欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • TLV4110IDGNR
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • TLV4110IDGNR图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • TLV4110IDGNR 现货库存
  • 数量12500 
  • 厂家TI 
  • 封装8-MSOP 
  • 批号24+ 
  • 假一罚百,TI专营!深圳有库存,北美、新加坡可发货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • TLV4110IDGNR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TLV4110IDGNR 现货库存
  • 数量2500 
  • 厂家TI 
  • 封装HVSSOP (DGN) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TLV4110IDGNR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • TLV4110IDGNR
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • TLV4110IDGNR图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • TLV4110IDGNR
  • 数量5600 
  • 厂家TI 
  • 封装MSOP8 
  • 批号23+ 
  • 只做原装正品,深圳现货
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • TLV4110IDGNR图
  • 深圳市鹏睿康科技有限公司

     该会员已使用本站16年以上
  • TLV4110IDGNR
  • 数量1516 
  • 厂家TI 
  • 封装只做原装 
  • 批号23+ 
  • 原装现货假一赔万,原包原标,支持实单
  • QQ:2885392746QQ:2885392746 复制
    QQ:2885392744QQ:2885392744 复制
  • 0755-83192793 QQ:2885392746QQ:2885392744
  • TLV4110IDGNR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • TLV4110IDGNR
  • 数量8500 
  • 厂家TI(德州仪器) 
  • 封装HVSSOP-8 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • TLV4110IDGNR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TLV4110IDGNR
  • 数量12500 
  • 厂家TI/德州仪器 
  • 封装HVSSOP-8 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • TLV4110IDGNR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TLV4110IDGNR
  • 数量24649 
  • 厂家TI 
  • 封装 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • TLV4110IDGNR图
  • 深圳市和谐世家电子有限公司

     该会员已使用本站13年以上
  • TLV4110IDGNR
  • 数量4527 
  • 厂家Texas Instruments 
  • 封装8-TSSOP,8-MSOP(0.118",3.00mm 宽)裸露焊盘 
  • 批号IC OPAMP GP R-R 2.7MHZ SGL 8MSOP 
  • 只做进口原装
  • QQ:1158840606QQ:1158840606 复制
  • 0755+84501032 QQ:1158840606
  • TLV4110IDGNR图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • TLV4110IDGNR
  • 数量865000 
  • 厂家TI/德州仪器 
  • 封装Standardpackaging 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • TLV4110IDGNR图
  • 深圳市芯柏然科技有限公司

     该会员已使用本站7年以上
  • TLV4110IDGNR
  • 数量23480 
  • 厂家TI 
  • 封装MSOP8 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、价格低于市场
  • QQ:287673858QQ:287673858 复制
  • 0755-82533534 QQ:287673858
  • TLV4110IDGNR图
  • 深圳市婷轩实业有限公司

     该会员已使用本站6年以上
  • TLV4110IDGNR
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装8-MSOP-PowerPad 
  • 批号23+ 
  • 进口原装现货热卖
  • QQ:2881943288QQ:2881943288 复制
    QQ:3026548067QQ:3026548067 复制
  • 0755-89608519 QQ:2881943288QQ:3026548067
  • TLV4110IDGNR图
  • 深圳市高捷芯城科技有限公司

     该会员已使用本站11年以上
  • TLV4110IDGNR
  • 数量9555 
  • 厂家TI(德州仪器) 
  • 封装MSOP-8-EP 
  • 批号23+ 
  • 支持大陆交货,美金交易。原装现货库存。
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83062789 QQ:3007977934QQ:3007947087
  • TLV4110IDGNR图
  • 深圳市亿智腾科技有限公司

     该会员已使用本站8年以上
  • TLV4110IDGNR
  • 数量16258 
  • 厂家Texas Instruments 
  • 封装原厂直销 
  • 批号1636+ 
  • 全新原装现货★★特价供应★★。★★特价★★假一赔十,工厂客户可放款
  • QQ:799387964QQ:799387964 复制
    QQ:2777237833QQ:2777237833 复制
  • 0755-82566711 QQ:799387964QQ:2777237833
  • TLV4110IDGNR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TLV4110IDGNR
  • 数量10050 
  • 厂家TI/德州仪器 
  • 封装NA/ 
  • 批号23+ 
  • 原厂直销,现货供应,账期支持!
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • TLV4110IDGNR图
  • 深圳市鹏和科技有限公司

     该会员已使用本站16年以上
  • TLV4110IDGNR
  • 数量8127 
  • 厂家TI 
  • 封装HVSSOP 
  • 批号23+ 
  • 原装正品 代理渠道
  • QQ:3004290789QQ:3004290789 复制
    QQ:3004290786QQ:3004290786 复制
  • 755-83990319 QQ:3004290789QQ:3004290786
  • TLV4110IDGNR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TLV4110IDGNR
  • 数量12500 
  • 厂家TI 
  • 封装Original 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • TLV4110IDGNR图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • TLV4110IDGNR
  • 数量6328 
  • 厂家TI-德州仪器 
  • 封装MSOP-8 
  • 批号▉▉:2年内 
  • ▉▉¥20.2元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • TLV4110IDGNR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TLV4110IDGNR
  • 数量11530 
  • 厂家Texas Instruments 
  • 封装8-MSOP 
  • 批号23+ 
  • 全新原装现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • TLV4110IDGNR图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • TLV4110IDGNR
  • 数量660000 
  • 厂家Texas Instruments(德州仪器) 
  • 封装8-TSSOP 
  • 批号8-MSOP (0.118 
  • 23+
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • TLV4110IDGNRG4图
  • 首天国际(深圳)科技有限公司

     该会员已使用本站16年以上
  • TLV4110IDGNRG4
  • 数量638850 
  • 厂家TI 
  • 封装MSOP-8 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 0755-82807802 QQ:528164397QQ:1318502189
  • TLV4110IDGNR图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • TLV4110IDGNR
  • 数量72282 
  • 厂家TI/德州仪器 
  • 封装N/A 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • TLV4110IDGNR图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • TLV4110IDGNR
  • 数量3577 
  • 厂家TI 
  • 封装8-MSOP 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • TLV4110IDGNRG4图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • TLV4110IDGNRG4
  • 数量4845 
  • 厂家TI 
  • 封装VSSOP8 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755- QQ:2881894392QQ:2881894393
  • TLV4110IDGNR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TLV4110IDGNR
  • 数量85000 
  • 厂家TI/德州仪器 
  • 封装MSOP-8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • TLV4110IDGNRG4图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TLV4110IDGNRG4
  • 数量18530 
  • 厂家TI 
  • 封装MSOP-8 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • TLV4110IDGNR图
  • 深圳市珩瑞科技有限公司

     该会员已使用本站2年以上
  • TLV4110IDGNR
  • 数量
  • 厂家21+ 
  • 封装12000 
  • 批号 
  • ███全新原装正品,可配单
  • QQ:2938238007QQ:2938238007 复制
    QQ:1840507767QQ:1840507767 复制
  • -0755-82578309 QQ:2938238007QQ:1840507767
  • TLV4110IDGNR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TLV4110IDGNR
  • 数量13880 
  • 厂家TI/德州仪器 
  • 封装HVSSOP-8 
  • 批号21+ 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • TLV4110IDGNR图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • TLV4110IDGNR
  • 数量5800 
  • 厂家TI 
  • 封装MSOP-8 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • TLV4110IDGNR图
  • 深圳市驰天熠电子有限公司

     该会员已使用本站1年以上
  • TLV4110IDGNR
  • 数量33560 
  • 厂家TI 
  • 封装 
  • 批号23+ 
  • 全新原装,优势价格,支持配单
  • QQ:3003795629QQ:3003795629 复制
    QQ:534325024QQ:534325024 复制
  • 86-15802056765 QQ:3003795629QQ:534325024
  • TLV4110IDGNR图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • TLV4110IDGNR
  • 数量6500000 
  • 厂家N/A 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • TLV4110IDGNR图
  • 深圳市华兴微电子有限公司

     该会员已使用本站16年以上
  • TLV4110IDGNR
  • 数量5000 
  • 厂家TI 
  • 封装N/A 
  • 批号23+ 
  • 只做进口原装QQ询价,专营射频微波十五年。
  • QQ:604502381QQ:604502381 复制
  • 0755-83002105 QQ:604502381
  • TLV4110IDGNR图
  • 深圳德田科技有限公司

     该会员已使用本站7年以上
  • TLV4110IDGNR
  • 数量9000 
  • 厂家TI 
  • 封装标准封装 
  • 批号新年份 
  • 原装现货,质量保证,可出样品!!!
  • QQ:229754250QQ:229754250 复制
  • 0755-83254070 QQ:229754250
  • TLV4110IDGNR图
  • 深圳市芯鹏泰科技有限公司

     该会员已使用本站8年以上
  • TLV4110IDGNR
  • 数量7536 
  • 厂家Texas Instruments 
  • 封装8-HVSSOP 
  • 批号23+ 
  • 放大器IC原装现货
  • QQ:3004306594QQ:3004306594 复制
  • 0755-82777852 QQ:3004306594
  • TLV4110IDGNR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TLV4110IDGNR
  • 数量2500 
  • 厂家TI 
  • 封装HVSSOP (DGN) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TLV4110IDGNR图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • TLV4110IDGNR
  • 数量10000 
  • 厂家TI/德州仪器 
  • 封装8-MSOP-PowerPad 
  • 批号23+ 
  • 进口原装现货
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820

产品型号TLV4110IDGNR的概述

TLV4110IDGNR芯片概述 TLV4110IDGNR是一款高性能、低功耗的运算放大器,采用TI(德州仪器)公司生产。该芯片具有宽电源电压范围和较高的增益带宽积,适合用于各种精密测量和信号处理应用。其低失调电压和低噪声特性使其非常适合用于音频、医疗和工业设备等需要高精度的场合。 TLV4110IDGNR详细参数 TLV4110IDGNR芯片的主要参数包括: - 电源电压范围:3V至30V - 工作温度范围:-40℃至85℃ - 增益带宽积:2.5 MHz - 失调电压:最大达100 μV - 输入共模电压范围:-0.1V至(V+) - 1.5V - 输入偏置电流:最大达10 nA - 输出短路电流:可达100 mA - 电流消耗:每个放大器大约为1.5 mA - 封装类型:VSSOP-8(8引脚小型封装) 厂家、包装、封装 TLV4110IDGNR芯片的生产厂家为德州仪器(Tex...

产品型号TLV4110IDGNR的Datasheet PDF文件预览

ꢀ ꢁꢂꢃ ꢄꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢄꢄꢄ ꢆ ꢀ ꢁꢂꢃ ꢄꢄ ꢇ ꢆ ꢀꢁꢂ ꢃꢄꢄꢈ  
ꢉꢊꢋ ꢌꢁꢍ ꢎ ꢉ ꢏꢌ ꢐꢏ ꢎ ꢑꢀ ꢒꢑꢀ ꢓꢔꢌ ꢂꢕ ꢎ ꢒꢕꢔꢊꢀꢌ ꢎ ꢖ ꢊꢁ  
ꢊꢋ ꢒꢁ ꢌꢉ ꢌꢕ ꢔꢗ ꢘ ꢌꢀ ꢏ ꢗꢏꢑ ꢀꢓ ꢎ ꢘꢖ  
SLOS289E − DECEMBER 1999 − REVISED SEPTEMBER 2006  
Operational Amplifier  
D
D
D
D
D
D
D
High Output Drive . . . >300 mA  
Rail-To-Rail Output  
+
Unity-Gain Bandwidth . . . 2.7 MHz  
Slew Rate . . . 1.5 V/µs  
Supply Current . . . 700 µA/Per Channel  
Supply Voltage Range . . . 2.5 V to 6 V  
Specified Temperature Range:  
TLV4112  
D, DGN, OR P PACKAGE  
(TOP VIEW)  
− T = 0°C to 70°C . . . Commercial Grade  
A
1OUT  
1IN−  
1IN+  
GND  
V
DD  
1
2
3
4
8
7
6
5
− T = −40°C to 125°C . . . Industrial Grade  
A
2OUT  
2IN−  
2IN+  
D
Universal OpAmp EVM  
description  
The TLV411x single supply operational amplifiers provide output currents in excess of 300 mA at 5 V. This  
enables standard pin-out amplifiers to be used as high current buffers or in coil driver applications. The TLV4110  
and TLV4113 come with a shutdown feature.  
The TLV411x is available in the ultra small MSOP PowerPADpackage, which offers the exceptional thermal  
impedance required for amplifiers delivering high current levels.  
All TLV411x devices are offered in PDIP, SOIC (single and dual) and MSOP PowerPAD (dual).  
FAMILY PACKAGE TABLE  
PACKAGE TYPES  
NUMBER OF  
CHANNELS  
UNIVERSAL  
EVM BOARD  
DEVICE  
TLV4110  
SHUTDOWN  
MSOP  
PDIP  
SOIC  
1
1
2
2
8
8
8
8
8
8
Yes  
Refer to the EVM  
Selection Guide  
(Lit# SLOU060)  
TLV4111  
TLV4112  
TLV4113  
8
8
8
10  
14  
14  
Yes  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
3.0  
2.9  
1.0  
0.9  
0.8  
V
= 3 V  
DD  
V
= 3 V  
DD  
T
= 70°C  
2.8  
2.7  
2.6  
2.5  
A
T
A
= 25°C  
= 0°C  
0.7  
0.6  
T
A
= 125°C  
T
A
T
A
T
A
= −40°C  
= −40°C  
0.5  
0.4  
0.3  
T
A
= 0°C  
T
= 125°C  
A
2.4  
2.3  
T
= 25°C  
= 70°C  
A
T
A
2.2  
0.2  
0.1  
0.0  
2.1  
2.0  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
I
− High-Level Output Current − mA  
I
− Low-Level Output Current − mA  
OH  
OL  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.  
ꢀꢥ  
Copyright 1999−2006, Texas Instruments Incorporated  
ꢡ ꢥ ꢢ ꢡꢚ ꢛꢯ ꢝꢜ ꢠ ꢨꢨ ꢦꢠ ꢞ ꢠ ꢟ ꢥ ꢡ ꢥ ꢞ ꢢ ꢪ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢁꢂ  
ꢅꢆ  
ꢀꢁꢂ  
ꢄꢄ  
ꢄꢄ  
ꢊꢀ  
SLOS289E − DECEMBER 1999 − REVISED SEPTEMBER 2006  
TLV4110 AND TLV4111 AVAILABLE OPTIONS  
PACKAGED DEVICES  
MSOP  
T
A
SMALL OUTLINE  
PLASTIC DIP  
(P)  
SMALL OUTLINE  
†‡  
(D)  
SYMBOL  
(DGN)  
TLV4110CD  
TLV4111CD  
TLV4110ID  
TLV4111ID  
TLV4110CDGN  
TLV4111CDGN  
TLV4110IDGN  
TLV4111IDGN  
xxTIAHL  
xxTIAHN  
xxTIAHM  
xxTIAHO  
TLV4110CP  
TLV4111CP  
TLV4110IP  
TLV4111IP  
0°C to 70°C  
40°C to 125°C  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part  
number (e.g., TLV4110CDR).  
In the SOIC package, the maximum RMS output power is thermally limited to 350 mW; 700 mW peaks  
can be driven, as long as the RMS value is less than 350 mW.  
TLV4112 AND TLV4113 AVAILABLE OPTIONS  
PACKAGED DEVICES  
MSOP  
T
A
PLASTIC DIP  
(P)  
SMALL OUTLINE  
SMALL OUTLINE  
SMALL OUTLINE  
†‡  
(D)  
SYMBOL  
SYMBOL  
(DGN)  
(DGQ)  
TLV4112CD  
TLV4113CD  
TLV4112ID  
TLV4113ID  
TLV4112DGN  
xxTIAHP  
TLV4112CP  
TLV4113CN  
TLV4112IP  
TLV4113IN  
0°C to 70°C  
TLV4112IDGN  
TLV4113CDGQ  
xxTIAHR  
xxTIAHQ  
40°C to 125°C  
TLV4113IDGQ  
xxTIAHS  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV4112CDR).  
In the SOIC package, the maximum RMS output power is thermally limited to 350 mW; 700 mW peaks can be driven, as long as the RMS value  
is less than 350 mW.  
TLV411x PACKAGE PIN OUTS  
TLV4110  
D, DGN OR P PACKAGE  
(TOP VIEW)  
TLV4111  
D, DGN OR P PACKAGE  
(TOP VIEW)  
TLV4112  
D, DGN, OR P PACKAGE  
(TOP VIEW)  
NC  
IN−  
SHDN  
NC  
IN−  
NC  
1OUT  
1IN−  
1IN+  
GND  
V
DD  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
V
V
2OUT  
2IN−  
2IN+  
DD  
DD  
IN+  
OUT  
NC  
IN+  
OUT  
NC  
GND  
GND  
TLV4113  
D OR N PACKAGE  
TLV4113  
DGQ PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
1
1OUT  
1IN−  
1IN+  
GND  
1SHDN  
V
+
DD  
10  
1OUT  
1IN−  
1IN+  
GND  
NC  
V
DD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
2
3
4
5
2OUT  
2IN−  
2IN+  
9
8
7
6
2OUT  
2IN−  
2IN+  
NC  
2SHDN  
1SHDN  
NC  
2SHDN  
NC  
8
NC − No internal connection  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢄꢄꢄ ꢆ ꢀ ꢁꢂꢃ ꢄꢄ ꢇꢆ ꢀꢁꢂ ꢃꢄꢄꢈ  
ꢉꢊꢋ ꢌꢁꢍ ꢎ ꢉ ꢏꢌ ꢐꢏ ꢎ ꢑꢀ ꢒꢑꢀ ꢓꢔꢌ ꢂꢕ ꢎ ꢒꢕꢔꢊꢀꢌ ꢎ ꢖ ꢊꢁ  
ꢊꢋ ꢒꢁ ꢌꢉ ꢌꢕ ꢔꢗ ꢘ ꢌꢀ ꢏ ꢗꢏꢑ ꢀꢓ ꢎ ꢘꢖ  
SLOS289E − DECEMBER 1999 − REVISED SEPTEMBER 2006  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Differential input voltage, V  
Input voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DD  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
V
ID  
DD  
DD  
I
Output current, I (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800 mA  
O
Continuous /RMS output current, I (each output of amplifier): T 105°C . . . . . . . . . . . . . . . . . . . . 350 mA  
O
J
T 150°C . . . . . . . . . . . . . . . . . . . . 110 mA  
J
Peak output current, I (each output of amplifier: T 105°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mA  
O
J
J
T 150°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 mA  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to GND.  
2. To prevent permanent damage the die temperature must not exceed the maximum junction temperature.  
DISSIPATION RATING TABLE  
θ
θ
T
25°C  
T = 125°C  
A
POWER RATING  
JC  
JA  
A
PACKAGE  
(°C/W)  
(°C/W)  
POWER RATING  
D (8)  
38.3  
176  
710 mW  
142 mW  
D (14)  
26.9  
122.3  
1022 mW  
204.4 mW  
DGN (8)  
4.7  
4.7  
41  
52.7  
52.3  
104  
78  
2.37 W  
2.39 W  
474.4 mW  
478 mW  
DGQ (10)  
P (8)  
1200 mW  
1600 mW  
240.4 mW  
320.5 mW  
N (14)  
32  
See The Texas Instruments document, PowerPAD Thermally Enhanced Package Application Report (literature number  
SLMA002), for more information on the PowerPAD package. The thermal data was measured on a PCB layout based  
on the information in the section entitled Texas Instruments Recommended Board for PowerPAD on page 33 of the before  
mentioned document.  
recommended operating conditions  
MIN  
2.5  
0
MAX  
UNIT  
V
Supply voltage, V  
DD  
6
Common-mode input voltage range, V  
ICR  
V
−1.5  
70  
V
DD  
C-suffix  
I-suffix  
0
Operating free-air temperature, T  
°C  
A
−40  
2.1  
3.8  
125  
V
DD  
V
DD  
V
DD  
V
DD  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
V(on)  
V(off)  
V
§
Shutdown turn-on/off voltage level  
0.9  
1.65  
§
Relative to GND  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢁꢂ  
ꢁꢂ  
ꢀꢁꢂ  
ꢄꢄ  
ꢒꢕ  
SLOS289E − DECEMBER 1999 − REVISED SEPTEMBER 2006  
electrical characteristics at recommend operating conditions, V  
noted)  
= 3 V and 5 V (unless otherwise  
DD  
dc performance  
PARAMETER  
Input offset voltage  
Offset voltage draft  
TEST CONDITIONS  
T
MIN  
TYP  
MAX UNITS  
A
25°C  
175  
3500  
V
IO  
µV  
V
R
= V /2,  
= 100 ,  
V
R
= V /2 ,  
= 50 Ω  
IC  
L
DD  
O DD  
Full range  
4000  
S
αVIO  
25°C  
3
µV/°C  
V
R
= 3 V,  
= 50 Ω  
V
= 0 to 2 V,  
= 0 to 4 V,  
DD  
S
IC  
25°C  
25°C  
63  
CMRR Common-mode rejection ratio  
dB  
V
R
= 5 V,  
= 50 Ω  
V
IC  
DD  
68  
84  
S
25°C  
Full range  
25°C  
78  
67  
85  
75  
88  
75  
90  
85  
R =100 Ω  
L
V
V
= 3 V,  
=0 to 1V  
DD  
O(PP)  
100  
94  
R =10 kΩ  
L
Full range  
25°C  
Large-signal differential voltage  
amplification  
A
VD  
dB  
R =100 Ω  
L
Full range  
25°C  
V
V
= 5 V,  
=0 to 3V  
DD  
O(PP)  
110  
R =10 kΩ  
L
Full range  
Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix. If not specified, full range is −40°C to 125°C.  
input characteristics  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP  
MAX UNITS  
25°C  
0.3  
25  
50  
TLV411xC  
I
I
Input offset current  
V
V
= V /2  
DD  
IO  
IC  
Full range  
TLV411xI  
250  
pA  
25°C  
0.3  
50  
= V /2,  
DD  
= 50 Ω  
O
S
TLV411xC  
TLV411xI  
100  
500  
GΩ  
pF  
Input bias current  
IB  
R
Full range  
r
Differential input resistance  
25°C  
25°C  
1000  
5
i(d)  
C
Common-mode input capacitance  
f = 100 Hz  
IC  
Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix. If not specified, full range is −40°C to 125°C.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢄꢄꢄ ꢆ ꢀ ꢁꢂꢃ ꢄꢄ ꢇꢆ ꢀꢁꢂ ꢃꢄꢄꢈ  
ꢉꢊꢋ ꢌꢁꢍ ꢎ ꢉ ꢏꢌ ꢐꢏ ꢎ ꢑꢀ ꢒꢑꢀ ꢓꢔꢌ ꢂꢕ ꢎ ꢒꢕꢔꢊꢀꢌ ꢎ ꢖ ꢊꢁ  
ꢊꢋ ꢒꢁ ꢌꢉ ꢌꢕ ꢔꢗ ꢘ ꢌꢀ ꢏ ꢗꢏꢑ ꢀꢓ ꢎ ꢘꢖ  
SLOS289E − DECEMBER 1999 − REVISED SEPTEMBER 2006  
electrical characteristics at specified free-air temperature, V  
noted) (continued)  
= 3 V and 5 V (unless otherwise  
DD  
output characteristics  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
2.7  
2.7  
2.6  
2.6  
4.7  
4.7  
4.6  
4.6  
4.45  
TYP  
MAX UNITS  
25°C  
Full range  
25°C  
2.97  
I
I
I
I
= −10 mA  
OH  
OH  
OH  
OH  
V
= 3 V,  
V
= V /2  
DD  
V
DD  
IC  
IC  
2.73  
4.96  
4.76  
4.6  
=−100 mA  
= −10 mA  
= −100 mA  
Full range  
25°C  
V
OH  
High-level output voltage  
Full range  
25°C  
V
= 5 V,  
V
= V /2  
DD  
V
Full range  
25°C  
DD  
DD  
I
= −200 mA  
−40°C to  
85°C  
OH  
4.35  
25°C  
Full range  
25°C  
0.03  
0.33  
0.38  
0.1  
0.1  
0.4  
I
I
= 10 mA  
OL  
V
V
= 3 V and 5 V,  
= V /2  
DD  
IC  
= 100 mA  
OL  
V
OL  
Low-level output voltage  
V
Full range  
25°C  
0.55  
0.6  
V
DD  
= 5 V,  
V
IC  
= V /2  
DD  
I
= 200 mA  
−40°C to  
85°C  
OL  
0.7  
V
V
= 3 V  
= 5 V  
220  
320  
800  
800  
DD  
Output current  
I
I
Measured at 0.5 V from rail  
25°C  
mA  
mA  
O
DD  
Sourcing  
Sinking  
Short-circuit output current  
25°C  
OS  
Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix. If not specified, full range is −40°C to 125°C.  
When driving output currents in excess of 200 mA, the MSOP PowerPAD package is required for thermal dissipation.  
power supply  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP  
MAX UNITS  
25°C  
Full range  
25°C  
700  
1000  
I
Supply current (per channel)  
V
= V /2  
DD  
µA  
DD  
O
1500  
70  
65  
70  
65  
82  
79  
V
V
=2.7 to 3.3 V, No load,  
= V /2 V  
DD  
DD  
IC  
Full range  
25°C  
PSRR Power supply rejection ratio (V  
DD  
/ V  
IO  
)
dB  
V
V
=4.5 to 5.5 V, No load,  
= V /2 V  
DD  
DD  
IC  
Full range  
Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix. If not specified, full range is −40°C to 125°C.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢄꢄ  
ꢅꢆ  
ꢁꢂ  
ꢄꢄ  
ꢁꢂ  
ꢊꢀ  
SLOS289E − DECEMBER 1999 − REVISED SEPTEMBER 2006  
electrical characteristics at specified free-air temperature, V  
noted) (continued)  
= 3 V and 5 V (unless otherwise  
DD  
dynamic performance  
PARAMETER  
TEST CONDITIONS  
R =100 Ω  
T
A
MIN  
TYP  
2.7  
MAX UNITS  
GBWP Gain bandwidth product  
C =10 pF  
25°C  
25°C  
MHz  
L
L
0.8  
0.55  
1
1.57  
V
= 3 V  
= 5 V  
DD  
DD  
V
R
= 2 V,  
= 100 ,  
pp  
o( )  
Full range  
25°C  
SR  
Slew rate at unity gain  
V/µs  
L
L
1.57  
C
= 10 pF  
V
Full range  
0.7  
φM  
Phase margin  
Gain margin  
66  
16  
R
= 100 ,  
C
= 10 pF  
L
25°C  
25°C  
L
dB  
V
A
V
= 1 V,  
(STEP)pp  
0.1%  
0.7  
1.3  
= −1,  
= 10 pF,  
= 100 Ω  
t
s
Settling time  
µs  
C
R
L
L
0.01%  
Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix. If not specified, full range is −40°C to 125°C.  
noise/distortion performance  
PARAMETER  
TEST CONDITIONS  
T
MIN  
TYP  
0.025  
0.035  
0.15  
55  
MAX UNITS  
A
A
= 1  
V
V
R
= V /2 V,  
) DD  
O(  
L
pp  
A
V
= 10  
= 100  
= 100 Ω,  
THD+N Total harmonic distortion plus noise  
f = 100 Hz  
A
V
25°C  
f = 100 Hz  
f = 10 kHz  
f = 1 kHz  
nV/Hz  
fA/Hz  
V
Equivalent input noise voltage  
Equivalent input noise current  
n
10  
I
n
0.31  
shutdown characteristics  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP  
MAX UNITS  
25°C  
3.4  
10  
Supply current in shutdown mode (per channel)  
(TLV4110, TLV4113)  
SHDN = 0 V  
I
µA  
DD(SHDN)  
Full range  
15  
t
t
Amplifier turn-on time  
Amplifier turn-off time  
1
(ON)  
R
= 100 Ω  
25°C  
µs  
L
3.3  
(Off)  
Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix. If not specified, full range is −40°C to 125°C.  
Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply current  
has reached half its final value.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢄꢄꢄ ꢆ ꢀ ꢁꢂꢃ ꢄꢄ ꢇꢆ ꢀꢁꢂ ꢃꢄꢄꢈ  
ꢉꢊꢋ ꢌꢁꢍ ꢎ ꢉ ꢏꢌ ꢐꢏ ꢎ ꢑꢀ ꢒꢑꢀ ꢓꢔꢌ ꢂꢕ ꢎ ꢒꢕꢔꢊꢀꢌ ꢎ ꢖ ꢊꢁ  
ꢊꢋ ꢒꢁ ꢌꢉ ꢌꢕ ꢔꢗ ꢘ ꢌꢀ ꢏ ꢗꢏꢑ ꢀꢓ ꢎ ꢘꢖ  
SLOS289E − DECEMBER 1999 − REVISED SEPTEMBER 2006  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
1, 2  
3
V
Input offset voltage  
vs Common-mode input voltage  
IO  
CMRR  
Common-mode rejection ratio  
High-level output voltage  
Low-level output voltage  
Output impedance  
vs Frequency  
V
OH  
V
OL  
o
vs High-level output current  
vs Low-level output current  
vs Frequency  
4, 6  
5, 7  
8
Z
I
Supply current  
vs Supply voltage  
vs Frequency  
9
DD  
k
Power supply voltage rejection ratio  
Differential voltage amplification and phase  
Gain-bandwidth product  
10  
SVR  
A
vs Frequency  
11  
VD  
vs Supply voltage  
vs Supply voltage  
vs Temperature  
vs Frequency  
12  
13  
SR  
Slew rate  
14  
Total harmonic distortion+noise  
Equivalent input voltage noise  
Phase margin  
15  
V
vs Frequency  
16  
n
vs Capacitive load  
17  
Voltage-follower signal pulse response  
Inverting large-signal pulse response  
Small-signal inverting pulse response  
Crosstalk  
18, 19  
20, 21  
22  
vs Frequency  
23  
Shutdown forward and reverse isolation  
Shutdown supply current  
24  
vs Free-air temperature  
25  
Shutdown supply current/output voltage  
26  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢄꢄ  
ꢅꢆ  
ꢁꢂ  
ꢀꢁꢂ  
ꢄꢄ  
ꢄꢄ  
ꢒꢕ  
ꢊꢀ  
SLOS289E − DECEMBER 1999 − REVISED SEPTEMBER 2006  
TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE REJECTION RATIO  
INPUT OFFSET VOLTAGE  
vs  
vs  
COMMON-MODE INPUT VOLTAGE  
FREQUENCY  
COMMON-MODE INPUT VOLTAGE  
6000  
120  
6000  
V
T
= 5 V  
= 25°C  
V
T
= 3 V  
= 25°C  
DD  
A
DD  
A
V
T
= 3 V  
DD  
110  
100  
90  
= 25°C  
4000  
2000  
0
A
4000  
2000  
0
80  
70  
−2000  
−2000  
60  
50  
40  
−4000  
−6000  
−4000  
−6000  
−0.2  
0
0.4 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2  
−0.2  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
V
− Common-Mode Input Voltage − V  
V
− Common-Mode Input Voltage − V  
ICR  
ICR  
f − Frequency − Hz  
Figure 1  
Figure 2  
Figure 3  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
3.0  
2.9  
1.0  
0.9  
0.8  
5.0  
V
= 3 V  
DD  
V
= 3 V  
DD  
V
= 5 V  
4.9  
4.8  
4.7  
4.6  
4.5  
DD  
T
= 70°C  
2.8  
2.7  
2.6  
2.5  
A
T
A
= 25°C  
= 0°C  
0.7  
0.6  
T
A
= 125°C  
T
A
= 125°C  
T
A
T
A
T
A
= −40°C  
= −40°C  
T
A
= −40°C  
0.5  
0.4  
0.3  
T
A
= 0°C  
T
= 125°C  
A
T
A
= 0°C  
2.4  
2.3  
T
= 25°C  
= 70°C  
4.4  
4.3  
A
T
= 25°C  
= 70°C  
A
T
A
T
A
2.2  
0.2  
0.1  
0.0  
4.2  
4.1  
4.0  
2.1  
2.0  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
I
− High-Level Output Current − mA  
I
− Low-Level Output Current − mA  
OH  
I
− High-Level Output Current − mA  
OL  
OH  
Figure 4  
Figure 5  
Figure 6  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
OUTPUT IMPEDANCE  
vs  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
1.0  
0.9  
100  
10  
1200  
V
= 5 V  
DD  
V
T
A
= 3 & 5 V  
= 25°C  
A
V
= 1  
DD  
V
T
= 125°C  
A
= V /2 V  
DD  
IN  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
1000  
800  
T
A
= 70°C  
= 25°C  
T
= 70°C  
A
T
A
T
= 25°C  
A
T
A
= 0°C  
T
= 0°C  
A
600  
T
A
= −40°C  
T
A
= −40°C  
A = 100  
A = 10  
T
= 125°C  
A
1
400  
200  
0
A = 1  
1k  
0.0  
0.10  
0
50  
100  
150  
200  
250  
300  
100  
10k  
100k  
1M  
10M  
0
1
2
3
4
5
6
I
− Low-Level Output Current − mA  
OL  
f − Frequency − Hz  
V
− Supply Voltage − V  
DD  
Figure 7  
Figure 8  
Figure 9  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢄꢄꢄ ꢆ ꢀ ꢁꢂꢃ ꢄꢄ ꢇꢆ ꢀꢁꢂ ꢃꢄꢄꢈ  
ꢉꢊꢋ ꢌꢁꢍ ꢎ ꢉ ꢏꢌ ꢐꢏ ꢎ ꢑꢀ ꢒꢑꢀ ꢓꢔꢌ ꢂꢕ ꢎ ꢒꢕꢔꢊꢀꢌ ꢎ ꢖ ꢊꢁ  
ꢊꢋ ꢒꢁ ꢌꢉ ꢌꢕ ꢔꢗ ꢘ ꢌꢀ ꢏ ꢗꢏꢑ ꢀꢓ ꢎ ꢘꢖ  
SLOS289E − DECEMBER 1999 − REVISED SEPTEMBER 2006  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL VOLTAGE  
POWER SUPPLY REJECTION RATIO  
AMPLIFICATION AND PHASE  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
120  
135  
90  
V
R
= 3 & 5 V  
DD  
= 1 kΩ  
90  
80  
100  
80  
F
R = 100 Ω  
V
T
A
PHASE  
I
IN  
= 0 V  
= 25°C  
70  
60  
60  
45  
50  
40  
30  
20  
10  
0
40  
20  
GAIN  
V
= 3 & 5 V  
= 100 kΩ  
= 10 pF  
DD  
0
−20  
−40  
0
R
C
T
L
L
= 25°C  
A
−45  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 10  
Figure 11  
SLEW RATE  
vs  
TEMPERATURE  
GAIN-BANDWIDTH PRODUCT  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
vs  
SUPPLY VOLTAGE  
4.0  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
A
R
C
= 1  
= 100 Ω  
= 10 pF  
V
A
R
= 3 & 5 V  
= 1  
= 100 Ω  
= 10 pF  
V
L
L
DD  
V
L
L
3.5  
3.0  
2.5  
SR+  
SR+  
C
SR−  
SR−  
2.0  
1.5  
T
R
C
= 25°C  
= 100 Ω  
= 10 pF  
A
L
L
1.0  
0.5  
0.0  
f = 1 kHz  
=open loop  
A
V
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
−402510  
5
20 35 50 65 80 95 110 125  
V
− Supply Voltage − V  
DD  
V
− Supply Voltage − V  
T
A
− Temperature − °C  
DD  
Figure 13  
Figure 14  
Figure 12  
EQUIVALENT INPUT VOLTAGE NOISE  
PHASE MARGIN  
vs  
CAPACITIVE LOAD  
TOTAL HARMONIC DISTORTION+NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
90  
160  
140  
10  
V
T
= 3 & 5 V  
= 100  
DD  
V
R
V
= 5 V  
= 100 Ω  
= V /2  
O(PP)  
= 1, 10, & 100  
= 25°C  
DD  
L
A
V
= 5 V  
DD  
80  
70  
R
L
120  
100  
DD  
A
V
V
= 3 V  
DD  
R
= 600  
1
R
= 20  
R
L
NULL  
60  
50  
80  
60  
A = 100  
= 20  
40  
30  
NULL  
0.1  
R
= 0  
NULL  
40  
20  
0
A = 10  
A = 1  
20  
10  
R
= 0  
NULL  
0
0.01  
10  
100  
1 k  
10 k  
100 k  
10  
100  
1 k  
10 k  
100 k  
10  
100  
1 k  
10 k  
100 k  
Capacitive Load − pF  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 15  
Figure 16  
Figure 17  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢁꢂ  
ꢄꢄ  
ꢅꢆ  
ꢀꢁꢂ  
ꢄꢄ  
ꢒꢕ  
ꢊꢀ  
SLOS289E − DECEMBER 1999 − REVISED SEPTEMBER 2006  
TYPICAL CHARACTERISTICS  
INVERTING LARGE-SIGNAL  
PULSE RESPONSE  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL PULSE RESPONSE  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL PULSE RESPONSE  
2.6  
3
5
V
IN  
2
1
4
3
2
1
0
2.55  
2.5  
V
IN  
V
A
R
= 5 V  
V
A
= 5 V  
= −1  
DD  
DD  
V
0
= 1  
V
= 100 Ω  
= 10 pF  
= 25°C  
R
= 100 Ω  
= 50 pF  
= 25°C  
= 2.5 V  
L
L
−1  
−2  
L
L
V
IN  
C
T
C
T
2.45  
2.55  
2.5  
A
V
A
O
V
= 100 mV  
V
IN  
5
4
3
2
1
IN  
4
3
2
1
0
V
A
R
C
= 5 V  
= 1  
= 100 Ω  
= 10 pF  
= 25°C  
DD  
V
L
L
A
V
O
V
O
2.45  
T
0
2.4  
−1  
0
1
2
3
4
5
6
7
8
0
2
4
6
8
10 12 14  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4  
t − TIME − µs  
t − TIME − µs  
t − TIME − µs  
Figure 19  
Figure 20  
Figure 18  
CROSSTALK  
vs  
FREQUENCY  
INVERTING LARGE-SIGNAL  
PULSE RESPONSE  
SMALL-SIGNAL INVERTING  
PULSE RESPONSE  
3
2.58  
0
2
1
V
R
= 3 & 5 V  
= 100 Ω  
DD  
L
2.54  
2.5  
V
−20  
IN  
V
A
V
= 5 V  
= −1  
DD  
All Channels  
0
R
= 100 Ω  
= 50 pF  
= 25°C  
= 2.5 V  
V
A
R
= 5 V  
= −1  
= 100 Ω  
= 50 pF  
= 25°C  
= 2.5 V  
−1  
−2  
L
L
V
IN  
−40  
−60  
DD  
V
L
L
2.46  
C
T
A
2.42  
2.54  
2.5  
V
5
4
3
2
1
C
IN  
T
A
V
V
= 4 V  
PP  
IN  
−80  
−100  
−120  
IN  
V
O
V
O
2.46  
2.42  
V
= 2 V  
IN  
PP  
0
0
1
2
3
4
5
6
7
8
0 0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0  
10  
100  
1 k  
10 k  
100 k  
t − TIME − µs  
t − TIME − µs  
f − Frequency − Hz  
Figure 21  
Figure 22  
Figure 23  
SHUTDOWN SUPPLY CURRENT  
vs  
SHUTDOWN FORWARD AND  
REVERSE ISOLATION  
FREE-AIR TEMPERATURE  
0
−20  
−40  
−60  
16  
14  
12  
10  
8
V
R
C
= 3 and 5 V,  
= 100 ,  
= 50 pF,  
= 1.  
V
V
= 3 and 5 V  
DD  
L
L
DD  
= V /2,  
IN  
DD  
No Load  
A
V
T
A
= 25°C  
−80  
−100  
−120  
V
= 0.1 V  
PP  
IN  
6
4
2
V
= 2.5 V  
1 k  
−140  
−160  
IN  
PP  
0
10  
100  
10 k 100 k  
1 M 10 M  
−40 −25 −10 5 20 35 50 65 80 95 110 125  
f − Frequency − Hz  
T
A
− Free-Air Temperature − °C  
Figure 24  
Figure 25  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢄꢄꢄ ꢆ ꢀ ꢁꢂꢃ ꢄꢄ ꢇꢆ ꢀꢁꢂ ꢃꢄꢄꢈ  
ꢉꢊꢋ ꢌꢁꢍ ꢎ ꢉ ꢏꢌ ꢐꢏ ꢎ ꢑꢀ ꢒꢑꢀ ꢓꢔꢌ ꢂꢕ ꢎ ꢒꢕꢔꢊꢀꢌ ꢎ ꢖ ꢊꢁ  
ꢊꢋ ꢒꢁ ꢌꢉ ꢌꢕ ꢔꢗ ꢘ ꢌꢀ ꢏ ꢗꢏꢑ ꢀꢓ ꢎ ꢘꢖ  
SLOS289E − DECEMBER 1999 − REVISED SEPTEMBER 2006  
TYPICAL CHARACTERISTICS  
SHUTDOWN SUPPLY CURRENT / OUTPUT VOLTAGE  
4
3
2
1
SD  
0
2
V
= 3 V  
DD  
= 1  
A
V
1.5  
1
R
C
= 100 Ω  
= 10 pF  
L
L
V
T
A
= V /2  
IN  
DD  
= 25° C  
0.5  
0
V
O
0
2
4
6
I
DD(SD)  
0
20  
40  
60  
80  
100  
120  
t − Time − µs  
Figure 26  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢄꢄ  
ꢁꢂ  
ꢀꢁꢂ  
ꢄꢄ  
ꢁꢂ  
ꢒꢕ  
ꢊꢀ  
SLOS289E − DECEMBER 1999 − REVISED SEPTEMBER 2006  
APPLICATION INFORMATION  
shutdown function  
Two members of the TLV411x family (TLV4110/3) have a shutdown terminal for conserving battery life in  
portable applications. When the shutdown terminal is tied low, the supply current is reduced to just nano amps  
per channel, the amplifier is disabled, and the outputs are placed in a high impedance mode. In order to save  
power in shutdown mode, an external pullup resistor is required, therefore, to enable the amplifier the shutdown  
terminal must be pulled high. When the shutdown terminal is left floating, care should be taken to ensure that  
parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into  
shutdown.  
driving a capacitive load  
When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the  
device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater  
than 1 nF, it is recommended that a resistor be placed in series (R  
) with the output of the amplifier, as shown  
NULL  
in Figure 27. A maximum value of 20 should work well for most applications.  
R
R
F
F
R
R
G
G
R
R
NULL  
NULL  
+
+
Input  
Input  
Output  
LOAD  
Output  
Snubber  
C
R
C
R
C
L
L
L
(a)  
(b)  
Figure 27. Driving a Capacitive Load  
offset voltage  
The output offset voltage, (V ) is the sum of the input offset voltage (V ) and both input bias currents (I ) times  
OO  
IO  
IB  
the corresponding gains. The following schematic and formula can be used to calculate the output offset  
voltage:  
R
F
I
IB−  
R
G
+
+
V
I
V
O
R
S
I
IB+  
R
R
F
F
V
+ V  
1 ) ǒ Ǔ " I  
R
1 ) ǒ Ǔ " I  
R
ǒ Ǔ ǒ Ǔ  
OO  
IO  
IB)  
S
IB–  
F
R
R
G
G
Figure 28. Output Offset Voltage Model  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢄꢄꢄ ꢆ ꢀ ꢁꢂꢃ ꢄꢄ ꢇꢆ ꢀꢁꢂ ꢃꢄꢄꢈ  
ꢉꢊꢋ ꢌꢁꢍ ꢎ ꢉ ꢏꢌ ꢐꢏ ꢎ ꢑꢀ ꢒꢑꢀ ꢓꢔꢌ ꢂꢕ ꢎ ꢒꢕꢔꢊꢀꢌ ꢎ ꢖ ꢊꢁ  
ꢊꢋ ꢒꢁ ꢌꢉ ꢌꢕ ꢔꢗ ꢘ ꢌꢀ ꢏ ꢗꢏꢑ ꢀꢓ ꢎ ꢘꢖ  
SLOS289E − DECEMBER 1999 − REVISED SEPTEMBER 2006  
APPLICATION INFORMATION  
R
_
+
null  
R
L
C
L
Figure 29  
general power design considerations  
When driving heavy loads at high junction temperatures there is an increased probability of electromigration  
affecting the long term reliability of ICs. Therefore for this not to be an issue either:  
D
The output current must be limited (at these high junction temperatures).  
or  
D
The junction temperature must be limited.  
The maximum continuous output current at a die temperature 150°C will be 1/3 of the current at 105°C.  
The junction temperature will be dependent on the ambient temperature around the IC, thermal impedance from  
the die to the ambient and power dissipated within the IC.  
T = T + θ × P  
DIS  
J
A
JA  
Where:  
P
is the IC power dissipation and is equal to the output current multiplied by the voltage dropped across the  
DIS  
output of the IC.  
is the thermal impedance between the junction and the ambient temperature of the IC.  
θ
JA  
T is the junction temperature.  
J
T is the ambient temperature.  
A
Reducing one or more of these factors results in a reduced die temperature. The 8-pin SOIC (small outline  
integrated circuit) has a thermal impedance from junction to ambient of 176°C/W. For this reason it is  
recommended that the maximum power dissipation of the 8-pin SOIC package be limited to 350 mW, with peak  
dissipation of 700 mW as long as the RMS value is less than 350 mW.  
The use of the MSOP PowerPADdramatically reduces the thermal impedance from junction to case. And with  
correct mounting, the reduced thermal impedance greatly increases the IC’s permissible power dissipation and  
output current handling capability. For example, the power dissipation of the PowerPADis increased to above  
1 W. Sinusoidal and pulse-width modulated output signals also increase the output current capability. The  
equivalent dc current is proportional to the square-root of the duty cycle:  
Ǹ
( )  
duty cycle  
I
+ I  
 
DC(EQ)  
Cont  
CURRENT DUTY CYCLE  
AT PEAK RATED CURRENT  
EQUIVALENT DC CURRENT  
AS A PERCENTAGE OF PEAK  
100  
70  
100  
84  
50  
71  
Note that with an operational amplifier, a duty cycle of 70% would often result in the op amp sourcing current  
70% of the time and sinking current 30%, therefore, the equivalent dc current would still be 0.84 times the  
continuous current rating at a particular junction temperature.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢁꢂ  
ꢄꢄ  
ꢀꢁꢂ  
ꢄꢄ  
ꢒꢕ  
ꢊꢀ  
SLOS289E − DECEMBER 1999 − REVISED SEPTEMBER 2006  
APPLICATION INFORMATION  
general PowerPAD design considerations  
The TLV411x is available in a thermally-enhanced PowerPAD family of packages. These packages are  
constructed using a downset leadframe upon which the die is mounted [see Figure 30(a) and Figure 30(b)]. This  
arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see  
Figure 30(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance  
can be achieved by providing a good thermal path away from the thermal pad.  
The PowerPAD package allows for both assembly and thermal management in one manufacturing operation.  
During the surface-mount solder operation (when the leads are being soldered), the thermal pad must be  
soldered to a copper area underneath the package. Through the use of thermal paths within this copper area,  
heat can be conducted away from the package into either a ground plane or other heat dissipating device.  
Soldering the PowerPAD to the PCB is always recommended, even with applications that have low-power  
dissipation. This provides the necessary thermal and mechanical connection between the lead frame die pad  
and the PCB.  
The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of  
surface mount with mechanical methods of heatsinking.  
DIE  
Side View (a)  
Thermal  
Pad  
DIE  
End View (b)  
Bottom View (c)  
NOTE A: The thermal pad is electrically isolated from all terminals in the package.  
Figure 30. Views of Thermally-Enhanced DGN Package  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢄꢄꢄ ꢆ ꢀ ꢁꢂꢃ ꢄꢄ ꢇꢆ ꢀꢁꢂ ꢃꢄꢄꢈ  
ꢉꢊꢋ ꢌꢁꢍ ꢎ ꢉ ꢏꢌ ꢐꢏ ꢎ ꢑꢀ ꢒꢑꢀ ꢓꢔꢌ ꢂꢕ ꢎ ꢒꢕꢔꢊꢀꢌ ꢎ ꢖ ꢊꢁ  
ꢊꢋ ꢒꢁ ꢌꢉ ꢌꢕ ꢔꢗ ꢘ ꢌꢀ ꢏ ꢗꢏꢑ ꢀꢓ ꢎ ꢘꢖ  
SLOS289E − DECEMBER 1999 − REVISED SEPTEMBER 2006  
APPLICATION INFORMATION  
Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the  
recommended approach.  
general PowerPAD design considerations (continued)  
1. The thermal pad must be connected to the most negative supply voltage on the device, GND.  
2. Prepare the PCB with a top side etch pattern as illustrated in the thermal land pattern mechanical drawings  
at the end of this document. There should be etch for the leads as well as etch for the thermal pad.  
3. Place five holes in the area of the thermal pad. These holes should be 13 mils in diameter. Keep them small  
so that solder wicking through the holes is not a problem during reflow.  
4. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps  
dissipate the heat generated by the TLV411x IC. These additional vias may be larger than the 13-mil  
diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad  
area to be soldered so that wicking is not a problem.  
5. Connect all holes to the internal ground plane that is at the same voltage potential as the device GND pin.  
6. When connecting these holes to the ground plane, do not use the typical web or spoke via connection  
methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat  
transfer during soldering operations. This makes the soldering of vias that have plane connections easier.  
In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore,  
the holes under the TLV411x PowerPAD package should make their connection to the internal ground plane  
with a complete connection around the entire circumference of the plated-through hole.  
7. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five  
holes exposed. The bottom-side solder mask should cover the five holes of the thermal pad area. This  
prevents solder from being pulled away from the thermal pad area during the reflow process.  
8. Apply solder paste to the exposed thermal pad area and all of the IC terminals.  
9. With these preparatory steps in place, the TLV411x IC is simply placed in position and run through the solder  
reflow operation as any standard surface-mount component. This results in a part that is properly installed.  
For a given θ , the maximum power dissipation is shown in Figure 31 and is calculated by the following formula:  
JA  
T
–T  
MAX  
A
P
+
ǒ Ǔ  
D
q
JA  
Where:  
P
= Maximum power dissipation of TLV411x IC (watts)  
= Absolute maximum junction temperature (150°C)  
= Free-ambient air temperature (°C)  
D
T
MAX  
T
A
θ
= θ + θ  
JA  
JC CA  
θ
θ
= Thermal coefficient from junction to case  
JC  
= Thermal coefficient from case to ambient air (°C/W)  
CA  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢁꢂ  
ꢄꢄ  
ꢁꢂ  
ꢀꢁꢂ  
ꢄꢄ  
ꢁꢂ  
ꢄꢄ  
SLOS289E − DECEMBER 1999 − REVISED SEPTEMBER 2006  
APPLICATION INFORMATION  
general PowerPAD design considerations (continued)  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
4
T
= 150°C  
J
3.5  
DGN Package  
Low-K Test PCB  
3
θ
= 52.7°C/W  
JA  
2.5  
PDIP Package  
Low-K Test PCB  
= 104°C/W  
θ
JA  
2
SOIC Package  
Low-K Test PCB  
= 176°C/W  
θ
1.0  
JA  
1
0.5  
0
−55 −40 −25 −10  
5
20 35 50 65 80 95 110 125  
T
A
− Free-Air Temperature − °C  
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.  
Figure 31. Maximum Power Dissipation vs Free-Air Temperature  
The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent  
power and output power. The designer should never forget about the quiescent heat generated within the  
device, especially multi-amplifier devices. Because these devices have linear output stages (Class A-B), most  
of the heat dissipation is at low output voltages with high output currents.  
The other key factor when dealing with power dissipation is how the devices are mounted on the PCB. The  
PowerPAD devices are extremely useful for heat dissipation. But, the device should always be soldered to a  
copper plane to fully use the heat dissipation properties of the PowerPAD. The SOIC package, on the other  
hand, is highly dependent on how it is mounted on the PCB. As more trace and copper area is placed around  
the device, θ decreases and the heat dissipation capability increases. The currents and voltages shown in  
JA  
these graphs are for the total package. For the dual amplifier packages, the sum of the RMS output currents  
and voltages should be used to choose the proper package.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢄꢄꢄ ꢆ ꢀ ꢁꢂꢃ ꢄꢄ ꢇꢆ ꢀꢁꢂ ꢃꢄꢄꢈ  
ꢉꢊꢋ ꢌꢁꢍ ꢎ ꢉ ꢏꢌ ꢐꢏ ꢎ ꢑꢀ ꢒꢑꢀ ꢓꢔꢌ ꢂꢕ ꢎ ꢒꢕꢔꢊꢀꢌ ꢎ ꢖ ꢊꢁ  
ꢊꢋ ꢒꢁ ꢌꢉ ꢌꢕ ꢔꢗ ꢘ ꢌꢀ ꢏ ꢗꢏꢑ ꢀꢓ ꢎ ꢘꢖ  
SLOS289E − DECEMBER 1999 − REVISED SEPTEMBER 2006  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts, the model generation software used  
with Microsim PSpice. The Boyle macromodel (see Note 3) and subcircuit in Figure 33 are generated using  
the TLV411x typical electrical and operating characteristics at T = 25°C. Using this information, output  
A
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 3: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
3
99  
V
DD  
+
egnd  
rd1  
11  
rd2  
12  
rss  
ro2  
css  
fb  
rp  
c1  
7
+
c2  
vlim  
8
1
2
+
r2  
9
6
IN+  
IN−  
vc  
D
S
D
S
+
vb  
ga  
G
G
ro1  
gcm  
ioff  
53  
OUT  
dp  
5
dlp  
dln  
91  
90  
92  
10  
+
+
iss  
dc  
vlp  
hlim  
vln  
+
GND  
+ 54  
4
de  
ve  
* TLV4112_5V operational amplifier ”macromodel” subcircuit  
iss  
10  
90  
0
4
0
6
2
1
9
dc  
13.800E−6  
75E−9  
* updated using Model Editor release 9.1 on 01/18/00 at 15:50  
hlim  
ioff  
j1  
vlim 1K  
dc  
Model Editor is an OrCAD product.  
*
11  
12  
6
10 jx1  
10 jx2  
* connections: non−inverting input  
J2  
r2  
rd1  
rd2  
ro1  
ro2  
rp  
rss  
vb  
vc  
ve  
vlim  
vlp  
vln  
.model  
*
| inverting input  
| | positive power supply  
| | | negative power supply  
| | | | output  
| | | | |  
1 2 3 4 5  
100.00E3  
5.9386E3  
5.9386E3  
10  
*
3
11  
12  
5
*
3
*
8
*
7
99  
4
10  
.subckt TLV4112_5V  
*
3
3.3333E3  
14.493E6  
dc 0  
10  
9
99  
0
c1  
11  
12  
7
99  
53  
5
91  
90  
3
0
99  
2.2439E−12  
c2  
6
10.000E−12  
3
53  
4
dc .86795  
dc .86795  
dc 0  
dc 300  
dc 300  
css  
dc  
de  
dlp  
dln  
dp  
egnd  
fb  
10  
5
454.55E−15  
54  
7
dy  
8
54  
90  
92  
4
dy  
91  
0
0
dx  
92  
dx  
dx  
D(Is=800.00E−18)  
dx  
.model dy  
.model jx1  
.model jx2  
.ends  
D(Is=800.00E−18 Rs=1m Cjo=10p)  
99  
7
poly(2) (3,0) (4,0) 0 .5 .5  
poly(5) vb vc ve vlp vln 0  
NJF(Is=150.00E−12 Beta=2.0547E−3 +Vto=−1)  
NJF(Is=150.00E−12 Beta=2.0547E−3 + Vto=−1)  
+ 33.395E6 −1E3 1E3 33E6 −33E6  
ga  
gcm  
6
0
0
6
11  
10  
12 168.39E−6  
99 168.39E−12  
*$  
Figure 32. Boyle Macromodel and Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
PACKAGING INFORMATION  
Orderable Device  
TLV4110ID  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOIC  
SOIC  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 125 4110I  
-40 to 125 4110I  
-40 to 125 AHM  
-40 to 125 AHM  
-40 to 125 4110I  
-40 to 125 4110I  
-40 to 125 TLV4110I  
-40 to 125 TLV4110I  
TLV4110IDG4  
TLV4110IDGNR  
TLV4110IDGNRG4  
TLV4110IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
DGN  
DGN  
D
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
2500  
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
Green (RoHS  
& no Sb/Br)  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
Green (RoHS  
& no Sb/Br)  
TLV4110IDRG4  
TLV4110IP  
D
Green (RoHS  
& no Sb/Br)  
P
Pb-Free  
(RoHS)  
TLV4110IPE4  
TLV4111CD  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
D
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
4111C  
4111C  
AHN  
TLV4111CDG4  
TLV4111CDGN  
TLV4111CDGNG4  
TLV4111ID  
D
75  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
DGN  
DGN  
D
80  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
80  
Green (RoHS  
& no Sb/Br)  
AHN  
SOIC  
75  
Green (RoHS  
& no Sb/Br)  
-40 to 125 4111I  
-40 to 125 4111I  
-40 to 125 AHO  
-40 to 125 AHO  
-40 to 125 AHO  
TLV4111IDG4  
TLV4111IDGN  
TLV4111IDGNG4  
TLV4111IDGNR  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
DGN  
DGN  
DGN  
80  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
80  
Green (RoHS  
& no Sb/Br)  
MSOP-  
2500  
Green (RoHS  
& no Sb/Br)  
PowerPAD  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
Orderable Device  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
TLV4111IDGNRG4  
TLV4111IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
MSOP-  
PowerPAD  
DGN  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
2500  
2500  
2500  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 125 AHO  
-40 to 125 4111I  
-40 to 125 4111I  
SOIC  
SOIC  
SOIC  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
TLV4111IDRG4  
TLV4112CD  
D
Green (RoHS  
& no Sb/Br)  
D
Green (RoHS  
& no Sb/Br)  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
4112C  
TLV4112CDG4  
TLV4112CDGN  
TLV4112CDGNG4  
TLV4112CP  
D
75  
Green (RoHS  
& no Sb/Br)  
4112C  
MSOP-  
PowerPAD  
DGN  
DGN  
P
80  
Green (RoHS  
& no Sb/Br)  
AHP  
MSOP-  
PowerPAD  
80  
Green (RoHS  
& no Sb/Br)  
AHP  
PDIP  
PDIP  
SOIC  
SOIC  
50  
Pb-Free  
(RoHS)  
TLV4112C  
TLV4112C  
TLV4112CPE4  
TLV4112ID  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
D
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 125 4112I  
-40 to 125 4112I  
-40 to 125 AHQ  
-40 to 125 AHQ  
-40 to 125 AHQ  
-40 to 125 AHQ  
-40 to 125 4112I  
-40 to 125 4112I  
-40 to 125 TLV4112I  
TLV4112IDG4  
TLV4112IDGN  
TLV4112IDGNG4  
TLV4112IDGNR  
TLV4112IDGNRG4  
TLV4112IDR  
D
75  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
DGN  
DGN  
DGN  
DGN  
D
80  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
80  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
2500  
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
Green (RoHS  
& no Sb/Br)  
SOIC  
SOIC  
PDIP  
Green (RoHS  
& no Sb/Br)  
TLV4112IDRG4  
TLV4112IP  
D
Green (RoHS  
& no Sb/Br)  
P
Pb-Free  
(RoHS)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
Orderable Device  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
TLV4112IPE4  
TLV4113CDGQ  
TLV4113CDGQG4  
TLV4113CDGQR  
TLV4113CDGQRG4  
TLV4113ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
P
8
50  
80  
Pb-Free  
(RoHS)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 125 TLV4112I  
MSOP-  
PowerPAD  
DGQ  
DGQ  
DGQ  
DGQ  
D
10  
10  
10  
10  
14  
14  
10  
10  
10  
10  
14  
14  
Green (RoHS  
& no Sb/Br)  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
AHR  
AHR  
AHR  
AHR  
MSOP-  
PowerPAD  
80  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
Green (RoHS  
& no Sb/Br)  
SOIC  
Green (RoHS  
& no Sb/Br)  
-40 to 125 4113I  
-40 to 125 4113I  
-40 to 125 AHS  
-40 to 125 AHS  
-40 to 125 AHS  
-40 to 125 AHS  
-40 to 125 TLV4113I  
-40 to 125 TLV4113I  
TLV4113IDG4  
SOIC  
D
50  
Green (RoHS  
& no Sb/Br)  
TLV4113IDGQ  
TLV4113IDGQG4  
TLV4113IDGQR  
TLV4113IDGQRG4  
TLV4113IN  
MSOP-  
PowerPAD  
DGQ  
DGQ  
DGQ  
DGQ  
N
80  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
80  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
Green (RoHS  
& no Sb/Br)  
PDIP  
Pb-Free  
(RoHS)  
TLV4113INE4  
PDIP  
N
25  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) Only one of markings shown within the brackets will appear on the physical device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV4113 :  
Enhanced Product: TLV4113-EP  
NOTE: Qualified Version Definitions:  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Dec-2011  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV4110IDGNR  
MSOP-  
Power  
PAD  
DGN  
8
2500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
TLV4110IDR  
SOIC  
D
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
6.4  
5.3  
5.2  
3.4  
2.1  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
TLV4111IDGNR  
MSOP-  
Power  
PAD  
DGN  
TLV4111IDR  
SOIC  
D
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
6.4  
5.3  
5.2  
3.4  
2.1  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
TLV4112IDGNR  
MSOP-  
Power  
PAD  
DGN  
TLV4112IDGNR  
MSOP-  
Power  
PAD  
DGN  
8
2500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
TLV4112IDR  
SOIC  
D
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
6.4  
5.3  
5.2  
3.4  
2.1  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
TLV4113CDGQR  
MSOP-  
Power  
PAD  
DGQ  
10  
TLV4113IDGQR  
MSOP-  
Power  
PAD  
DGQ  
10  
2500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Dec-2011  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV4110IDGNR  
TLV4110IDR  
MSOP-PowerPAD  
SOIC  
DGN  
D
8
8
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
358.0  
340.5  
358.0  
340.5  
358.0  
364.0  
340.5  
358.0  
358.0  
335.0  
338.1  
335.0  
338.1  
335.0  
364.0  
338.1  
335.0  
335.0  
35.0  
20.6  
35.0  
20.6  
35.0  
27.0  
20.6  
35.0  
35.0  
TLV4111IDGNR  
TLV4111IDR  
MSOP-PowerPAD  
SOIC  
DGN  
D
8
8
TLV4112IDGNR  
TLV4112IDGNR  
TLV4112IDR  
MSOP-PowerPAD  
MSOP-PowerPAD  
SOIC  
DGN  
DGN  
D
8
8
8
TLV4113CDGQR  
TLV4113IDGQR  
MSOP-PowerPAD  
MSOP-PowerPAD  
DGQ  
DGQ  
10  
10  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  
配单直通车
TLV4110IDGNR产品参数
型号:TLV4110IDGNR
Brand Name:Texas Instruments
是否无铅:不含铅
是否Rohs认证:符合
生命周期:Active
IHS 制造商:TEXAS INSTRUMENTS INC
零件包装代码:MSOP
包装说明:MSOP-8
针数:8
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.33.00.01
Factory Lead Time:1 week
风险等级:1.45
Samacsys Confidence:
Samacsys Status:Released
Samacsys PartID:607396
Samacsys Pin Count:9
Samacsys Part Category:Integrated Circuit
Samacsys Package Category:Other
Samacsys Footprint Name:SOP65P490X110-9N
Samacsys Released Date:2017-01-12 12:59:53
Is Samacsys:N
放大器类型:OPERATIONAL AMPLIFIER
架构:VOLTAGE-FEEDBACK
最大平均偏置电流 (IIB):0.0005 µA
25C 时的最大偏置电流 (IIB):0.00005 µA
最小共模抑制比:68 dB
标称共模抑制比:68 dB
频率补偿:YES
最大输入失调电流 (IIO):0.000025 µA
最大输入失调电压:3500 µV
JESD-30 代码:S-PDSO-G8
JESD-609代码:e4
长度:3 mm
低-偏置:YES
低-失调:NO
微功率:NO
湿度敏感等级:1
功能数量:1
端子数量:8
最高工作温度:125 °C
最低工作温度:-40 °C
封装主体材料:PLASTIC/EPOXY
封装代码:HTSSOP
封装等效代码:TSSOP8,.19
封装形状:SQUARE
封装形式:SMALL OUTLINE, HEAT SINK/SLUG, THIN PROFILE, SHRINK PITCH
包装方法:TR
峰值回流温度(摄氏度):260
功率:NO
电源:3/5 V
可编程功率:NO
认证状态:Not Qualified
座面最大高度:1.07 mm
最小摆率:0.55 V/us
标称压摆率:1.57 V/us
子类别:Operational Amplifier
最大压摆率:1 mA
供电电压上限:6 V
标称供电电压 (Vsup):3 V
表面贴装:YES
技术:CMOS
温度等级:AUTOMOTIVE
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:GULL WING
端子节距:0.65 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
标称均一增益带宽:2700 kHz
最小电压增益:7943
宽带:NO
宽度:3 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!