欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • TLC27M2CDR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • TLC27M2CDR 现货库存
  • 数量5000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装,欢迎查询
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • TLC27M2CDR图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • TLC27M2CDR 现货库存
  • 数量9000 
  • 厂家TI 
  • 封装8-SOIC 
  • 批号24+ 
  • 假一罚百,TI专营!深圳有库存,北美、新加坡可发货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • TLC27M2CDR图
  • 深圳市浩兴林电子有限公司

     该会员已使用本站16年以上
  • TLC27M2CDR 现货库存
  • 数量20000 
  • 厂家TI 
  • 封装SOP8 
  • 批号2418+ 
  • 全新进口原装,特价出售
  • QQ:382716594QQ:382716594 复制
    QQ:351622092QQ:351622092 复制
  • 0755-82532799 QQ:382716594QQ:351622092
  • TLC27M2CDR图
  • 深圳市宏芯微科技有限公司

     该会员已使用本站15年以上
  • TLC27M2CDR 现货库存
  • 数量35204 
  • 厂家TI 
  • 封装SOP8 
  • 批号20+ 
  • 主营品牌,杜绝假冒伪劣产品,价格绝对优势,欢迎来电咨询
  • QQ:1678302500QQ:1678302500 复制
  • 0755-82815382 QQ:1678302500
  • TLC27M2CDR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TLC27M2CDR 现货库存
  • 数量2500 
  • 厂家TI 
  • 封装SOIC (D) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TLC27M2CDR图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • TLC27M2CDR 现货热卖
  • 数量27779 
  • 厂家TI 
  • 封装SOP8 
  • 批号22+ 
  • 全新原装进口现货特价热卖,长期供货
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • TLC27M2CDR图
  • 深圳市世鹏电子科技有限公司

     该会员已使用本站13年以上
  • TLC27M2CDR 现货热卖
  • 数量4379 
  • 厂家TI 
  • 封装SOP-8 
  • 批号21+ 
  • 专业TI德州仪器原装芯片供应商!
  • QQ:80034248QQ:80034248 复制
    QQ:100633298QQ:100633298 复制
  • 0755-83987638 88877298 QQ:80034248QQ:100633298
  • TLC27M2CDR图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • TLC27M2CDR 现货热卖
  • 数量9854 
  • 厂家TI 
  • 封装SOP-8 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!单价:10元
  • QQ:97671959QQ:97671959 复制
  • 171-4729-9698(微信同号) QQ:97671959
  • TLC27M2CDR图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • TLC27M2CDR 优势库存
  • 数量12450 
  • 厂家TI 
  • 封装原厂封装 
  • 批号22+ 
  • 市场最低价!原厂原装假一罚十
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • TLC27M2CDR图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • TLC27M2CDR 优势库存
  • 数量20800 
  • 厂家TI 
  • 封装SOP8 
  • 批号22+ 
  • 全新原装进口现货特价热卖,长期供货
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • TLC27M2CDR图
  • 深圳市特拉特科技有限公司

     该会员已使用本站2年以上
  • TLC27M2CDR 优势库存
  • 数量18000 
  • 厂家TI 
  • 封装SOIC-8 
  • 批号22+ 
  • 原装正品,品质保证,值得你信赖
  • QQ:709809857QQ:709809857 复制
  • 0755-82531732 QQ:709809857
  • TLC27M2CDR图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • TLC27M2CDR
  • 数量5300 
  • 厂家TI(德州仪器) 
  • 封装SOIC-8_150mil 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • TLC27M2CDR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TLC27M2CDR
  • 数量85000 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • TLC27M2CDR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TLC27M2CDR
  • 数量36000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • TLC27M2CDR图
  • 深圳市旺能芯科技有限公司

     该会员已使用本站4年以上
  • TLC27M2CDR
  • 数量15000 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号22+ 
  • 深圳全新原装库存现货
  • QQ:2881495751QQ:2881495751 复制
  • 13602549709 QQ:2881495751
  • TLC27M2CDR图
  • 深圳市隆亿诚科技有限公司

     该会员已使用本站3年以上
  • TLC27M2CDR
  • 数量3253 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号22+ 
  • 支持检测.现货价优!
  • QQ:778039761QQ:778039761 复制
  • -0755-82710221 QQ:778039761
  • TLC27M2CDRG4图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • TLC27M2CDRG4
  • 数量3000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装公司现货库存!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • TLC27M2CDR图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • TLC27M2CDR
  • 数量5000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 原装正品长期供货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • TLC27M2CDR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • TLC27M2CDR
  • 数量5680 
  • 厂家TI 
  • 封装SOIC-8 
  • 批号23+ 
  • 原装正品特价销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • TLC27M2CDR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • TLC27M2CDR
  • 数量8425 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号21+ 
  • 羿芯诚只做原装 原厂渠道 价格优势
  • QQ:2881498351QQ:2881498351 复制
  • 0755-22968581 QQ:2881498351
  • TLC27M2CDRG4图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • TLC27M2CDRG4
  • 数量3000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装公司现货销售
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • TLC27M2CDR图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • TLC27M2CDR
  • 数量5688 
  • 厂家TI/德州仪器 
  • 封装SOP-8 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • TLC27M2CDR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • TLC27M2CDR
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • TLC27M2CDR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TLC27M2CDR
  • 数量3292 
  • 厂家TI/德州仪器 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • TLC27M2CDR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • TLC27M2CDR
  • 数量60000 
  • 厂家TI/德州仪器 
  • 封装SOP-8 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • TLC27M2CDR图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • TLC27M2CDR
  • 数量25000 
  • 厂家TI 
  • 封装SOIC-8 
  • 批号2018+ 
  • 一级专营品牌全新原装热卖
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • TLC27M2CDR图
  • 集好芯城

     该会员已使用本站13年以上
  • TLC27M2CDR
  • 数量13969 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TLC27M2CDR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TLC27M2CDR
  • 数量11530 
  • 厂家Texas Instruments 
  • 封装8-SOIC(3.9mm寬) 
  • 批号23+ 
  • 全新原装现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • TLC27M2CDR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TLC27M2CDR
  • 数量18836 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • TLC27M2CDR图
  • 深圳市华科泰电子商行

     该会员已使用本站13年以上
  • TLC27M2CDR
  • 数量840000 
  • 厂家TI 
  • 封装
  • 批号SOP 
  • 绝对原装现货特价
  • QQ:405945546QQ:405945546 复制
    QQ:1439873477QQ:1439873477 复制
  • 0755-82567800 QQ:405945546QQ:1439873477
  • TLC27M2CDR图
  • 绿盛电子(香港)有限公司

     该会员已使用本站12年以上
  • TLC27M2CDR
  • 数量26976 
  • 厂家TI 
  • 封装SOP8 
  • 批号2018+ 
  • ★★代理原装现货,特价热卖!★★
  • QQ:2752732883QQ:2752732883 复制
    QQ:240616963QQ:240616963 复制
  • 0755-25165869 QQ:2752732883QQ:240616963
  • TLC27M2CDR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TLC27M2CDR
  • 数量27048 
  • 厂家TI(德州仪器) 
  • 封装SOIC 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • TLC27M2CDR图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • TLC27M2CDR
  • 数量30000 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装代理现货,假一赔十
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • TLC27M2CDR图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • TLC27M2CDR
  • 数量72282 
  • 厂家TI/德州仪器 
  • 封装N/A 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • TLC27M2CDR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TLC27M2CDR
  • 数量55586 
  • 厂家TI 
  • 封装SOIC-8 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • TLC27M2CDR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TLC27M2CDR
  • 数量12500 
  • 厂家TI/德州仪器 
  • 封装SOIC-8 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657

产品型号TLC27M2CDR的概述

芯片TLC27M2CDR概述 TLC27M2CDR是一款功能强大的双路运算放大器,广泛应用于模拟信号处理、信号调理及各种电子设备中。作为一款低功耗、高速运算放大器,TLC27M2CDR在工业控制、消费电子和医疗设备等领域具有重要的应用价值。其设计初衷是为了解决传统运算放大器在性能和功耗方面的不足,提供一种更加可靠、高效的替代方案。 详细参数 TLC27M2CDR的基本参数包括但不限于以下几个方面: - 工作电压范围:3V到36V。这使得芯片在多种电源环境下均能正常工作,增加了设计的灵活性。 - 增益带宽积:为1MHz,能够支持较为复杂的信号处理操作。 - 输入失调电压:最大值为0.5mV,确保在高精度应用中能够有效抑制误差。 - 输入电流:典型值为20nA,低输入电流方便与高阻抗源相连。 - 输出电流:能够输出高达50mA的电流,适合负载驱动。 - 共模抑制比(CMRR):超过100d...

产品型号TLC27M2CDR的Datasheet PDF文件预览

ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
D
Trimmed Offset Voltage:  
TLC27M7 . . . 500 µV Max at 25°C,  
= 5 V  
D
D
D
D
D
D
D
Low Noise . . . Typically 32 nV/Hz at  
f = 1 kHz  
V
DD  
Low Power . . . Typically 2.1 mW at 25°C,  
D
D
Input Offset Voltage Drift . . . Typically  
0.1 µV/Month, Including the First 30 Days  
Wide Range of Supply Voltages Over  
Specified Temperature Ranges:  
0°C to 70°C . . . 3 V to 16 V  
−40°C to 85°C . . . 4 V to 16 V  
−55°C to 125°C . . . 4 V to 16 V  
Single-Supply Operation  
V
= 5 V  
DD  
Output Voltage Range Includes Negative  
Rail  
12  
High Input impedance . . . 10 Typ  
ESD-Protection Circuitry  
Small-Outline Package Option Also  
Available in Tape and Reel  
D
D
Designed-In Latch-Up Immunity  
Common-Mode Input Voltage Range  
Extends Below the Negative Rail (C-Suffix,  
I-Suffix Types)  
DISTRIBUTION OF TLC27M7  
INPUT OFFSET VOLTAGE  
D, JG, P OR PW PACKAGE  
(TOP VIEW)  
FK PACKAGE  
(TOP VIEW)  
30  
340 Units Tested From 2 Wafer Lots  
1OUT  
1IN −  
1IN +  
GND  
V
CC  
1
2
3
4
8
7
6
5
V
T
= 5 V  
DD  
= 25°C  
25  
20  
2OUT  
2IN −  
2IN +  
A
P Package  
3
2
1
20 19  
18  
NC  
NC  
1IN −  
NC  
4
5
6
7
8
2OUT  
NC  
17  
16  
15  
14  
15  
10  
5
2IN −  
NC  
1IN +  
NC  
9 10 11 12 13  
0
800  
400  
0
400  
800  
NC − No internal connection  
V
IO  
− Input Offset Voltage − µV  
AVAILABLE OPTIONS  
PACKAGE  
V
max  
IO  
T
A
SMALL OUTLINE  
CHIP CARRIER  
(FK)  
CERAMIC DIP  
(JG)  
PLASTIC DIP  
(P)  
TSSOP  
(PW)  
AT 25°C  
(D)  
500 µV  
2 mV  
TLC27M7CD  
TLC27M2BCD  
TLC27M2ACD  
TLC27M2CD  
TLC27M7ID  
TLC27M2BID  
TLC27M2AID  
TLC27M2ID  
TLC27M7MD  
TLC27M2MD  
TLC27M7CP  
TLC27M2BCP  
TLC27M2ACP  
TLC27M2CP  
TLC27M7IP  
0°C to 70°C  
5 mV  
10 mV  
500 µV  
2 mV  
TLC27M2CPW  
TLC27M2BIP  
TLC27M2AIP  
TLC27M2IP  
40°C to 85°C  
55°C to 125°C  
5 mV  
10 mV  
500 µV  
10 mV  
TLC27M2IPW  
TLC27M7MFK  
TLC27M2MFK  
TLC27M7MJG  
TLC27M2MJG  
TLC27M7MP  
TLC27M2MP  
The D and PW package are available taped and reeled. Add R suffix to the device type (e.g.,TLC27M7CDR). For the most current package and  
ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.  
LinCMOS is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.  
ꢀꢞ  
Copyright 1987 − 2008, Texas Instruments Incorporated  
ꢚ ꢞ ꢛ ꢚꢉ ꢊꢨ ꢖꢕ ꢙ ꢡꢡ ꢟꢙ ꢗ ꢙ ꢘ ꢞ ꢚ ꢞ ꢗ ꢛ ꢣ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
  
ꢍꢎ ꢏꢂ ꢐꢌ ꢐ ꢋꢑ ꢒꢓ ꢇꢁ ꢋ ꢍꢏ ꢎꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
description  
The TLC27M2 and TLC27M7 dual operational amplifiers combine a wide range of input offset voltage grades  
with low offset voltage drift, high input impedance, low noise, and speeds approaching that of general-purpose  
bipolar devices.These devices use Texas Instruments silicon-gate LinCMOS technology, which provides offset  
voltage stability far exceeding the stability available with conventional metal-gate processes.  
The extremely high input impedance, low bias currents, and high slew rates make these cost-effective devices  
ideal for applications which have previously been reserved for general-purpose bipolar products, but with only  
a fraction of the power consumption. Four offset voltage grades are available (C-suffix and I-suffix types),  
ranging from the low-cost TLC27M2 (10 mV) to the high-precision TLC27M7 (500 µV). These advantages, in  
combination with good common-mode rejection and supply voltage rejection, make these devices a good  
choice for new state-of-the-art designs as well as for upgrading existing designs.  
In general, many features associated with bipolar technology are available on LinCMOS operational amplifiers,  
without the power penalties of bipolar technology. General applications such as transducer interfacing, analog  
calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC27M2 and  
TLC27M7. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote  
and inaccessible battery-powered applications. The common-mode input voltage range includes the negative  
rail.  
A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density  
system applications.  
The device inputs and outputs are designed to withstand −100-mA surge currents without sustaining latch-up.  
The TLC27M2 and TLC27M7 incorporate internal ESD-protection circuits that prevent functional failures at  
voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in  
handling these devices as exposure to ESD may result in the degradation of the device parametric performance.  
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized  
for operation from 40°C to 85°C. The M-suffix devices are characterized for operation over the full military  
temperature range of −55°C to 125°C.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
equivalent schematic (each amplifier)  
V
DD  
P3  
P4  
R6  
R1  
R2  
N5  
C1  
IN −  
P5  
P6  
P1  
P2  
IN +  
R5  
OUT  
N3  
D2  
N1  
R3  
N2  
D1  
N4  
N6  
R7  
N7  
R4  
GND  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Input voltage range, V (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to V  
V
ID  
DD  
DD  
I
Input current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA  
I
Output current, I (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
O
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA  
DD  
Total current out of GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited  
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.  
2. Differential voltages are at IN+ with respect to IN.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded (see application section).  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING POWER RATING  
A
D
FK  
JG  
P
725 mW  
5.8 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
8.0 mW/°C  
464 mW  
880 mW  
672 mW  
640 mW  
377 mW  
715 mW  
546 mW  
520 mW  
1375 mW  
275 mW  
210 mW  
1050 mW  
1000 mW  
recommended operating conditions  
C SUFFIX  
I SUFFIX  
M SUFFIX  
UNIT  
MIN  
3
MAX  
16  
MIN  
4
MAX  
16  
MIN  
4
MAX  
Supply voltage, V  
DD  
16  
3.5  
8.5  
125  
V
V
V
= 5 V  
0.2  
0.2  
0
3.5  
8.5  
70  
0.2  
0.2  
40  
3.5  
8.5  
85  
0
DD  
Common-mode input voltage, V  
IC  
V
= 10 V  
0
DD  
Operating free-air temperature, T  
55  
°C  
A
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27M2C  
TLC27M2AC  
TLC27M2BC  
TLC27M7C  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
= 0,  
O
S
IC  
R = 100 kΩ  
TLC27M2C  
TLC27M2AC  
TLC27M2BC  
TLC27M7C  
12  
I
mV  
0.9  
220  
185  
5
V
R
= 1.4 V,  
= 50 ,  
V
= 0,  
O
IC  
R = 100 kΩ  
Full range  
25°C  
6.5  
S
I
V
IO  
Input offset voltage  
2000  
3000  
500  
1500  
V
R
= 1.4 V,  
= 50 ,  
V
= 0,  
O
IC  
R = 100 kΩ  
Full range  
25°C  
S
I
µV  
V
R
= 1.4 V,  
= 50 ,  
V
= 0,  
O
IC  
R = 100 kΩ  
Full range  
S
I
Average temperature coefficient of input  
offset voltage  
25°C to  
70°C  
α
1.7  
µV/°C  
pA  
VIO  
25°C  
70°C  
25°C  
70°C  
0.1  
7
60  
300  
60  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
O
O
IC  
0.6  
40  
I
IB  
pA  
IC  
600  
0.2  
to  
0.3  
to  
4.2  
25°C  
V
V
4
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
3.5  
25°C  
0°C  
3.2  
3
3.9  
3.9  
4
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 100 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
70°C  
25°C  
0°C  
3
0
50  
50  
50  
0
= 100 mV,  
= 0.25 V to 2 V,  
I
OL  
OL  
70°C  
25°C  
0°C  
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
170  
200  
140  
91  
91  
92  
93  
92  
94  
210  
250  
170  
Large-signal differential voltage  
amplification  
A
R
= 100 kΩ  
VD  
L
70°C  
25°C  
0°C  
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
70°C  
25°C  
0°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
70°C  
25°C  
0°C  
560  
640  
440  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (two amplifiers)  
µA  
DD  
No load  
70°C  
Full range is 0°C to 70°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
ꢐꢌ  
ꢋꢑ  
ꢇꢀ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27M2C  
TLC27M2AC  
TLC27M2BC  
TLC27M7C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
MAX  
25°C  
Full range  
25°C  
1.1  
10  
12  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
TLC27M2C  
TLC27M2AC  
TLC27M2BC  
TLC27M7C  
mV  
0.9  
224  
190  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
6.5  
S
L
V
IO  
Input offset voltage  
2000  
3000  
800  
1900  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
70°C  
α
2.1  
µV/°C  
pA  
VIO  
25°C  
70°C  
25°C  
70°C  
0.1  
7
60  
300  
60  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
O
O
IC  
0.7  
50  
I
IB  
pA  
IC  
600  
0.2  
to  
0.3  
to  
9.2  
25°C  
V
V
9
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
8.5  
25°C  
0°C  
8
7.8  
7.8  
8.7  
8.7  
8.7  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= −100 mV,  
= 1 V to 6 V,  
R
= 100 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
70°C  
25°C  
0°C  
50  
50  
50  
0
I
OL  
OL  
70°C  
25°C  
0°C  
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
275  
320  
230  
94  
Large-signal differential voltage  
amplification  
A
R
= 100 kΩ  
VD  
L
70°C  
25°C  
0°C  
94  
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
70°C  
25°C  
0°C  
94  
93  
92  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
70°C  
25°C  
0°C  
94  
285  
345  
220  
600  
800  
560  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (two amplifiers)  
µA  
DD  
No load  
70°C  
Full range is 0°C to 70°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27M2I  
TLC27M2AI  
TLC27M2BI  
TLC27M7I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
TLC27M2I  
TLC27M2AI  
TLC27M2BI  
TLC27M7I  
13  
mV  
0.9  
220  
185  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
7
S
L
V
IO  
Input offset voltage  
2000  
3500  
500  
2000  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
85°C  
α
1.7  
µV/°C  
pA  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
24  
60  
1000  
60  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
O
O
IC  
0.6  
200  
I
IB  
pA  
IC  
2000  
0.2  
to  
0.3  
to  
4.2  
25°C  
V
V
4
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
3.5  
25°C  
40°C  
85°C  
3.2  
3
3.9  
3.9  
4
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 100 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
3
25°C  
0
50  
50  
50  
40°C  
85°C  
0
= −100 mV,  
= 0.25 V to 2 V,  
I
OL  
OL  
0
25°C  
25  
15  
15  
65  
60  
60  
70  
60  
60  
170  
270  
130  
91  
90  
90  
93  
91  
94  
210  
315  
160  
Large-signal differential voltage  
amplification  
40°C  
85°C  
A
R
= 100 kΩ  
VD  
L
25°C  
40°C  
85°C  
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
25°C  
40°C  
85°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
25°C  
560  
800  
400  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (two amplifiers)  
40°C  
85°C  
µA  
DD  
No load  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
  
ꢐꢌ  
ꢋꢑ  
ꢍꢏ  
ꢇꢀ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27M2I  
TLC27M2AI  
TLC27M2BI  
TLC27M7I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
TLC27M2I  
TLC27M2AI  
TLC27M2BI  
TLC27M7I  
13  
mV  
0.9  
224  
190  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
7
S
L
V
IO  
Input offset voltage  
2000  
3500  
800  
2900  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
85°C  
α
VIO  
2.1  
µV/°C  
25°C  
85°C  
25°C  
0.1  
26  
60  
1000  
60  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
pA  
IO  
O
O
IC  
0.7  
I
IB  
pA  
200  
0
IC  
85°C  
220  
0.2  
to  
0.3  
to  
9.2  
25°C  
V
V
9
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
8.5  
25°C  
40°C  
85°C  
8
7.8  
7.8  
8.7  
8.7  
8.7  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= 100 mV,  
= 1 V to 6 V,  
R
= 100 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
25°C  
50  
50  
50  
40°C  
85°C  
0
I
OL  
OL  
0
25°C  
25  
15  
15  
65  
60  
60  
70  
60  
60  
275  
390  
220  
94  
Large-signal differential voltage  
amplification  
40°C  
85°C  
A
VD  
R
= 100 kΩ  
L
25°C  
40°C  
85°C  
93  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
94  
25°C  
93  
40°C  
85°C  
91  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
94  
25°C  
285  
450  
205  
600  
900  
520  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current  
40°C  
85°C  
µA  
DD  
No load  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27M2M  
TLC27M7M  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
TLC27M2M  
TLC27M7M  
12  
V
IO  
Input offset voltage  
mV  
185  
500  
3750  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
125°C  
α
VIO  
1.7  
µV/°C  
25°C  
125°C  
25°C  
0.1  
1.4  
0.6  
9
60  
15  
60  
35  
pA  
nA  
pA  
nA  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
IO  
O
O
IC  
I
IB  
IC  
125°C  
0
to  
4
0.3  
to  
4.2  
25°C  
V
V
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0
to  
Full range  
3.5  
25°C  
55°C  
125°C  
25°C  
3.2  
3
3.9  
3.9  
4
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 100 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
3
0
50  
50  
50  
55°C  
125°C  
25°C  
0
= 100 mV,  
= 0.25 V to 2 V,  
I
OL  
OL  
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
170  
290  
120  
91  
89  
91  
93  
91  
94  
210  
340  
140  
Large-signal differential voltage  
amplification  
55°C  
125°C  
25°C  
A
VD  
R
= 100 kΩ  
L
55°C  
125°C  
25°C  
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
55°C  
125°C  
25°C  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
/V )  
DD  
IO  
560  
880  
360  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (two amplifiers)  
55°C  
125°C  
µA  
DD  
No load  
Full range is 55°C to 125°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
ꢅꢋ  
  
ꢐꢌ  
ꢋꢑ  
ꢍꢏ  
ꢇꢀ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27M2M  
TLC27M7M  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
S
IC  
L
TLC27M2M  
TLC27M7M  
12  
V
IO  
Input offset voltage  
mV  
190  
800  
4300  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 100 kΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
125°C  
α
2.1  
µV/°C  
pA  
VIO  
25°C  
125°C  
25°C  
0.1  
1.8  
0.7  
10  
60  
15  
60  
35  
I
IO  
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
O
O
IC  
I
IB  
pA  
IC  
125°C  
0
to  
9
0.3  
to  
9.2  
25°C  
V
V
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0
to  
Full range  
8.5  
25°C  
55°C  
125°C  
25°C  
8
7.8  
7.8  
8.7  
8.6  
8.8  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= 100 mV,  
= 1 V to 6 V,  
R
= 100 kΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
50  
50  
50  
55°C  
125°C  
25°C  
0
I
OL  
OL  
0
25  
15  
15  
65  
60  
60  
70  
60  
60  
275  
420  
190  
94  
Large-signal differential voltage  
amplification  
55°C  
125°C  
25°C  
A
R
= 100 kΩ  
VD  
L
55°C  
125°C  
25°C  
93  
CMRR Common-mode rejection ratio  
Supply-voltage rejection ratio  
= V min  
ICR  
IC  
93  
93  
55°C  
125°C  
25°C  
91  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
94  
285  
490  
180  
600  
1000  
480  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (two amplifiers)  
55°C  
125°C  
µA  
DD  
No load  
Full range is 55°C to 125°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC27M2C  
TLC27M2AC  
TLC27M2BC  
TLC27M7C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.43  
0.46  
0.36  
0.40  
0.43  
0.34  
MAX  
25°C  
0°C  
V
V
= 1 V  
I(PP)  
R
C
= 100 k,  
= 20 pF,  
L
L
70°C  
25°C  
0°C  
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
= 2.5 V  
I(PP)  
70°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
0°C  
55  
60  
V
R
= V  
OH  
= 100 k,  
,
C
= 20 pF,  
O
L
kHz  
B
B
Maximum output-swing bandwidth  
OM  
See Figure 1  
70°C  
25°C  
0°C  
50  
525  
600  
400  
40°  
41°  
39°  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
kHz  
Unity-gain bandwidth  
Phase margin  
1
70°C  
25°C  
0°C  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
C
= 20 pF,  
70°C  
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC27M2C  
TLC27M2AC  
TLC27M2BC  
TLC27M7C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.62  
0.67  
0.51  
0.56  
0.61  
0.46  
MAX  
25°C  
0°C  
V
V
= 1 V  
I(PP)  
R
C
= 100 k,  
L
L
70°C  
25°C  
0°C  
= 20 pF,  
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
= 5.5 V  
I(PP)  
70°C  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
0°C  
35  
40  
V
R
= V  
OH  
= 100 k,  
,
C
= 20 pF,  
O
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
70°C  
25°C  
0°C  
30  
635  
710  
510  
43°  
44°  
42°  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
Unity-gain bandwidth  
Phase margin  
kHz  
1
70°C  
25°C  
0°C  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
C
= 20 pF,  
70°C  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
  
ꢅꢋ  
ꢍꢎ ꢏꢂ ꢐꢌ ꢐ ꢋꢑ ꢒꢓ ꢇꢁ ꢋ ꢍꢏ ꢎꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC27M2I  
TLC27M2AI  
TLC27M2BI  
TLC27M7I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.43  
0.51  
0.35  
0.40  
0.48  
0.32  
MAX  
25°C  
40°C  
85°C  
V
V
= 1 V  
I(PP)  
R
C
= 100 k,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
25°C  
See Figure 1  
40°C  
85°C  
= 2.5 V  
I(PP)  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
40°C  
85°C  
55  
75  
V
R
= V  
OH  
= 100 k,  
,
C
= 20 pF,  
O
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
45  
25°C  
525  
770  
370  
40°  
43°  
38°  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
40°C  
85°C  
Unity-gain bandwidth  
Phase margin  
kHz  
1
25°C  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
40°C  
85°C  
C
= 20 pF,  
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC27M2I  
TLC27M2AI  
TLC27M2BI  
TLC27M7I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.62  
0.77  
0.47  
0.56  
0.70  
0.44  
MAX  
25°C  
40°C  
85°C  
V
V
= 1 V  
I(PP)  
R
C
= 100 k,  
L
L
= 20 pF,  
SR  
Slew rate at unity gain  
V/µs  
25°C  
See Figure 1  
40°C  
85°C  
= 5.5 V  
I(PP)  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
L
V
n
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
40°C  
85°C  
35  
45  
V
R
= V  
OH  
= 100 k,  
,
C
= 20 pF,  
O
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
25  
25°C  
635  
880  
480  
43°  
46°  
41°  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
40°C  
85°C  
Unity-gain bandwidth  
Phase margin  
kHz  
1
25°C  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
40°C  
85°C  
C
= 20 pF,  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC27M2M  
TLC27M7M  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.43  
0.54  
0.29  
0.40  
0.49  
0.28  
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
I(PP)  
I(PP)  
R
C
= 100 k,  
L
L
= 20 pF,  
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
55°C  
125°C  
V
= 2.5 V  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
55°C  
125°C  
25°C  
55  
80  
V
R
= V  
OH  
,
C
= 20 pF,  
O
L
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
= 100 k, See Figure 1  
40  
525  
850  
330  
40°  
44°  
36°  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
55°C  
125°C  
25°C  
Unity-gain bandwidth  
Phase margin  
kHz  
1
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
55°C  
125°C  
C
= 20 pF,  
L
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC27M2M  
TLC27M7M  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.62  
0.81  
0.38  
0.56  
0.73  
0.35  
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
I(PP)  
I(PP)  
R
C
= 100 k,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
55°C  
125°C  
V
= 5.5 V  
f = 1 kHz,  
See Figure 2  
R
= 20 ,  
S
V
n
Equivalent input noise voltage  
25°C  
32  
nV/Hz  
25°C  
55°C  
125°C  
25°C  
35  
50  
V
R
= V  
OH  
,
C
= 20 pF,  
O
L
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
= 100 k, See Figure 1  
20  
635  
960  
440  
43°  
47°  
39°  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
55°C  
125°C  
25°C  
Unity gain bandwidth  
Phase margin  
kHz  
1
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
55°C  
125°C  
C
= 20 pF,  
L
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
  
ꢍꢎ ꢏꢂ ꢐꢌ ꢐ ꢋꢑ ꢒꢓ ꢇꢁ ꢋ ꢍꢏ ꢎꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
PARAMETER MEASUREMENT INFORMATION  
single-supply versus split-supply test circuits  
Because the TLC27M2 and TLC27M7 are optimized for single-supply operation, circuit configurations used for  
the various tests often present some inconvenience since the input signal, in many cases, must be offset from  
ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to  
the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either  
circuit gives the same result.  
V
DD  
+
V
DD  
V
O
V
O
+
+
V
I
V
I
R
C
R
C
L
L
L
L
V
DD  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 1. Unity-Gain Amplifier  
2 kΩ  
2 kΩ  
V
DD  
V
DD  
+
20 Ω  
+
1/2 V  
DD  
V
O
V
O
20 Ω  
+
20 Ω  
20 Ω  
V
DD  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 2. Noise-Test Circuit  
10 kΩ  
10 kΩ  
V
DD  
+
V
DD  
100 Ω  
100 Ω  
+
+
V
I
V
I
V
O
V
O
1/2 V  
DD  
C
L
C
L
V
DD  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 3. Gain-of-100 Inverting Amplifier  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
PARAMETER MEASUREMENT INFORMATION  
input bias current  
Because of the high input impedance of the TLC27M2 and TLC27M7 operational amplifiers, attempts to  
measure the input bias current can result in erroneous readings. The bias current at normal room ambient  
temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two  
suggestions are offered to avoid erroneous measurements:  
1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the  
device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.  
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using  
a picoammeter) with no device in the test socket. The actual input bias current can then be calculated  
by subtracting the open-socket leakage readings from the readings obtained with a device in the test  
socket.  
One word of caution—many automatic testers as well as some bench-top operational amplifier testers  
use the servo-loop technique with a resistor in series with the device input to measure the input bias  
current (the voltage drop across the series resistor is measured and the bias current is calculated). This  
method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an  
open-socket reading is not feasible using this method.  
5
8
8
5
V = V  
IC  
1
4
Figure 4. Isolation Metal Around Device Inputs (JG and P packages)  
low-level output voltage  
To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise  
results in the device low-level output being dependent on both the common-mode input voltage level as well  
as the differential input voltage level. When attempting to correlate low-level output readings with those quoted  
in the electrical specifications, these two conditions should be observed. If conditions other than these are to  
be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
  
ꢅꢋ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
PARAMETER MEASUREMENT INFORMATION  
input offset voltage temperature coefficient  
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This  
parameter is actually a calculation using input offset voltage measurements obtained at two different  
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device  
and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input  
offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage, since  
the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these  
measurements be performed at temperatures above freezing to minimize error.  
full-power response  
Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage  
swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is  
generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal  
input signal until the maximum frequency is found above which the output contains significant distortion. The  
full-peak response is defined as the maximum output frequency, without regard to distortion, above which full  
peak-to-peak output swing cannot be maintained.  
Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified  
in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal  
input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is  
increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same  
amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained  
(Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum  
peak-to-peak output is reached.  
(a) f = 1 kHz  
(b) B  
> f > 1 kHz  
(c) f = B  
OM  
(d) f > B  
OM  
OM  
Figure 5. Full-Power-Response Output Signal  
test time  
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume,  
short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET  
devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more  
pronounced with reduced supply levels and lower temperatures.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
6, 7  
V
IO  
Input offset voltage  
Distribution  
α
Temperature coefficient  
Distribution  
8, 9  
VIO  
vs High-level output current  
vs Supply voltage  
vs Free-air temperature  
10, 11  
12  
13  
V
OH  
High-level output voltage  
vs Common-mode input voltage  
vs Differential input voltage  
vs Free-air temperature  
14, 15  
16  
17  
V
OL  
Low-level output voltage  
vs Low-level output current  
18, 19  
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
20  
21  
32, 33  
A
VD  
Differential voltage amplification  
I
/I  
Input bias and input offset current  
Common-mode input voltage  
vs Free-air temperature  
vs Supply voltage  
22  
23  
IB IO  
V
IC  
vs Supply voltage  
vs Free-air temperature  
24  
25  
I
Supply current  
Slew rate  
DD  
vs Supply voltage  
vs Free-air temperature  
26  
27  
SR  
Normalized slew rate  
vs Free-air temperature  
vs Frequency  
28  
29  
V
Maximum peak-to-peak output voltage  
O(PP)  
vs Free-air temperature  
vs Supply voltage  
30  
31  
B
Unity-gain bandwidth  
Phase margin  
1
vs Supply voltage  
vs Free-air temperature  
vs Capacitive loads  
34  
35  
36  
φ
m
V
Equivalent input noise voltage  
Phase shift  
vs Frequency  
vs Frequency  
37  
n
φ
32, 33  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
  
ꢅꢋ  
ꢍꢎ ꢏꢂ ꢐꢌ ꢐ ꢋꢑ ꢒꢓ ꢇꢁ ꢋ ꢍꢏ ꢎꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLC27M2  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC27M2  
INPUT OFFSET VOLTAGE  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
612 Amplifiers Tested From 4 Wafer Lots  
612 Amplifiers Tested From 4 Wafer Lots  
V
= 5 V  
DD  
= 25°C  
V
T
A
= 10 V  
DD  
= 25°C  
T
A
P Package  
P Package  
−5 −4 −3 −2 −1  
0
1
2
3
4
5
−5 −4 −3 −2 −1  
0
1
2
3
4
5
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 6  
Figure 7  
DISTRIBUTION OF TLC27M2 AND TLC27M7  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC27M2 AND TLC27M7  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
TEMPERATURE COEFFICIENT  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
224 Amplifiers Tested From 6 Wafer Lots  
224 Amplifiers Tested From 6 Wafer Lots  
V
T
A
= 5 V  
V
T
A
= 10 V  
DD  
= 25°C to 125°C  
DD  
= 25°C to 125°C  
P Package  
Outliers:  
(1) 33.0 µV/°C  
P Package  
Outliers:  
(1) 34.6 µV/°C  
10 8 −6 −4 −2  
0
2
4
6
8
10  
10 8 −6 −4 −2  
0
2
4
6
8
10  
α
− Temperature Coefficient − µV/°C  
α
− Temperature Coefficient − µV/°C  
VIO  
VIO  
Figure 8  
Figure 9  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
5
4
3
2
1
0
16  
14  
12  
10  
8
V
= 100 mV  
ID  
= 25°C  
V
= 100 mV  
ID  
= 25°C  
T
A
T
A
V
= 16 V  
DD  
DD  
V
= 5 V  
DD  
V
= 4 V  
DD  
V
= 10 V  
V
DD  
= 3 V  
6
4
2
0
0
−2  
−4  
−6  
−8  
10  
0
10  
20  
30  
40  
I
− High-Level Output Current − mA  
I
− High-Level Output Current − mA  
OH  
OH  
Figure 10  
Figure 11  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
V
V
V
V
1.6  
1.7  
1.8  
1.9  
−2  
16  
14  
12  
10  
8
DD  
DD  
DD  
V
R
T
= 100 mV  
ID  
I
= 5 mA  
OH  
= 100 kΩ  
= 25°C  
L
V
= 100 mA  
ID  
V
DD  
= 5 V  
A
DD  
V
DD  
V
DD  
= 10 V  
V
DD  
V
DD  
V
DD  
V
DD  
2.1  
2.2  
2.3  
2.4  
6
4
2
0
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
− Free-Air Temperature − °C  
V
DD  
− Supply Voltage − V  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
  
ꢅꢋ  
ꢍꢎ ꢏꢂ ꢐꢌ ꢐ ꢋꢑ ꢒꢓ ꢇꢁ ꢋ ꢍꢏ ꢎꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
700  
500  
450  
400  
350  
300  
250  
V
= 5 V  
= 5 mA  
= 25°C  
DD  
V
DD  
= 10 V  
650  
600  
I
T
OL  
A
I
= 5 mA  
OL  
T
A
= 25°C  
550  
500  
450  
400  
V
= 100 mV  
ID  
V
ID  
V
ID  
V
ID  
= 100 mV  
= 1 V  
= 2.5 V  
V
ID  
= 1 V  
350  
300  
0
1
2
3
4
5
6
7
8
7
10  
0
1
2
3
4
V
IC  
− Common-Mode Input Voltage − V  
V
IC  
− Common-Mode Input Voltage − V  
Figure 14  
Figure 15  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
DIFFERENTIAL INPUT VOLTAGE  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
I
OL  
= 5 mA  
= 1 V  
= 0.5 V  
I
V
= 5 mA  
OL  
V
ID  
V
IC  
= |V /2|  
ID  
IC  
= 25°C  
T
A
V
= 5 V  
DD  
V
= 5 V  
DD  
V
DD  
= 10 V  
V
= 10 V  
DD  
75 50 25  
0
25  
50  
75  
100 125  
0
−1 −2 −3 −4 −5 −6 −7 −8 −9 −10  
T
A
− Free-Air Temperature − °C  
V
ID  
− Differential Input Voltage − V  
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
3
2.5  
2
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 1 V  
= 0.5 V  
= 25°C  
ID  
V
V
= 1 V  
ID  
V
IC  
T
= 0.5 V  
IC  
A
V
= 16 V  
DD  
T
A
= 25°C  
V
= 5 V  
DD  
V
= 4 V  
DD  
V
= 10 V  
DD  
V
= 3 V  
DD  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
0
1
2
3
4
5
6
7
8
I
− Low-Level Output Current − mA  
I
− Low-Level Output Current − mA  
OL  
OL  
Figure 18  
Figure 19  
LARGE-SIGNAL  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
T
= 55°C  
40°C  
A
R
= 100 kΩ  
R
= 100 kΩ  
L
L
0°C  
V
= 10 V  
25°C  
70°C  
DD  
85°C  
125°C  
V
0
= 5 V  
DD  
0
0
75 50 25  
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
− Free-Air Temperature − °C  
V
DD  
− Supply Voltage − V  
Figure 20  
Figure 21  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
  
ꢅꢋ  
ꢍꢎ ꢏꢂ ꢐꢌ ꢐ ꢋꢑ ꢒꢓ ꢇꢁ ꢋ ꢍꢏ ꢎꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
COMMON-MODE  
INPUT BIAS CURRENT AND INPUT OFFSET  
INPUT VOLTAGE POSITIVE LIMIT  
CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
16  
14  
12  
10  
8
10000  
1000  
100  
10  
V
V
= 10 V  
T = 25°C  
A
DD  
= 5 V  
IC  
See Note A  
I
IB  
I
IO  
6
4
1
2
0
0.1  
0
2
4
V
6
8
10  
12  
14  
16  
25  
45  
A
65  
85  
105  
125  
− Supply Voltage − V  
T
− Free-Air Temperature − °C  
DD  
NOTE A: The typical values of input bias current and input offset  
current below 5 pA were determined mathematically.  
Figure 22  
Figure 23  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
800  
V
= V /2  
DD  
V
= V /2  
DD  
O
O
T
= 55°C  
700  
600  
500  
400  
300  
200  
100  
0
No Load  
A
No Load  
40°C  
V
= 10 V  
DD  
0°C  
25°C  
70°C  
V
= 5 V  
DD  
125°C  
0
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
− Free-Air Temperature − °C  
V
DD  
− Supply Voltage − V  
Figure 24  
Figure 25  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
SLEW RATE  
vs  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
A
= 1  
= 1 V  
= 100 kΩ  
= 20 pF  
V
A
R
C
= 1  
= 100 kΩ  
= 20 pF  
V
R
C
V
L
L
IPP  
L
V
V
= 10 V  
= 5.5 V  
DD  
I(PP)  
L
See Figure 1  
T
= 25°C  
A
See Figure 1  
V
V
= 10 V  
DD  
= 1 V  
I(PP)  
V
V
= 5 V  
DD  
I(PP)  
= 1 V  
V
V
= 5 V  
DD  
= 2.5 V  
I(PP)  
0
2
4
6
8
10  
12  
14  
16  
− 75 − 50 − 25  
0
25  
50  
75  
100 125  
V
DD  
− Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 26  
Figure 27  
MAXIMUM PEAK-TO-PEAK OUTPUT  
NORMALIZED SLEW RATE  
vs  
VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
1.4  
1.3  
1.2  
1.1  
1
10  
9
8
7
6
5
4
3
2
1
0
A
= 1  
V
V
R
C
= 1 V  
I(PP)  
V
= 10 V  
DD  
= 100 kΩ  
= 20 pF  
L
L
V
V
= 10 V  
DD  
V
DD  
= 5 V  
T
= 125°C  
= 25°C  
A
T
A
T
= 55°C  
A
0.9  
0.8  
0.7  
0.6  
0.5  
= 5 V  
DD  
R
= 100 kΩ  
L
See Figure 1  
−75 −50 −25  
0
25  
50  
75  
100 125  
1
10  
100  
1000  
T
A
− Free-Air Temperature − °C  
f − Frequency − kHz  
Figure 28  
Figure 29  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀꢁ ꢂꢃ ꢄ ꢅꢃ ꢈ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢄ  
  
ꢅꢋ  
ꢍꢎ ꢏꢂ ꢐꢌ ꢐ ꢋꢑ ꢒꢓ ꢇꢁ ꢋ ꢍꢏ ꢎꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍꢁ ꢐꢔ ꢐꢏ ꢎꢌ  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
UNITY-GAIN BANDWIDTH  
UNITY-GAIN BANDWIDTH  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
900  
800  
700  
600  
500  
400  
300  
800  
750  
700  
650  
600  
550  
500  
450  
400  
V = 10 mV  
V
= 5 V  
I
DD  
V = 10 mV  
C
= 20 pF  
= 25°C  
L
I
C
T
= 20 pF  
A
L
See Figure 3  
See Figure 3  
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
− Free-Air Temperature − C  
V
DD  
− Supply Voltage − V  
Figure 30  
Figure 31  
LARGE-SCALE DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
5
4
3
2
10  
10  
10  
10  
10  
10  
V
= 5 V  
= 100 kΩ  
= 25°C  
DD  
R
L
T
A
0°  
30°  
A
VD  
60°  
90°  
Phase Shift  
10  
1
120°  
150°  
180°  
0.1  
0
10  
100  
1 k  
10 k  
100 k  
1 M  
f − Frequency − Hz  
Figure 32  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢄ  
ꢍꢎ ꢏꢂꢐꢌ ꢐꢋ ꢑ ꢒꢓꢇ ꢁ ꢋ ꢍꢏꢎ ꢇꢀ ꢐꢋ ꢑꢇꢁ ꢇꢅ ꢍ ꢁꢐ ꢔꢐ ꢏꢎ ꢌ  
ꢁꢉ  
  
SLOS051E − OCTOBER 1987 − REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
LARGE-SCALE DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
5
4
3
2
10  
10  
10  
10  
10  
10  
V
R
T
A
= 10 V  
= 100 kΩ  
= 25°C  
DD  
L
0°  
30°  
A
VD  
60°  
90°  
Phase Shift  
10  
1
120°  
150°  
180°  
0.1  
0
10  
100  
1 k  
10 k  
100 k  
1 M  
f − Frequency − Hz  
Figure 33  
PHASE MARGIN  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
45°  
43°  
41°  
39°  
37°  
35°  
50°  
48°  
46°  
44°  
42°  
40°  
38°  
V
= 5 V  
V = 10 mV  
DD  
V = 10 mV  
I
C
T
A
= 20 pF  
= 25°C  
I
L
C
= 20 pF  
L
See Figure 3  
See Figure 3  
75 50 25  
0
25  
50  
75  
100 125