欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • TLC27L2IDR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • TLC27L2IDR 现货库存
  • 数量5000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装,欢迎查询
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • TLC27L2IDR图
  • 集好芯城

     该会员已使用本站13年以上
  • TLC27L2IDR 现货库存
  • 数量18532 
  • 厂家TI(德州仪器) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TLC27L2IDR图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • TLC27L2IDR 现货库存
  • 数量10500 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • TLC27L2IDR图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • TLC27L2IDR 现货库存
  • 数量21000 
  • 厂家TI/德州仪器 
  • 封装SOP-8 
  • 批号23+ 
  • 代理原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • TLC27L2IDR图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • TLC27L2IDR 现货库存
  • 数量6800 
  • 厂家TI 
  • 封装SOP8 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • TLC27L2IDR图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • TLC27L2IDR 现货库存
  • 数量5000 
  • 厂家TI 
  • 封装8-SOIC 
  • 批号24+ 
  • 假一罚百,TI专营!深圳有库存,北美、新加坡可发货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • TLC27L2IDR图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • TLC27L2IDR 现货库存
  • 数量9000 
  • 厂家TI 
  • 封装SOP8 
  • 批号2021+ 
  • 一定原装柜台现货
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • TLC27L2IDR图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • TLC27L2IDR 现货库存
  • 数量8000 
  • 厂家TI(德州仪器) 
  • 封装SOIC-8_150mil 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • TLC27L2IDR图
  • 上海意淼电子科技有限公司

     该会员已使用本站14年以上
  • TLC27L2IDR 现货库存
  • 数量20000 
  • 厂家TI 
  • 封装SOIC8 
  • 批号23+ 
  • 原装现货热卖!请联系吴先生 13681678667
  • QQ:617677003QQ:617677003 复制
  • 15618836863 QQ:617677003
  • TLC27L2IDR图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • TLC27L2IDR 现货库存
  • 数量5000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • TLC27L2IDR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TLC27L2IDR 现货库存
  • 数量2500 
  • 厂家TI 
  • 封装SOIC (D) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TLC27L2IDR图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • TLC27L2IDR 现货库存
  • 数量18500 
  • 厂家TI(德州仪器) 
  • 封装SOIC-8_150mil 
  • 批号23+ 
  • ★★全网低价,原装原包★★
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • TLC27L2IDR图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • TLC27L2IDR 现货热卖
  • 数量30882 
  • 厂家TI 
  • 封装SOP-8 
  • 批号2024 
  • 上海原装现货,欢迎咨询
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • TLC27L2IDR图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • TLC27L2IDR 优势库存
  • 数量20800 
  • 厂家TI 
  • 封装SOP8 
  • 批号22+ 
  • 全新原装进口现货特价热卖,长期供货
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • TLC27L2IDRG4图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • TLC27L2IDRG4 热卖库存
  • 数量2500 
  • 厂家TI 
  • 封装SOP-8 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!单价:9元
  • QQ:97671959QQ:97671959 复制
  • 171-4729-9698(微信同号) QQ:97671959
  • TLC27L2IDR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TLC27L2IDR
  • 数量85000 
  • 厂家TI/德州仪器 
  • 封装20+ 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • TLC27L2IDR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TLC27L2IDR
  • 数量36000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • TLC27L2IDR图
  • 深圳市隆亿诚科技有限公司

     该会员已使用本站3年以上
  • TLC27L2IDR
  • 数量3253 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号22+ 
  • 支持检测.现货价优!
  • QQ:778039761QQ:778039761 复制
  • -0755-82710221 QQ:778039761
  • TLC27L2IDRG4图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • TLC27L2IDRG4
  • 数量3000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装公司现货库存!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • TLC27L2IDR图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • TLC27L2IDR
  • 数量5000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 原装正品长期供货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • TLC27L2IDRG4图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • TLC27L2IDRG4
  • 数量3000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装公司现货销售
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • TLC27L2IDR图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • TLC27L2IDR
  • 数量6086 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • TLC27L2IDR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • TLC27L2IDR
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • TLC27L2IDRG4图
  • 深圳市高捷芯城科技有限公司

     该会员已使用本站11年以上
  • TLC27L2IDRG4
  • 数量9555 
  • 厂家TI(德州仪器) 
  • 封装SOP-8 
  • 批号23+ 
  • 支持大陆交货,美金交易。原装现货库存。
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83062789 QQ:3007977934QQ:3007947087
  • TLC27L2IDR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TLC27L2IDR
  • 数量3657 
  • 厂家TI/德州仪器 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • TLC27L2IDR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • TLC27L2IDR
  • 数量65800 
  • 厂家TI/德州仪器 
  • 封装SOP-8 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • TLC27L2IDR图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • TLC27L2IDR
  • 数量25000 
  • 厂家TI 
  • 封装SOP-8 
  • 批号2018+ 
  • 一级专营品牌全新原装热卖
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • TLC27L2IDR图
  • 集好芯城

     该会员已使用本站13年以上
  • TLC27L2IDR
  • 数量17792 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TLC27L2IDR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TLC27L2IDR
  • 数量18836 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • TLC27L2IDR图
  • 深圳市华科泰电子商行

     该会员已使用本站13年以上
  • TLC27L2IDR
  • 数量32 
  • 厂家TI 
  • 封装SOIC-8 
  • 批号 
  • 绝对原装现货特价
  • QQ:405945546QQ:405945546 复制
    QQ:1439873477QQ:1439873477 复制
  • 0755-82567800 QQ:405945546QQ:1439873477
  • TLC27L2IDR图
  • 绿盛电子(香港)有限公司

     该会员已使用本站12年以上
  • TLC27L2IDR
  • 数量26976 
  • 厂家TI 
  • 封装SOP8 
  • 批号2018+ 
  • ★★代理原装现货,特价热卖!★★
  • QQ:2752732883QQ:2752732883 复制
    QQ:240616963QQ:240616963 复制
  • 0755-25165869 QQ:2752732883QQ:240616963
  • TLC27L2IDR图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • TLC27L2IDR
  • 数量30000 
  • 厂家TI/德州仪器 
  • 封装SOP-8 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • TLC27L2IDR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TLC27L2IDR
  • 数量37048 
  • 厂家TI(德州仪器) 
  • 封装SOP-8 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • TLC27L2IDR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TLC27L2IDR
  • 数量12500 
  • 厂家TI/德州仪器 
  • 封装SOIC-8 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • TLC27L2IDR图
  • 深圳市昌和盛利电子有限公司

     该会员已使用本站11年以上
  • TLC27L2IDR
  • 数量12568 
  • 厂家TI 
  • 封装原装正品 
  • 批号▊ NEW ▊ 
  • ▊▊【100%全新原装正品】★长期供应,量大可订!价格优惠!
  • QQ:1551106297QQ:1551106297 复制
    QQ:3059638860QQ:3059638860 复制
  • 0755-23125986 QQ:1551106297QQ:3059638860

产品型号TLC27L2IDR的概述

TLC27L2IDR芯片概述 TLC27L2IDR是一款广泛应用于增益放大、电压比较和信号调理等领域的运算放大器。该芯片,以其低功耗、高线性度和广泛的电源电压范围而受到工程师的青睐。TLC27L2IDR满足了不同应用的需求,包括工业自动化、消费电子产品以及便携式设备,因而具有广泛的市场前景。 运算放大器是模拟电路中极为重要的组件,其功能多样且适用于多个领域。TLC27L2IDR作为一款低功耗运算放大器,主要用于信号放大、滤波和比较,有助于提高系统的整体性能。此外,TLC27L2IDR支持双电源和单电源供电,非常灵活,可以适应多种设计要求。 详细参数 1. 电源电压(Vs):±2V至±15V或单电源下为3V至30V。 2. 输入偏置电流 (Ib):典型值为10pA。 3. 输入失调电压 (Vos):最大为100μV。 4. 增益带宽积 (GBW):为1MHz。 5. 输出电流 (Io):...

产品型号TLC27L2IDR的Datasheet PDF文件预览

ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢆꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢇꢅ ꢀꢁ ꢂꢃ ꢄꢁ ꢄ  
ꢍꢎꢏ ꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢆ ꢁ ꢋ ꢍꢏꢎ ꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
D, JG, OR P PACKAGE  
(TOP VIEW)  
D
Trimmed Offset Voltage:  
TLC27L7 . . . 500 µV Max at 25°C,  
= 5 V  
V
DD  
1OUT  
1IN−  
1IN+  
GND  
V
DD  
1
2
3
4
8
7
6
5
D
D
Input Offset Voltage Drift . . . Typically  
0.1 µV/Month, Including the First 30 Days  
Wide Range of Supply Voltages Over  
Specified Temperature Range:  
0°C to 70°C . . . 3 V to 16 V  
2OUT  
2IN−  
2IN+  
FK PACKAGE  
(TOP VIEW)  
−40°C to 85°C . . . 4 V to 16 V  
−55°C to 125°C . . . 4 V to 16 V  
D
D
Single-Supply Operation  
Common-Mode Input Voltage Range  
Extends Below the Negative Rail (C-Suffix,  
I-Suffix Types)  
3
2
1
20 19  
18  
NC  
NC  
4
5
6
7
8
2OUT  
NC  
1IN−  
NC  
17  
16  
15  
14  
D
D
Ultra-Low Power . . . Typically 95 µW  
at 25°C, V  
= 5 V  
DD  
2IN−  
NC  
1IN+  
NC  
Output Voltage Range Includes Negative  
Rail  
9 10 11 12 13  
12  
D
D
D
High Input Impedance . . . 10 Typ  
ESD-Protection Circuitry  
Small-Outline Package Option Also  
Available in Tape and Reel  
NC − No internal connection  
D
Designed-In Latch-Up immunity  
DISTRIBUTION OF TLC27L7  
INPUT OFFSET VOLTAGE  
description  
30  
25  
20  
15  
10  
5
335 Units Tested From 2 Wafer Lots  
The TLC27L2 and TLC27L7 dual operational  
V
T
A
= 5 V  
DD  
= 25°C  
P Package  
amplifiers combine a wide range of input offset  
voltage grades with low offset voltage drift, high  
input impedance, extremely low power, and high  
gain.  
AVAILABLE OPTIONS  
PACKAGE  
V
max  
SMALL  
OUTLINE  
(D)  
CHIP  
CARRIER  
(FK)  
CERAMIC  
DIP  
(JG)  
PLASTIC  
DIP  
IO  
T
A
AT 25°C  
(P)  
500 µV TLC27L7CD  
2 mV TLC27L2BCD  
5 mV TLC27L2ACD  
10 mV TLC27L2CD  
TLC27L7CP  
0°C  
to  
70°C  
TLC27L2BCP  
TLC27L2ACP  
TLC27L2CP  
0
800  
400  
0
400  
800  
V
IO  
− Input Offset Voltage − µV  
500 µV TLC27L7ID  
2 mV TLC27L2BID  
5 mV TLC27L2AID  
10 mV TLC27L2ID  
TLC27L7IP  
TLC27L2BIP  
TLC27L2AIP  
TLC27L2IP  
40°C  
to  
85°C  
55°C  
to  
125°C  
TLC27L7MD  
500 µV  
TLC27L7MFK TLC27L7MJG TLC27L7MP  
TLC27L2MFK TLC27L2MJG TLC27L2MP  
TLC27L2MD  
10 mV  
TLC27L2MDRG4  
The D package is available taped and reeled. Add R suffix to the device type  
(e.g., TLC27L7CDR).  
LinCMOS is a trademark of Texas Instruments.  
ꢀꢞ  
Copyright 2005, Texas Instruments Incorporated  
ꢚ ꢞ ꢛ ꢚꢈ ꢉꢨ ꢖꢕ ꢙ ꢡꢡ ꢟꢙ ꢗ ꢙ ꢘ ꢞ ꢚ ꢞ ꢗ ꢛ ꢣ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢁ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢁꢃ ꢆ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢃꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢄ  
  
ꢍꢎ ꢏꢂꢐ ꢌ ꢐ ꢋꢑ ꢒꢓ ꢆꢁ ꢋ ꢍꢏ ꢎꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
description (continued)  
These devices use Texas Instruments silicon-gate LinCMOStechnology, which provides offset voltage  
stability far exceeding the stability available with conventional metal-gate processes.  
The extremely high input impedance, low bias currents, and low power consumption make these cost-effective  
devices ideal for high gain, low frequency, low power applications. Four offset voltage grades are available  
(C-suffix and I-suffix types), ranging from the low-cost TLC27L2 (10 mV) to the high-precision TLC27L7  
(500 µV). These advantages, in combination with good common-mode rejection and supply voltage rejection,  
make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.  
In general, many features associated with bipolar technology are available in LinCMOSoperational amplifiers,  
without the power penalties of bipolar technology. General applications such as transducer interfacing, analog  
calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC27L2 and  
TLC27L7. The devices also exhibit low voltage single-supply operation and ultra-low power consumption,  
making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input  
voltage range includes the negative rail.  
A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density  
system applications.  
The device inputs and outputs are designed to withstand 100-mA surge currents without sustaining latch-up.  
The TLC27L2 and TLC27L7 incorporate internal ESD-protection circuits that prevent functional failures at  
voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in  
handling these devices as exposure to ESD may result in the degradation of the device parametric performance.  
The C-Suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized  
for operation from 40°C to 85°C. The M-suffix devices are characterized for operation over the full military  
temperature range of 55°C to 125°C.  
equivalent schematic (each amplifier)  
V
DD  
P3  
P4  
R6  
N5  
C1  
R1  
R2  
IN−  
IN+  
P5  
P6  
P1  
P2  
R5  
OUT  
N3  
D2  
N1  
R3  
N6  
R7  
N7  
N2  
D1  
N4  
R4  
GND  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄꢁ ꢄ  
ꢍꢎꢏ ꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢆ ꢁ ꢋ ꢍꢏꢎ ꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢈ  
  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
DD  
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Input voltage range, V (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V  
V
DD  
DD  
I
Input current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA  
I
Output current, I (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
O
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA  
DD  
Total current out of GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited  
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.  
2. Differential voltages are at IN+ with respect to IN.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded (see application section).  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING POWER RATING  
A
D
FK  
JG  
P
725 mW  
5.8 mW/°C  
11 mW/°C  
8.4 mW/°C  
8 mW/°C  
464 mW  
880 mW  
672 mW  
640 mW  
377 mW  
715 mW  
546 mW  
520 mW  
1375 mW  
275 mW  
210 mW  
1050 mW  
1000 mW  
recommended operating conditions  
C SUFFIX  
I SUFFIX  
M SUFFIX  
UNIT  
MIN  
3
MAX  
16  
MIN  
4
MAX  
16  
MIN  
4
MAX  
Supply voltage, V  
DD  
16  
3.5  
8.5  
125  
V
V
V
= 5 V  
0.2  
0.2  
0
3.5  
8.5  
70  
0.2  
0.2  
40  
3.5  
8.5  
85  
0
DD  
Common-mode input voltage, V  
IC  
V
= 10 V  
0
DD  
Operating free-air temperature, T  
55  
°C  
A
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢁ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢁꢃ ꢆ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢃꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢄ  
ꢊꢋ  
ꢍꢏ  
ꢆꢀ  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27L2C  
TLC27L2AC  
TLC27L2BC  
TLC27L7C  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L2C  
TLC27L2AC  
TLC27L2BC  
TLC27L7C  
12  
mV  
0.9  
204  
170  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
6.5  
S
L
V
IO  
Input offset voltage  
2000  
3000  
500  
1500  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
70°C  
α
1.1  
µV/°C  
pA  
VIO  
25°C  
70°C  
25°C  
70°C  
0.1  
7
60  
300  
60  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
O
O
IC  
0.6  
50  
I
IB  
pA  
IC  
600  
0.2  
to  
0.3  
to  
4.2  
25°C  
V
V
4
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
3.5  
25°C  
0°C  
3.2  
3
4.1  
4.1  
4.2  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 1 MΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
70°C  
25°C  
0°C  
3
50  
50  
50  
0
= 100 mV,  
= 0.25 V to 2 V,  
I
OL  
OL  
70°C  
25°C  
0°C  
0
50  
50  
50  
65  
60  
60  
70  
60  
60  
700  
700  
380  
94  
95  
95  
97  
97  
98  
20  
24  
16  
Large-signal differential voltage  
amplification  
A
VD  
R
= 1 MΩ  
L
70°C  
25°C  
0°C  
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
70°C  
25°C  
0°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
70°C  
25°C  
0°C  
34  
42  
28  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (two amplifiers)  
µA  
DD  
No load  
70°C  
Full range is 0°C to 70°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄꢁ ꢄ  
ꢍꢎꢏ ꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢆ ꢁ ꢋ ꢍꢏꢎ ꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢈ  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27L2C  
TLC27L2AC  
TLC27L2BC  
TLC27L7C  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L2C  
TLC27L2AC  
TLC27L2BC  
TLC27L7C  
12  
mV  
0.9  
235  
190  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
6.5  
S
L
V
IO  
Input offset voltage  
2000  
3000  
800  
1900  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
µV  
S
L
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
70°C  
α
1
µV/°C  
pA  
VIO  
25°C  
70°C  
25°C  
70°C  
0.1  
8
60  
300  
60  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
O
O
IC  
0.7  
50  
I
IB  
pA  
IC  
600  
0.2  
to  
0.3  
to  
9.2  
25°C  
V
V
9
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
8.5  
25°C  
0°C  
8
7.8  
7.8  
8.9  
8.9  
8.9  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= 100 mV,  
= 1 V to 6 V,  
R
= 1 MΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
70°C  
25°C  
0°C  
50  
50  
50  
0
I
OL  
OL  
70°C  
25°C  
0°C  
0
50  
50  
50  
65  
60  
60  
70  
60  
60  
860  
1025  
660  
97  
Large-signal differential voltage  
amplification  
A
VD  
R
= 1 MΩ  
L
70°C  
25°C  
0°C  
97  
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
70°C  
25°C  
0°C  
97  
97  
97  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
70°C  
25°C  
0°C  
98  
29  
46  
66  
40  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (two amplifiers)  
36  
µA  
DD  
No load  
70°C  
22  
Full range is 0°C to 70°C.  
NOTES:  
4
The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5
This range also applies to each input individually.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢁ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢁꢃ ꢆ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢃꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢄ  
ꢊꢋ  
  
ꢍꢏ  
ꢆꢀ  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27L2I  
TLC27L2AI  
TLC27L2BI  
TLC27L7I  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L2I  
TLC27L2AI  
TLC27L2BI  
TLC27L7I  
13  
mV  
0.9  
240  
170  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
7
S
L
V
IO  
Input offset voltage  
2000  
3500  
500  
2000  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of  
input offset voltage  
25°C to  
85°C  
α
1.1  
µV/°C  
pA  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
24  
60  
1000  
60  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
O
O
IC  
0.6  
200  
I
IB  
pA  
IC  
2000  
0.2  
to  
0.3  
to  
4.2  
25°C  
V
V
4
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
3.5  
25°C  
40°C  
85°C  
3.2  
3
4.1  
4.1  
4.2  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 1 MΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
3
25°C  
50  
50  
50  
40°C  
85°C  
0
= 100 mV,  
= 0.25 V to 2 V,  
I
OL  
OL  
0
25°C  
50  
50  
50  
65  
60  
60  
70  
60  
60  
480  
900  
330  
94  
95  
95  
97  
97  
98  
20  
31  
15  
Large-signal differential  
voltage amplification  
40°C  
85°C  
A
VD  
R
= 1 MΩ  
L
25°C  
40°C  
85°C  
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
25°C  
40°C  
85°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
25°C  
34  
54  
26  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (two amplifiers)  
40°C  
85°C  
µA  
DD  
No load  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄꢁ ꢄ  
ꢍꢎꢏ ꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢆ ꢁ ꢋ ꢍꢏꢎ ꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢈ  
  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27L2I  
TLC27L2AI  
TLC27L2BI  
TLC27L7I  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L2I  
TLC27L2AI  
TLC27L2BI  
TLC27L7I  
13  
mV  
0.9  
235  
190  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
7
S
L
V
IO  
Input offset voltage  
2000  
3500  
800  
2900  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
85°C  
α
1
µV/°C  
pA  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
26  
60  
1000  
60  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
O
O
IC  
0.7  
220  
I
IB  
pA  
IC  
2000  
0.2  
to  
0.3  
to  
9.2  
25°C  
V
V
9
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
8.5  
25°C  
40°C  
85°C  
8
7.8  
7.8  
8.9  
8.9  
8.9  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= 100 mV,  
= 1 V to 6 V,  
R
= 1 MΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
25°C  
50  
50  
50  
40°C  
85°C  
0
I
OL  
OL  
0
25°C  
50  
50  
50  
65  
60  
60  
70  
60  
60  
860  
1550  
585  
97  
Large-signal differential voltage  
amplification  
40°C  
85°C  
A
VD  
R
= 1 MΩ  
L
25°C  
40°C  
85°C  
97  
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
98  
25°C  
97  
40°C  
85°C  
97  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
98  
25°C  
29  
46  
86  
36  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (two amplifiers)  
40°C  
85°C  
49  
µA  
DD  
No load  
20  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢁ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢁꢃ ꢆ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢃꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢄ  
ꢊꢋ  
  
ꢋꢑ  
ꢆꢀ  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27L2M  
TLC27L7M  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L2M  
TLC27L7M  
mV  
µV  
12  
V
IO  
Input offset voltage  
170  
500  
3750  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of  
input offset voltage  
25°C to  
125°C  
α
VIO  
1.4  
µV/°C  
25°C  
125°C  
25°C  
0.1  
1.4  
0.6  
9
60  
15  
60  
35  
pA  
nA  
pA  
nA  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
IO  
O
IC  
I
IB  
O
IC  
125°C  
0
to  
4
0.3  
to  
4.2  
25°C  
V
V
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0
to  
Full range  
3.5  
25°C  
55°C  
125°C  
25°C  
3.2  
3
4.1  
4.1  
4.2  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 1 MΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
3
50  
50  
50  
55°C  
125°C  
25°C  
0
= 100 mV,  
= 0.25 V to 2 V,  
I
OL  
OL  
0
50  
25  
25  
65  
60  
60  
70  
60  
60  
500  
1000  
200  
94  
Large-signal differential voltage  
amplification  
55°C  
125°C  
25°C  
A
VD  
R
= 1 MΩ  
L
55°C  
125°C  
25°C  
95  
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
85  
97  
55°C  
125°C  
25°C  
97  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
98  
20  
34  
60  
24  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (two amplifiers)  
55°C  
125°C  
35  
µA  
DD  
No load  
14  
Full range is 55°C to 125°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄꢁ ꢄ  
ꢍꢎꢏ ꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢆ ꢁ ꢋ ꢍꢏꢎ ꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢈ  
  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27L2M  
TLC27L7M  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L2M  
TLC27L7M  
mV  
µV  
12  
V
IO  
Input offset voltage  
190  
800  
4300  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of  
input offset voltage  
25°C to  
125°C  
α
VIO  
1.4  
µV/°C  
25°C  
125°C  
25°C  
0.1  
1.8  
0.7  
10  
60  
15  
60  
35  
pA  
nA  
pA  
nA  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
IO  
O
IC  
I
IB  
O
IC  
125°C  
0
to  
9
0.3  
to  
9.2  
25°C  
V
V
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0
to  
Full range  
8.5  
25°C  
55°C  
125°C  
25°C  
8
7.8  
7.8  
8.9  
8.8  
9
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= 100 mV,  
= 1 V to 6 V,  
R
= 1 MΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
0
50  
50  
50  
55°C  
125°C  
25°C  
0
I
OL  
OL  
0
50  
25  
25  
65  
60  
60  
70  
60  
60  
860  
1750  
380  
97  
97  
91  
97  
97  
98  
29  
56  
18  
Large-signal differential voltage  
amplification  
55°C  
125°C  
25°C  
A
R
= 1 MΩ  
VD  
L
55°C  
125°C  
25°C  
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
55°C  
125°C  
25°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
46  
96  
30  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (two amplifiers)  
55°C  
125°C  
µA  
DD  
No load  
Full range is 55 °C to 125°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢁ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢁꢃ ꢆ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢃꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢄ  
ꢊꢋ  
  
ꢍꢏ  
ꢆꢀ  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
operating characteristics, V  
= 5 V  
DD  
TLC27L2C  
TLC27L2AC  
TLC27L2BC  
TLC27L7C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.03  
0.04  
0.03  
0.03  
0.03  
0.02  
MAX  
25°C  
0°C  
V
V
= 1 V  
I(PP)  
R
C
= 1 M,  
L
L
70°C  
25°C  
0°C  
= 20 pF,  
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
= 2.5 V  
I(PP)  
70°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
B
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
n
25°C  
0°C  
5
6
V
R
= V  
OH  
= 1 M,  
,
C
= 20 pF,  
O
L
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
kHz  
OM  
See Figure 1  
70°C  
25°C  
0°C  
4.5  
85  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
100  
65  
B
kHz  
1
70°C  
25°C  
0°C  
34°  
36°  
30°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
C
= 20 pF,  
70°C  
operating characteristics, V  
= 10 V  
DD  
TLC27L2C  
TLC27L2AC  
TLC27L2BC  
TLC27L7C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.05  
0.05  
0.04  
0.04  
0.05  
0.04  
MAX  
25°C  
0°C  
V
V
= 1 V  
I(PP)  
R
C
= 1 M,  
= 20 pF,  
L
L
70°C  
25°C  
0°C  
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
= 5.5 V  
I(PP)  
70°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
B
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
n
25°C  
0°C  
1
1.3  
0.9  
110  
125  
90  
V
R
= V  
OH  
= 1 M,  
,
C
= 20 pF,  
O
L
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
kHz  
OM  
See Figure 1  
70°C  
25°C  
0°C  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
B
1
kHz  
70°C  
25°C  
0°C  
38°  
40°  
34°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
C
= 20 pF,  
70°C  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄꢁ ꢄ  
ꢍꢎꢏ ꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢆ ꢁ ꢋ ꢍꢏꢎ ꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢈ  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
operating characteristics, V  
= 5 V  
DD  
TLC27L2I  
TLC27L2AI  
TLC27L2BI  
TLC27L7I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.03  
0.04  
0.03  
0.03  
0.04  
0.02  
MAX  
25°C  
40°C  
85°C  
V
V
= 1 V  
I(PP)  
R
C
= 1 M,  
L
L
= 20 pF,  
SR  
Slew rate at unity gain  
V/µs  
25°C  
See Figure 1  
40°C  
85°C  
= 2.5 V  
I(PP)  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
B
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
n
25°C  
40°C  
85°C  
5
7
V
R
= V  
OH  
= 1 M,  
,
C
= 20 pF,  
O
L
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
kHz  
OM  
See Figure 1  
4
25°C  
85  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
40°C  
85°C  
130  
55  
B
kHz  
1
25°C  
34°  
38°  
29°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
40°C  
85°C  
C
= 20 pF,  
operating characteristics, V  
= 10 V  
DD  
TLC27L2I  
TLC27L2AI  
TLC27L2BI  
TLC27L7I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.05  
0.06  
0.03  
0.04  
0.05  
0.03  
MAX  
25°C  
40°C  
85°C  
V
V
= 1 V  
I(PP)  
R
C
= 1 M,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
25°C  
See Figure 1  
40°C  
85°C  
= 5.5 V  
I(PP)  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
B
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
n
25°C  
40°C  
85°C  
1
1.4  
0.8  
110  
155  
80  
V
R
= V  
OH  
= 1 M,  
,
C
= 20 pF,  
O
L
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
kHz  
OM  
See Figure 1  
25°C  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
40°C  
85°C  
B
1
kHz  
25°C  
38°  
42°  
32°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
40°C  
85°C  
C
= 20 pF,  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢁ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢁꢃ ꢆ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢃꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢄ  
ꢊꢋ  
  
ꢍꢏ  
ꢆꢀ  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
operating characteristics, V  
= 5 V  
DD  
TLC27L2M  
TLC27L7M  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.03  
0.04  
0.02  
0.03  
0.04  
0.02  
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
I(PP)  
I(PP)  
R
C
= 1 M,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
55°C  
125°C  
V
= 2.5 V  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
B
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
n
25°C  
55°C  
125°C  
25°C  
5
8
V
R
= V  
OH  
= 1 M,  
,
C
= 20 pF,  
O
L
L
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
kHz  
OM  
See Figure 1  
3
85  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
55°C  
125°C  
25°C  
140  
45  
B
1
kHz  
34°  
39°  
25°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
55°C  
125°C  
C
= 20 pF,  
operating characteristics, V  
= 10 V  
DD  
TLC27L2M  
TLC27L7M  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.05  
0.06  
0.03  
0.04  
0.06  
0.03  
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
I(PP)  
I(PP)  
R
C
= 1 M,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
55°C  
125°C  
V
= 5.5 V  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
B
Equivalent input noise voltage  
25°C  
68  
nV/Hz  
n
25°C  
55°C  
125°C  
25°C  
1
1.5  
0.7  
110  
165  
70  
V
R
= V  
OH  
= 1 M,  
,
C
= 20 pF,  
O
L
L
Maximum output-swing bandwidth  
Unity-gain bandwidth  
Phase margin  
kHz  
OM  
See Figure 1  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
55°C  
125°C  
25°C  
B
1
kHz  
38°  
43°  
29°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
55°C  
125°C  
C
= 20 pF,  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄꢁ ꢄ  
ꢍꢎꢏ ꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢆ ꢁ ꢋ ꢍꢏꢎ ꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
PARAMETER MEASUREMENT INFORMATION  
single-supply versus split-supply test circuits  
Because the TLC27L2 and TLC27L7 are optimized for single-supply operation, circuit configurations used for  
the various tests often present some inconvenience since the input signal, in many cases, must be offset from  
ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to  
the negative rail. A comparison of single-supply versus split-supply test circuits is shown in Figure 1. The use  
of either circuit gives the same result.  
V
DD+  
V
DD  
+
+
V
O
V
O
V
I
V
I
C
R
C
R
L
L
L
L
V
DD−  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 1. Unity-Gain Amplifier  
2 kΩ  
2 kΩ  
V
DD+  
V
DD  
20 Ω  
20 Ω  
+
+
V
O
1/2 V  
DD  
V
O
20 Ω  
20 Ω  
V
DD−  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 2. Noise-Test Circuit  
10 kΩ  
10 kΩ  
V
DD+  
V
DD  
100 Ω  
100 Ω  
+
+
V
I
V
I
V
O
V
O
1/2 V  
DD  
C
L
C
L
V
DD−  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 3. Gain-of-100 Inverting Amplifier  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢁ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢁꢃ ꢆ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢃꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢄ  
  
ꢍꢎ ꢏꢂꢐ ꢌ ꢐ ꢋꢑ ꢒꢓ ꢆꢁ ꢋ ꢍꢏ ꢎꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
PARAMETER MEASUREMENT INFORMATION  
input bias current  
Because of the high input impedance of the TLC27L2 and TLC27L7 operational amplifiers, attempts to measure  
the input bias current can result in erroneous readings. The bias current at normal room ambient temperature  
is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are  
offered to avoid erroneous measurements:  
1. Isolate the device from other potential leakage sources.Use a grounded shield around and between the  
device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.  
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using  
a picoammeter) with no device in the test socket. The actual input bias current can then be calculated  
by subtracting the open-socket leakage readings from the readings obtained with a device in the test  
socket.  
One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the  
servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage  
drop across the series resistor is measured and the bias current is calculated). This method requires that a  
device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not  
feasible using this method.  
8
5
V = V  
IC  
1
4
Figure 4. Isolation Metal Around Device Inputs  
(JG and P packages)  
low-level output voltage  
To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise  
results in the device low-level output being dependent on both the common-mode input voltage level as well  
as the differential input voltage level. When attempting to correlate low-level output readings with those quoted  
in the electrical specifications, these two conditions should be observed. If conditions other than these are to  
be used, please refer to Figure 14 through Figure 19 in the Typical Characteristics of this data sheet.  
input offset voltage temperature coefficient  
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This  
parameter is actually a calculation using input offset voltage measurements obtained at two different  
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device  
and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input  
offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the  
moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these  
measurements be performed at temperatures above freezing to minimize error.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄꢁ ꢄ  
ꢍꢎꢏ ꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢆ ꢁ ꢋ ꢍꢏꢎ ꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢈ  
  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
PARAMETER MEASUREMENT INFORMATION  
full-power response  
Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage  
swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is  
generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal  
input signal until the maximum frequency is found above which the output contains significant distortion. The  
full-peak response is defined as the maximum output frequency, without regard to distortion, above which full  
peak-to-peak output swing cannot be maintained.  
Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified  
in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal  
input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is  
increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same  
amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained  
(see Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum  
peak-to-peak output is reached.  
(a) f = 100 kHz  
(b) B  
OM  
> f > 100 kHz  
(c) f = B  
OM  
(d) f > B  
OM  
Figure 5. Full-Power-Response Output Signal  
test time  
Inadequate test time is a frequent problem, especially when testing CMOS high-volume, short-test-time  
environment. Internal capacitances are inherently higher in CMOS devices and require longer test times than  
their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and  
lower temperatures.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢁ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢁꢃ ꢆ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢃꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢄ  
  
ꢊꢋ  
ꢍꢎ ꢏꢂꢐ ꢌ ꢐ ꢋꢑ ꢒꢓ ꢆꢁ ꢋ ꢍꢏ ꢎꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
6, 7  
V
IO  
Input offset voltage  
Distribution  
α
VIO  
Temperature coefficient of input offset voltage  
Distribution  
8, 9  
vs High-level output current  
vs Supply voltage  
vs Free-air temperature  
10, 11  
12  
13  
V
High-level output voltage  
OH  
OL  
vs Differential input voltage  
vs Free-air temperature  
vs Low-level output current  
14,16  
15,17  
18, 19  
V
Low-level output voltage  
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
20  
21  
32, 33  
A
VD  
Large-signal differential voltage amplification  
I
I
Input bias current  
vs Free-air temperature  
vs Free-air temperature  
vs Supply voltage  
22  
22  
23  
IB  
Input offset current  
IO  
V
Common-mode input voltage  
IC  
vs Supply voltage  
vs Free-air temperature  
24  
25  
I
Supply current  
Slew rate  
DD  
vs Supply voltage  
vs Free-air temperature  
26  
27  
SR  
Normalized slew rate  
vs Free-air temperature  
vs Frequency  
28  
29  
V
B
Maximum peak-to-peak output voltage  
O(PP)  
vs Free-air temperature  
vs Supply voltage  
30  
31  
Unity-gain bandwidth  
Phase margin  
1
vs Supply voltage  
vs Free-air temperature  
vs Capacitive Load  
34  
35  
36  
φ
m
V
n
Equivalent input noise voltage  
Phase shift  
vs Frequency  
vs Frequency  
37  
32, 33  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄꢁ ꢄ  
ꢍꢎꢏ ꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢆ ꢁ ꢋ ꢍꢏꢎ ꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLC27L2  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC27L2  
INPUT OFFSET VOLTAGE  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
905 Amplifiers Tested From 6 Wafer Lots  
905 Amplifiers Tested From 6 Wafer Lots  
V
= 10 V  
V
= 5 V  
DD  
T = 25°C  
A
DD  
= 25°C  
T
A
P Package  
P Package  
−5 −4 −3 −2 −1  
0
1
2
3
4
5
−5 −4 −3 −2 −1  
0
1
2
3
4
5
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 6  
Figure 7  
DISTRIBUTION OF TLC27LC AND TLC27L7  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC27LC AND TLC27L7  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
TEMPERATURE COEFFICIENT  
70  
70  
60  
50  
40  
30  
20  
10  
0
356 Amplifiers Tested From 8 Wafer Lots  
356 Amplifiers Tested From 8 Wafer Lots  
V
T
= 5 V  
V
T
= 10 V  
DD  
= 25°C to 125°C  
DD  
= 25°C to 125°C  
60  
50  
40  
30  
20  
10  
0
A
A
P Package  
Outliers:  
(1) 19.2 µV/°C  
(1) 12.1 µV/°C  
P Package  
Outliers:  
(1) 18.7 µV/°C  
(1) 11.6 µV/°C  
10 8 −6 −4 −2  
0
2
4
6
8
10  
10 8 −6 −4 −2  
0
2
4
6
8
10  
α
VIO  
− Temperature Coefficient − µV/°C  
α
VIO  
− Temperature Coefficient − µV/°C  
Figure 8  
Figure 9  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢁ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢁꢃ ꢆ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢃꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢄ  
  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
5
4
3
2
1
0
16  
14  
12  
10  
8
V
T
= 100 mV  
= 25°C  
V
T
= 100 mV  
ID  
A
ID  
= 25°C  
A
V
= 16 V  
DD  
V
= 5 V  
DD  
V
DD  
= 4 V  
V
= 10 V  
DD  
V
DD  
= 3 V  
6
4
2
0
0
− 2  
− 4  
− 6  
− 8  
− 10  
0
− 5 − 10 − 15 − 20 − 25 − 30 − 35 − 40  
I
− High-Level Output Current − mA  
I
− High-Level Output Current − mA  
OH  
OH  
Figure 10  
Figure 11  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
V
DD  
1.6  
1.7  
1.8  
1.9  
−2  
16  
14  
12  
10  
8
V
= 100 mV  
= 10 kΩ  
= 25°C  
I
= 5 mA  
ID  
L
OH  
R
T
V
ID  
= 100 mA  
V
DD  
= 5 V  
A
V
DD  
= 10 V  
2.1  
2.2  
2.3  
2.4  
6
4
2
0
75 50 25  
0
20  
50  
75  
100 125  
0
2
4
V
6
8
10  
12  
14  
16  
T
− Free-Air Temperature − °C  
A
− Supply Voltage − V  
DD  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄꢁ ꢄ  
ꢍꢎꢏ ꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢆ ꢁ ꢋ ꢍꢏꢎ ꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢈ  
  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
DIFFERENTIAL INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
700  
600  
500  
400  
300  
500  
450  
400  
350  
300  
250  
V
= 5 V  
= 5 mA  
= 25°C  
DD  
V
= 10 V  
= 5 mA  
DD  
I
OL  
I
OL  
T
A
T
A
= 25°C  
V
= 100 mV  
ID  
V
V
= 100 mV  
= 1 V  
ID  
ID  
V
ID  
= − 2.5 V  
V
= 1 V  
ID  
0
0.5  
V
1
1.5  
2
2.5  
3
3.3  
4
0
1
V
2
3
4
5
6
7
8
9
10  
− Common-Mode Input Voltage − V  
− Common-Mode Input Voltage − V  
IC  
IC  
Figure 14  
Figure 15  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
DIFFERENTIAL INPUT VOLTAGE  
800  
700  
600  
500  
400  
300  
200  
100  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
V
V
= 5 mA  
= 1 V  
= 0.5 V  
OL  
ID  
IC  
I
V
T
= 5 mA  
OL  
= |V 2|  
ID/  
IC  
= 25°C  
A
V
= 5 V  
DD  
V
DD  
= 5 V  
V
DD  
= 10 V  
V
= 10 V  
DD  
75 50 25  
0
25  
50  
75  
100 125  
0
−1 −2 −3 −4 −5 −6 −7 −8 −9 −10  
T
A
− Free-Air Temperature − °C  
V
ID  
− Differential Input Voltage − V  
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢁ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢁꢃ ꢆ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢃꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢄ  
  
ꢍꢎ ꢏꢂꢐ ꢌ ꢐ ꢋꢑ ꢒꢓ ꢆꢁ ꢋ ꢍꢏ ꢎꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
2.5  
2
V
V
T
A
= 1 V  
= 0.5 V  
= 25°C  
ID  
V
V
= 1 V  
= 0.5 V  
ID  
IC  
IC  
T
A
= 25°C  
V
= 16 V  
DD  
V
= 5 V  
DD  
V
= 4 V  
DD  
V
= 10 V  
DD  
V
= 3 V  
DD  
1.5  
1
0.5  
0
0
1
I
2
3
4
5
6
7
8
0
5
10  
15  
20  
25  
30  
− Low-Level Output Current − mA  
OL  
I
− Low-Level Output Current − mA  
OL  
Figure 18  
Figure 19  
LARGE-SIGNAL  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
2000  
1800  
1600  
1400  
1200  
1000  
800  
2000  
1800  
1600  
1400  
1200  
1000  
800  
T
A
= 55°C  
R
= 1 MΩ  
R
= 1 MΩ  
L
L
40°C  
= 0°C  
T
A
V
DD  
= 10 V  
25°C  
70°C  
85°C  
600  
600  
V
DD  
= 5 V  
400  
400  
125°C  
200  
200  
0
0
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
− Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 20  
Figure 21  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄꢁ ꢄ  
ꢍꢎꢏ ꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢆ ꢁ ꢋ ꢍꢏꢎ ꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢈ  
  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
COMMON-MODE  
INPUT VOLTAGE POSITIVE LIMIT  
vs  
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
10000  
1000  
100  
10  
16  
14  
12  
10  
8
V
V
= 10 V  
DD  
= 5 V  
T
A
= 25°C  
IC  
See Note A  
I
IB  
I
IO  
6
4
1
2
0.1  
0
25  
45  
A
65  
85  
105  
125  
0
2
4
6
8
10  
12  
14  
16  
T
− Free-Air Temperature − °C  
V
DD  
− Supply Voltage − V  
NOTE A: The typical values of input bias current and input offset  
current below 5 pA were determined mathematically.  
Figure 22  
Figure 23  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
90  
60  
50  
40  
30  
20  
10  
0
T
= 55°C  
A
V
= V /2  
DD  
V = V /2  
O DD  
O
80  
70  
60  
50  
40  
30  
20  
10  
0
No Load  
No Load  
40°C  
V
DD  
= 10 V  
0°C  
25°C  
70°C  
V
DD  
= 5 V  
125°C  
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
− Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 24  
Figure 25  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢁ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢁꢃ ꢆ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢃꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢄ  
  
ꢊꢋ  
ꢍꢎ ꢏꢂꢐ ꢌ ꢐ ꢋꢑ ꢒꢓ ꢆꢁ ꢋ ꢍꢏ ꢎꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
SLEW RATE  
vs  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
0.07  
0.06  
0.05  
0.04  
0.03  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
R
C
A
=1 MΩ  
= 20 pF  
= 1  
A
= 1  
= 1 V  
=1 MΩ  
= 20 pF  
= 25°C  
L
L
V
V
V
V
= 10 V  
= 5.5 V  
DD  
I(PP)  
V
I(PP)  
R
C
T
L
L
See Figure 1  
A
See Figure 1  
V
V
= 10 V  
DD  
= 1 V  
I(PP)  
V
V
= 5 V  
DD  
0.02  
0.01  
0.00  
= 1 V  
I(PP)  
V
= 5 V  
= 2.5 V  
DD  
V
I(PP)  
75 50 25  
0
25  
50  
75  
100 125  
16  
0
2
4
6
8
10  
12  
14  
TA − Free-Air Temperature − °C  
V
DD  
− Supply Voltage − V  
Figure 26  
Figure 27  
NORMALIZED SLEW RATE  
vs  
MAXIMUM-PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
1.4  
1.3  
10  
9
8
7
6
5
4
3
2
1
0
A
= 1  
V
V
IPP  
= 1 V  
=1 MΩ  
= 20 pF  
V
= 10 V  
DD  
R
C
L
L
1.2  
1.1  
1
T
A
= 125°C  
= 25°C  
= 55°C  
V
DD  
= 10 V  
T
A
T
A
V
DD  
= 5 V  
V
DD  
= 5 V  
0.9  
0.8  
0.7  
0.6  
0.5  
R
= 1 MΩ  
L
See Figure 1  
75 50 25  
0
25  
50  
75  
100 125  
0.1  
1
10  
100  
T
A
− Free-Air Temperature − °C  
f − Frequency − kHz  
Figure 28  
Figure 29  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢆ ꢅ ꢀ ꢁꢂ ꢃ ꢄ ꢁꢃ ꢇ ꢅ ꢀꢁ ꢂꢃ ꢄꢁ ꢄ  
ꢍꢎꢏ ꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢆ ꢁ ꢋ ꢍꢏꢎ ꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢈ  
  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
UNITY-GAIN BANDWIDTH  
UNITY-GAIN BANDWIDTH  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
150  
130  
110  
90  
140  
130  
120  
110  
100  
90  
V
= 5 V  
DD  
V = 10 mV  
V = 10 mV  
I
I
C
C
= 20 pF  
L
= 20 pF  
L
T
A
= 25°C  
See Figure 3  
See Figure 3  
80  
70  
70  
50  
60  
50  
30  
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
V
DD  
− Supply Voltage − V  
Figure 30  
Figure 31  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
5
10  
10  
10  
V
= 10 V  
= 1 MΩ  
= 25°C  
DD  
R
T
A
L
0°  
4
3
10  
10  
30°  
60°  
A
VD  
2
1
10  
10  
90°  
Phase Shift  
120°  
1
150°  
180°  
0.1  
1
10  
100  
1 k  
10 k  
100 k  
1 M  
f − Frequency − Hz  
Figure 32  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢁ ꢃ ꢅ ꢀ ꢁ ꢂ ꢃꢄ ꢁꢃ ꢆ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢃꢇ ꢅ ꢀꢁ ꢂꢃ ꢄ ꢁ ꢄ  
  
ꢊꢋ  
ꢍꢎ ꢏꢂꢐ ꢌ ꢐ ꢋꢑ ꢒꢓ ꢆꢁ ꢋ ꢍꢏ ꢎꢆꢀ ꢐꢋ ꢑꢆꢁ ꢆꢊ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS052D − OCTOBER 1987 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
10  
10  
V
= 10 V  
= 1 MΩ  
= 25°C  
DD  
R
T
A
L
5
4
0°  
10  
10  
30°  
60°  
A
VD  
3
2
10  
10  
90°  
Phase Shift  
1
10  
120°  
1
150°  
180°  
0.1  
1
10  
100  
1 k  
10 k  
100 k  
1 M  
f − Frequency − Hz  
Figure 33  
PHASE MARGIN  
vs  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
42°  
40°  
38°  
40°  
36°  
V = 10 mV  
V
= 5 mV  
I
DD  
V = 10 mV  
C
= 20 pF  
L
I
C
T
A
= 25°C  
= 20 pF  
L
See Figure 3  
See Figure 3  
32°  
36°  
34°