS8135PHP
  • 数量6697 
  • 厂家Texas Instruments 
  • 封装48-PowerTQFP 
  • 批号21+ 
  • 正规渠道/品质保证/原装正品现货
  • QQ:2881514372QQ:2881514372 复制
  • 0755-83247729 QQ:2881514372

产品型号THS8135PHP的概述

芯片 THS8135PHP 的概述 THS8135PHP 是由德州仪器(Texas Instruments,TI)设计和生产的一款高速、带宽宽广的数字模拟转换器(DAC)。作为一种集成功能强大且高效的器件,THS8135PHP 在信号处理、通信以及电子设计等领域得到了广泛应用。该芯片尤其适用于需要高精度、高速信号处理的场景,比如音频和视频信号处理、射频(RF)以及传感器应用等。 芯片 THS8135PHP 的详细参数 THS8135PHP 在技术规格方面表现出色,以下是其主要参数: - 供应电压: 2.7V 到 5.5V - 输出电流: 单端输出情况下最大为30mA - 转化速度: 最高可达250MSPS(百万样本每秒) - 分辨率: 12位 - 增益带宽积: 100MHz - 噪声性能: 输出噪声密度为7.5nV/√Hz - 输出类型: 单端和差分输出均可 - 工作温度范围: -40...

产品型号THS8135PHP的Datasheet PDF文件预览

THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)—COMPLIANT FULL SCALE RANGE  
SLAS343A – MAY 2001 – REVISED JUNE 2002  
D
D
Bi-Level (EIA) or Tri-Level (SMPTE) Sync  
Generation  
features  
D
Triple 10-Bit D/A Converters  
240-MSPS Operation  
Integrated Sync-On-Green/Luminance or  
Sync-On-All Composite Sync Insertion  
D
D
YPbPr/RGB Configurable Blanking Levels,  
Correctly Positioned for Either Full  
(0–1023) or Video (ITU–R.BT601) –  
Compliant Input Code Ranges  
D
Internal Voltage Reference  
D
Low-Power Operation From 3.3-V Analog  
and 1.8-V Digital Suply Levels  
D
D
D
Generic Triple DAC Mode for Non-Video  
Applications  
applications  
D
High-Definition Television (HDTV) Set-Top  
Boxes/Receivers/Displays  
Direct Drive of Double-Terminated 75-Ω  
Load Into Standard Video Levels  
D
High-Resolution Image Processing  
3x10 Bit 4:4:4, 2x10 Bit 4:2:2 or 1x10 Bit  
4:2:2 (ITU–R.BT656) Multiplexed  
YCbCr/GBR Input Data Formats  
description  
The THS8135 is a general-purpose triple high-speed D/A converter optimized for use in video/graphics  
applications. The device operates from 3.3-V analog and 1.8-V digital supplies. The THS8135 performance is  
assuredatasamplingrateupto240MSPS. TheTHS8135consistsofthree10-bitD/Aconvertersandadditional  
circuitry for bi-level/tri-level sync and blanking level generation. By providing a dc offset for the lowest video  
amplitude output in video DAC mode, the device can insert a (negative) bi-level or (negative/positive) tri-level  
sync on either only the green/luminance (sync-on-green/sync-on-Y) channel or on all channels for video  
applications. A generic DAC mode avoids this dc offset, making this device suitable for non-video applications  
as well.  
The THS8135 is a footprint-compatible functional upgrade to the THS8133. In addition, the THS8135 allows  
a higher update rate for oversampled video digitizing for all PC graphics formats up to UXGA (1600x1200)  
resolution at 85 Hz and all practical digital TV formats including HDTV. The support for oversampling  
significantly reduces the complexity of the analog reconstruction filter required behind the DAC.  
Standard video levels can be generated for the full 10-bit input code range. Alternatively, the same levels can  
be reached from a reduced input code range compliant to the video sampling standard ITU-R.BT-601. In that  
case, the full-scale range of the DAC is dependent on the RGB or YCbCr color space configuration of the device.  
When configured for RGB operation, full video output swing is reached for input codes 64-940 on all channels.  
When configured for YCbCr operation, code range 64-940 on Y and code range 64-960 on Cb and Cr channels  
generate full output swing using internal amplitude scaling on these color components. The device provides  
headroom to accommodate under-/over-shoot outside the ITU-R.BT601 range to allow the generation of  
ITU-R.BT601 illegal colors or super-black / super-white levels.  
A digital control input for insertion of a reference (blanking) level on the analog outputs is included. The  
amplitudeoftheblankinglevelisconfigurableforeitherRGBorYPbPrcomponentoutputsandforfullorreduced  
input code ranges. The inserted sync output amplitude(s) always has the required 7:3 ratio to the full-scale video  
amplitude.  
The current-steering DACs can be directly terminated in resistive loads to produce voltage outputs. The device  
provides a flexible configuration of maximum output current drive. The devices output drivers have been  
specifically designed to produce standard video output levels when directly connected to a single-ended  
double-terminated 75-coaxial cable.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2002, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
description (continued)  
The input data format can be either 3x10 bit 4:4:4, 2x10 bit 4:2:2, or 1x10 bit 4:2:2. This enables a direct interface  
to a wide range of video DSP/ASICs including parts generating ITU-R.BT656 formatted output data. However,  
the THS8135 needs specific input synchronization signals to properly insert a composite sync onto its outputs  
as it does not extract embedded SAV/EAV synchronization codes from the ITU-R.BT656 input. Along with other  
extra functionality, this feature is available on a derivative device (THS8200).  
AVAILABLE OPTIONS  
T
A
PACKAGED DEVICES: TQFP-48 PowerPAD  
0°C to 70°C  
THS8135PHP  
TQFP-48 PowerPAD PACKAGE  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
GY0  
BCb9  
BCb8  
BCb7  
BCb6  
BCb5  
BCb4  
BCb3  
BCb2  
BCb1  
1
2
3
4
5
6
7
8
9
GY1  
GY2  
GY3  
GY4  
GY5  
GY6  
GY7  
GY8  
GY9  
CLK  
BCb0 10  
DV  
11  
12  
SS  
DD  
SYNC_T  
DV  
13 14 15 16 17 18 19 20 21 22 23 24  
PowerPAD is a trademark of Texas Instruments.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
functional block diagram  
DV  
DV  
VREF  
COMP FSADJ  
DD  
SS  
Bandgap  
Reference  
R/Cr  
Register  
RCr[9:0]  
GY[9:0]  
DAC  
DAC  
DAC  
ARPr  
G/Y  
Register  
Input  
Formatter  
AGY  
B/Cb  
Register  
BCb[9:0]  
ABPb  
CLK  
M1  
M2  
Configuration  
Control  
SYNC/BLANK  
Control  
SYNC  
BLANK  
AV  
DD  
AV  
SS  
SYNC_T  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
ABPb  
NO.  
45  
O
O
O
I
Analog blue or Pb current output, capable of directly driving a double terminated 75-coaxial cable  
Analog green or Y current output, capable of directly driving a double terminated 75-coaxial cable  
Analog red or Pr current output, capable of directly driving a double terminated 75-coaxial cable  
AGY  
41  
ARPr  
43  
AV  
40, 44  
42, 46  
101  
23  
Analog power supply (3.3 V). All AV  
pins must be connected.  
DD  
DD  
SS  
AV  
I
Analog ground  
BCb0BCb9  
I
Blue or Cb pixel data input. Signals with index 0 denote the least significant bits.  
BLANK  
I
Blanking control input, active low. A rising edge on CLK latches BLANK. When asserted, the ARPr, AGY, and  
ABPb outputs are driven to the blanking level, irrespective of the value on the data inputs. SYNC takes  
precedence over BLANK, so asserting SYNC (low) while BLANK is active (low) results in sync generation.  
The amplitude of the DAC outputs during BLANK active are determined by the color space and input code  
range configurations of the device. BLANK control is available in both video and generic DAC modes.  
CLK  
26  
I
Clock input. A rising edge on CLK latches RCr09, GY09, BCb09, BLANK, SYNC, and SYNC_T.  
InvideoDACmode, theM1andM2inputsarelatchedbyarisingedgeonCLKaswellbutonlywhenadditional  
conditions are satisfied as explained in their terminal description.  
In generic DAC mode, M1 and M2 are continuously interpreted i.e. independent of additional conditions, to  
determine color space and input data formats. This allows easier configuration.  
COMP  
39  
12  
11  
38  
O
I
Compensation terminal. A 0.1-µF capacitor must be connected between COMP and AV  
.
DD  
DV  
DV  
Digital power supply (1.8 V)  
Digital ground  
DD  
SS  
I
FSADJ  
I
Full-scaleadjustcontrol. Thefull-scalecurrentdriveoneachoftheoutputchannelsisdeterminedbythevalue  
of a resistor R connected between this terminal and AV . Figure 5 shows the relationship between  
FS SS  
full-scale output voltage compliance and R for the nominal DAC termination of 37.5 .  
FS  
GY0GY9  
3627  
I
I
Green or Y pixel data input. Signals with index 0 denote the least significant bits.  
M1  
47  
Operation mode control 1.  
In video DAC mode, the second rising edge on CLK after a transition on SYNC latches M1. The interpretation  
is dependent on the polarity of the last SYNC transition:  
SYNC L H: latched as M1_INT  
SYNC H L: latched as BLNK_INT.  
Together with M2_INT, M1_INT configures the device as shown in Table 2 for video DAC mode. BLNK_INT  
determines if the device operates with the full- or reduced-scale input code range. Together with the color  
space configuration, this sets the amplitude of the blanking level on the analog output(s) as shown in Table 5.  
In generic DAC mode, M1 is continuously interpreted as M1_INT, BLNK_INT control is not available and the  
device always assumes full-scale input code range for blank level positioning.  
M2  
48  
I
Operation mode control 2.  
In video DAC mode, the second rising edge on CLK after a transition on SYNC latches M2. The interpretation  
is dependent on the polarity of the last SYNC transition:  
SYNC L H: latched as M2_INT  
SYNC H L: latched as INS3_INT  
Together with M1_INT, M2_INT configures the device as shown in Table 3 for video DAC mode. When  
INS3_INT is high, the device inserts sync on all DAC outputs; when low, sync is inserted only on the AGY  
output.  
In generic DAC mode, M2 is continuously interpreted as M2_INT, INS3_INT control is not applicable, since  
sync insertion is not available in generic DAC mode.  
RCr0RCr9  
1322  
I
I
Red or Cr pixel data input. Signals with index 0 denote the least significant bits.  
SYNC  
24  
Sync control input, active low. A rising edge on CLK latches SYNC. When asserted, only the AGY output  
(when INS3_INT=L, see terminal M2) for sync-on-G/Y, or ARPr, AGY, and ABPb outputs (whenINS3_INT=H,  
see terminal M2) for sync-on-all, are driven to the sync level, irrespective of the values on the data or BLANK  
inputs. Therefore, SYNC should remain low for the whole duration of sync, which is in the case of a tri-level  
sync both the negative and positive portion. See Figure 10 for timing control. SYNC control is only available in  
video DAC mode.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
Terminal Functions (Continued)  
TERMINAL  
NAME  
SYNC_T  
I/O  
DESCRIPTION  
NO.  
25  
I
Sync tri-level control, active high. A rising edge on CLK latches SYNC_T. When asserted (high), a positive  
sync(higherthanblankinglevel)isgeneratedwhenSYNC is low. Whendisabled(low), anegativesync(lower  
than blanking level) is generated when SYNC is low. When generating a tri-level (negative-to-positive) sync,  
an L->H transition on this signal positions the start of the positive transition. See Figure 10 for timing control.  
SYNC_T is also used to put the device in generic DAC mode: SYNC=H AND SYNC_T = H -> generic DAC  
mode. Therefore, the user should always drive SYNC_T low outside the sync period when video DAC mode  
operation is intended.  
V
REF  
37  
O
Voltage reference for DACs. An internal voltage reference of nominally 1.2 V is provided, which requires an  
external 0.1-µF ceramic capacitor between VREF and AV  
.
SS  
detailed description  
The THS8135 is a fast well-matched triple DAC with current outputs optimized for video applications without  
sacrificing its usefulness as a general-purpose triple DAC, thanks to a generic DAC mode. For video  
applications, the device can embed an analog output (composite) bi-level or tri-level sync on only the  
green/luma channel or on all three DAC output channels. The THS8135 offers compatibility with several popular  
video data formats and provides standard analog output compliance levels for component video digitized  
according to the ITU-R.BT601 sampling standard. The DAC full-scale range is also adjustable.  
sync generation  
The SYNC and SYNC_T control inputs enable the superposition of an additional current onto the AGY channel  
or onto all three channels, depending on the setting of INS3_INT. Using a combination of the SYNC and  
SYNC_T control inputs, either bi-level negative going pulses or tri-level pulses can be generated. By driving  
these terminals with the correct timing inputs, the user can insert onto the analog output(s) any composite sync  
format consisting of horizontal sync, vertical sync, pre- and post-serration, and equalization pulses. Assertion  
of SYNC (active low) identifies the sync period, while assertion of SYNC_T (active high) within this period  
identifies the positive excursion of a tri-level sync.  
blanking generation  
TheBLANKcontrolinputfixestheoutputamplitudeonallchannelstotheblankinglevel, irrespectiveofthevalue  
on the data input ports. The position of the blanking level on each channel and its relation to active video is  
different depending on the RGB versus YCbCr color space configuration: bottom-range blanking level for R,  
G, B, and Y outputs versus mid-range blanking level for Pb and Pr outputs. This also depends on the full-scale  
versus reduced-scale (ITU-R.BT601) input code range configuration: bottom-range blanking levels correspond  
to input code 0 when in full-scale, or to code 64 when in reduced-scale input code range configuration;  
mid-range blanking levels remain at 512 in all cases.  
generic DAC mode versus video DAC mode  
In video DAC mode, the device provides additional dc bias on R, G, B, and Y channels to provide headroom  
for negative sync insertion, as shown on Figure 1 and Figure 3.  
Such bias might be undesirable in applications where no sync embedding is needed, since it causes additional  
power consumption and might prevent dc coupling of the DAC outputs. In such cases, only a triple DAC  
operation without dc bias (i.e., DAC input code 0 corresponding to 0-V output) might be preferred as there is  
no need for sync insertion. Therefore, the THS8135 includes a generic DAC mode that does not add any dc  
bias. Sync insertion is not supported in generic DAC mode. Also, in this mode, only full-scale operation is  
available. Other features are still available in generic DAC mode: different input data formats, RGB versus  
YCbCr color space selection, and blanking level override option.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
generic DAC mode versus video DAC mode (continued)  
Because of the eliminated dc bias, the DAC output compliance for full-range video input can be higher in generic  
DACmode:upto1.286Vppatnominaldouble75-terminationload. ThisishighenoughfortheD/Aconversion  
of composite video (NTSC/PAL/SECAM), where the signal fed to the device contains the complete digital  
composite waveform, including sync and color-burst.  
Selection between generic DAC versus video DAC mode is controlled through a combination of SYNC and  
SYNC_T settings. Since in video DAC mode, SYNC_T only determines the sync polarity, this signal has don’t  
care status when no sync insertion takes place i.e., when SYNC is high. The THS8135 uses the logic level on  
the SYNC_T input when SYNC is high to enter generic DAC mode: SYNC_T and SYNC are high generic  
DAC mode. Therefore, the user must make sure to keep SYNC_T low outside the sync insertion period (when  
SYNC is high) to prevent entering generic DAC mode, when he intends to use the device in video DAC mode.  
Table 1 shows how to select between video DAC and generic DAC mode.  
Table 1. Video vs Generic Mode Selection  
SYNC  
BLANK  
SYNC_T  
OPERATION MODE AND DAC OUTPUT  
Generic DAC mode. Blanking override inactive.  
1
1
1
0
1
1
Generic DAC mode. Blanking override active. Blanking level position is according to the codes of Table 5,  
however no dc bias is present on the Y, R, G, and B outputs  
1
1
1
0
0
0
Video DAC mode. Blanking override inactive  
VideoDACmode. Blankingoverrideactive. BlankinglevelpositionisaccordingtothecodesofTable5, withdc  
bias present on the Y, R, G, and B outputs as shown in Figure 1 and Figure 3.  
0
0
X
X
0
1
Video DAC mode. Negative sync inserted  
Video DAC mode. Positive sync inserted  
device configuration using M1 and M2 in video DAC mode  
In the video DAC mode, the configuration signals M1 and M2 are both sampled on the second rising edge of  
the CLK input signal after a L H or H L transition on SYNC. Depending on the polarity of this last transition  
on SYNC, M1 and M2 are interpreted differently by the THS8135, as shown in Table 2.  
NOTE:  
In the THS8133, only M2 is a sampled signal while M1 is continuously interpreted. By doing so here,  
the additional input control signal BLNK_INT is generated. See the backward compatibility with the  
THS8133 section.  
Table 2. Interpretation of M1 in Video DAC Mode  
Then M1 is interpreted on  
If last event on  
SYNC is:  
the second CLK rising edge  
following this event as:  
DESCRIPTION  
Sets operation with full or video (ITUR.BT601) input code range i.e., the full-scale  
rangeisreachedfromeitherthe0102310-bitinputcoderangeortheinputcoderangeof  
Table 6, see also Table 5 for blanking level positions.  
H L  
L H  
BLNK_INT  
M1_INT  
Sets device operation mode. See Table 4 and Table 5.  
Table 3. Interpretation of M2 in VIdeo DAC Mode  
Then M2 is interpreted on  
If last event on  
SYNC is:  
the second CLK rising edge  
following this event as:  
DESCRIPTION  
SetssyncInsertionmode:SYNClowenablessyncgenerationonone(INS3_INT=L)orall  
three (INS3_INT=H) DAC outputs. SYNC_T determines the sync polarity.  
H L  
L H  
INS3_INT  
M2_INT  
Sets device operation mode. See Table 4 and Table 5.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
device configuration using M1 and M2 in generic DAC mode  
To simplify device configuration in the generic DAC mode, the M1 and M2 configuration pins are continuously  
interpreted as M1_INT and M2_INT respectively, i.e., their interpretation is not dependent on the last event on  
SYNC and is not only sampled on the second rising CLK edge after a transition on SYNC. BLNK_INT and  
INS3_INT controls are not available in generic mode. As a result, in generic DAC mode, the device always  
operates with full-scale input range and no sync insertion is available.  
M1_INT and M2_INT can be tied high or low externally to determine the input formatter setting and color space  
forblanklevelpositions. BlankingoverrideisstillavailableingenericDACmodeusingtheBLANKinput. Generic  
DAC mode only disables the dc bias for R, G, B, and Y component outputs.  
Table 1 shows all combinations of these control signals. Note that when SYNC is low, it takes precedence over  
BLANK.  
selection of color space and input formatter configuration (available in video DAC and generic DAC modes)  
Input data to the device can be supplied from a 3x10b GBR or YCbCr input port. If the device is configured to  
take data from all three channels, the data is clocked in at each rising edge of CLK. All three DACs operate at  
the full clock speed of CLK.  
In the case of 4:2:2 sampled data (for YCbCr data), the device can be fed over either a 2x10 bit or 1x10 bit  
multiplexed input port. An internal demultiplexer routes the input samples to the appropriate DAC: Y at the rate  
of CLK, Cb and Cr each at rate of 1/2 CLK.  
According to ITU-R.BT-656, the sample sequence is Cb-Y-Cr-Y over a 1x10-bit interface (Y-port). The sample  
sequence starts at the first rising edge of CLK after BLANK has been taken high (inactive). Note that in this case  
the frequency of CLK is 2x the Y conversion speed and 4x the conversion speed of both Cr and Cb.  
In the case of a 2x10 bit input interface, both the Y-port and the Cr-port are sampled on every CLK rising edge.  
The Cr-port carries the sample sequence Cb-Cr. The sample sequence starts at the first rising edge of CLK after  
BLANK has been taken high (inactive). Note that in this case the frequency of CLK is equal to the conversion  
speed of Y and 2x the conversion speed of both Cr and Cb.  
Table 4 shows the possible configurations of the input formatter, as determined by the internal M1_INT and  
M2_INT signals. The color space selection also determines the position of the blanking level and is explained  
in the next section.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
Table 4. THS8135 RGB/YCbCr Color Space and Input Formatter Configuration  
M1_INT M2_INT  
CONFIGURATION  
DESRIPTION  
L
L
L
GBR 3x10b4:4:4 GBR mode 4:4:4. Data clocked in on each rising edge of CLK from G, B, and R input channels.  
H
YCbCr 3x10b4:4:4 YCbCr mode 4:4:4. Data clocked in on each rising edge of CLK from Y, Cb, and Cr inputchannels.  
YCbCr mode 4:2:2 2x10 bit. Data clocked in on each rising edge of CLK from Y channel. A sample  
YCbCr 2x10b4:2:2 sequence of Cb-Cr should be applied to the Cr port. At the first rising edge of CLK after BLANK is  
taken high, Cb should be present on this port.  
H
H
L
YCbCrmode4:2:21x10bit(ITU-R.BT-656compliant).DataclockedinoneachrisingedgeofCLK  
YCbCr 1x10b4:2:2 fromYchannel. AsamplesequenceofCb-Y-Cr-YshouldbeappliedtotheYport. Atthefirstrising  
edge of CLK after BLANK is taken high, Cb should be present on this port.  
H
selection of full- or reduced-scale ITU-R.BT601 modes (available in video DAC mode only)  
In video DAC mode, BLNK_INT sets the blanking level generated on the DAC outputs as shown in Table 5. This  
allows imposing a blanking level on the analog outputs corresponding to either full-scale code range or a  
reduced-scale code range compliant to ITU-R.BT601. The blanking level is correctly positioned for either RGB  
or YCbCr configurations, determined from the M1/M2 setting.  
For generic DAC mode, BLNK_INT control is not available and the device always generates an output level  
during BLANK low assuming full-scale input code range.  
Table 5. Full-Scale or ITU.BT601 Reduced-Scale Mode Selection and  
Impact on Blanking Level Positioning  
CHANNEL OUTPUT LEVEL  
DURING BLANK ACTIVE  
CORRESPONDING TO DAC  
INPUT CODE:  
AVAILABLE IN  
VIDEO DAC (V)  
AND  
GENERIC DAC  
(G) MODES?  
M1_INT M2_INT BLNK_INT  
OPERATION MODE  
AGY  
0
ABPb  
0
ARPr  
0
L
L
L
L
L
H
L
V, G  
V
GBR 3x10b 4:4:4, full scale range  
GBR 3x10b 4:4:4, ITUR.BT601-compliant range  
YCbCr 3x10b 4:4:4, full scale range  
64  
0
64  
64  
L
H
H
L
V, G  
V
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
L
H
L
YCbCr 3x10b 4:4:4, ITUR.BT601-compliant range  
YCbCr 2x10b 4:2:2, ITUR.BT601-compliant range  
YCbCr 2x10b 4:2:2, full scale range  
64  
64  
0
H
H
H
H
V
L
H
L
V, G  
V
H
H
YCbCr 1x10b 4:2:2, ITUR.BT601-compliant range  
YCbCr 1x10b 4:2:2, full scale range  
64  
0
H
V, G  
In full-scale range, the DAC is driven with input codes 0-1023 to the desired video level, set by the resistor  
connected to the FSADJ terminal (e.g., a full-scale video amplitude of 700 mV when terminated into 37.5 and  
when using the nominal R value).  
FS  
In reduced-scale ITU-R.BT601 range, it is the intention that full-scale video amplitude is reached when the  
device is driven with digital inputs within the input code range shown in Table 6. Note that the code range is  
unequal between RGBY on one hand and CbCr on the other hand. Figure 1 through Figure 4 illustrates the  
difference between ITU-R.BT601 reduced-scale and full-scale code range operation. In reduced-range  
configuration, the B/Cb and R/Cr components are digitally amplitude scaled internally. Note that there is no  
scaling on the G/Y component. Therefore, to accommodate the 700-mV video compliance on all components,  
the DAC full-scale output current needs to be increased between full-scale and reduced scale modes by a factor  
of 1023/(940-64) by decreasing R in that proportion.  
FS  
This implementation has the advantage of avoiding amplitude scaling on the most critical G/Y component, while  
still providing the possibility for instantaneous overshoot/undershoot on the analog component video output  
when illegal signals according to ITU-R.BT601, such as super-black or super-white, are applied to the device.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
selection of full or reduced-scale ITU.BT601 modes (available in video DAC mode only) (continued)  
When using reduced-scale range, the output sync:video amplitude ratio is still 7:3, but now takes into account  
the reduced code range, not the full-scale range, to determine this ratio. Therefore, proper sync amplitudes are  
preserved in either mode, when the full-scale current is modified as explained higher. When changing DAC  
full-scale current using R , the sync amplitude level always scales proportionally with the video output  
FS  
compliance.  
Note that even when using reduced-scale range, the midscale blanking level on ABPb and ARPr channels still  
corresponds to code 512 = [64+(960-64)/2] when using YCbCr color space configuration. Table 6 shows the  
valid reduced input code ranges for RGB and YCbCr operation on each of the input data buses. While the  
THS8135 allows reduced-scale code range with RGB data, video systems normally use it only with YCbCr type  
data.  
Table 6. Input Code Ranges for ITU.BT601 Modes  
OPERATING MODE  
GY[]  
RPr[]  
64940  
64960  
BPb[]  
64940  
64960  
RGB  
64940  
64940  
YCbCr  
DAC operation  
The analog output drivers generate a current of which the drive level can be user-modified by choosing an  
appropriate resistor value R , connected to the FSADJ pin.  
FS  
All current source amplitudes (video, blanking, and sync) are derived from an internal voltage reference such  
that the relative amplitudes of sync, blank, and video are always equal to their nominal relationships.  
Figure 1 through Figure 4 show the nominal output voltage levels for full- or reduced-range input code range  
configurations on R, G, B, and Y versus Cb and Cr channels.  
Note that in full-scale input code range configuration, the blanking level is at 350 mV on all outputs; while in  
reduced-scale operation it is at 400 mV on all outputs.  
Inreducedscalemodes,afterproperadjustmentofR ,thenominal700-mVoutputcomplianceisreachedfrom  
FS  
an input code range of only 876 (=940-64) codes on G/Y, and of only 896 (=960-64) codes on R/Pr and B/Pr  
output channels. The maximum excursions are ~817mV (= 1023/876 x 700 mV) on G/Y and ~800 mV (=  
876/896 x 817 mV) on B/Pb and R/Pr channels. Figure 4 shows that when using reduced-scale input code  
range, the blanking level needs to be at 400 mV to accommodate the maximum negative excursion on B/Pr and  
R/Pr channels.  
The figures also show the excursions for the sync level positions in either full-scale or reduced-scale  
configurations. These levels are internally adjusted and assure 300-mV sync excursions when using nominal  
termination loads and properly adjusting R , as explained before.  
FS  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
V
Input  
O
Codes mV  
1023 1050  
700 mV  
300 mV  
300 mV  
0
350  
50  
NOTE: Choose R  
for 700 mV from input codes 01023 on Y  
FS  
Figure 1. YRGB Outputs, Full-Scale Input Code Range  
V
Input  
O
Codes mV  
1023  
700  
300 mV  
300 mV  
700 mV  
512 350  
0
0
Figure 2. CbCr Outputs, Full-Scale Input Code Range  
V
Input  
O
Codes mV  
Super-Black/Super-White  
Excursions (Reduced-Scale  
Input Code Range)  
1023  
940  
1167  
1100  
700 mV  
817 mV  
300 mV  
300 mV  
64  
0
400  
350  
100  
NOTE: Choose R  
for 700 mV from input codes 64940 on Y  
FS  
Figure 3. YRGB Outputs, Reduced-Scale Input Code Range  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
V
Input  
O
Illegal Color  
Difference Outputs  
Codes mV  
1023  
960  
800  
700  
400  
800 mV  
700 mV  
300 mV  
300 mV  
512  
64  
0
50  
0
0
Figure 4. CbCr Outputs, Reduced-Scale Input Code Range  
output amplitude control  
The current drive on all three output channels (including sync) is controlled by a resistor R that must be  
FS  
connected between FSADJ and AVSS. In all operation modes the relative amplitudes of these current drivers  
are maintained irrespective of the R value, as long as a maximum current drive capability is not exceeded.  
FS  
Therefore, a 7:3 video to sync ratio is preserved when adjusting R  
FS.  
The sync generator is composed of different current sources that are internally routed to a corresponding DAC  
output. Since they are additional to the video DACs, full 10-bit DAC resolution is preserved for video. Depending  
on the setting of INS3_INT during SYNC low, the sync current drive is added to either only the green channel  
output (sync-on-G/Y) if INS3_INT=L or all three channel outputs (sync-on-all) if INS3_INT=H. Sync insertion  
is only available in video DAC mode.  
Figure 5 shows the relationship between R and the current drive level on each channel for full-range DAC  
FS  
input. When using reduced-scale range, the codes on the G/Y channel are not internally scaled (only BCb and  
RCr channels are scaled). Therefore, the user should increase the DAC full-scale current by decreasing R  
FS  
by a factor of 1023/(940-64) to map the reduced-scale Y input code range to the same output current drive level.  
Since these are the current drive levels for the video DACs they do not take into account the additional dc bias  
for sync insertion when using video DAC mode. The voltage compliance outputs in Figure 5 assume termination  
with a 37.5-resistor.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
OUTPUT VOLTAGE  
vs  
FULL-SCALE RESISTANCE  
1450  
Full-Scale DAC Output  
Current Adjustment at  
1350  
37.5-DAC Termination  
1250  
1150  
1050  
950  
850  
750  
650  
550  
450  
350  
1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.3 5.8 6.3 6.8 7.3  
R
Full-Scale Resistance kΩ  
(FS)  
Figure 5. V  
vs R  
FS  
out  
The user is free to connect another resistor value, but care should be taken not to exceed the maximum current  
level on each of the DAC outputs as shown in the specifications section.  
backward compatibility with the THS8133  
power supply  
The THS8135 is a functional superset to the THS8133 and is footprint compatible i.e. a board designed for the  
THS8133 can also be used with the THS8135. Both devices come in the same package and have identical  
pinouts. Only the power supply levels need to be adjusted as shown in Table 7.  
Table 7. Power Supply Changes THS8133 vs THS8135  
THS8133  
5 V  
THS8135  
3.3 V  
AV  
DD  
DV  
3.3 V to 5 V  
1.8 V  
DD  
device configuration  
The THS8135 samples both M1 and M2 on the second rising edge of CLK after a transition on SYNC in video  
modes. Depending on the polarity of the transition, M1 is interpreted as either M1_INT or BLK_INT. In the  
THS8133 the M1 signal is not sampled but continuously interpreted, and is only interpreted as M1_INT. The  
THS8133 does not offer a reduced-scale input code range configuration and therefore does not require  
BLNK_INT.  
Only when this additional functionality, which is typical for video systems, is desired, a small change in the  
configuration of the device is required by supplying a dynamically changing signal on M1, generated in a similar  
way as M2, as shown in Table 8.  
Note that this backward compatibility is due to the selection of full-scale versus reduced-scale configurations  
in Table 5. All configurations that have equal logic levels for BLNK_INT and M1_INT produce full-scale input  
code range, which are compatible with the THS8133. This allows the use of a signal tied high or low on M1, as  
on the THS8133, for these backward compatible full-scale configurations.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
DAC outputs  
ThepositionoftheblankinglevelsintheTHS8135differsfromthepositionoftheblankinglevelsintheTHS8133.  
This is to accommodate both full- and reduced-scale configurations on this device, while the THS8133 only  
supported full-scale. When the DAC output is ac-coupled, as is typically the case, there is no change to the  
output video waveform. Typically a clamp circuit at the receiving side will restore the signal to the proper dc level.  
video DAC vs generic DAC modes  
The THS8133 does not offer a generic DAC mode. The THS8135 uses only the same number of control signals  
than the THS8133 but additionally introduces a generic video mode by specific use of a dont care signal  
combination of these control signals on the THS8133.  
2
programming example for M2  
Configuration of the device is normally static in a given application, although it is theoretically possible to  
reconfigure the device during operation.  
If M2_INT and INS3_INT need to be either low or high, the M2 pin is simply tied low or high. If M2_INT and  
INS3_INT need to have different levels, these can be easily derived from the signal on the SYNC pin, as shown  
in Table 8 and Figure 6.  
Table 8. Generating M2 From SYNC  
IN ORDER TO HAVE:  
M2_INT  
INS3_INT  
APPLY TO M2:  
L
H
L
... SYNC delayed by two CLK periods  
... inverted SYNC delayed by two CLK periods  
H
M1 can be generated similarly. Therefore, at most one inverter and two flip flops are needed to configure any  
of the THS8135 modes using M1 and M2.  
CLK  
SYNC  
M2  
(= SYNC_delayed)  
INS3_INT  
if (M2 = SYNC_delayed) M2_INT = L and INS3_INT = H  
M2_INT  
M2  
(= Not SYNC_delayed)]  
INS3_INT  
M2_INT  
if (M2 = NOT SYNC_delayed) M2_INT = H and INS3_INT = L  
Figure 6. Generating INS3_INT and M2_INT From M2  
2
Programming M1 is analogous.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
CLK  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
RCr(0)  
RCr(1)  
RCr(2)  
RCr(3)  
RCr(4)  
RCr(5)  
RCr(6)  
RCr(7)  
RCr(8)  
GY(0)  
GY(1)  
GY(2)  
GY(3)  
GY(4)  
GY(5)  
GY(6)  
GY(7)  
GY(8)  
BCb(0)  
BCb(1)  
BCb(2)  
BCb(3)  
BCb(4)  
BCb(5)  
BCb(6)  
BCb(7)  
BCb(8)  
Data Path Latency = 7.5 CLK Cycles  
RCr(0), GY(0), BCb(0) Registered  
ARPr, AGY, ABPb Output  
Corresponding to RCr(0), GY(0), BCb(0)  
Figure 7. Input Format and Latency YCbCr 4:4:4 and GBR 4:4:4 Modes  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
BLANK  
RCr[9:0]  
GY[9:0]  
First Registered Sample on RCr[9:0] after L  
H on BLANK is Interpreted as Cb[9:0]  
Cb(0)  
Cr(0)  
Y(1)  
Cb(2)  
Y(2)  
Cr(2)  
Y(3)  
Cb(4)  
Y(4)  
Cr(4)  
Y(5)  
Cb(6)  
Y(6)  
Cr(6)  
Y(7)  
Cb(8)  
Y(8)  
Cr(8)  
Cb(10)  
Cr(10)  
Y(0)  
Y(9)  
Y(10)  
Y(11)  
BCb[9:0]  
Data Path Latency = 9.5 CLK Cycles  
Cb(0), Y(0) Registered  
ARPr, AGY, ABPb Output  
Corresponding to Cr(0),Y(0), Cb(0)  
Cr(0), Y(1) Registered  
Figure 8. Input Format and Latency YCbCr 4:2:2 2x10-Bit Mode  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CLK  
BLANK  
First Registered Sample on GY[9:0] after L  
H on BLANK is Interpreted as Cb[9:0]  
RCr[9:0]  
GY[9:0]  
BCb[9:0]  
Cb(0)  
Y(0)  
Cr(0)  
Y(2)  
Cb(4)  
Y(4)  
Cr(4)  
Y(6)  
Cb(8)  
Y(8)  
Cr(8)  
Y(10)  
Data Path Latency = 10.5 CLK Cycles  
Cr(0) Registered  
Y(0) Registered  
Cb(0) Registered  
ARPr, AGY, ABPb Output  
Corresponding to Cr(0),Y(0), Cb(0)  
Figure 9. Input Format and Latency YCbCr 4:2:2 1x10-Bit Mode  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
Figure 10 shows how to control the SYNC, SYNC_T, and BLANK signals to generate tri-level sync levels and  
blanking at the DAC output in video mode. A bi-level (negative) sync can be generated similarly by avoiding the  
positive transition on SYNC_T during SYNC low.  
Note that on the THS8135 it is required to keep SYNC_T low outside the sync interval in order to avoid entering  
the generic DAC mode.  
CLK  
t
s
t
h
SYNC  
t
t
t
t
d(D)  
d(D)  
d(D)  
d(D)  
SYNC_T  
BLANK  
D(0) D(1)  
DATA[9:0]  
Value  
Corresponds  
to D(0)  
Figure 10. Sync and Blanking Generation  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage:  
AV  
DV  
to AV  
to DV  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 3.6 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 2 V  
DD  
DD  
SS  
SS  
Supply voltage: AV  
Digital input voltage range to DV  
Operating free-air temperature range, T  
Storage temperature range, T  
to DV , AV to DV  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 to 0.5 V  
DD  
DD  
SS  
SS  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to DV  
+ 0.5 V  
SS  
DD  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 150°C  
stg  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
recommended operating conditions over operating free-air temperature range, T  
A
power supply  
MIN NOM  
MAX  
UNIT  
AV  
DD  
3
3.3  
1.8  
3.6  
2
Supply voltage  
V
DV  
1.65  
DD  
digital and reference inputs  
MIN NOM  
MAX  
UNIT  
V
High-level input voltage, V  
IH  
1.2  
DV  
DD  
0.7  
Low-level input voltage, V  
DV  
V
IL  
SS  
0
Clock frequency, f  
clk  
240  
MHz  
Clock high pulse duration, t  
40%  
60%  
CLK  
period  
w(CLKH)  
Clock low pulse duration, t  
40%  
60%  
CLK  
period  
w(CLKL)  
FSADJ resistor, R , See Note 1  
FS  
3.8  
kΩ  
NOTE 1:  
R
should be chosen such that the maximum full-scale DAC output current (I ) does not exceed their maximum stated levels. This  
FS  
FS  
yields the nominal output voltage compliance at the nominal load termination of 37.5 .  
electrical characteristics over recommended operating conditions with f  
= 240 MSPS and use  
CLK  
of internal reference voltage (unless otherwise noted) V  
termination  
, with R = R  
and 37.5-load  
REF  
FS  
FS(nom)  
power supply (1 MHz, 1 dBFS digital sine simultaneously applied to all three channels)  
PARAMETER  
TEST CONDITIONS  
MIN  
89  
TYP  
95  
MAX  
100  
80  
UNIT  
RGB  
YCbCr  
71  
76  
IAV  
DD  
Operating supply current, analog  
Operating supply current, digital  
Power dissipation  
Generic (700 mV)  
RGB  
63  
66  
69  
mA  
14.5  
15.1  
15.7  
12.7  
15.7  
350  
280  
252  
100  
69  
AV  
DD  
= 3.3 V,  
= 1.8 V,  
YCbCr  
11.7 12.15  
IDV  
DD  
DV  
DD  
CLK = 80 MSPS  
Generic (700 mV) 14.64  
15.1  
338  
270  
245  
95  
RGB  
328  
262  
237  
89  
YCbCr  
P
D
mW  
Generic (700 mV)  
RGB  
IAV  
DD  
Operating supply current, analog  
Operating supply current, digital  
Power dissipation  
Generic (700 mV)  
RGB  
63  
66  
mA  
AV  
DD  
= 3.3 V,  
= 1.8 V,  
38  
40  
41  
IDV  
DV  
DD  
DD  
Generic (700 mV)  
RGB  
38  
40  
41.1  
394  
298  
CLK = 240 MSPS  
373  
281  
384  
290  
114  
16  
P
D
mW  
Generic (700 mV)  
IAV  
IDV  
Operating supply current, analog  
Operating supply current, digital  
Power dissipation  
DD  
AV  
DD  
= 3.3 V,  
= 1.8 V,  
mA  
DV  
DD  
Generic (1.3 V)  
Generic (1.3 V)  
DD  
CLK = 80 MSPS  
P
D
405  
114  
41  
mW  
IAV  
IDV  
Operating supply current, analog  
Operating supply current, digital  
Power dissipation  
DD  
AV  
DD  
= 3.3 V,  
= 1.8 V,  
mA  
DV  
DD  
DD  
CLK = 240 MSPS  
P
D
450  
mW  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
electrical characteristics over recommended operating conditions with f  
= 240 MSPS and use  
CLK  
of internal reference voltage V  
, with R = R  
(unless otherwise noted) (continued)  
REF  
FS  
FS(nom)  
digital inputsdc characteristics  
PARAMETER  
TEST CONDITIONS  
= 3.3 V, DV = 1.8 V,  
MIN  
TYP  
MAX  
1
UNIT  
I
I
High-level input current  
Low-level input current  
IH  
AV  
DD  
DD  
1  
IL  
µA  
Digital inputs and CLK at 0 V for I  
Digital inputs and CLK at 2 V for I  
;
IL  
IH  
Low-levelinput current, CLK and I  
High-level input current, CLK  
IH(CLK)  
I
1  
1
IL(CLK)  
C
Input capacitance  
T
A
= 25_C  
5
pF  
ns  
ps  
I
t
s
Data and control inputs setup time  
Data and control inputs hold time  
2
t
h
500  
RGB and YCbCr 4:4:4  
YCbCr 4:2:2 2 x 10 bit  
YCbCr 4:2:2 1 x 10 bit  
7.5  
9.5  
Digital process delay from first registered  
color component of pixel  
CLK  
periods  
t
d(D)  
10.5  
This parameter is assured by design. The digital process delay is defined as the number of CLK cycles required for the first registered color  
component of a pixel, starting from the time of registering it on the input bus, to propagate through all processing and appear at the DAC output  
drivers. The remaining delay through the IC is the analog delay t  
of the analog output drivers.  
d(A)  
analog (DAC) outputs  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DAC resolution  
10  
Bits  
1.1/  
0.9  
2/  
1.5  
Static, best-fit, sync-onall, video mode, RGB full-scale  
Static, best-fit, sync-on-all, video mode,  
RGB ITU.RBT601  
1.2/  
0.8  
2/  
1.5  
INL  
Integral nonlinearity  
LSB  
LSB  
1.61/  
0.94  
2/  
1.5  
Static, best fit, generic mode, 1.3 V  
Static, sync-on-all, video mode, RGB full-scale  
±0.4  
±0.5  
±1  
±1  
Static, sync-on-all, video mode, RGB ITU.RBT601  
DNL  
Differential nonlinearity  
0.32/  
0.24  
Static, generic mode, 1.3 V  
f = DC, See Note 2  
Power supply ripple rejection  
ratio of DAC output (full scale)  
PSRR  
38.5  
dB  
dB  
f = 1 MHz  
See Note 3  
63  
39  
1.15  
284  
XTALK  
Crosstalk between channels  
f = 30 MHz  
V
refo  
Voltage reference output  
VREF output resistance  
1.13  
1.16  
294  
V
R
276.5  
R
Video mode,  
2%  
3%  
1.8%  
2.8%  
0.7  
2%  
3%  
RGB full-scale  
CLK = 80 MSPS, See Note 4  
Video mode,  
K
Imbalance between DACs  
IMBAL  
RGB ITU-R.BT601  
Video mode,  
RGB full-scale  
DAC output compliance voltage  
(video only)  
Video mode, RGB  
ITU-R.BT601  
V
OC  
See Note 5  
V
0.817  
1.3  
Generic mode  
NOTES: 2. PSRRismeasuredwitha0.1µFcapacitorbetweentheCOMPandAVDDpin;witha0.1µFcapacitorconnectedbetweentheVREF  
pin and AVSS. The ripple amplitude is within the range 100 mVpp to 500 mVpp with the DAC output set to full scale and a  
double-terminated 75 (= 37.5 ) load. PSRR is defined as 20 x log(ripple voltage at DAC output/ripple voltage at AVDD input).  
Limits from characterization only.  
3. Crosstalk spec applies to each possible pair of the three DAC outputs. Limits are from characterization only.  
4. The imbalance between DACs applies to all possible pairs of the three DACs.  
5. Values at R =R  
FS FS(nom)  
; limits from characterization only.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
analog (DAC) outputs (continued)  
PARAMETER  
TEST CONDITIONS  
AGY  
MIN  
27  
TYP  
28  
MAX  
29.3  
29.3  
29.3  
19.5  
32.0  
32.3  
32.1  
22.5  
4.2  
UNIT  
Video mode, full-scale RGB,  
sync-on-all  
ABPb and ARPr  
AGY  
27  
28  
27  
28  
Video mode, full-scale YCbCr,  
sync-on-all  
ABPb and ARPr  
AGY  
18 18.67  
30 31.18  
30 31.18  
30 31.18  
20 21.39  
I
CLK = 80 MSPS, See Note 6  
mA  
FS  
Video mode, ITU-R.BT601RGB,  
sync-on-all  
ABPb and ARPr  
AGY  
Video mode, ITU-R.BT601  
YCbCr, sync-on-all  
ABPb and ARPr  
t
t
DAC output current rise time  
DAC output current fall time  
CLK = 80 MSPS, 10 to 90% of full-scale  
CLK = 80 MSPS, 10 to 90% of full-scale  
3.2  
3.2  
3.5  
3.5  
ns  
ns  
RDAC  
4.2  
FDAC  
Measured from CLK = V  
transition, See Note 7  
to 50% of full-scale  
IH(min)  
t
Analog output delay  
4
ns  
ns  
d(A)  
S
Measured from 50% of full scale transition on output to  
output settling, within 2%, See Note 8  
t
Analog Output Settling Time  
15  
SFDR  
BW  
Spurious-free dynamic range  
Bandwidth  
1 MHz, 1 dBFS digital sine input  
55  
50  
dB  
1 dB  
MHz  
3 dB  
100  
25  
E
glitch  
Glitch energy  
Full-scale code transition at 240 MSPS  
pVs  
NOTES: 6. Values at R =R  
.
FS FS(nom)  
7. This value excludes the digital process delay, t  
Limit are from characterization only.  
8. Limit from characterization only. Measured on Y channel with other channels not driven.  
D(D).  
400  
390  
380  
370  
360  
350  
340  
330  
320  
310  
300  
0
50  
100  
150  
200  
250  
300  
f Frequency MHz  
Figure 11. Power vs Clock Frequency, RGB mode, 1-MHz Input Tone on All Channels  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
600  
500  
400  
300  
200  
100  
0
0
50  
100  
150  
200  
250  
300  
f Frequency MHz  
Figure 12. Power vs Clock Frequency, Generic DAC Mode 1.3-V Output,  
Full-Scale Input Toggle on All Channels  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
1
76  
151 226 301 376 451 526 601 676 751 826 901 976 1051  
Input Code  
Figure 13. DNL, Generic DAC Mode (1.3-V Output Compliance)  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
1.5  
1.0  
0.5  
0.0  
0.5  
1.0  
1.5  
1
103  
205  
307  
409  
511  
613  
715  
817  
919  
1021  
Input Code  
Figure 14. Best-Fit INL, Generic DAC Mode (1.3-V Output Compliance)  
0
1  
2  
3  
4  
5  
6  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110 120 130 140 150  
f Frequency MHz  
Figure 15. Amplitude Response vs Input Frequency at 240 MSPS  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
THS8135  
TRIPLE 10-BIT, 240 MSPS VIDEO DAC WITH TRI-LEVEL SYNC AND VIDEO  
(ITU-R.BT601)COMPLIANT FULL SCALE RANGE  
SLAS343A MAY 2001 REVISED JUNE 2002  
MECHANICAL DATA  
PHP (S-PQFP-G48)  
PowerPAD PLASTIC QUAD FLATPACK  
0,27  
M
0,50  
36  
0,08  
0,17  
25  
37  
24  
Thermal Pad  
(see Note D)  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
Gage Plane  
7,20  
SQ  
6,80  
0,25  
9,20  
8,80  
SQ  
0,15  
0,05  
0°ā7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4146927/A 01/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane.  
This pad is electrically and thermally connected to the backside of the die and possibly selected leads.  
E. Falls within JEDEC MS-026  
PowerPAD is a trademark of Texas Instruments Incorporated.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Mar-2005  
PACKAGING INFORMATION  
Orderable Device  
THS8135PHP  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
HTQFP  
PHP  
48  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
THS8135PHPG4  
HTQFP  
PHP  
48  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

    THS8135PHP相关文章


    Fatal error: Uncaught PDOException: SQLSTATE[HY000]: General error: 145 mroonga: repair: can't recover from crash while updating in /www/wwwroot/website_ic37/s.ic37.com/index.php:504 Stack trace: #0 /www/wwwroot/website_ic37/s.ic37.com/index.php(504): PDO->query() #1 /www/wwwroot/website_ic37/www.ic37.com/s_index.php(3): include('...') #2 {main} thrown in /www/wwwroot/website_ic37/s.ic37.com/index.php on line 504