欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • TLV62130RGTR
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • TLV62130RGTR图
  • 深圳市芯鹏泰科技有限公司

     该会员已使用本站8年以上
  • TLV62130RGTR 现货库存
  • 数量6538 
  • 厂家TI/德州仪器 
  • 封装VQFN16 
  • 批号23+ 
  • 原装现货,实货实报
  • QQ:892152356QQ:892152356 复制
  • 0755-82777852 QQ:892152356
  • TLV62130RGTR图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • TLV62130RGTR 现货库存
  • 数量5000 
  • 厂家TI 
  • 封装QFN-16 
  • 批号23+ 
  • 全新原装,公司现货销售!
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • TLV62130RGTR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • TLV62130RGTR 现货库存
  • 数量8867 
  • 厂家TI 
  • 封装QFN-16 
  • 批号24+ 
  • 只做原装正品现货销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • TLV62130RGTR图
  • 集好芯城

     该会员已使用本站13年以上
  • TLV62130RGTR 现货库存
  • 数量27115 
  • 厂家TI(德州仪器) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TLV62130RGTR图
  • 深圳市昌和盛利电子有限公司

     该会员已使用本站11年以上
  • TLV62130RGTR 现货库存
  • 数量36500 
  • 厂家TI【原装正品】 
  • 封装VQFN-16 
  • 批号▊ NEW ▊ 
  • ▊▊★代理TI▊▊全系列销售【100%全新原装正品】★长期供应,量大可订,价格优惠!
  • QQ:1551106297QQ:1551106297 复制
    QQ:3059638860QQ:3059638860 复制
  • 0755-23125986 QQ:1551106297QQ:3059638860
  • TLV62130RGTR图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • TLV62130RGTR 现货库存
  • 数量5300 
  • 厂家TI/德州仪器? 
  • 封装VQFN16 
  • 批号24+ 
  • 全新原装★真实库存★含13点增值税票!
  • QQ:2353549508QQ:2353549508 复制
    QQ:2885134615QQ:2885134615 复制
  • 0755-83201583 QQ:2353549508QQ:2885134615
  • TLV62130RGTR图
  • 深圳市积美福电子科技有限公司

     该会员已使用本站4年以上
  • TLV62130RGTR 现货库存
  • 数量5800 
  • 厂家TI优势代理渠道 
  • 封装VQFN16 
  • 批号21+ 
  • 原装现货,假一罚十!!!
  • QQ:647176908QQ:647176908 复制
    QQ:499959596QQ:499959596 复制
  • 0755-83228296 QQ:647176908QQ:499959596
  • TLV62130RGTR图
  • 深圳市恒意法科技有限公司

     该会员已使用本站17年以上
  • TLV62130RGTR 现货库存
  • 数量21000 
  • 厂家TI/德州仪器 
  • 封装VQFN16 
  • 批号21+ 
  • 专营原装正品现货,当天发货,可开发票!
  • QQ:2881514372QQ:2881514372 复制
  • 0755-83247729 QQ:2881514372
  • TLV62130RGTR图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • TLV62130RGTR 现货库存
  • 数量12500 
  • 厂家TI(德州仪器) 
  • 封装QFN-16(3x3) 
  • 批号1年内 
  • 原厂渠道 正品保障 长期供应
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • TLV62130RGTR图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • TLV62130RGTR 现货库存
  • 数量23200 
  • 厂家TI 
  • 封装N/A 
  • 批号21+ 
  • 全新原装有现货库存--价格有优势
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • TLV62130RGTR图
  • 深圳市勤思达科技有限公司

     该会员已使用本站14年以上
  • TLV62130RGTR 现货库存
  • 数量6000 
  • 厂家TI/德州仪器 
  • 封装VQFN16 
  • 批号2021+ 
  • ▉十二年专注▉ 100%全新原装正品 正规渠道订货 长期现货供应
  • QQ:2881910282QQ:2881910282 复制
    QQ:2881239443QQ:2881239443 复制
  • 0755-83268779 QQ:2881910282QQ:2881239443
  • TLV62130RGTR图
  • 深圳市欧昇科技有限公司

     该会员已使用本站2年以上
  • TLV62130RGTR 现货库存
  • 数量500 
  • 厂家TI? 德州仪器 
  • 封装VFQFN16 
  • 批号21+ 
  • 深圳现货,当天可发,真实库存
  • QQ:2885528234QQ:2885528234 复制
  • -0755-83220848 QQ:2885528234
  • TLV62130RGTR图
  • 深圳市捷兴胜微电子科技有限公司

     该会员已使用本站13年以上
  • TLV62130RGTR 现货库存
  • 数量22000 
  • 厂家TI分销商 
  • 封装VQFN16 
  • 批号21+ 
  • 捷兴胜微,只做原装,原厂渠道
  • QQ:838417624QQ:838417624 复制
    QQ:929605236QQ:929605236 复制
  • 0755-23997656(现货库存配套一站采购及BOM优化) QQ:838417624QQ:929605236
  • TLV62130RGTR图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • TLV62130RGTR 现货库存
  • 数量18500 
  • 厂家TI(德州仪器) 
  • 封装QFN-16(3x3) 
  • 批号24+ 
  • ★★全网低价,原装原包★★
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • TLV62130RGTR图
  • 深圳市积美福电子科技有限公司

     该会员已使用本站4年以上
  • TLV62130RGTR 现货热卖
  • 数量6000 
  • 厂家TI/德州仪器 
  • 封装QFN-16 
  • 批号21+ 
  • 原装现货,假一罚十!!!
  • QQ:647176908QQ:647176908 复制
    QQ:499959596QQ:499959596 复制
  • 0755-83228296 QQ:647176908QQ:499959596
  • TLV62130RGTR图
  • 深圳市捷兴胜微电子科技有限公司

     该会员已使用本站13年以上
  • TLV62130RGTR 现货热卖
  • 数量22000 
  • 厂家TI分销商 
  • 封装VQFN16 
  • 批号21+ 
  • 捷兴胜微,只做原装,原厂渠道
  • QQ:838417624QQ:838417624 复制
    QQ:929605236QQ:929605236 复制
  • 0755-23997656(现货库存配套一站采购及BOM优化) QQ:838417624QQ:929605236
  • TLV62130RGTR图
  • 深圳市西昂特科技有限公司

     该会员已使用本站13年以上
  • TLV62130RGTR 优势库存
  • 数量30000 
  • 厂家TI/德州仪器 
  • 封装VQFN-16 
  • 批号21+ 
  • 原厂原装现货
  • QQ:2881291855QQ:2881291855 复制
    QQ:1158574719QQ:1158574719 复制
  • 0755-82524647 QQ:2881291855QQ:1158574719
  • TLV62130RGTR图
  • 深圳市珩瑞科技有限公司

     该会员已使用本站2年以上
  • TLV62130RGTR 优势库存
  • 数量15000 
  • 厂家TI/支持实单 
  • 封装QFN16 
  • 批号21+ 
  • ███全新原装正品,支持实单
  • QQ:2938238007QQ:2938238007 复制
    QQ:1840507767QQ:1840507767 复制
  • -0755-82578309 QQ:2938238007QQ:1840507767
  • TLV62130RGTR图
  • 深圳市捷兴胜微电子科技有限公司

     该会员已使用本站13年以上
  • TLV62130RGTR 优势库存
  • 数量4268 
  • 厂家TI/德州仪器 
  • 封装VQFN16 
  • 批号2120+ 
  • 只做原装,深圳现货
  • QQ:838417624QQ:838417624 复制
    QQ:929605236QQ:929605236 复制
  • 0755-23997656(现货库存配套一站采购及BOM优化) QQ:838417624QQ:929605236
  • TLV62130RGTR图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • TLV62130RGTR 热卖库存
  • 数量66730 
  • 厂家TI 
  • 封装QFN16 
  • 批号2024 
  • 上海原装现货,欢迎咨询
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • TLV62130RGTR图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • TLV62130RGTR
  • 数量5000 
  • 厂家TI/德州仪器 
  • 封装VQFN16 
  • 批号21+ 
  • 原厂原包装,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • TLV62130RGTR图
  • 深圳市隆亿诚科技有限公司

     该会员已使用本站3年以上
  • TLV62130RGTR
  • 数量3253 
  • 厂家TI/德州仪器 
  • 封装QFN 
  • 批号22+ 
  • 支持检测.现货价优!
  • QQ:778039761QQ:778039761 复制
  • -0755-82710221 QQ:778039761
  • TLV62130RGTR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • TLV62130RGTR
  • 数量30000 
  • 厂家TI 
  • 封装QFN-16 
  • 批号23+ 
  • 原装正品特价销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • TLV62130RGTR图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • TLV62130RGTR
  • 数量3000 
  • 厂家TI 
  • 封装QFN-16 
  • 批号23+ 
  • 原装正品长期供货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • TLV62130RGTR图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • TLV62130RGTR
  • 数量12245 
  • 厂家TI/德州仪器 
  • 封装QFN16 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • TLV62130RGTR 电源IC图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • TLV62130RGTR 电源IC
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • TLV62130RGTR图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • TLV62130RGTR
  • 数量5600 
  • 厂家TI 
  • 封装16QFN 
  • 批号23+ 
  • 只做原装正品,深圳现货
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • TLV62130RGTR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TLV62130RGTR
  • 数量6250 
  • 厂家TI/德州仪器 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • TLV62130RGTR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • TLV62130RGTR
  • 数量36500 
  • 厂家TI/德州仪器 
  • 封装QFN 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • TLV62130RGTR图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • TLV62130RGTR
  • 数量44300 
  • 厂家TI 
  • 封装QFN-16 
  • 批号2019+ 
  • TI一级代理专营品牌绝对进口原装假一赔十
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • TLV62130RGTR图
  • 集好芯城

     该会员已使用本站13年以上
  • TLV62130RGTR
  • 数量15530 
  • 厂家专营TI 
  • 封装QFN16 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TLV62130RGTR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TLV62130RGTR
  • 数量18530 
  • 厂家TI 
  • 封装QFN-16 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • TLV62130RGTR图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • TLV62130RGTR
  • 数量22000 
  • 厂家TI/德州仪器 
  • 封装VQFN16 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115

产品型号TLV62130RGTR的概述

TLV62130RGTR芯片概述 TLV62130RGTR是一款高效的降压稳压器,广泛应用于各种电源管理方案中,特别适合对低功耗与高效率有要求的设备。这款芯片由德州仪器(Texas Instruments)公司生产,旨在满足现代电子设备对电源转换效率和体积的严格要求。TLV62130RGTR的设计采用了集成电路技术,兼具高性能与灵活性,使其成为众多应用领域的理想选择。 TLV62130RGTR的详细参数 TLV62130RGTR的主要技术参数包括: 1. 输入电压范围:此芯片的输入电压范围为4.5V至17V,能够支持多种电源输入。 2. 输出电压范围:最低输出电压可调至0.8V,适用于多种需求场景。 3. 输出电流:最大输出电流能力可达3A,能够驱动大功率负载。 4. 效率:其最高转换效率可达95%,在较大负载与输入电压范围内保持高效能,这使得该芯片在发热方面表现优异。 5. 开关频率...

产品型号TLV62130RGTR的Datasheet PDF文件预览

TLV62130  
www.ti.com  
SLVSB74 FEBRUARY 2012  
4-17V 3A Step-Down Converter with DCS-ControlTM  
Check for Samples: TLV62130  
1
FEATURES  
DESCRIPTION  
The TLV62130 is an easy to use synchronous step  
down DC-DC converter optimized for applications  
with high power density. A high switching frequency  
of typically 2.5MHz allows the use of small inductors  
and provides fast transient response as well as high  
output voltage accuracy by utilization of the  
DCS-Controltopology.  
2
DCS-Control Topology  
Input Voltage Range: 4 to 17V  
Up to 3A Output Current  
Adjustable Output Voltage from 0.9 to 5V  
Pin-Selectable Output Voltage (nominal, + 5%)  
Programmable Soft Start and Tracking  
Seamless Power Save Mode Transition  
Quiescent Current of 19µA (typ.)  
Selectable Operating Frequency  
Power Good Output  
With its wide operating input voltage range of 4V to  
17V, the devices are ideally suited for systems  
powered from either a Li-Ion or other batteries as well  
as from 12V intermediate power rails. It supports up  
to 3A continuous output current at output voltages  
between 0.9V and 5V (with 100% duty cycle mode).  
100% Duty Cycle Mode  
The output voltage startup ramp is controlled by the  
soft-start pin, which allows operation as either a  
standalone power supply or in tracking configurations.  
Power sequencing is also possible by configuring the  
Enable and open-drain Power Good pins.  
Short Circuit Protection  
Over Temperature Protection  
For Improved Feature Set, see TPS62130  
Available in a 3 × 3 mm, QFN-16 Package  
In Power Save Mode, the devices show quiescent  
current of about 19μA from VIN. Power Save Mode,  
entered automatically and seamlessly if load is small,  
maintains high efficiency over the entire load range.  
In Shutdown Mode, the device is turned off and  
shutdown current consumption is less than 2μA.  
APPLICATIONS  
Standard 12V Rail Supplies  
POL Supply from Single or Multiple Li-Ion  
Battery  
Embedded Systems  
The device is packaged in a 16-pin QFN package  
measuring 3 × 3 mm (RGT).  
LDO replacement  
Mobile PC's, Tablet, Modems, Cameras  
spacing  
(4 .. 17)V  
1 / 2.2 µH  
3.3V / 3A  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
100k  
10uF  
750k  
240k  
22uF  
TLV62130  
SS/TR  
DEF  
FB  
3.3nF  
AGND  
PGND  
FSW  
Figure 1. Typical Application and Efficiency  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
DCS-Control is a trademark of Texas Instruments.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2012, Texas Instruments Incorporated  
TLV62130  
SLVSB74 FEBRUARY 2012  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION(1)  
TA  
OUTPUT VOLTAGE  
PART NUMBER(2)  
PACKAGE  
ORDERING  
PACKAGE  
MARKING  
-40°C to 85°C  
adjustable  
TLV62130  
16-Pin QFN  
TLV62130RGT  
VUBI  
(1) For detailed ordering information please check the PACKAGE OPTION ADDENDUM section at the end of this datasheet.  
(2) Contact the factory to check availability of other fixed output voltage versions.  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.3  
0.3  
0.3  
0.3  
MAX  
20  
UNIT  
AVIN, PVIN  
V
EN, SS/TR  
VIN+0.3  
VIN+0.3  
7
Pin voltage range(2)  
SW  
V
V
DEF, FSW, FB, PG, VOS  
Power Good sink current PG  
10  
mA  
Operating junction temperature range, TJ  
40  
65  
125  
150  
2
Temperature range  
ESD rating(3)  
°C  
Storage temperature range, Tstg  
HBM Human body model  
kV  
kV  
CDM Charge device model  
0.5  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to network ground terminal.  
(3) ESD testing is performed according to the respective JESD22 JEDEC standard.  
THERMAL INFORMATION  
TLV62130  
THERMAL METRIC(1)  
UNITS  
RGT 16 PINS  
θJA  
Junction-to-ambient thermal resistance  
29.1  
15  
θJC(TOP)  
θJB  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
11  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
0.5  
10  
ψJB  
θJC(BOTTOM)  
3.5  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
RECOMMENDED OPERATING CONDITIONS  
MIN TYP  
MAX  
17  
UNIT  
V
Supply Voltage, VIN (at AVIN and PVIN)  
Operating free air temperature, TA  
Operating junction temperature, TJ  
4
40  
40  
85  
°C  
125  
°C  
2
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s): TLV62130  
TLV62130  
www.ti.com  
SLVSB74 FEBRUARY 2012  
ELECTRICAL CHARACTERISTICS  
over free-air temperature range (TA=-40°C to +85°C), typical values at VIN=12V and TA=25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
SUPPLY  
VIN  
Input voltage range(1)  
Operating quiescent current  
Shutdown current(2)  
4
17  
27  
4
V
µA  
µA  
V
IQ  
EN=High, IOUT=0mA, device not switching  
19  
1.5  
2.7  
200  
160  
20  
ISD  
EN=Low  
VUVLO  
Falling Input Voltage  
Hysteresis  
2.6  
0.9  
2.8  
Undervoltage lockout threshold  
mV  
TSD  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
°C  
CONTROL (EN, DEF, FSW, SS/TR, PG)  
High level input threshold voltage (EN, DEF,  
FSW)  
VH  
VL  
V
Low level input threshold voltage (EN, DEF,  
FSW)  
0.3  
V
ILKG  
Input leakage current (EN, DEF, FSW)  
EN=VIN or GND; DEF, FSW=VOUT or GND  
0.01  
95  
1
98  
µA  
Rising (%VOUT  
)
92  
87  
VTH_PG  
Power good threshold voltage  
%
Falling (%VOUT  
IPG=-2mA  
)
90  
94  
VOL_PG  
ILKG_PG  
ISS/TR  
Power good output low  
Input leakage current (PG)  
SS/TR pin source current  
0.07  
1
0.3  
400  
2.7  
V
VPG=1.8V  
nA  
µA  
2.3  
3.6  
0.9  
2.5  
POWER SWITCH  
High-side MOSFET ON-resistance  
V
IN6V  
IN6V  
90  
40  
mΩ  
mΩ  
A
RDS(ON)  
Low-side MOSFET ON-resistance  
High-side MOSFET forward current limit(3)  
V
ILIMF  
VIN =12V, TA= 25°C  
4.2  
OUTPUT  
VREF  
Internal reference voltage(4)  
Input leakage current (FB)  
Output voltage range  
0.8  
1
V
nA  
V
ILKG_FB  
VFB=0.8V  
100  
5.0  
V
IN VOUT  
DEF=0 (GND)  
DEF=1 (VOUT  
DEF (Output voltage programming)  
VOUT  
)
VOUT+5%  
2.5  
Initial output voltage accuracy(5)  
Load regulation(6)  
Line regulation(6)  
PWM mode operation, VIN VOUT +1V  
2.5  
%
VOUT  
VIN=12V, VOUT=3.3V, PWM mode operation  
0.05  
0.02  
%/A  
%/V  
4V VIN 17V, VOUT=3.3V, IOUT= 1A, PWM  
mode operation  
(1) The device is still functional down to Under Voltage Lockout (see parameter VUVLO).  
(2) Current into AVIN+PVIN pin.  
(3) This is the static current limit. It can be temporarily higher in applications due to internal propagation delay (see Current Limit And Short  
Circuit Protection section).  
(4) This is the voltage regulated at the FB pin.  
(5) This is the accuracy provided by the device itself (line and load regulation effects are not included).  
(6) Line and load regulation depend on external component selection and layout (see Figure 16 and Figure 17).  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TLV62130  
 
TLV62130  
SLVSB74 FEBRUARY 2012  
www.ti.com  
DEVICE INFORMATION  
RGT PACKAGE  
(TOP VIEW)  
16  
15  
14  
13  
1
2
3
4
12  
11  
10  
9
SW  
SW  
SW  
PG  
PVIN  
PVIN  
AVIN  
SS/TR  
Exposed  
Thermal Pad  
5
6
7
8
Terminal Functions  
PIN(1)  
I/O  
DESCRIPTION  
NAME  
NO.  
SW  
PG  
FB  
1,2,3  
O
Switch node, which is connected to the internal MOSFET switches. Connect inductor between SW and  
output capacitor.  
4
O
I
Output power good (High = VOUT ready, Low = VOUT below nominal regulation) ; open drain (requires  
pull-up resistor; goes high impedance, when device is switched off)  
5
6
7
8
Voltage feedback. Connect resistive voltage divider to this pin.  
Analog Ground  
Switching Frequency Select (Low 2.5MHz, High 1.25MHz for typical operation)(2)  
Output Voltage Scaling (Low = nominal, High = nominal + 5%)(2)  
AGND  
FSW  
DEF  
I
I
Soft-Start / Tracking Pin. An external capacitor connected to this pin sets the internal voltage reference rise  
time. It can be used for tracking and sequencing.  
SS/TR  
9
I
AVIN  
PVIN  
EN  
10  
11,12  
13  
I
I
I
I
Supply voltage for control circuitry. Connect to same source as PVIN.  
Supply voltage for power stage. Connect to same source as AVIN.  
Enable input (High = enabled, Low = disabled)(2)  
VOS  
PGND  
14  
Output voltage sense pin and connection for the control loop circuitry.  
Power ground  
15,16  
Exposed  
Thermal Pad  
Must be connected to AGND. Must be soldered to achieve appropriate power dissipation and mechanical  
reliability.  
(1) For more information about connecting pins, see DETAILED DESCRIPTION and APPLICATION INFORMATION sections.  
(2) An internal pull-down resistor keeps logic level low, if pin is floating.  
4
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s): TLV62130  
TLV62130  
www.ti.com  
SLVSB74 FEBRUARY 2012  
FUNCTIONAL BLOCK DIAGRAM  
PG  
AVIN  
PVIN PVIN  
Soft  
start  
Thermal  
Shtdwn  
UVLO  
PG control  
HS lim  
comp  
EN*  
SW  
SW  
SW  
SS/TR  
power  
control  
gate  
drive  
control logic  
DEF*  
FSW*  
comp  
LS lim  
direct control  
&
compensation  
VOS  
FB  
ramp  
_
comparator  
timer tON  
error  
amplifier  
+
DCS - ControlTM  
* This pin is connected to a pull down resistor internally  
(see Detailed Description section).  
AGND  
PGND PGND  
Figure 2. TLV62130  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TLV62130  
TLV62130  
SLVSB74 FEBRUARY 2012  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION  
List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
IC  
17V, 3A Step-Down Converter, QFN  
2.2µH, 0.165 x 0.165 in  
10µF, 25V, Ceramic  
TLV62130RGT, Texas Instruments  
XFL4020-222MEB, Coilcraft  
Standard  
L1  
Cin  
Cout  
Cs  
22µF, 6.3V, Ceramic  
Standard  
3300pF, 25V, Ceramic  
depending on Vout  
R1  
R2  
R3  
depending on Vout  
100kΩ, Chip, 0603, 1/16W, 1%  
Standard  
spacing  
VIN  
L1  
VOUT  
PVIN  
SW  
AVIN  
VOS  
R3  
CIN  
EN  
PG  
R1  
R2  
COUT  
TLV62130  
SS/TR  
DEF  
FSW  
FB  
CSS  
AGND  
PGND  
Figure 3. Measurement Setup  
TYPICAL CHARACTERISTICS  
Table of Graphs  
DESCRIPTION  
FIGURE  
Efficiency  
vs Output Current, vs Input Voltage  
5 - 16  
vs Output current (Load regulation), vs Input Voltage  
(Line regulation)  
Output voltage  
17, 18  
vs Input Voltage  
19  
20  
Switching Frequency  
vs Output Current  
Quiescent Current  
vs Input Voltage  
21  
Shutdown Current  
vs Input Voltage  
22  
Power FET RDS(on)  
Output Voltage Ripple  
Maximum Output Current  
vs Input Voltage (High-Side, Low-Side)  
vs output Current  
23, 24  
25  
vs Input Voltage  
26  
Power Supply Rejection Ratio (PSSR)  
vs Frequency  
27, 28  
29  
PWM-PSM-PWM Mode Transition  
Load Transient Response  
Startup  
30 - 32  
33, 34  
35  
Waveforms  
Typical PWM Mode Operation  
Typical Power Save Mode Operation  
vs Load Current  
36  
37  
Maximum Ambient Temperature  
vs Power Dissipation  
38  
6
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s): TLV62130  
 
TLV62130  
www.ti.com  
SLVSB74 FEBRUARY 2012  
EFFICIENCY  
vs  
EFFICIENCY  
vs  
OUTPUT CURRENT  
INPUT VOLTAGE  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
VIN=17V  
VIN=12V  
IOUT=10mA  
IOUT=1A  
IOUT=1mA  
IOUT=100mA  
VOUT=5.0V  
L=2.2uH (XFL4020)  
Cout=22uF  
VOUT=5.0V  
L=2.2uH (XFL4020)  
Cout=22uF  
0.0001  
0.001  
0.01  
0.1  
1
10  
7
7
4
8
9
10  
11  
12  
13  
14  
15  
16  
17  
Output Current (A)  
Input Voltage (V)  
G001  
G001  
Figure 4. Efficiency with 1.25MHz, Vout=5V  
Figure 5. Efficiency with 1.25MHz, Vout=5V  
EFFICIENCY  
vs  
OUTPUT CURRENT  
EFFICIENCY  
vs  
INPUT VOLTAGE  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
VIN=17V  
VIN=12V  
IOUT=10mA  
IOUT=1A  
IOUT=1mA  
IOUT=100mA  
VOUT=5.0V  
L=2.2uH (XFL4020)  
Cout=22uF  
VOUT=5.0V  
L=2.2uH (XFL4020)  
Cout=22uF  
0.0001  
0.001  
0.01  
0.1  
1
10  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
Output Current (A)  
Input Voltage (V)  
G001  
G001  
Figure 6. Efficiency with 2.5MHz, Vout=5V  
Figure 7. Efficiency with 2.5MHz, Vout=5V  
EFFICIENCY  
vs  
OUTPUT CURRENT  
EFFICIENCY  
vs  
INPUT VOLTAGE  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
VIN=12V  
VIN=17V  
VIN=5V  
IOUT=1A IOUT=100mA IOUT=10mA  
IOUT=1mA  
VOUT=3.3V  
L=2.2uH (XFL4020)  
Cout=22uF  
VOUT=3.3V  
L=2.2uH (XFL4020)  
Cout=22uF  
0.0001  
0.001  
0.01  
0.1  
1
10  
5
6
7
8
9
10 11 12 13 14 15 16 17  
Output Current (A)  
Input Voltage (V)  
G001  
G001  
Figure 8. Efficiency with 1.25MHz, Vout=3.3V  
Figure 9. Efficiency with 1.25MHz, Vout=3.3V  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TLV62130  
TLV62130  
SLVSB74 FEBRUARY 2012  
www.ti.com  
EFFICIENCY  
vs  
EFFICIENCY  
vs  
OUTPUT CURRENT  
INPUT VOLTAGE  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
VIN=12V  
VIN=17V  
IOUT=100mA  
IOUT=1mA  
VIN=5V  
IOUT=10mA  
IOUT=1A  
40.0  
30.0  
20.0  
10.0  
0.0  
VOUT=3.3V  
L=2.2uH (XFL4020)  
Cout=22uF  
VOUT=3.3V  
L=2.2uH (XFL4020)  
Cout=22uF  
0.0001  
0.001  
0.01  
0.1  
1
10  
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Output Current (A)  
Input Voltage (V)  
G001  
G001  
Figure 10. Efficiency with 2.5MHz, Vout=3.3V  
Figure 11. Efficiency with 2.5MHz, Vout=3.3V  
EFFICIENCY  
vs  
EFFICIENCY  
vs  
OUTPUT CURRENT  
INPUT VOLTAGE  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
VIN=12V  
VIN=17V  
IOUT=1A  
IOUT=100mA  
IOUT=10mA  
VIN=5V  
IOUT=1mA  
VOUT=1.8V  
L=2.2uH (XFL4020)  
Cout=22uF  
VOUT=1.8V  
L=2.2uH (XFL4020)  
Cout=22uF  
0.0001  
0.001  
0.01  
0.1  
1
10  
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Output Current (A)  
Input Voltage (V)  
G001  
G001  
Figure 12. Efficiency with 1.25MHz, Vout=1.8V  
Figure 13. Efficiency with 1.25MHz, Vout=1.8V  
EFFICIENCY  
vs  
EFFICIENCY  
vs  
OUTPUT CURRENT  
INPUT VOLTAGE  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
VIN=12V  
VIN=17V  
IOUT=1A  
IOUT=100mA  
IOUT=10mA  
IOUT=1mA  
VIN=5V  
VOUT=0.9V  
L=2.2uH (XFL4020)  
Cout=22uF  
VOUT=0.9V  
L=2.2uH (XFL4020)  
Cout=22uF  
0.0001  
0.001  
0.01  
0.1  
1
10  
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Output Current (A)  
Input Voltage (V)  
G001  
G001  
Figure 14. Efficiency with 1.25MHz, Vout=0.9V  
Figure 15. Efficiency with 1.25MHz, Vout=0.9V  
8
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s): TLV62130  
TLV62130  
www.ti.com  
SLVSB74 FEBRUARY 2012  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
INPUT VOLTAGE  
3.40  
3.40  
3.35  
3.30  
3.25  
3.20  
VIN=17V  
VIN=12V  
IOUT=10mA  
IOUT=1mA  
IOUT=1A  
3.35  
3.30  
3.25  
3.20  
VIN=5V  
IOUT=100mA  
VOUT=3.3V  
L=2.2uH (XFL4020)  
Cout=22uF  
VOUT=3.3V  
L=2.2uH (XFL4020)  
Cout=22uF  
0.0001  
0.001  
0.01  
0.1  
1
10  
4
7
10  
Input Voltage (V)  
13  
16  
Output Current (A)  
G001  
G001  
Figure 16. Output Voltage Accuracy (Load Regulation)  
Figure 17. Output Voltage Accuracy (Line Regulation)  
SWITCHING FREQUENCY  
SWITCHING FREQUENCY  
vs  
vs  
INPUT VOLTAGE  
OUTPUT CURRENT  
4
4
3.5  
3.5  
3
IOUT=2A  
IOUT=3A  
3
2.5  
2
2.5  
2
IOUT=0.5A  
IOUT=1A  
1.5  
1
1.5  
1
VOUT=3.3V  
VIN=12V, VOUT=3.3V  
L=2.2uH (XFL4020)  
Cout=22uF  
L=2.2uH (XFL4020)  
FSW=Low  
0.5  
0
0.5  
0
4
6
8
10  
12  
14  
16  
18  
0
0.5  
1
1.5  
2
2.5  
3
Input Voltage (V)  
Output Current (A)  
G000  
G000  
Figure 18. Switching Frequency  
Figure 19. Switching Frequency  
INPUT CURRENT  
vs  
INPUT CURRENT  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
50.0  
45.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
85°C  
25°C  
85°C  
−40°C  
12.0  
25°C  
−40°C  
0.0  
3.0  
6.0  
9.0  
12.0  
15.0  
18.0 20.0  
3.0  
6.0  
9.0  
15.0  
18.0 20.0  
Input Voltage (V)  
Input Voltage (V)  
G001  
G001  
Figure 20. Quiescent Current  
Figure 21. Shutdown Current  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TLV62130  
TLV62130  
SLVSB74 FEBRUARY 2012  
www.ti.com  
STATIC DRAIN-SOURCE-RESISTANCE (RDSon  
)
STATIC DRAIN-SOURCE-RESISTANCE (RDSon  
)
vs  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
200.0  
180.0  
160.0  
140.0  
120.0  
100.0  
80.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
125°C  
125°C  
85°C  
25°C  
85°C  
25°C  
−10°C  
−10°C  
60.0  
−40°C  
40.0  
−40°C  
20.0  
0.0  
0.0  
3.0  
6.0  
9.0  
12.0  
15.0  
18.0 20.0  
0.0  
3.0  
6.0  
9.0  
12.0  
15.0  
18.0 20.0  
Input Voltage (V)  
Input Voltage (V)  
G001  
G001  
Figure 22. High-Side Switch Resistance  
Figure 23. Low-Side Switch Resistance  
OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
vs  
OUTPUT CURRENT  
INPUT VOLTAGE  
0.05  
0.04  
0.03  
0.02  
0.01  
0
6
5.5  
5
VOUT=3.3V,  
L=2.2uH (XFL4020)  
Cout=22uF  
−40°C  
4.5  
4
3.5  
3
VIN=17V  
VIN=5V  
25°C  
2.5  
2
85°C  
1.5  
1
VOUT=3.3V  
L=2.2uH (XFL4020)  
Cout=22uF  
0.5  
0
VIN=12V  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Output Current (A)  
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Input Voltage (V)  
G000  
G000  
Figure 24. Output Voltage Ripple  
Figure 25. Maximum Output Current  
POWER SUPPLY REJECTION RATIO  
POWER SUPPLY REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=12V  
VIN=5V  
VIN=5V  
VIN=12V  
VIN=17V  
VIN=17V  
VOUT=3.3V, IOUT=1A  
L=2.2uH (XFL4020)  
Cin=10uF, Cout=22uF  
VOUT=3.3V, IOUT=0.1A  
L=2.2uH (XFL4020)  
Cin=10uF, Cout=22uF  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
G000  
G000  
Figure 26. Power Supply Rejection Ratio, fSW=2.5MHz  
Figure 27. Power Supply Rejection Ratio, fSW=2.5MHz  
10  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s): TLV62130  
TLV62130  
www.ti.com  
SLVSB74 FEBRUARY 2012  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
vs  
vs  
TIME  
TIME  
Figure 28. PWM-PSM-Transition (VIN=12V, VOUT=3.3V with  
50mV/div)  
Figure 29. Load Transient Response (IOUT= 0.5 to 3 to 0.5  
A, VIN=12V, VOUT=3.3V)  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
vs  
vs  
TIME  
TIME  
Figure 30. Load Transient Response of Figure 29, rising  
edge  
Figure 31. Load Transient Response of Figure 29, falling  
edge  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TLV62130  
 
TLV62130  
SLVSB74 FEBRUARY 2012  
www.ti.com  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
vs  
vs  
TIME  
TIME  
Figure 32. Startup into 100mA (VIN=12V, VOUT=3.3V)  
Figure 33. Startup into 3A (VIN=12V, VOUT=3.3V)  
PWM SIGNALS  
POWER SAVE MODE SIGNALS  
vs  
vs  
TIME  
TIME  
Figure 34. Typical Operation in PWM Mode (IOUT=1A)  
Figure 35. Typical Operation in Power Save Mode  
(IOUT=10mA)  
12  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s): TLV62130  
 
TLV62130  
www.ti.com  
SLVSB74 FEBRUARY 2012  
AMBIENT TEMPERATURE  
vs  
AMBIENT TEMPERATURE  
vs  
OUTPUT CURRENT  
OUTPUT POWER  
125  
125  
115  
105  
95  
115  
105  
95  
85  
85  
TLV62130 EVM  
TLV62130 EVM  
75  
75  
L=2.2uH (XFL4020)  
L=2.2uH(XFL4020)  
VIN=12V, VOUT=3.3V  
VIN=12V, VOUT=3.3V  
65  
65  
55  
55  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
2
4
6
8
10  
12  
Output Current (A)  
Output Power (W)  
G000  
G000  
Figure 36. Maximum Ambient Temperature (fSW=2.5MHz)  
Figure 37. Maximum Ambient Temperature (fSW=2.5MHz)  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TLV62130  
TLV62130  
SLVSB74 FEBRUARY 2012  
www.ti.com  
DETAILED DESCRIPTION  
Device Operation  
The TLV62130 synchronous switched mode power converters are based on DCS-Control(Direct Control with  
Seamless Transition into Power Save Mode), an advanced regulation topology, that combines the advantages of  
hysteretic, voltage mode and current mode control including an AC loop directly associated to the output voltage.  
This control loop takes information about output voltage changes and feeds it directly to a fast comparator stage.  
It sets the switching frequency, which is constant for steady state operating conditions, and provides immediate  
response to dynamic load changes. To get accurate DC load regulation, a voltage feedback loop is used. The  
internally compensated regulation network achieves fast and stable operation with small external components  
and low ESR capacitors.  
The DCS-ControlTM topology supports PWM (Pulse Width Modulation) mode for medium and heavy load  
conditions and a Power Save Mode at light loads. During PWM, it operates at its nominal switching frequency in  
continuous conduction mode. This frequency is typically about 2.5MHz with a controlled frequency variation  
depending on the input voltage. If the load current decreases, the converter enters Power Save Mode to sustain  
high efficiency down to very light loads. In Power Save Mode the switching frequency decreases linearly with the  
load current. Since DCS-ControlTM supports both operation modes within one single building block, the transition  
from PWM to Power Save Mode is seamless without effects on the output voltage. An internal current limit  
supports nominal output currents of up to 3A.  
The TLV62130 offers both excellent DC voltage and superior load transient regulation, combined with very low  
output voltage ripple, minimizing interference with RF circuits.  
Pulse Width Modulation (PWM) Operation  
The TLV62130 operates with pulse width modulation in continuous conduction mode (CCM) with a nominal  
switching frequency of 2.5 MHz or 1.25MHz, selectable with the FSW pin. The frequency variation in PWM is  
controlled and depends on VIN, VOUT and the inductance. The device operates in PWM mode as long the output  
current is higher than half the inductor's ripple current. To maintain high efficiency at light loads, the device  
enters Power Save Mode at the boundary to discontinuous conduction mode (DCM). This happens if the output  
current becomes smaller than half the inductor's ripple current.  
Power Save Mode Operation  
The TLV62130's built in Power Save Mode will be entered seamlessly, if the load current decreases. This  
secures a high efficiency in light load operation. The device remains in Power Save Mode as long as the inductor  
current is discontinuous.  
In Power Save Mode the switching frequency decreases linearly with the load current maintaining high efficiency.  
The transition into and out of Power Save Mode happens within the entire regulation scheme and is seamless in  
both directions.  
TLV62130 includes a fixed on-time circuitry. This on-time, in steady-state operation, can be estimated as:  
VOUT  
tON  
=
× 400ns  
VIN  
(1)  
For very small output voltages, an absolute minimum on-time of about 80ns is kept to limit switching losses.  
Using tON, the typical peak inductor current in Power Save Mode can be approximated by:  
(VIN -VOUT  
)
ILPSM ( peak )  
=
×tON  
L
(2)  
When VIN decreases to typically 15% above VOUT, the TLV62130 won't enter Power Save Mode, regardless of  
the load current. The device maintains output regulation in PWM mode.  
14  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s): TLV62130  
TLV62130  
www.ti.com  
SLVSB74 FEBRUARY 2012  
100% Duty-Cycle Operation  
The duty cycle of the buck converter is given by D=Vout/Vin and increases as the input voltage comes close to  
the output voltage. In this case, the device starts 100% duty cycle operation turning on the high-side switch  
100% of the time. The high-side switch stays turned on as long as the output voltage is below the internal  
setpoint. This allows the conversion of small input to output voltage differences, e.g. for longest operation time of  
battery-powered applications. In 100% duty cycle mode, the low-side FET is switched off.  
The minimum input voltage to maintain output voltage regulation, depending on the load current and the output  
voltage level, can be calculated as:  
( )  
RDS( on ) + RL  
VIN(min) =VOUT(min) + IOUT  
(3)  
where  
IOUT is the output current,  
RDS(on) is the RDS(on) of the high-side FET and  
RL is the DC resistance of the inductor used.  
Enable / Shutdown (EN)  
When Enable (EN) is set High, the device starts operation.  
Shutdown is forced if EN is pulled Low with a shutdown current of typically 1.5µA. During shutdown, the internal  
power MOSFETs as well as the entire control circuitry are turned off. The internal resistive divider pulls down the  
output voltage smoothly. An internal pull-down resistor of about 400kΩ is connected and keeps EN logic low, if  
the pin is floating. It is disconnected if the pin is High.  
Connecting the EN pin to an appropriate output signal of another power rail provides sequencing of multiple  
power rails.  
Soft Start / Tracking (SS/TR)  
The internal soft start circuitry controls the output voltage slope during startup. This avoids excessive inrush  
current and ensures a controlled output voltage rise time. It also prevents unwanted voltage drops from  
high-impedance power sources or batteries. When EN is set to start device operation, the device starts switching  
after a delay of about 50µs and VOUT rises with a slope controlled by an external capacitor connected to the  
SS/TR pin. See Figure 32 and Figure 33 for typical startup operation.  
Connecting SS/TR directly to AVIN provides fastest startup behavior. The TLV62130 can start into a pre-biased  
output. During monotonic pre-biased startup, the low-side MOSFET is not allowed to turn on until the device's  
internal ramp sets an output voltage above the pre-bias voltage. As long as the output is below about 0.5V a  
reduced current limit of typically 1.6A is set internally. If the device is set to shutdown (EN=GND), undervoltage  
lockout or thermal shutdown, an internal resistor pulls the SS/TR pin down to ensure a proper low level.  
Returning from those states causes a new startup sequence as set by the SS/TR connection.  
A voltage supplied to SS/TR can be used for tracking a master voltage. The output voltage will follow this voltage  
in both directions up and down (see APPLICATION INFORMATION).  
Current Limit And Short Circuit Protection  
The TLV62130 device is protected against heavy load and short circuit events. If a short circuit is detected  
(VOUT drops below 0.5V), the current limit is reduced to 1.6A typically. If the output voltage rises above 0.5V,  
the device will run in normal operation again. At heavy loads, the current limit determines the maximum output  
current. If the current limit is reached, the high-side FET will be turned off. Avoiding shoot through current, the  
low-side FET will be switched on to sink the inductor current. The high-side FET will turn on again, only if the  
current in the low-side FET has decreased below the low side current limit threshold.  
The output current of the device is limited by the current limit (see ELECTRICAL CHARACTERISTICS). Due to  
internal propagation delay, the actual current can exceed the static current limit during that time. The dynamic  
current limit can be calculated as follows:  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TLV62130  
TLV62130  
SLVSB74 FEBRUARY 2012  
www.ti.com  
VL  
L
I peak(typ) = ILIMF  
+
× tPD  
(4)  
where  
ILIMF is the static current limit, specified in the ELECTRICAL CHARACTERISTICS,  
L is the inductor value,  
VL is the voltage across the inductor (VIN - VOUT) and  
tPD is the internal propagation delay.  
The current limit can exceed static values, especially if the input voltage is high and very small inductances are  
used. The dynamic high side switch peak current can be calculated as follows:  
+ (VIN -VOUT )×30ns  
I peak(typ) = ILIMF  
L
(5)  
Power Good (PG)  
The TLV62130 has a built in power good (PG) function to indicate whether the output voltage has reached its  
appropriate level or not. The PG signal can be used for startup sequencing of multiple rails. The PG pin is an  
open-drain output that requires a pull-up resistor (to any voltage below 7V). It can sink 2mA of current and  
maintain its specified logic low level. It is high impedance when the device is turned off due to EN, UVLO or  
thermal shutdown.  
Pin-Selectable Output Voltage (DEF)  
The output voltage of the TLV62130 devices can be increased by 5% above the nominal voltage by setting the  
DEF pin to High(1). When DEF is Low, the device regulates to the nominal output voltage. Increasing the nominal  
voltage allows adapting the power supply voltage to the variations of the application hardware. More detailed  
information on voltage margining using TLV62130 can be found in SLVA489. A pull down resistor of about  
400kOhm is internally connected to the pin, to ensure a proper logic level if the pin is high impedance or floating.  
The resistor is disconnected if the pin is High.  
Frequency Selection (FSW)  
To get high power density with very small solution size, a high switching frequency allows the use of small  
external components for the output filter. However switching losses increase with the switching frequency. If  
efficiency is the key parameter, more than solution size, the switching frequency can be set to half (1.25 MHz  
typ.) by pulling FSW to High(1). Pull FSW to Low for high frequency operation (2.5 MHz typ.). Running with lower  
frequency a higher efficiency, but also a higher output voltage ripple, is achieved. To get low ripple and full output  
current at the lower switching frequency, it's recommended to use an inductor of at least 2.2uH. The switching  
frequency can be changed during operation, if needed. A pull down resistor of about 400kOhm is internally  
connected to the pin, to ensure a proper logic level if the pin is high impedance or floating. The resistor is  
disconnected if the pin is High.  
Under Voltage Lockout (UVLO)  
If the input voltage drops, the under voltage lockout prevents misoperation of the device by switching off both the  
power FETs. The under voltage lockout threshold is set typically to 2.7V. The device is fully operational for  
voltages above the UVLO threshold and turns off if the input voltage trips the threshold. The converter starts  
operation again once the input voltage exceeds the threshold by a hysteresis of typically 200mV.  
Thermal Shutdown  
The junction temperature (Tj) of the device is monitored by an internal temperature sensor. If Tj exceeds 160°C  
(typ), the device goes into thermal shut down. Both the high-side and low-side power FETs are turned off and PG  
goes high impedance. When Tj decreases below the hysteresis amount, the converter resumes normal  
operation, beginning with Soft Start. To avoid unstable conditions, a hysteresis of typically 20°C is implemented  
on the thermal shut down temperature.  
(1) Maximum allowed voltage is 7V. Therefore, it's recommended to connect it to VOUT, not VIN.  
16  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s): TLV62130  
TLV62130  
www.ti.com  
SLVSB74 FEBRUARY 2012  
APPLICATION INFORMATION  
The following information is intended to be a guideline through the individual power supply design process.  
Programming The Output Voltage  
The TLV62130 can be programmed for output voltages from 0.9V to 5V by using a resistive divider from VOUT  
to AGND. The voltage at the FB pin is regulated to 800mV. The value of the output voltage is set by the selection  
of the resistive divider from Equation 6 (see Figure 3). It is recommended to choose resistor values which allow a  
current of at least 2uA, meaning the value of R2 shouldn't exceed 400kΩ. Lower resistor values are  
recommended for highest accuracy and most robust design.  
æ
ö
VOUT  
VREF  
ç
ç
÷
÷
R1 = R2  
-1  
è
ø
(6)  
In case the FB pin gets opened, the device clamps the output voltage at the VOS pin internally to about 7.4V.  
External Component Selection  
The external components have to fulfill the needs of the application, but also the stability criteria of the devices  
control loop. The TLV62130 is optimized to work within a range of external components. The LC output filters  
inductance and capacitance have to be considered together, creating a double pole, responsible for the corner  
frequency of the converter (see Output Filter And Loop Stability). Table 1 can be used to simplify the output filter  
component selection.  
Table 1. Recommended LC Output Filter Combinations(1)  
4.7µF  
10µF  
22µF  
47µF  
100µF  
200µF  
400µF  
0.47µH  
1µH  
(2)  
2.2µH  
3.3µH  
4.7µH  
(1) The values in the table are nominal values.  
(2) This LC combination is the standard value and recommended for most applications.  
spacing  
The TLV62130 can be run with an inductor as low as 1µH. FSW should be set Low in this case. However, for  
applications running with the low frequency setting (FSW=High) or with low input voltages, 2.2µH is  
recommended. More detailed information on further LC combinations can be found in SLVA463.  
Inductor Selection  
The inductor selection is affected by several effects like inductor ripple current, output ripple voltage,  
PWM-to-PSM transition point and efficiency. In addition, the inductor selected has to be rated for appropriate  
saturation current and DC resistance (DCR). Equation 7 and Equation 8 calculate the maximum inductor current  
under static load conditions.  
spacing  
DIL(max)  
IL(max) = IOUT(max)  
+
2
(7)  
VOUT  
æ
ö
÷
1-  
ç
ç
ç
VIN(max)  
÷
÷
DIL(max) = VOUT  
×
L(min) × fSW  
ç
ç
è
÷
÷
ø
(8)  
17  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TLV62130  
 
 
 
 
TLV62130  
SLVSB74 FEBRUARY 2012  
www.ti.com  
where  
IL(max) is the maximum inductor current,  
ΔIL is the Peak to Peak Inductor Ripple Current,  
L(min) is the minimum effective inductor value and  
fSW is the actual PWM Switching Frequency.  
spacing  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. A margin of about 20% is recommended to add. A larger inductor value is also  
useful to get lower ripple current, but increases the transient response time and size as well. The following  
inductors have been used with the TLV62130 and are recommended for use:  
Table 2. List of Inductors  
Type  
Inductance [µH]  
Current [A](1)  
Dimensions [LxBxH]  
mm  
MANUFACTURER  
XFL4020-102ME_  
XFL4020-152ME_  
XFL4020-222ME_  
IHLP1212BZ-11  
IHLP1212BZ-11  
SRP4020-3R3M  
VLC5045T-3R3N  
1.0 µH, ±20%  
1.5 µH, ±20%  
2.2 µH, ±20%  
1.0 µH, ±20%  
2.2 µH, ±20%  
3.3µH, ±20%  
3.3µH, ±30%  
4.7  
4.2  
3.8  
4.5  
3.0  
3.3  
4.0  
4 x 4 x 2.1  
4 x 4 x 2.1  
4 x 4 x 2.1  
3 x 3.6 x 2  
3 x 3.6 x 2  
4.8 x 4 x 2  
5 x 5 x 4.5  
Coilcraft  
Coilcraft  
Coilcraft  
Vishay  
Vishay  
Bourns  
TDK  
(1) Lower of IRMS at 40°C rise or ISAT at 30% drop.  
spacing  
The inductor value also determines the load current at which Power Save Mode is entered:  
1
Iload(PSM )  
=
DIL  
2
(9)  
Using Equation 8, this current level can be adjusted by changing the inductor value.  
Capacitor Selection  
Output Capacitor  
The recommended value for the output capacitor is 22uF. The architecture of the TLV62130 allows the use of  
tiny ceramic output capacitors with low equivalent series resistance (ESR). These capacitors provide low output  
voltage ripple and are recommended. To keep its low resistance up to high frequencies and to get narrow  
capacitance variation with temperature, it's recommended to use X7R or X5R dielectric. Using a higher value can  
have some advantages like smaller voltage ripple and a tighter DC output accuracy in Power Save Mode (see  
SLVA463).  
Note: In power save mode, the output voltage ripple depends on the output capacitance, its ESR and the peak  
inductor current. Using ceramic capacitors provides small ESR and low ripple.  
Input Capacitor  
For most applications, 10µF will be sufficient and is recommended, though a larger value reduces input current  
ripple further. The input capacitor buffers the input voltage for transient events and also decouples the converter  
from the supply. A low ESR multilayer ceramic capacitor is recommended for best filtering and should be placed  
between PVIN and PGND as close as possible to those pins. Even though AVIN and PVIN must be supplied  
from the same input source, it's required to place a capacitance of 0.1uF from AVIN to AGND, to avoid potential  
noise coupling. An RC, low-pass filter from PVIN to AVIN may be used but is not required.  
18  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s): TLV62130  
TLV62130  
www.ti.com  
SLVSB74 FEBRUARY 2012  
Soft Start Capacitor  
A capacitance connected between SS/TR pin and AGND allows a user programmable start-up slope of the  
output voltage. A constant current source supports 2.5µA to charge the external capacitance. The capacitor  
required for a given soft-start ramp time for the output voltage is given by:  
2.5mA  
CSS = tSS ×  
[F]  
1.25V  
(10)  
where  
CSS is the capacitance (F) required at the SS/TR pin and  
tSS is the desired soft-start ramp time (s).  
spacing  
NOTE  
DC Bias effect: High capacitance ceramic capacitors have a DC Bias effect, which will  
have a strong influence on the final effective capacitance. Therefore the right capacitor  
value has to be chosen carefully. Package size and voltage rating in combination with  
dielectric material are responsible for differences between the rated capacitor value and  
the effective capacitance.  
spacing  
Tracking Function  
If a tracking function is desired, the SS/TR pin can be used for this purpose by connecting it to an external  
tracking voltage. The output voltage tracks that voltage. If the tracking voltage is between 50mV and 1.2V, the  
FB pin will track the SS/TR pin voltage as described in Equation 11 and shown in Figure 38.  
spacing  
VFB » 0.64×VSS /TR  
(11)  
VSS/TR  
[V]  
1.2  
0.8  
0.4  
VFB [V]  
0.2  
0.4  
0.6  
0.8  
Figure 38. Voltage Tracking Relationship  
This works for rising and falling tracking voltages with the same behavior, as long as the input voltage is inside  
the recommended operating conditions. When driving the SS/TR pin with an external voltage, do not exceed the  
voltage rating of the SS/TR pin which is VIN+0.3V.  
If the input voltage drops into undervoltage lockout or even down to zero, the output voltage will go to zero,  
independent of the tracking voltage. Figure 39 shows how to connect devices to get ratiometric and simultaneous  
sequencing by using the tracking function.  
spacing  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TLV62130  
 
 
 
TLV62130  
SLVSB74 FEBRUARY 2012  
www.ti.com  
VOUT1  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
TLV62130  
SS/TR  
DEF  
FB  
AGND  
PGND  
FSW  
VOUT2  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
R1  
R2  
TLV62130  
SS/TR  
DEF  
FB  
AGND  
PGND  
FSW  
Figure 39. Sequence for Ratiometric and Simultaneous Startup  
The resistive divider of R1 and R2 can be used to change the ramp rate of VOUT2 faster, slower or the same as  
VOUT1.  
A sequential startup is achieved by connecting the PG pin of VOUT1 to the EN pin of VOUT2. Ratiometric start  
up sequence happens if both supplies are sharing the same soft start capacitor. Equation 10 calculates the soft  
start time, though the SS/TR current has to be doubled. Details about these and other tracking and sequencing  
circuits are found in SLVA470.  
Note: If the voltage at the FB pin is below its typical value of 0.8V, the output voltage accuracy may have a wider  
tolerance than specified.  
Output Filter And Loop Stability  
The TLV62130 is internally compensated to be stable with L-C filter combinations corresponding to a corner  
frequency to be calculated with Equation 12:  
1
fLC  
=
2p L × C  
(12)  
Proven nominal values for inductance and ceramic capacitance are given in Table 1 and are recommended for  
use. Different values may work, but care has to be taken on the loop stability which will be affected. More  
information including a detailed LC stability matrix can be found in SLVA463.  
The TLV62130 device includes an internal 25pF feedforward capacitor, connected between the VOS and FB  
pins. This capacitor impacts the frequency behavior and sets a pole and zero in the control loop with the resistors  
of the feedback divider, per equation Equation 13 and Equation 14:  
spacing  
1
fzero  
=
2p × R × 25pF  
1
(13)  
spacing  
æ
ç
×
ç
è
ö
1
1
1
÷
÷
f pole  
=
+
2p × 25pF  
R
R
1
2
ø
(14)  
spacing  
20  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s): TLV62130  
 
 
 
TLV62130  
www.ti.com  
SLVSB74 FEBRUARY 2012  
Though the TLV62130 is stable without the pole and zero being in a particular location, adjusting their location to  
the specific needs of the application can provide better performance in Power Save mode and/or improved  
transient response. An external feedforward capacitor can also be added. A more detailed discussion on the  
optimization for stability vs. transient response can be found in SLVA289 and SLVA466.  
Layout Considerations  
A proper layout is critical for the operation of a switched mode power supply, even more at high switching  
frequencies. Therefore the PCB layout of the TLV62130 demands careful attention to ensure operation and to  
get the performance specified. A poor layout can lead to issues like poor regulation (both line and load), stability  
and accuracy weaknesses, increased EMI radiation and noise sensitivity.  
Provide low inductive and resistive paths for loops with high di/dt. Therefore paths conducting the switched load  
current should be as short and wide as possible. Provide low capacitive paths (with respect to all other nodes) for  
wires with high dv/dt. Therefore the input and output capacitance should be placed as close as possible to the IC  
pins and parallel wiring over long distances as well as narrow traces should be avoided. Loops which conduct an  
alternating current should outline an area as small as possible, as this area is proportional to the energy radiated.  
Also sensitive nodes like FB and VOS should be connected with short wires, not nearby high dv/dt signals (e.g.  
SW). As they carry information about the output voltage, they should be connected as close as possible to the  
actual output voltage (at the output capacitor). Signals not assigned to power transmission (e.g. feedback divider,  
SS/TR capacitor) should refer to the signal ground (AGND) and always be separated from the power ground  
(PGND).  
In summary, the input capacitor should be placed as close as possible to the PVIN and PGND pins of the IC.  
This connections should be done with wide and short traces. The output capacitor should be placed such that its  
ground is as close as possible to the IC's PGND pins - avoiding additional voltage drop in traces. This connection  
should also be made short and wide. The inductor should be placed close to the SW pin and connect directly to  
the output capacitor - minimizing the loop area between the SW pin, inductor, output capacitor and PGND pin.  
The feedback resistors, R1 and R2, should be placed close to the IC and connect directly to the AGND and FB  
pins. Those connections (including VOUT) to the resistors and even more to the VOS pin should stay away from  
noise sources, such as the inductor. The VOS pin should connect in the shortest way to VOUT at the output  
capacitor, while the VOUT connection to the feedback divider can connect at the load. The capacitor on the  
SS/TR pin should be kept close to the IC and its return should be connected to AGND  
See Figure 40 for the recommended layout of the TLV62130. AGND is connected to the Exposed Thermal Pad,  
which is also connected to PGND and internal metal layers to get best thermal performance. The regulation loop  
is closed from COUT directly to AGND with vias down to the AGND bottom layer. More detailed information can  
be found in the EVM Users Guide, SLAU416.  
The Exposed Thermal Pad must be soldered to the circuit board for mechanical reliability and to achieve  
appropriate power dissipation. Although the Exposed Thermal Pad can be connected to a floating circuit board  
trace, the device will have better thermal performance if it is connected to a larger ground plane. The Exposed  
Thermal Pad is electrically connected to AGND.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TLV62130  
TLV62130  
SLVSB74 FEBRUARY 2012  
www.ti.com  
AGND  
R2  
R1  
8
7
6
5
C
C
9
4
3
2
1
PG  
10  
11  
12  
AVIN  
13  
14  
15  
16  
CIN  
EN  
L1  
VOUT  
COUT  
PGND  
Figure 40. Layout Example  
THERMAL INFORMATION  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the  
power-dissipation limits of a given component.  
Three basic approaches for enhancing thermal performance are listed below:  
Improving the power dissipation capability of the PCB design  
Improving the thermal coupling of the component to the PCB by soldering the Exposed Thermal Pad  
Introducing airflow in the system  
For more details on how to use the thermal parameters, see the application notes: Thermal Characteristics  
Application Note (SZZA017), and (SPRA953).  
The TLV62130 is designed for a maximum operating junction temperature (Tj) of 125°C. Therefore the maximum  
output power is limited by the power losses that can be dissipated over the actual thermal resistance, given by  
the package and the surrounding PCB structures. If the thermal resistance of the package is given, the size of  
the surrounding copper area and a proper thermal connection of the IC can reduce the thermal resistance. To  
get an improved thermal behavior, it's recommended to use top layer metal to connect the device with wide and  
thick metal lines. Internal ground layers can connect to vias directly under the IC for improved thermal  
performance.  
If short circuit or overload conditions are present, the device is protected by limiting internal power dissipation.  
Experimental data, taken from the TLV62130 EVM, shows the maximum ambient temperature (without additional  
cooling like airflow or heat sink), that can be allowed to limit the junction temperature to at most 125°C (see ).  
22  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s): TLV62130  
TLV62130  
www.ti.com  
SLVSB74 FEBRUARY 2012  
Application Example As Power LED Supply  
The TLV62130 can be used as a power supply for power LEDs. The FB pin can be easily set down to lower  
values than nominal by using the SS/TR pin. With that, the voltage drop on the sense resistor is low to avoid  
excessive power loss. Since this pin provides 2.5µA, the feedback pin voltage can be adjusted by an external  
resistor per Equation 15. This drop, proportional to the LED current, is used to regulate the output voltage (anode  
voltage) to a proper level to drive the LED. Both analog and PWM dimming are supported with the TLV62130.  
Figure 41 shows an application circuit, tested with analog dimming:  
spacing  
(4 .. 17) V  
2.2µH  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
4.7uF  
22uF  
ADIM  
TLV62130  
SS/TR  
DEF  
FB  
187k  
0.1R  
AGND  
PGND  
FSW  
Figure 41. 3A Single LED Power Supply  
The resistor at SS/TR sets the FB voltage to a level of about 300mV and is calculated from Equation 15.  
spacing  
VFB = 0.64 × 2.5mA × RSS / TR  
(15)  
spacing  
The device now supplies a constant current, set by the resistor at the FB pin, by regulating the output voltage  
accordingly. The minimum input voltage has to be rated according the forward voltage needed by the LED used.  
More information is available in the Application Note SLVA451.  
Application Example As Inverting Power Supply  
The TLV62130 can be used as inverting power supply by rearranging external circuitry as shown in Figure 42. As  
the former GND node now represents a voltage level below system ground, the voltage difference between VIN  
and VOUT has to be limited for operation to the maximum supply voltage of 17V (see Equation 16).  
spacing  
VIN +VOUT £VIN max  
(16)  
spacing  
10uF  
2.2µH  
(3 .. 12)V  
VIN  
SW  
AVIN  
EN  
VOS  
680k  
130k  
100k  
10uF  
22uF  
PG  
TLV62130  
SS/TR  
DEF  
FSW  
FB  
-5V  
PGND  
AGND  
Figure 42. -5V Inverting Power Supply  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): TLV62130  
 
 
 
 
TLV62130  
SLVSB74 FEBRUARY 2012  
www.ti.com  
Typical Applications  
spacing  
spacing  
spacing  
1 / 2.2 µH  
(5 .. 17)V  
5V / 3A  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
100k  
10uF  
680k  
130k  
22uF  
TLV62130  
SS/TR  
DEF  
FB  
3.3nF  
3.3nF  
3.3nF  
AGND  
PGND  
FSW  
Figure 43. 5V/3A Power Supply  
spacing  
spacing  
spacing  
1 / 2.2 µH  
(4 .. 17)V  
3.3V / 3A  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
100k  
10uF  
750k  
240k  
22uF  
TLV62130  
SS/TR  
DEF  
FB  
AGND  
PGND  
FSW  
Figure 44. 3.3V/3A Power Supply  
spacing  
spacing  
spacing  
1 / 2.2 µH  
(4 .. 17)V  
2.5V / 3A  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
100k  
10uF  
510k  
240k  
22uF  
TLV62130  
SS/TR  
DEF  
FB  
AGND  
PGND  
FSW  
Figure 45. 2.5V/3A Power Supply  
spacing  
spacing  
spacing  
24  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s): TLV62130  
TLV62130  
www.ti.com  
SLVSB74 FEBRUARY 2012  
1 / 2.2 µH  
(4 .. 17)V  
1.8V / 3A  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
100k  
10uF  
300k  
240k  
22uF  
TLV62130  
SS/TR  
DEF  
FB  
3.3nF  
3.3nF  
3.3nF  
3.3nF  
AGND  
PGND  
FSW  
Figure 46. 1.8V/3A Power Supply  
spacing  
spacing  
1 / 2.2 µH  
(4 .. 17)V  
1.5V / 3A  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
100k  
10uF  
130k  
150k  
22uF  
TLV62130  
SS/TR  
DEF  
FB  
AGND  
PGND  
FSW  
Figure 47. 1.5V/3A Power Supply  
spacing  
spacing  
1 / 2.2 µH  
(4 .. 17)V  
1.2V / 3A  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
100k  
10uF  
75k  
22uF  
TLV62130  
SS/TR  
DEF  
FB  
150k  
AGND  
PGND  
FSW  
Figure 48. 1.2V/3A Power Supply  
spacing  
spacing  
1 / 2.2 µH  
(4 .. 17)V  
1V / 3A  
PVIN  
AVIN  
EN  
SW  
VOS  
PG  
100k  
10uF  
51k  
22uF  
TLV62130  
SS/TR  
DEF  
FB  
200k  
AGND  
PGND  
FSW  
Figure 49. 1V/3A Power Supply  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): TLV62130  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Mar-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TLV62130RGTR  
TLV62130RGTT  
ACTIVE  
ACTIVE  
QFN  
QFN  
RGT  
RGT  
16  
16  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Mar-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV62130RGTR  
TLV62130RGTT  
QFN  
QFN  
RGT  
RGT  
16  
16  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Mar-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV62130RGTR  
TLV62130RGTT  
QFN  
QFN  
RGT  
RGT  
16  
16  
3000  
250  
552.0  
552.0  
346.0  
185.0  
36.0  
36.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  
配单直通车
TLV62130RGTR产品参数
型号:TLV62130RGTR
Brand Name:Texas Instruments
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
包装说明:HVQCCN, LCC16,.12SQ,20
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:0.86
其他特性:ALSO HAS CURRENT CONTROL MODE; ALSO OPERATES IN ADJUSTABLE MODE FROM 0.9V TO 5V
模拟集成电路 - 其他类型:SWITCHING REGULATOR
控制模式:VOLTAGE-MODE
控制技术:PULSE WIDTH MODULATION
最大输入电压:17 V
最小输入电压:4 V
标称输入电压:12 V
JESD-30 代码:S-PQCC-N16
JESD-609代码:e4
长度:3 mm
湿度敏感等级:2
功能数量:1
端子数量:16
最高工作温度:85 °C
最低工作温度:-40 °C
最大输出电流:3 A
最大输出电压:5.5 V
最小输出电压:0.9 V
封装主体材料:PLASTIC/EPOXY
封装代码:HVQCCN
封装等效代码:LCC16,.12SQ,20
封装形状:SQUARE
封装形式:CHIP CARRIER, HEAT SINK/SLUG, VERY THIN PROFILE
峰值回流温度(摄氏度):260
认证状态:Not Qualified
座面最大高度:1 mm
子类别:Switching Regulator or Controllers
表面贴装:YES
切换器配置:BUCK
最大切换频率:2500 kHz
温度等级:INDUSTRIAL
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:NO LEAD
端子节距:0.5 mm
端子位置:QUAD
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:3 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!