欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • TLV2455CPWR图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • TLV2455CPWR 现货库存
  • 数量5000 
  • 厂家TI 
  • 封装16-TSSOP 
  • 批号24+ 
  • 假一罚百,TI专营!深圳有库存,北美、新加坡可发货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • TLV2455CPWRG4图
  • 深圳市婷轩实业有限公司

     该会员已使用本站6年以上
  • TLV2455CPWRG4 现货库存
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装16-TSSOP 
  • 批号23+ 
  • 进口原装现货热卖
  • QQ:2881943288QQ:2881943288 复制
    QQ:3026548067QQ:3026548067 复制
  • 0755-89608519 QQ:2881943288QQ:3026548067
  • TLV2455CPWR图
  • 深圳市富莱微科技有限公司

     该会员已使用本站6年以上
  • TLV2455CPWR 现货库存
  • 数量
  • 厂家TI 
  • 封装16-TSSOP 
  • 批号23+ 
  • 全新原装,公司现货
  • QQ:1968343307QQ:1968343307 复制
    QQ:2885835292QQ:2885835292 复制
  • 0755-83210149 QQ:1968343307QQ:2885835292
  • TLV2455CPW图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • TLV2455CPW
  • 数量10000 
  • 厂家TI/德州仪器 
  • 封装16-TSSOP 
  • 批号23+ 
  • 进口原装现货
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820
  • TLV2455CPWRG4图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • TLV2455CPWRG4
  • 数量4025 
  • 厂家TI 
  • 封装TSSOP 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • TLV2455CPW图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • TLV2455CPW
  • 数量7545 
  • 厂家TI 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • TLV2455CPW图
  • 深圳市积美福电子科技有限公司

     该会员已使用本站4年以上
  • TLV2455CPW
  • 数量1560 
  • 厂家TI/德州仪器 
  • 封装NA 
  • 批号21+ 
  • 只做原装正品,深圳现货库存
  • QQ:647176908QQ:647176908 复制
    QQ:499959596QQ:499959596 复制
  • 0755-83228296 QQ:647176908QQ:499959596
  • TLV2455CPW图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • TLV2455CPW
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • TLV2455CPW图
  • 深圳市恒意法科技有限公司

     该会员已使用本站17年以上
  • TLV2455CPW
  • 数量22125 
  • 厂家Texas Instruments 
  • 封装16-TSSOP(0.173,4.40mm 宽) 
  • 批号21+ 
  • 正规渠道/品质保证/原装正品现货
  • QQ:2881514372QQ:2881514372 复制
  • 0755-83247729 QQ:2881514372
  • TLV2455CPWR图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • TLV2455CPWR
  • 数量4845 
  • 厂家TI 
  • 封装TSSOP16 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755- QQ:2881894392QQ:2881894393
  • TLV2455CPW图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TLV2455CPW
  • 数量25820 
  • 厂家TI 
  • 封装16TSSOP 
  • 批号23+ 
  • 只做原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • TLV2455CPWR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TLV2455CPWR
  • 数量11530 
  • 厂家Texas Instruments 
  • 封装16-TSSOP 
  • 批号23+ 
  • 全新原装现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • TLV2455CPW图
  • 深圳市芯柏然科技有限公司

     该会员已使用本站7年以上
  • TLV2455CPW
  • 数量23480 
  • 厂家TI 
  • 封装TOSSOP 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、价格低于市场
  • QQ:287673858QQ:287673858 复制
  • 0755-82533534 QQ:287673858
  • TLV2455CPW图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • TLV2455CPW
  • 数量660000 
  • 厂家Texas Instruments(德州仪器) 
  • 封装16-TSSOP (0.173 
  • 批号4.40mm Width) 
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • TLV2455CPW图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • TLV2455CPW
  • 数量6500000 
  • 厂家N/A 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • TLV2455CPW图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • TLV2455CPW
  • 数量8800 
  • 厂家TI/德州仪器 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • TLV2455CPW图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • TLV2455CPW
  • 数量9500 
  • 厂家TI(德州仪器) 
  • 封装16-TSSOP(0.173,4.40mm 宽) 
  • 批号23+/24+ 
  • 绝对原装正品,可开13%专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • TLV2455CPW图
  • 深圳市凯信扬科技有限公司

     该会员已使用本站7年以上
  • TLV2455CPW
  • 数量58200 
  • 厂家TI/德州仪器 
  • 封装NA 
  • 批号21+ 
  • ▲▲▲诚信经营,服务至上,十年专注▲▲▲
  • QQ:872328909QQ:872328909 复制
  • 0755-82518059 QQ:872328909
  • TLV2455CPW图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • TLV2455CPW
  • 数量8000 
  • 厂家TI/德州仪器 
  • 封装NA 
  • 批号21+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • TLV2455CPWR图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • TLV2455CPWR
  • 数量14500 
  • 厂家Texas Instruments 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • TLV2455CPWRG4图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • TLV2455CPWRG4
  • 数量14500 
  • 厂家Texas Instruments 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • TLV2455CPW图
  • 深圳市一线半导体有限公司

     该会员已使用本站15年以上
  • TLV2455CPW
  • 数量14500 
  • 厂家Texas Instruments 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • TLV2455CPWG4图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • TLV2455CPWG4
  • 数量14500 
  • 厂家Texas Instruments 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • TLV2455CPW图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • TLV2455CPW
  • 数量9800 
  • 厂家Texas 
  • 封装 
  • 批号24+ 
  • 原厂渠道,全新原装现货,欢迎查询!
  • QQ:97877805QQ:97877805 复制
  • 171-4729-0036(微信同号) QQ:97877805
  • TLV2455CPW图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • TLV2455CPW
  • 数量1001 
  • 厂家TI 
  • 封装SSOP-16 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:1415691092QQ:1415691092 复制
  • 133-5299-5145(微信同号) QQ:1415691092
  • TLV2455CPWG4图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • TLV2455CPWG4
  • 数量1001 
  • 厂家TI 
  • 封装SSOP-16 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:97877805QQ:97877805 复制
  • 171-4729-0036(微信同号) QQ:97877805

产品型号TLV2455CPW的概述

TLV2455CPW芯片概述 TLV2455CPW是一款高性能、低功耗的比较器,广泛应用于各种工业和消费电子设备中。该芯片由德州仪器(Texas Instruments)公司生产,并已在市场上获得了良好的口碑。TLV2455CPW的设计目标是提供快速的响应时间和较小的功耗,以满足现代电子设备在速度和稳定性方面的需求。 TLV2455CPW比较器具有两个输入端口(反相和非反相),能够在电压达到特定阈值时切换其输出状态。这种特性使其在信号调理、传感器接口以及电池电量监测等应用中非常有效。此外,该芯片还具备较高的共模输入范围,能够处理各种电源电压下的信号。 TLV2455CPW详细参数 TLV2455CPW的详细技术参数如下: - 电源电压范围:2.7V至36V - 输入电压范围:-0.1V至(V+ +0.1V) - 输出电压:接近于电源电压 - 响应时间:最大为500ns - 功耗:每个通...

产品型号TLV2455CPW的Datasheet PDF文件预览

ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢊ ꢋ  
ꢁꢏ  
ꢐ ꢗꢚꢕ ꢋꢀ ꢎꢐ ꢖꢋꢁ ꢋꢍ ꢗꢁ ꢎꢌ ꢎꢚ ꢕꢛ ꢜ ꢎꢀ ꢓ ꢛꢓꢘ ꢀꢝ ꢐ ꢜꢖ  
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
D
D
D
D
D
D
D
Supply Current . . . 23 µA/Channel  
Operational Amplifier  
Gain-Bandwidth Product . . . 220 kHz  
Output Drive Capability . . . 10 mA  
Input Offset Voltage . . . 20 µV (typ)  
+
V
Range . . . 2.7 V to 6 V  
DD  
Power Supply Rejection Ratio . . . 106 dB  
Ultralow-Power Shutdown Mode  
I
. . . 16 nA/ch  
DD  
D
Rail-To-Rail Input/Output (RRIO)  
D
Ultrasmall Packaging  
− 5 or 6 Pin SOT-23 (TLV2450/1)  
− 8 or 10 Pin MSOP (TLV2452/3)  
description  
The TLV245x is a family of rail-to-rail input/output operational amplifiers that sets a new performance point for  
supply current and ac performance. These devices consume a mere 23 µA/channel while offering 220 kHz of  
gain-bandwidth product, much higher than competitive devices with similar supply current levels. Along with  
increased ac performance, the amplifier provides high output drive capability, solving a major shortcoming of  
older micropower rail-to-rail input/output operational amplifiers. The TLV245x can swing to within 250 mV of  
each supply rail while driving a 2.5-mA load. Both the inputs and outputs swing rail-to-rail for increased dynamic  
range in low-voltage applications. This performance makes the TLV245x family ideal for portable medical  
equipment, patient monitoring systems, and data acquisition circuits.  
FAMILY PACKAGE TABLE  
PACKAGE TYPES  
SOIC SOT-23 TSSOP MSOP  
NUMBER OF  
CHANNELS  
UNIVERSAL  
EVM BOARD  
DEVICE  
TLV2450  
SHUTDOWN  
PDIP  
8
1
1
2
2
4
4
8
8
6
14  
16  
8
Yes  
TLV2451  
TLV2452  
TLV2453  
TLV2454  
TLV2455  
8
5
Refer to the EVM  
Selection Guide  
(Lit# SLOU060)  
8
8
14  
14  
16  
14  
14  
16  
10  
Yes  
Yes  
A SELECTION OF SINGLE-SUPPLY OPERATIONAL AMPLIFIER PRODUCTS  
V
BW  
(MHz)  
SLEW RATE  
I
(per channel)  
(µA)  
DD  
DD  
DEVICE  
RAIL-TO-RAIL  
(V)  
(V/µs)  
TLV245X  
TLV247X  
TLV246X  
TLV277X  
2.7 − 6.0  
2.7 − 6.0  
2.7 − 6.0  
2.5 − 6.0  
0.22  
2.8  
6.4  
5.1  
0.11  
1.5  
23  
600  
550  
1000  
I/O  
I/O  
I/O  
O
1.6  
10.5  
All specifications measured at 5 V.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢀꢪ  
Copyright 1998−2005, Texas Instruments Incorporated  
ꢦ ꢪ ꢧ ꢦꢟ ꢠꢳ ꢢꢡ ꢥ ꢭꢭ ꢫꢥ ꢣ ꢥ ꢤ ꢪ ꢦ ꢪ ꢣ ꢧ ꢯ  
1
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢐꢗ ꢚ ꢕꢋꢀ ꢎ ꢐꢖ ꢋ ꢁ ꢋꢍ ꢗꢁ ꢎ ꢌꢎ ꢚ ꢕꢛ ꢜ ꢎ ꢀꢓ ꢛ ꢓꢘꢀ ꢝꢐ ꢜ ꢖ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
description (continued)  
Three members of the family (TLV2450/3/5) offer a shutdown terminal for conserving battery life in portable  
applications. During shutdown, the outputs are placed in a high-impedance state and the amplifier consumes  
only 16 nA/channel. The family is fully specified at 3 V and 5 V across an expanded industrial temperature range  
(−40°C to 125°C). The singles and duals are available in the SOT23 and MSOP packages, while the quads are  
available in TSSOP. The TLV2450 offers an amplifier with shutdown functionality all in a 6-pin SOT23 package,  
making it perfect for high density circuits.  
TLV2450 and TLV2451 AVAILABLE OPTIONS  
PACKAGED DEVICES  
SOT-23  
(DBV)  
T
A
SMALL OUTLINE  
PLASTIC DIP  
(P)  
(D)  
SYMBOL  
TLV2450CD  
TLV2451CD  
TLV2450CDBV  
TLV2451CDBV  
VAQC  
VARC  
TLV2450CP  
TLV2451CP  
0°C to 70°C  
TLV2450ID  
TLV2451ID  
TLV2450IDBV  
TLV2451IDBV  
VAQI  
VARI  
TLV2450IP  
TLV2451IP  
40°C to 125°C  
TLV2450AID  
TLV2451AID  
TLV2450AIP  
TLV2451AIP  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part  
number (e.g., TLV2450CDR).  
TLV2452 and TLV2453 AVAILABLE OPTIONS  
PACKAGED DEVICES  
SMALL  
PLASTIC  
DIP  
PLASTIC  
DIP  
MSOP  
T
A
OUTLINE  
SYMBOL  
(DGK)  
SYMBOL  
(DGS)  
(D)  
(N)  
(P)  
TLV2452CD  
TLV2453CD  
TLV2452CDGK  
xxTIABI  
xxTIABK  
TLV2452CP  
0°C to 70°C  
TLV2453CDGS  
TLV2453CN  
TLV2452ID  
TLV2453ID  
TLV2452IDGK  
xxTIABJ  
xxTIABL  
TLV2452IP  
TLV2453IDGS  
TLV2453IN  
40°C to 125°C  
TLV2452AID  
TLV2453AID  
TLV2452AIP  
TLV2453AIN  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2452CDR).  
xx represents the device date code.  
TLV2454 and TLV2455 AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
SMALL OUTLINE  
PLASTIC DIP  
(N)  
TSSOP  
(PW)  
(D)  
TLV2454CD  
TLV2455CD  
TLV2454CN  
TLV2455CN  
TLV2454CPW  
TLV2455CPW  
0°C to 70°C  
TLV2454ID  
TLV2455ID  
TLV2454IN  
TLV2455IN  
TLV2454IPW  
TLV2455IPW  
40°C to 125°C  
TLV2454AID  
TLV2455AID  
TLV2454AIN  
TLV2455AIN  
TLV2454AIPW  
TLV2455AIPW  
This package is available taped and reeled. To order this packaging option, add an  
R suffix to the part number (e.g., TLV2454CDR).  
NOTE: For the most current package and ordering information, see the Package Option Addendum located at the  
end of this data sheet, or refer to our web site at www.ti.com.  
2
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢊ ꢋ  
ꢐ ꢗꢚꢕ ꢋꢀ ꢎꢐ ꢖꢋꢁ ꢋꢍ ꢗꢁ ꢎꢌ ꢎꢚ ꢕꢛ ꢜ ꢎꢀ ꢓ ꢛꢓꢘ ꢀꢝ ꢐ ꢜꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒ ꢓꢔ ꢕꢋꢎ ꢁ ꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀꢙ ꢐ ꢘ ꢀꢗ ꢘꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
(1)  
TLV245x PACKAGE PINOUTS  
TLV2450  
D OR P PACKAGE  
(TOP VIEW)  
TLV2451  
DBV PACKAGE  
(TOP VIEW)  
TLV2450  
DBV PACKAGE  
(TOP VIEW)  
1
2
3
5
V
DD+  
V
OUT  
GND  
OUT  
GND  
1
2
6
5
NC  
IN−  
SHDN  
DD+  
1
2
3
4
8
7
6
5
V
+
DD  
SHDN  
IN−  
IN+  
OUT  
NC  
GND  
4
IN−  
IN+  
IN+  
3
4
TLV2452  
D, DGK, OR P PACKAGE  
(TOP VIEW)  
TLV2451  
D OR P PACKAGE  
(TOP VIEW)  
TLV2453  
DGS PACKAGE  
(TOP VIEW)  
1OUT  
1IN−  
1IN+  
GND  
V
+
DD  
1
2
3
4
8
7
6
5
NC  
IN−  
NC  
1
2
3
4
8
7
6
5
1
1OUT  
1IN−  
1IN+  
GND  
1SHDN  
V
2OUT  
2IN−  
2IN+  
2SHDN  
+
DD  
10  
2OUT  
2IN−  
2IN+  
V
+
2
3
4
5
DD  
9
8
7
6
IN+  
OUT  
NC  
GND  
TLV2453  
D OR N PACKAGE  
TLV2454  
D, N, OR PW PACKAGE  
TLV2455  
D, N, OR PW PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
(TOP VIEW)  
1OUT  
V
+
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
DD  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
4IN+  
GND  
3IN+  
3IN−  
3OUT  
1IN−  
1IN+  
2OUT  
2IN−  
2IN+  
NC  
4IN+  
GND  
NC  
V
+
GND  
V
+
DD  
DD  
2IN+  
2IN−  
3IN+  
2IN+  
2IN−  
1SHDN  
NC  
2SHDN  
NC  
3IN−  
8
2OUT  
3OUT  
3/4SHDN  
8
2OUT  
1/2SHDN  
NC − No internal connection  
(1) SOT−23 may or may not be indicated  
TYPICAL PIN 1 INDICATORS  
Pin 1  
Printed or  
Molded Dot  
Pin 1  
Pin 1  
Pin 1  
Stripe  
Bevel Edges  
Molded ”U” Shape  
3
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢋ  
ꢐꢗ ꢚ ꢕꢋꢀ ꢎ ꢐꢖ ꢋ ꢁ ꢋꢍ ꢗꢁ ꢎ ꢌꢎ ꢚ ꢕꢛ ꢜ ꢎ ꢀꢓ ꢛ ꢓꢘꢀ ꢝꢐ ꢜ ꢖ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Differential input voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DD  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
ID  
DD  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE: All voltage values, except differential voltages, are with respect to GND.  
DISSIPATION RATING TABLE  
θ
θ
T 25°C  
A
POWER RATING  
JC  
JA  
PACKAGE  
(°C/W)  
(°C/W)  
D (8)  
38.3  
176  
710 mW  
D (14)  
D (16)  
26.9  
25.7  
55  
122.3  
114.7  
324.1  
294.3  
259.9  
1022 mW  
1090 mW  
385 mW  
425 mW  
481 mW  
DBV (5)  
DBV (6)  
DGK (8)  
55  
54.2  
DGS (10)  
N (14, 16)  
P (8)  
54.1  
32  
257.7  
78  
485 mW  
1600 mW  
1200 mW  
720 mW  
774 mW  
41  
104  
PW (14)  
PW (16)  
29.3  
28.7  
173.6  
161.4  
recommended operating conditions  
MIN  
2.7  
1.35  
0
MAX  
UNIT  
Single supply  
6
3
Supply voltage, V  
DD  
V
V
Split supply  
Common-mode input voltage range, V  
ICR  
V
DD  
70  
C-suffix  
I-suffix  
0
Operating free-air temperature, T  
°C  
A
40  
2
125  
V
IH  
IL  
V
V
V
V
= 5V  
= 3V  
0.8  
0.5  
Shutdown on/off voltage level  
DD  
V
DD  
Relative to voltage on the GND terminal of the device.  
4
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢊ ꢋ  
ꢌꢋ  
ꢁꢏ  
ꢐ ꢗꢚꢕ ꢋꢀ ꢎꢐ ꢖꢋꢁ ꢋꢍ ꢗꢁ ꢎꢌ ꢎꢚ ꢕꢛ ꢜ ꢎꢀ ꢓ ꢛꢓꢘ ꢀꢝ ꢐ ꢜꢖ  
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
electrical characteristics at specified free-air temperature, V  
= 3 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1500  
2000  
1000  
1300  
T
A
UNIT  
25°C  
Full range  
25°C  
300  
TLV245x  
V
IO  
Input offset voltage  
µV  
300  
TLV245xA  
Full range  
Temperature coefficient of input  
offset voltage  
V
V
=
1.5 V  
V
R
= 0,  
= 50 Ω  
DD  
O
S
α
0.3  
0.3  
µV/°C  
nA  
nA  
V
VIO  
= 0,  
IC  
25°C  
Full range  
25°C  
4.5  
5.5  
5
I
IO  
Input offset current  
0.9  
2.95  
0.09  
12  
I
IB  
Input bias current  
Full range  
25°C  
7
2.85  
2.83  
V
High-level output voltage  
Low-level output voltage  
V
V
= 1.5 V,  
= 1.5 V,  
I
I
= 500 µA  
= 500 µA  
OH  
OL  
IC  
OH  
Full range  
25°C  
0.16  
0.2  
V
V
IC  
OL  
Full range  
25°C  
4
3
2
1
Sourcing  
Sinking  
Full range  
25°C  
I
I
Short-circuit output current  
Output current  
mA  
mA  
OS  
7
Full range  
25°C  
V
= 0.5 V from rail  
= 1 V,  
O(PP)  
4
O
O
25°C  
96  
91  
110  
Large-signal differential voltage  
amplification  
A
VD  
V
dB  
R
= 10 kΩ  
L
Full range  
25°C  
9
10  
r
Differential input resistance  
i(d)  
Common-mode input  
capacitance  
C
f = 10 kHz  
f = 10 kHz,  
25°C  
4.5  
pF  
IC  
z
Closed-loop output impedance  
A
= 10  
25°C  
25°C  
80  
80  
o
V
70  
66  
76  
74  
88  
84  
dB  
dB  
V
R
= 0 to 3 V,  
= 50 Ω  
IC  
S
CMRR  
Common-mode rejection ratio  
TLV245xC  
Full range  
25°C  
89  
106  
23  
V
= 2.7 V to 6 V,  
V
IC  
= V  
/2,  
/2,  
DD  
DD  
No load  
Full range  
25°C  
Supply voltage rejection ratio  
k
dB  
SVR  
(V  
DD  
/V )  
IO  
V
= 3 V to 5 V,  
V
IC  
= V  
DD  
No load  
DD  
Full range  
25°C  
35  
40  
45  
65  
70  
80  
TLV245xC  
TLV245xI  
Full range  
Full range  
25°C  
I
I
Supply current (per channel)  
V
= 1.5 V, No load  
O
µA  
DD  
12  
Supply current in shutdown  
mode (TLV2450, TLV2453,  
TLV2455) (per channel)  
TLV245xC  
TLV245xI  
Full range  
Full range  
SHDN = −V  
DD  
nA  
DD(SHDN)  
Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix.  
5
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢐꢗ ꢚ ꢕꢋꢀ ꢎ ꢐꢖ ꢋ ꢁ ꢋꢍ ꢗꢁ ꢎ ꢌꢎ ꢚ ꢕꢛ ꢜ ꢎ ꢀꢓ ꢛ ꢓꢘꢀ ꢝꢐ ꢜ ꢖ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
operating characteristics at specified free-air temperature, V  
= 3 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
0.02  
TYP  
MAX  
UNIT  
T
A
25°C  
Full range  
25°C  
0.11  
V
R
= 0.8 V,  
O(PP)  
= 10 kΩ  
C
= 150 pF,  
L
SR  
Slew rate at unity gain  
V/µs  
L
f = 100 Hz  
f = 1 kHz  
f = 1 kHz  
49  
51  
nV/Hz  
pA/Hz  
V
I
Equivalent input noise voltage  
Equivalent input noise current  
n
25°C  
25°C  
3.5  
n
A
= 1  
0.04%  
0.3%  
1.5%  
59  
V
V
R
= 1.5 V,  
O(PP)  
= 10 k,  
A
V
= 10  
= 100  
THD + N Total harmonic distortion plus noise  
25°C  
L
f = 1 kHz  
A
V
t
t
Amplifier turnon time  
Amplifier turnoff time  
Gain-bandwidth product  
25°C  
25°C  
25°C  
µs  
ns  
(on)  
A
V
= 5,  
R
= OPEN,  
L
Measured at 50% point  
836  
(off)  
200  
kHz  
f = 10 kHz,  
R
= 10 kΩ  
L
V
= 2 V,  
= 2 V,  
(STEP)PP  
0.1%  
26  
31  
26  
31  
A
= −1,  
V
C
R
= 10 pF,  
= 10 kΩ  
L
L
0.01%  
0.1%  
t
s
Settling time  
25°C  
µs  
V
(STEP)PP  
A
= −1,  
V
C
R
= 56 pF,  
= 10 kΩ  
L
L
0.01%  
φ
m
Phase margin  
Gain margin  
25°C  
25°C  
56°  
R
R
= 10 k,  
= 10 k,  
C
C
= 1000 pF  
L
L
L
L
7
dB  
= 1000 pF  
Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix.  
6
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢊ ꢋ  
ꢁꢏ  
ꢐ ꢗꢚꢕ ꢋꢀ ꢎꢐ ꢖꢋꢁ ꢋꢍ ꢗꢁ ꢎꢌ ꢎꢚ ꢕꢛ ꢜ ꢎꢀ ꢓ ꢛꢓꢘ ꢀꢝ ꢐ ꢜꢖ  
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1500  
2000  
1000  
1300  
T
A
UNIT  
25°C  
Full range  
25°C  
300  
TLV245x  
V
IO  
Input offset voltage  
µV  
300  
TLV245xA  
Full range  
Temperature coefficient of input  
offset voltage  
V
V
=
2.5 V  
V
R
= 0,  
= 50 Ω  
DD  
O
S
α
0.3  
0.3  
µV/°C  
nA  
nA  
V
VIO  
= 0,  
IC  
25°C  
Full range  
25°C  
4.5  
5.5  
5
I
IO  
Input offset current  
0.5  
4.97  
0.07  
32  
I
IB  
Input bias current  
Full range  
25°C  
7
4.87  
4.85  
V
High-level output voltage  
Low-level output voltage  
V
V
= 2.5 V,  
= 2.5 V,  
I
I
= 500 µA  
= 500 µA  
OH  
OL  
IC  
OH  
Full range  
25°C  
0.15  
0.16  
V
V
IC  
OL  
Full range  
25°C  
20  
18  
12  
10  
Sourcing  
Sinking  
Full range  
25°C  
I
I
Short-circuit output current  
Output current  
mA  
OS  
18  
Full range  
25°C  
V
= 0.5 V from rail  
= 3 V,  
O(PP)  
10  
mA  
dB  
O
O
25°C  
96  
91  
103  
Large-signal differential voltage  
amplification  
A
VD  
V
R
= 10 kΩ  
L
Full range  
25°C  
9
10  
r
Differential input resistance  
pF  
i(d)  
C
Common-mode input capacitance  
Closed-loop output impedance  
f = 10 kHz  
f = 10 kHz,  
25°C  
4.5  
45  
80  
IC  
z
A
V
= 10  
25°C  
o
25°C  
70  
68  
76  
74  
88  
84  
V
R
= 0 to 5 V,  
= 50 Ω  
IC  
CMRR  
Common-mode rejection ratio  
dB  
TLV245xC  
Full range  
25°C  
S
89  
106  
23  
V
= 2.7 V to 6 V,  
V
= V  
/2,  
/2,  
DD  
IC  
DD  
No load  
Full range  
25°C  
Supply voltage rejection ratio  
k
dB  
SVR  
(V  
DD  
/V )  
IO  
V
= 3 V to 5 V,  
V
IC  
= V  
DD  
No load  
DD  
Full range  
25°C  
42  
44  
46  
70  
70  
80  
TLV245xC  
TLV245xI  
Full range  
Full range  
25°C  
I
I
Supply current (per channel)  
V
= 2.5 V, No load  
µA  
DD  
O
16  
Supply current in shutdown mode  
(TLV2450, TLV2453, TLV2455) (per  
channel)  
TLV245xC  
TLV245xI  
Full range  
Full range  
SHDN = −V  
DD  
nA  
DD(SHDN)  
Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix.  
7
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢐꢗ ꢚ ꢕꢋꢀ ꢎ ꢐꢖ ꢋ ꢁ ꢋꢍ ꢗꢁ ꢎ ꢌꢎ ꢚ ꢕꢛ ꢜ ꢎ ꢀꢓ ꢛ ꢓꢘꢀ ꢝꢐ ꢜ ꢖ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
operating characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
0.02  
TYP  
MAX  
UNIT  
T
A
25°C  
Full range  
25°C  
0.11  
V
R
= 2 V,  
O(PP)  
= 10 kΩ  
C
= 150 pF,  
L
SR  
Slew rate at unity gain  
V/µs  
L
f = 100 Hz  
f = 1 kHz  
f = 1 kHz  
49  
52  
nV/Hz  
pA/Hz  
V
I
Equivalent input noise voltage  
Equivalent input noise current  
n
25°C  
25°C  
3.5  
n
A
= 1  
0.02%  
0.18%  
0.9%  
59  
V
V
R
= 3 V,  
O(PP)  
= 10 k,  
A
V
= 10  
= 100  
THD + N Total harmonic distortion plus noise  
25°C  
L
f = 1 kHz  
A
V
t
t
Amplifier turnon time  
Amplifier turnoff time  
Gain-bandwidth product  
25°C  
25°C  
25°C  
µs  
ns  
(on)  
A
V
= 5,  
R
= OPEN,  
L
Measured at 50% point  
836  
(off)  
220  
kHz  
f = 10 kHz,  
R
= 10 kΩ  
L
V
= 2 V,  
= 2 V,  
(STEP)PP  
0.1%  
24  
30  
25  
30  
A
= −1,  
V
C
R
= 10 pF,  
= 10 kΩ  
L
L
0.01%  
0.1%  
t
s
Settling time  
25°C  
µs  
V
(STEP)PP  
A
= −1,  
V
C
R
= 56 pF,  
= 10 kΩ  
L
L
0.01%  
φ
m
Phase margin  
Gain margin  
25°C  
25°C  
56°  
R
R
= 10 k,  
= 10 k,  
C
C
= 1000 pF  
L
L
L
L
7
dB  
= 1000 pF  
Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix.  
8
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢊ ꢋ  
ꢌꢋ  
ꢐ ꢗꢚꢕ ꢋꢀ ꢎꢐ ꢖꢋꢁ ꢋꢍ ꢗꢁ ꢎꢌ ꢎꢚ ꢕꢛ ꢜ ꢎꢀ ꢓ ꢛꢓꢘ ꢀꢝ ꢐ ꢜꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒ ꢓꢔ ꢕꢋꢎ ꢁ ꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀꢙ ꢐ ꢘ ꢀꢗ ꢘꢀ  
µ
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
Input offset voltage  
Input offset current  
vs Common-mode input voltage  
1, 2  
IO  
vs Common-mode input voltage  
vs Free-air temperature  
3, 4  
7, 8  
I
IO  
IB  
vs Common-mode input voltage  
vs Free-air temperature  
5, 6  
7, 8  
I
Input bias current  
A
Differential voltage amplification  
Phase  
vs Frequency  
9, 10  
9, 10  
11, 13  
12, 14  
15, 16  
17  
VD  
vs Frequency  
V
V
Low-level output voltage  
High-level output voltage  
Output impedance  
vs Low-level output current  
vs High-level output current  
vs Frequency  
OL  
OH  
o
Z
CMRR  
PSRR  
Common-mode rejection ratio  
Power supply rejection ratio  
Supply current  
vs Frequency  
vs Frequency  
18  
I
I
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
19  
DD  
Supply current  
20  
DD  
V
n
Equivalent input noise voltage  
Total harmonic distortion plus noise  
Phase margin  
21  
THD + N  
vs Frequency  
22, 23  
24  
φ
m
vs Load capacitance  
vs Supply voltage  
Gain-bandwidth product  
25  
vs Supply voltage  
vs Free-air temperature  
26  
27  
SR  
Slew rate  
V
Maximum peak-to-peak output voltage  
Crosstalk  
vs Frequency  
vs Frequency  
vs Time  
28  
29, 30  
31, 33  
32, 34  
35  
O(PP)  
Small-signal follower pulse response  
Large-signal follower pulse response  
Shutdown on supply current  
Shutdown off supply current  
Shutdown supply current  
Shutdown supply current  
Shutdown pulse  
vs Time  
vs Time  
vs Time  
36  
vs Free-air temperature  
vs Time  
37  
38 − 41  
38 − 41  
42, 43  
44, 45  
46  
vs Time  
Shutdown off pulse response  
Shutdown on pulse response  
Shutdown reverse isolation  
Shutdown forward isolation  
vs Time  
vs Time  
vs Frequency  
vs Frequency  
47  
9
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢋ  
ꢐꢗ ꢚ ꢕꢋꢀ ꢎ ꢐꢖ ꢋ ꢁ ꢋꢍ ꢗꢁ ꢎ ꢌꢎ ꢚ ꢕꢛ ꢜ ꢎ ꢀꢓ ꢛ ꢓꢘꢀ ꢝꢐ ꢜ ꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒꢓ ꢔ ꢕꢋ ꢎ ꢁꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀ ꢙꢐ ꢘꢀ ꢗꢘ ꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
200  
150  
100  
50  
100  
80  
V
T
A
= 3 V  
DD  
= 25°C  
V
= 5 V  
DD  
T = 25°C  
A
60  
40  
20  
0
0
−20  
−40  
−50  
−100  
−150  
−200  
−60  
−80  
−100  
−0.5  
−0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5 5.5  
V
IC  
− Common-Mode Input Voltage − V  
V
IC  
− Common-Mode Input Voltage − V  
Figure 1  
Figure 2  
INPUT OFFSET CURRENT  
vs  
COMMON-MODE INPUT VOLTAGE  
INPUT OFFSET CURRENT  
vs  
COMMON-MODE INPUT VOLTAGE  
60  
40  
20  
0
20  
10  
V
T
A
= 3 V  
= 25°C  
DD  
V
T
A
= 5 V  
= 25°C  
DD  
0
−10  
−20  
−30  
−40  
−20  
−40  
−60  
−50  
−60  
0
0.5  
1
0
0.5  
1
1.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
V
IC  
− Common-Mode Input Voltage − V  
V
IC  
− Common-Mode Input Voltage − V  
Figure 3  
Figure 4  
10  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢊ ꢋ  
ꢌꢋ  
ꢁꢏ  
ꢐ ꢗꢚꢕ ꢋꢀ ꢎꢐ ꢖꢋꢁ ꢋꢍ ꢗꢁ ꢎꢌ ꢎꢚ ꢕꢛ ꢜ ꢎꢀ ꢓ ꢛꢓꢘ ꢀꢝ ꢐ ꢜꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒ ꢓꢔ ꢕꢋꢎ ꢁ ꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀꢙ ꢐ ꢘ ꢀꢗ ꢘꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
INPUT BIAS CURRENT  
vs  
COMMON-MODE INPUT VOLTAGE  
INPUT BIAS CURRENT  
vs  
COMMON-MODE INPUT VOLTAGE  
3
3
2
V
T
= 5 V  
DD  
= 25°C  
V
T
A
= 3 V  
= 25°C  
DD  
A
2
1
1
0
0
−1  
−1  
−2  
−2  
−3  
−4  
−3  
−4  
−0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5 5.5  
−0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
V
− Common-Mode Input Voltage − V  
IC  
V
− Common-Mode Input Voltage − V  
IC  
Figure 5  
Figure 6  
INPUT OFFSET CURRENT  
AND INPUT BIAS CURRENT  
vs  
INPUT OFFSET CURRENT  
AND INPUT BIAS CURRENT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
V
= 3 V  
DD  
V
= 5 V  
DD  
I
IB  
0.6  
0.5  
0.4  
I
IB  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.3  
0.2  
I
IO  
I
IO  
0.1  
0
0.1  
0
−0.1  
−0.1  
−55 −35 −15  
5
25  
45 65  
85 105 125  
−55 −35 −15  
5
25  
45 65  
85 105 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 7  
Figure 8  
11  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢋ  
ꢐꢗ ꢚ ꢕꢋꢀ ꢎ ꢐꢖ ꢋ ꢁ ꢋꢍ ꢗꢁ ꢎ ꢌꢎ ꢚ ꢕꢛ ꢜ ꢎ ꢀꢓ ꢛ ꢓꢘꢀ ꢝꢐ ꢜ ꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒꢓ ꢔ ꢕꢋ ꢎ ꢁꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀ ꢙꢐ ꢘꢀ ꢗꢘ ꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE  
vs  
FREQUENCY  
120  
V
T
A
= 3 V  
= 25°C  
DD  
90  
60  
120  
60  
Gain  
30  
0
0
−60  
−120  
Phase  
−30  
−60  
−180  
100  
1k  
10k  
100k  
1M  
f − Frequency − Hz  
Figure 9  
DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE  
vs  
FREQUENCY  
120  
V
T
A
=
5 V  
DC  
DD  
= 25°C  
90  
60  
120  
60  
Gain  
30  
0
0
−60  
−120  
Phase  
−30  
−60  
−180  
100  
1k  
10k  
100k  
1M  
f − Frequency − Hz  
Figure 10  
12  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢊ ꢋ  
ꢌꢋ  
ꢁꢏ  
ꢐ ꢗꢚꢕ ꢋꢀ ꢎꢐ ꢖꢋꢁ ꢋꢍ ꢗꢁ ꢎꢌ ꢎꢚ ꢕꢛ ꢜ ꢎꢀ ꢓ ꢛꢓꢘ ꢀꢝ ꢐ ꢜꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒ ꢓꢔ ꢕꢋꢎ ꢁ ꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀꢙ ꢐ ꢘ ꢀꢗ ꢘꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
3
2.5  
2
3
2.5  
2
V
DD  
= 3 V  
V
= 3 V  
DD  
T
= −40°C  
A
T
= 25°C  
A
T
= 25°C  
A
1.5  
1
1.5  
1
T
= 85°C  
A
T
= 85°C  
A
T
A
= 125°C  
T
A
= −40°C  
T
A
= 125°C  
0.5  
0
0.5  
0
0
1
2
3
4
5
6
7
8
9
10  
0
2.5  
OH  
5
7.5  
10  
12.5  
15  
I
− Low-Level Output Current − mA  
I
− High-Level Output Current − mA  
OL  
Figure 11  
Figure 12  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
5
5
V
= 5 V  
V
= 5 V  
DD  
DD  
4.5  
4
4.5  
T
A
= −40°C  
4
3.5  
3
T
A
= 25°C  
3.5  
3
T
= 85°C  
A
2.5  
T
= 125°C  
T = 85°C  
A
2.5  
2
A
T
A
= 125°C  
2
1.5  
1
T
= 25°C  
A
1.5  
T
A
= −40°C  
1
0.5  
0
0.5  
0
0
5
10  
15  
20  
25  
0
5
I
10  
15  
20  
25  
30  
35  
40  
− High-Level Output Current − mA  
I
− Low-Level Output Current − mA  
OH  
OL  
Figure 13  
Figure 14  
13  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢋ  
ꢐꢗ ꢚ ꢕꢋꢀ ꢎ ꢐꢖ ꢋ ꢁ ꢋꢍ ꢗꢁ ꢎ ꢌꢎ ꢚ ꢕꢛ ꢜ ꢎ ꢀꢓ ꢛ ꢓꢘꢀ ꢝꢐ ꢜ ꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒꢓ ꢔ ꢕꢋ ꢎ ꢁꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀ ꢙꢐ ꢘꢀ ꢗꢘ ꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
OUTPUT IMPEDANCE  
OUTPUT IMPEDANCE  
vs  
vs  
FREQUENCY  
FREQUENCY  
10k  
10k  
1k  
V
T
A
= 5 V  
= 25°C  
DD  
V
T
A
= 3 V  
DD  
= 25°C  
1k  
100  
10  
A
V
= 100  
A
V
= 100  
100  
10  
1
A
= 10  
V
A
V
= 1  
A
= 10  
V
A
= 1  
V
0.1  
1
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 15  
Figure 16  
COMMON-MODE REJECTION RATIO  
vs  
FREQUENCY  
120  
100  
V
T
A
= 3 V or 5 V  
= 25°C  
DD  
80  
60  
40  
20  
0
10  
100  
1k  
10k  
100k  
1M  
f − Frequency − Hz  
Figure 17  
14  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢊ ꢋ  
ꢌꢋ  
ꢁꢏ  
ꢐ ꢗꢚꢕ ꢋꢀ ꢎꢐ ꢖꢋꢁ ꢋꢍ ꢗꢁ ꢎꢌ ꢎꢚ ꢕꢛ ꢜ ꢎꢀ ꢓ ꢛꢓꢘ ꢀꢝ ꢐ ꢜꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒ ꢓꢔ ꢕꢋꢎ ꢁ ꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀꢙ ꢐ ꢘ ꢀꢗ ꢘꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
POWER SUPPLY REJECTION RATIO  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
vs  
FREQUENCY  
100  
90  
40  
35  
30  
25  
A
= 1  
V
V
T
A
= 3 V or 5 V  
SHDN = V  
Per Channel  
DD  
= 25°C  
DD  
T
= 125°C  
= 85°C  
A
80  
T
A
70  
60  
50  
40  
30  
20  
PSRR +  
T
A
= 25°C  
T
A
= −40°C  
20  
15  
10  
PSRR −  
10  
0
5
0
10  
100  
1k  
10k  
100k  
1M  
2.5  
3
3.5  
4
4.5  
5
5.5  
f − Frequency − Hz  
V
− Supply Voltage − V  
DD  
Figure 18  
Figure 19  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
FREQUENCY  
30  
25  
20  
100  
V
DD  
= 5 V  
V
DD  
= 3 V  
15  
10  
5
10  
V = V  
DD  
/2  
I
V
T
A
= 3 V or 5 V  
DD  
= 25°C  
SHDN = V  
DD  
per channel  
0
1
10  
−55 −35 −15  
5
25 45  
65  
85 105 125  
100  
1k  
10k  
100k  
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 20  
Figure 21  
15  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢋ  
ꢐꢗ ꢚ ꢕꢋꢀ ꢎ ꢐꢖ ꢋ ꢁ ꢋꢍ ꢗꢁ ꢎ ꢌꢎ ꢚ ꢕꢛ ꢜ ꢎ ꢀꢓ ꢛ ꢓꢘꢀ ꢝꢐ ꢜ ꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒꢓ ꢔ ꢕꢋ ꢎ ꢁꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀ ꢙꢐ ꢘꢀ ꢗꢘ ꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
100%  
10%  
1%  
100%  
V
V
R
= 3 V  
DD  
O(PP)  
= 10 kΩ  
V
V
R
= 5 V  
DD  
O(PP)  
= 10 kΩ  
= 1.5 V  
= 3 V  
L
L
10%  
1%  
T
A
= 25°C  
T
A
= 25°C  
A
V
= 10  
A
V
= 100  
A
V
= 100  
0.1%  
0.1%  
A
V
= 1  
A
V
= 10  
0.01%  
0.010%  
0.001%  
A
V
= 1  
0.001%  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
f − Frequency − MHz  
f − Frequency − Hz  
Figure 22  
Figure 23  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
GAIN-BANDWIDTH PRODUCT  
vs  
SUPPLY VOLTAGE  
°
°
°
100  
90  
280  
270  
260  
f = 1 kHz  
R
= 500Ω  
NULL  
R
T
= 10 kΩ  
= 25°C  
L
80  
A
R
= 200Ω  
°
°
250  
240  
230  
NULL  
70  
60  
R
= 100Ω  
NULL  
°
°
50  
40  
R
= 50Ω  
NULL  
220  
210  
°
°
30  
20  
R
= 10Ω  
NULL  
200  
190  
180  
V
R
T
A
= 5 V  
= 10 kΩ  
= 25°C  
DD  
L
R
= 0Ω  
NULL  
°
°
10  
0
100  
1k  
10k  
100k  
2.5  
3
3.5  
4
4.5  
5
5.5  
C
− Load Capacitance − pF  
L
V
DD  
− Supply Voltage − V  
Figure 24  
Figure 25  
16  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢊ ꢋ  
ꢌꢋ  
ꢁꢏ  
ꢐ ꢗꢚꢕ ꢋꢀ ꢎꢐ ꢖꢋꢁ ꢋꢍ ꢗꢁ ꢎꢌ ꢎꢚ ꢕꢛ ꢜ ꢎꢀ ꢓ ꢛꢓꢘ ꢀꢝ ꢐ ꢜꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒ ꢓꢔ ꢕꢋꢎ ꢁ ꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀꢙ ꢐ ꢘ ꢀꢗ ꢘꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
SLEW RATE  
vs  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
0.12  
0.11  
0.1  
0.16  
0.14  
0.12  
0.1  
f = 10 kHz  
f = 10 kHz  
R
C
A
= 10 kΩ  
T
= 25°C  
= 10 kΩ  
= 160 pF  
= 1  
L
L
V
A
= 160 pF  
R
C
A
V
L
L
= 1  
V
= 5 V  
DD  
V
DD  
= 3 V  
0.08  
0.06  
0.09  
2.5  
3
3.5  
4
4.5  
5
−40 −20  
0
20  
40 60  
80 100 120 140  
V
DD  
− Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 26  
Figure 27  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
FREQUENCY  
5
4.5  
4
V
= 5 V  
O(PP)  
3.5  
3
V
= 3 V  
O(PP)  
2.5  
2
1.5  
1
THD + N < 5%  
A
R
= 5  
= 20 kΩ  
= 25°C  
V
L
T
A
0.5  
0
100  
1k  
10k  
100k  
f − Frequency − Hz  
Figure 28  
17  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢋ  
ꢐꢗ ꢚ ꢕꢋꢀ ꢎ ꢐꢖ ꢋ ꢁ ꢋꢍ ꢗꢁ ꢎ ꢌꢎ ꢚ ꢕꢛ ꢜ ꢎ ꢀꢓ ꢛ ꢓꢘꢀ ꢝꢐ ꢜ ꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒꢓ ꢔ ꢕꢋ ꢎ ꢁꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀ ꢙꢐ ꢘꢀ ꢗꢘ ꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
CROSSTALK  
vs  
CROSSTALK  
vs  
FREQUENCY  
FREQUENCY  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−20  
V
= 3 V  
V
= 5 V  
DD  
= 1  
DD  
A = 1  
V
L
A
−30  
−40  
−50  
−60  
−70  
−80  
−90  
V
R
= 10 kΩ  
R = 10 kΩ  
All Channels  
L
All Channels  
−100  
110  
−100  
110  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
f − Frequency − Hz  
Figure 29  
f − Frequency − Hz  
Figure 30  
SMALL-SIGNAL FOLLOWER PULSE RESPONSE  
vs  
TIME  
0.3  
0.15  
0.1  
0.25  
0.2  
0.15  
0.1  
0.05  
0
V
I
0.05  
0
−0.05  
−0.1  
−0.15  
V
O
−0.2  
V
R
C
= 3 V  
= 10 kΩ  
= 160 pF  
= 1  
DD  
−0.25  
L
L
−0.3  
−0.35  
−0.4  
A
V
A
−0.05  
−0.1  
T
= 25°C  
f = 45 kHz  
−2  
0
2
4
6
8
10 12 14  
16  
t − Time − µs  
Figure 31  
18  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢊ ꢋ  
ꢌꢋ  
ꢁꢏ  
ꢐ ꢗꢚꢕ ꢋꢀ ꢎꢐ ꢖꢋꢁ ꢋꢍ ꢗꢁ ꢎꢌ ꢎꢚ ꢕꢛ ꢜ ꢎꢀ ꢓ ꢛꢓꢘ ꢀꢝ ꢐ ꢜꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒ ꢓꢔ ꢕꢋꢎ ꢁ ꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀꢙ ꢐ ꢘ ꢀꢗ ꢘꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL FOLLOWER PULSE RESPONSE  
vs  
TIME  
5
4
2
1
V
= 3 V  
DD  
= 1  
A
V
R
C
= 10 kΩ  
= 160 pF  
L
L
3
2
0
f = 10 kHz  
T
A
= 25°C  
V
I
−1  
1
0
−2  
−3  
−4  
−5  
V
O
−1  
−2  
−20  
0
20  
40  
60  
80  
100  
t − Time − µs  
Figure 32  
SMALL-SIGNAL FOLLOWER PULSE RESPONSE  
vs  
TIME  
80  
240  
40  
0
200  
160  
V
I
−40  
−80  
120  
80  
V
= 5 V  
DD  
= 1  
A
V
R
C
= 10 kΩ  
= 160 pF  
= 25°C  
L
L
−120  
−160  
40  
0
T
A
V
O
−200  
−240  
−40  
−80  
−5  
0
5
10  
15  
20  
t − Time − µs  
Figure 33  
19  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢋ  
ꢐꢗ ꢚ ꢕꢋꢀ ꢎ ꢐꢖ ꢋ ꢁ ꢋꢍ ꢗꢁ ꢎ ꢌꢎ ꢚ ꢕꢛ ꢜ ꢎ ꢀꢓ ꢛ ꢓꢘꢀ ꢝꢐ ꢜ ꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒꢓ ꢔ ꢕꢋ ꢎ ꢁꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀ ꢙꢐ ꢘꢀ ꢗꢘ ꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL FOLLOWER PULSE RESPONSE  
vs  
TIME  
10  
2
1
V
R
C
= 5 V  
= 10 kΩ  
= 160 pF  
= 1  
DD  
L
L
V
I
8
6
0
A
V
A
T
= 25°C  
−1  
f = 10 kHz  
−2  
−3  
−4  
−5  
4
2
0
V
O
−6  
−7  
−8  
−9  
−2  
−4  
−10  
90 100  
80  
−10  
0
10 20 30 40 50 60 70  
t − Time − µs  
Figure 34  
SHUTDOWN ON SUPPLY CURRENT  
vs  
TIME  
10  
180  
Shutdown Control Signal  
5
160  
140  
120  
100  
0
−5  
−10  
−15  
80  
60  
40  
20  
−20  
−25  
Supply Current − I  
DD  
−30  
−35  
−40  
0
−20  
−4  
−2  
0
2
4
6
8
10  
t − Time − µS  
Figure 35  
20  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢊ ꢋ  
ꢌꢋ  
ꢁꢏ  
ꢐ ꢗꢚꢕ ꢋꢀ ꢎꢐ ꢖꢋꢁ ꢋꢍ ꢗꢁ ꢎꢌ ꢎꢚ ꢕꢛ ꢜ ꢎꢀ ꢓ ꢛꢓꢘ ꢀꢝ ꢐ ꢜꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒ ꢓꢔ ꢕꢋꢎ ꢁ ꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀꢙ ꢐ ꢘ ꢀꢗ ꢘꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
SHUTDOWN OFF SUPPLY CURRENT  
vs  
TIME  
10  
5
50  
40  
Shutdown Control Signal  
0
30  
20  
10  
−5  
−10  
Supply Current − I  
DD  
−15  
−20  
0
−10  
−20 −10  
0
10 20 30 40 50 60 70 80  
t − Time − µS  
Figure 36  
SHUTDOWN SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
1.6  
Shutdown Mode  
A
R
= 1  
= Open  
V
L
1.4  
1.2  
1
V = V /2 V  
I DD  
V
DD  
= 5 V  
0.8  
0.6  
0.4  
V
DD  
= 3 V  
0.2  
0
−55 −35 −15  
5
25  
45  
65  
85 105 125  
T
A
− Free-Air Temperature − °C  
Figure 37  
21  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢋ  
ꢐꢗ ꢚ ꢕꢋꢀ ꢎ ꢐꢖ ꢋ ꢁ ꢋꢍ ꢗꢁ ꢎ ꢌꢎ ꢚ ꢕꢛ ꢜ ꢎ ꢀꢓ ꢛ ꢓꢘꢀ ꢝꢐ ꢜ ꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒꢓ ꢔ ꢕꢋ ꢎ ꢁꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀ ꢙꢐ ꢘꢀ ꢗꢘ ꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE  
vs  
TIME  
5
V
= 3 V  
DD  
= 1  
4
SD Pulse  
A
V
V = 1.5 V  
3
2
1
0
I
R
C
= 10 kΩ  
= 160 pF and 10 pF  
= 25°C  
L
L
T
A
30  
25  
I
DD(SD)  
20  
15  
10  
5
0
−5 −3 −1  
1
3
5
7
9
11 13 15  
t − Time − µs  
Figure 38  
SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE  
vs  
TIME  
5
4
3
V
= 3 V  
DD  
= 1  
2
1
0
A
V
V = 1.5 V  
I
SD Pulse  
R
C
= 10 kΩ  
= 160 pF and 10 pF  
= 25°C  
L
L
T
A
30  
25  
20  
15  
10  
5
I
DD(SD)  
0
−100  
−50  
0
50  
100  
150  
200  
t − Time − µs  
Figure 39  
22  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢊ ꢋ  
ꢌꢋ  
ꢁꢏ  
ꢐ ꢗꢚꢕ ꢋꢀ ꢎꢐ ꢖꢋꢁ ꢋꢍ ꢗꢁ ꢎꢌ ꢎꢚ ꢕꢛ ꢜ ꢎꢀ ꢓ ꢛꢓꢘ ꢀꢝ ꢐ ꢜꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒ ꢓꢔ ꢕꢋꢎ ꢁ ꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀꢙ ꢐ ꢘ ꢀꢗ ꢘꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE  
vs  
TIME  
5
V
= 5 V  
DD  
= 1  
4
3
2
1
0
A
V
V = 2.5 V  
I
R
C
= 10 kΩ  
= 160 pF and 10 pF  
= 25°C  
L
L
SD Pulse  
T
A
25  
20  
15  
10  
5
0
I
DD(SD)  
−100  
−50  
0
50  
100  
150  
200  
t − Time − µs  
Figure 40  
SHUTDOWN SUPPLY CURRENT AND SHUTDOWN PULSE  
vs  
TIME  
5
V
= 5 V  
DD  
= 1  
SD Pulse  
4
3
2
1
0
A
V
V = 2.5 V  
I
R
C
= 10 kΩ  
= 160 pF and 10 pF  
= 25°C  
L
L
T
A
30  
I
DD(SD)  
25  
20  
15  
10  
5
0
−10  
−5  
0
5
10  
15  
t − Time − µs  
Figure 41  
23  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢋ  
ꢐꢗ ꢚ ꢕꢋꢀ ꢎ ꢐꢖ ꢋ ꢁ ꢋꢍ ꢗꢁ ꢎ ꢌꢎ ꢚ ꢕꢛ ꢜ ꢎ ꢀꢓ ꢛ ꢓꢘꢀ ꢝꢐ ꢜ ꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒꢓ ꢔ ꢕꢋ ꢎ ꢁꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀ ꢙꢐ ꢘꢀ ꢗꢘ ꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
SHUTDOWN OFF PULSE RESPONSE  
SHUTDOWN OFF PULSE RESPONSE  
vs  
TIME  
vs  
TIME  
4
3
2
1
6
5
4
3
2
1
SD Pulse  
SD Pulse  
V
= 3 V  
DD  
= 1  
A
V
V = 2.5 V  
I
V
Channel 1  
R
C
= 10 kΩ  
= 160 pF and 8 pF  
= 25°C  
O
L
L
T
A
V
A
V
I
R
C
T
A
= 5 V  
DD  
= 1  
V = 4 V  
0
V
O
Channel 1  
= 10 kΩ  
= 160 pF and 8 pF  
= 25°C  
L
L
0
−1  
−10 10  
−1  
−20  
30  
50  
70  
90  
110 130 150  
0
20  
40  
60  
80  
100 120 140  
t − Time − µs  
t − Time − µs  
Figure 42  
Figure 43  
SHUTDOWN ON PULSE RESPONSE  
SHUTDOWN ON PULSE RESPONSE  
vs  
vs  
TIME  
TIME  
4
3
2
1
6
5
4
3
2
1
V
= 3 V  
V
= 5 V  
DD  
= 1  
DD  
A = 1  
V
SD Pulse  
A
V
SD Pulse  
V = 2.5 V  
V = 4 V  
I
I
R
= 10 kΩ  
= 25°C  
R
= 10 kΩ  
T = 25°C  
A
L
L
T
A
C = 160 pF  
L
C
= 160 pF  
L
C
= 8 pF  
L
C
= 8 pF  
L
0
0
−1  
−1  
−2  
−1  
0
1
2
3
4
5
6
−2  
0
2
4
6
8
10  
12  
t − Time − µs  
t − Time − µs  
Figure 44  
Figure 45  
24  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢊ ꢋ  
ꢌꢋ  
ꢁꢏ  
ꢐ ꢗꢚꢕ ꢋꢀ ꢎꢐ ꢖꢋꢁ ꢋꢍ ꢗꢁ ꢎꢌ ꢎꢚ ꢕꢛ ꢜ ꢎꢀ ꢓ ꢛꢓꢘ ꢀꢝ ꢐ ꢜꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒ ꢓꢔ ꢕꢋꢎ ꢁ ꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀꢙ ꢐ ꢘ ꢀꢗ ꢘꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
SHUTDOWN REVERSE ISOLATION  
SHUTDOWN FORWARD ISOLATION  
vs  
vs  
FREQUENCY  
FREQUENCY  
140  
120  
100  
80  
140  
120  
100  
V
V
= 3 V and 5 V  
V
V
= 3 V and 5 V  
DD  
DD  
= 0.1, 1.5, 2.5 V  
= 0.1, 1.5, 2.5 V  
I(PP)  
I(PP)  
R
C
T
= 10 kΩ  
= 28 pF  
= 25°C  
R
C
T
= 10 kΩ  
= 28 pF  
= 25°C  
L
L
L
L
A
A
80  
60  
60  
40  
40  
20  
0
20  
0
10  
100  
1 k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 47  
Figure 46  
PARAMETER MEASUREMENT INFORMATION  
R
_
+
null  
R
L
C
L
Figure 48  
25  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢋ  
ꢐꢗ ꢚ ꢕꢋꢀ ꢎ ꢐꢖ ꢋ ꢁ ꢋꢍ ꢗꢁ ꢎ ꢌꢎ ꢚ ꢕꢛ ꢜ ꢎ ꢀꢓ ꢛ ꢓꢘꢀ ꢝꢐ ꢜ ꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒꢓ ꢔ ꢕꢋ ꢎ ꢁꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀ ꢙꢐ ꢘꢀ ꢗꢘ ꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
APPLICATION INFORMATION  
shutdown function  
Three members of the TLV245x family (TLV2450/3/5) have a shutdown terminal for conserving battery life in  
portable applications. When the shutdown terminal is pulled to the voltage level on the GND terminal of the  
device, the supply current is reduced to 16 nA/channel, the amplifier is disabled, and the outputs are placed in  
a high impedance mode. To enable the amplifier, the shutdown terminal must be pulled high. The shutdown  
terminal should never be left floating. The shutdown terminal threshold is always referenced to the GND terminal  
of the device. Therefore, when operating the device with split supply voltages (e.g. 2.5 V), the shutdown  
terminal needs to be pulled to V − (not system ground) to disable the operational amplifier.  
DD  
The amplifier’s output with a shutdown pulse is shown in Figures 42, 43, 44, and 45. The amplifier is powered  
with a single 5-V supply and configured as a noninverting configuration with a gain of 5. The amplifier turnon  
and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output  
waveform. The times for the single, dual, and quad are listed in the data tables.  
Figures 46 and 47 show the amplifier’s forward and reverse isolation in shutdown. The operational amplifier is  
powered by 1.35-V supplies and configured as a voltage follower (A = 1). The isolation performance is plotted  
V
across frequency using 0.1-V , 1.5-V , and 2.5-V input signals. During normal operation, the amplifier  
PP  
PP  
PP  
would not be able to handle a 2.5-V  
input signal with a supply voltage of 1.35 V since it exceeds the  
). However, this curve illustrates that the amplifier remains in shutdown  
PP  
ICR  
common-mode input voltage range (V  
even under a worst case scenario.  
driving a capacitive load  
When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the  
device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater  
than 10 pF, it is recommended that a resistor be placed in series (R  
) with the output of the amplifier, as  
NULL  
shown in Figure 49. A minimum value of 20 should work well for most applications.  
R
F
R
G
R
NULL  
+
Input  
Output  
LOAD  
C
Figure 49. Driving a Capacitive Load  
26  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢊ ꢋ  
ꢌꢋ  
ꢁꢏ  
ꢐ ꢗꢚꢕ ꢋꢀ ꢎꢐ ꢖꢋꢁ ꢋꢍ ꢗꢁ ꢎꢌ ꢎꢚ ꢕꢛ ꢜ ꢎꢀ ꢓ ꢛꢓꢘ ꢀꢝ ꢐ ꢜꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒ ꢓꢔ ꢕꢋꢎ ꢁ ꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀꢙ ꢐ ꢘ ꢀꢗ ꢘꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
APPLICATION INFORMATION  
offset voltage  
The output offset voltage, (V ) is the sum of the input offset voltage (V ) and both input bias currents (I ) times  
OO  
IO  
IB  
the corresponding gains. The following schematic and formula can be used to calculate the output offset  
voltage:  
R
F
I
R
R
IB−  
F
F
" ǒI  
Ǔ
" ǒI  
Ǔ
IB*  
R
V
+ V 1 ) ǒ Ǔ  
  R 1 ) ǒ Ǔ  
  R  
ǒ Ǔ ǒ Ǔ  
G
OO  
IO  
IB)  
S
F
R
R
G
G
+
+
V
I
V
O
R
S
I
IB+  
Figure 50. Output Offset Voltage Model  
general configurations  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often  
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier  
(see Figure 51).  
R
R
F
G
V
R
R
O
F
1
ǒ
Ǔ
+
ǒ
1 )  
Ǔ
V
1 ) sR1C1  
I
G
V
O
+
1
V
I
f
+
–3dB  
R1  
2pR1C1  
C1  
Figure 51. Single-Pole Low-Pass Filter  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.  
Failure to do this can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
+
–3dB  
2pRC  
C2  
R
F
1
R
=
G
R
F
2 −  
)
R
(
Q
G
Figure 52. 2-Pole Low-Pass Sallen-Key Filter  
27  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢋ  
ꢐꢗ ꢚ ꢕꢋꢀ ꢎ ꢐꢖ ꢋ ꢁ ꢋꢍ ꢗꢁ ꢎ ꢌꢎ ꢚ ꢕꢛ ꢜ ꢎ ꢀꢓ ꢛ ꢓꢘꢀ ꢝꢐ ꢜ ꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒꢓ ꢔ ꢕꢋ ꢎ ꢁꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀ ꢙꢐ ꢘꢀ ꢗꢘ ꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
APPLICATION INFORMATION  
general power dissipation considerations  
For a given θ , the maximum power dissipation is shown in Figure 53 and is calculated by the following formula:  
JA  
T
–T  
MAX  
A
P
+
ǒ Ǔ  
D
q
JA  
Where:  
P
= Maximum power dissipation of TLV245x IC (watts)  
= Absolute maximum junction temperature (150°C)  
= Free-ambient air temperature (°C)  
D
T
MAX  
T
A
θ
= θ + θ  
JA  
JC CA  
θ
θ
= Thermal coefficient from junction to case  
JC  
= Thermal coefficient from case to ambient air (°C/W)  
CA  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
2
T
= 150°C  
PDIP Package  
J
Low-K Test PCB  
1.75  
θ
= 104°C/W  
JA  
1.5  
1.25  
1
MSOP Package  
Low-K Test PCB  
SOIC Package  
Low-K Test PCB  
θ
= 260°C/W  
JA  
θ
= 176°C/W  
JA  
0.75  
0.5  
SOT-23 Package  
Low-K Test PCB  
0.25  
0
θ
= 324°C/W  
JA  
−5540 −25 −10  
5
20 35 50 65 80 95 110 125  
T
A
− Free-Air Temperature − °C  
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.  
Figure 53. Maximum Power Dissipation vs Free-Air Temperature  
28  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢊ ꢋ  
ꢌꢋ  
ꢁꢏ  
ꢐ ꢗꢚꢕ ꢋꢀ ꢎꢐ ꢖꢋꢁ ꢋꢍ ꢗꢁ ꢎꢌ ꢎꢚ ꢕꢛ ꢜ ꢎꢀ ꢓ ꢛꢓꢘ ꢀꢝ ꢐ ꢜꢖ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒ ꢓꢔ ꢕꢋꢎ ꢁ ꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀꢙ ꢐ ꢘ ꢀꢗ ꢘꢀ  
µ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts, the model generation software used  
with Microsim PSpice. The Boyle macromodel (see Note 1) and subcircuit in Figure 54 are generated using  
the TLV245x typical electrical and operating characteristics at T = 25°C. Using this information, output  
A
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 1: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
PSpice and Parts are trademarks of MicroSim Corporation.  
29  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢁꢏ  
µ  
ꢉ ꢋ ꢃ ꢃ ꢆ ꢑꢒꢓ ꢔ ꢕꢋ ꢎ ꢁꢑꢀꢐ ꢑꢕꢋꢎ ꢁ ꢎꢖ ꢗꢘꢀ ꢙꢐ ꢘꢀ ꢗꢘ ꢀ  
ꢁꢂ  
ꢐꢗ ꢚ ꢕꢋꢀ ꢎ ꢐꢖ ꢋ ꢁ ꢋꢍ ꢗꢁ ꢎ ꢌꢎ ꢚ ꢕꢛ ꢜ ꢎ ꢀꢓ ꢛ ꢓꢘꢀ ꢝꢐ ꢜ ꢖ  
SLOS218F − DECEMBER 1998 − REVISED JANUARY 2005  
APPLICATION INFORMATION  
3
99  
egnd  
V
DD+  
+
ree  
ro2  
cee  
fb  
rp  
rc1  
11  
rc2  
12  
c1  
7
+
1
2
c2  
vlim  
8
IN+  
IN−  
+
r2  
9
6
vc  
+
q1  
q2  
vb  
ga  
ro1  
gcm  
ioff  
53  
dp  
14  
13  
OUT  
re1  
re2  
dlp  
dln  
5
91  
90  
92  
10  
+
hlim  
+
iee  
dc  
vlp  
vln  
GND  
+
+ 54  
4
de  
ve  
* AMP_TLV2450−X operational amplifier ”macromodel” subcircuit  
IEE  
HLIM  
Q1  
10  
90  
11  
12  
6
4
dc  
938.61E−9  
* created using Parts release 8.0 on 10/12/98 at 11:06  
0
vlim 1K  
13 qx1  
14 qx2  
100.00E3  
65.557E3  
65.557E3  
10.367E3  
10.367E3  
213.08E6  
10  
* Parts is a MicroSim product.  
*
2
Q2  
1
* connections:  
noninverting input  
| inverting input  
R2  
9
*
*
*
*
*
RC1  
RC2  
RE1  
RE2  
REE  
RO1  
RO2  
RP  
3
11  
12  
10  
10  
99  
5
| | positive power supply  
| | | negative power supply  
| | | | output  
3
13  
14  
10  
8
| | | | |  
.subckt AMP_TLV2450−X 1 2 3 4 5  
*
7
99  
4
10  
C1  
11  
6
12  
7
99  
53  
5
91  
90  
3
0
99  
354.48E−15  
3
147.06  
dc 0  
C2  
7.5000E−12  
VB  
9
0
CEE  
DC  
10  
5
42.237E−15  
VC  
3
53  
4
dc .82  
dy  
VE  
54  
7
dc .82  
DE  
54  
90  
92  
4
99  
7
dy  
VLIM  
VLP  
VLN  
8
dc 0  
DLP  
DLN  
DP  
EGND  
FB  
dx  
91  
0
0
dc 38  
dx  
92  
dc 38  
dx  
.model  
.model dy  
dx  
D(Is=800.00E−18)  
poly(2) (3,0) (4,0) 0 .5 .5  
poly(5) vb vc ve vlp vln 0  
D(Is=800.00E−18 Rs=1m Cjo=10p)  
.model qx1 NPN(Is=800.00E−18 Bf=843.08)  
.model qx2 NPN(Is=800.0000E−18 Bf=843.08)  
.ends  
+ 207.31E6 −1E3 1E3 210E6 −210E6  
GA  
GCM  
6
0
0
6
11  
10  
12 15.254E−6  
99 48.237E−12  
Figure 54. Boyle Macromodel and Subcircuit  
30  
WWW.TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Nov-2005  
PACKAGING INFORMATION  
Orderable Device  
TLV2450AID  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
8
8
8
6
6
6
8
8
8
8
6
6
6
6
8
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2450AIDG4  
TLV2450AIDR  
TLV2450AIP  
SOIC  
SOIC  
D
D
75 Green (RoHS & CU NIPDAU&