欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • TNY277PN图
  • 深圳市能元时代电子有限公司

     该会员已使用本站10年以上
  • TNY277PN 现货库存
  • 数量26800 
  • 厂家POWER 
  • 封装DIP 
  • 批号24+ 
  • POWER主营只做原装进口现货假一赔十!公司原装现货!
  • QQ:2885637848QQ:2885637848 复制
    QQ:2885658492QQ:2885658492 复制
  • 0755-84502810 QQ:2885637848QQ:2885658492
  • TNY277PN图
  • 深圳市高捷芯城科技有限公司

     该会员已使用本站11年以上
  • TNY277PN 现货库存
  • 数量5098 
  • 厂家Power Integrations(帕沃英蒂格盛) 
  • 封装DIP-8C 
  • 批号23+ 
  • 百分百原装正品,可原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83062789 QQ:3007977934QQ:3007947087
  • TNY277PN图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • TNY277PN 现货库存
  • 数量5092 
  • 厂家POWER INTEGRATIONS/帕沃英蒂格盛 
  • 封装DIP8 
  • 批号22+ 
  • 原装正品现货,可开专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • TNY277PN【原装现货】图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • TNY277PN【原装现货】 现货库存
  • 数量86540 
  • 厂家POWER 
  • 封装DIP-7  
  • 批号NEW 
  • █★特价全新原装现货
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • TNY277PN图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • TNY277PN 现货库存
  • 数量6945 
  • 厂家POWER 
  • 封装原厂封装 
  • 批号22+ 
  • 市场最低价!原厂原装假一罚十
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • TNY277PN图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • TNY277PN 现货库存
  • 数量5000 
  • 厂家POWER 
  • 封装DIP-7 
  • 批号24+ 
  • 全新原装现货,低价出售,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • TNY277PN图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • TNY277PN 现货库存
  • 数量9000 
  • 厂家POWER 
  • 封装 
  • 批号2024+ 
  • 全新原装现货,全网最低价
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • TNY277PN图
  • 上海意淼电子科技有限公司

     该会员已使用本站14年以上
  • TNY277PN 现货库存
  • 数量20000 
  • 厂家POWER 
  • 封装DIP 
  • 批号23+ 
  • 原装现货热卖!请联系吴先生 13681678667
  • QQ:617677003QQ:617677003 复制
  • 15618836863 QQ:617677003
  • TNY277PN图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TNY277PN 现货库存
  • 数量69850 
  • 厂家POWER 
  • 封装22+ 
  • 批号DIP7 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • TNY277PN图
  • 深圳市捷兴胜微电子科技有限公司

     该会员已使用本站13年以上
  • TNY277PN 现货库存
  • 数量16000 
  • 厂家Power?Integrations 
  • 封装2138+ 
  • 批号2138+ 
  • 只做原装,只有原装
  • QQ:838417624QQ:838417624 复制
    QQ:929605236QQ:929605236 复制
  • 0755-23997656(现货库存配套一站采购及BOM优化) QQ:838417624QQ:929605236
  • TNY277PN图
  • 深圳西迈尔科技有限公司

     该会员已使用本站9年以上
  • TNY277PN 现货库存
  • 数量25000 
  • 厂家POWER 
  • 封装DIP-7 
  • 批号12+ 
  • 现货热卖
  • QQ:13316801556QQ:13316801556 复制
    QQ:2706801556QQ:2706801556 复制
  • 13316801556 QQ:13316801556QQ:2706801556
  • TNY277PN图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TNY277PN 现货库存
  • 数量6980 
  • 厂家Power Integrations( 
  • 封装DIP-8C 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TNY277PN图
  • 深圳市能元时代电子有限公司

     该会员已使用本站10年以上
  • TNY277PN 现货热卖
  • 数量26800 
  • 厂家POWER 
  • 封装DIP 
  • 批号24+ 
  • POWER主营只做原装进口现货假一赔十!公司原装现货!
  • QQ:2885637848QQ:2885637848 复制
    QQ:2885658492QQ:2885658492 复制
  • 0755-84502810 QQ:2885637848QQ:2885658492
  • TNY277PN图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TNY277PN
  • 数量85000 
  • 厂家POWER 
  • 封装1328+ 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • TNY277PN图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TNY277PN
  • 数量98500 
  • 厂家POWER 
  • 封装 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • TNY277PN图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • TNY277PN
  • 数量25000 
  • 厂家PI 
  • 封装DIP-7 
  • 批号2018+ 
  • 一级专营品牌全新原装热卖
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • TNY277PN图
  • 深圳市隆亿诚科技有限公司

     该会员已使用本站3年以上
  • TNY277PN
  • 数量4430 
  • 厂家Power Integrations 
  • 封装8-PDIP-C 
  • 批号22+ 
  • 支持检测.现货.原装价优
  • QQ:778039761QQ:778039761 复制
  • -0755-82710221 QQ:778039761
  • TNY277PN图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • TNY277PN
  • 数量3200 
  • 厂家POWER 
  • 封装DIP-7 
  • 批号23+ 
  • 全新原装公司现货库存!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • TNY277PN图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • TNY277PN
  • 数量6500 
  • 厂家POWER 
  • 封装DIP7 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • TNY277PN图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TNY277PN
  • 数量3265 
  • 厂家POWER 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • TNY277PN图
  • 集好芯城

     该会员已使用本站13年以上
  • TNY277PN
  • 数量15494 
  • 厂家POWER 
  • 封装DIP 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TNY277PN图
  • 深圳市雅维特电子有限公司

     该会员已使用本站15年以上
  • TNY277PN
  • 数量
  • 厂家POWER 
  • 封装雅维特电子全新正品 
  • 批号83000 
  • QQ:767621813QQ:767621813 复制
    QQ:1152937841QQ:1152937841 复制
  • 0755-83975781 QQ:767621813QQ:1152937841
  • TNY277PN图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TNY277PN
  • 数量18530 
  • 厂家POWER 
  • 封装DIP-7 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • TNY277PN图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • TNY277PN
  • 数量30000 
  • 厂家POWER 
  • 封装DIP-7 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • TNY277PN图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TNY277PN
  • 数量31184 
  • 厂家POWER 
  • 封装DIP7 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • TNY277PN图
  • 深圳市华科泰电子商行

     该会员已使用本站13年以上
  • TNY277PN
  • 数量6878 
  • 厂家POWER/拓普 
  • 封装DIP-7 
  • 批号07+ 
  • 绝对原装现货特价
  • QQ:405945546QQ:405945546 复制
    QQ:1439873477QQ:1439873477 复制
  • 0755-82567800 QQ:405945546QQ:1439873477
  • TNY277PN图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • TNY277PN
  • 数量55000 
  • 厂家POWER 
  • 封装DIP7 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • TNY277PN图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • TNY277PN
  • 数量65400 
  • 厂家POWER 
  • 封装DIP-8 
  • 批号NEW 
  • 【◆全新原装现货◆绝对价格优势◆质量保证◆】
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313

产品型号TNY277PN的概述

芯片TNY277PN的概述 TNY277PN是一款高效率、紧凑型的功率转换器芯片,广泛应用于开关电源(SMPS)设计,尤其在低功耗设备中表现出色。该芯片由NXP Semiconductors制造,其特点在于集成度高,易于设计,极大地缩短了开发周期。TNY277PN采用了变压器反馈控制,支持多种工作模式,提供了优秀的负载调节能力。它常用于适配器、电视、LED驱动电源以及其他消费类电子产品。 芯片TNY277PN的详细参数 TNY277PN的详细参数涵盖了输入电压范围、输出功率、工作频率等多个方面,具体如下: - 输入电压范围:85V至265V AC - 输出功率:最大可达5W,适合低功率应用 - 输出电压:适用于多种输出电压设计,用户可根据需要调整 - 工作频率:典型工作频率约为132kHz - 开关电流:最大开关电流可达30mA - 效率:在高负载条件下,效率可达到75%以上,具有优良...

产品型号TNY277PN的Datasheet PDF文件预览

TNY274-280  
®
TinySwitch-III Family  
Energy Efficient, Off-Line Switcher with  
Enhanced Flexibility and Extended Power Range  
Product Highlights  
+
+
DC  
Lowest System Cost with Enhanced Flexibility  
Output  
Simple ON/OFF control, no loop compensation needed  
Selectable current limit through BP/M capacitor value  
-
Wide-Range  
HV DC Input  
D
S
-
-
-
Higher current limit extends peak power or, in open  
frame applications, maximum continuous power  
Lower current limit improves efficiency in enclosed  
adapters/chargers  
Allows optimum TinySwitch-III choice by swapping  
devices with no other circuit redesign  
EN/UV  
BP/M  
TinySwitch-III  
-
PI-4095-082205  
Tight I2f parameter tolerance reduces system cost  
Figure 1. Typical Standby Application.  
-
-
Maximizes MOSFET and magnetics power delivery  
Minimizes max overload power, reducing cost of  
transformer, primary clamp & secondary components  
OUTPUT POWER TABLE  
ON-time extension – extends low line regulation range/  
hold-up time to reduce input bulk capacitance  
Self-biased: no bias winding or bias components  
Frequency jittering reduces EMI filter costs  
Pin-out simplifies heatsinking to the PCB  
230 VAC ±15%  
85-265 VAC  
Peak or  
Peak or  
PRODUCT3  
Adapter1 Open Adapter1 Open  
Frame2  
Frame2  
8.5 W  
11.5 W  
15 W  
TNY274 P or G 6 W  
TNY275 P or G 8.5 W  
TNY276 P or G 10 W  
TNY277 P or G 13 W  
TNY278 P or G 16 W  
TNY279 P or G 18 W  
TNY280 P or G 20 W  
11 W  
5 W  
6 W  
SOURCE pins are electrically quiet for low EMI  
15 W  
Enhanced Safety and Reliability Features  
19 W  
7 W  
Accurate hysteretic thermal shutdown protection with  
automatic recovery eliminates need for manual reset  
Improved auto-restart delivers <3% of maximum power  
in short circuit and open loop fault conditions  
Output overvoltage shutdown with optional Zener  
Line under-voltage detect threshold set using a single  
optional resistor  
23.5 W  
28 W  
8 W  
18 W  
10 W  
12 W  
14 W  
21.5 W  
25 W  
32 W  
36.5 W  
28.5 W  
Table 1. Notes: 1. Minimum continuous power in a typical non-  
ventilated enclosed adapter measured at 50 °C ambient. Use of an  
external heatsink will increase power capability 2. Minimum peak  
power capability in any design or minimum continuous power in an  
open frame design (see KeyApplication Considerations). 3. Packages:  
P: DIP-8C, G: SMD-8C. See Part Ordering Information.  
Very low component count enhances reliability and  
enables single-sided printed circuit board layout  
High bandwidth provides fast turn on with no overshoot  
and excellent transient load response  
Extended creepage between DRAIN and all other pins  
improves field reliability  
EcoSmart®– Extremely Energy Efficient  
PC Standby and other auxiliary supplies  
DVD/PVR and other low power set top decoders  
Supplies for appliances, industrial systems, metering, etc.  
Easily meets all global energy efficiency regulations  
No-load <150 mW at 265 VAC without bias winding,  
<50 mW with bias winding  
ON/OFF control provides constant efficiency down to  
very light loads – ideal for mandatory CEC regulations  
and 1 W PC standby requirements  
Description  
TinySwitch-IIIincorporatesa700VpowerMOSFET,oscillator,  
high voltage switched current source, current limit (user  
selectable) and thermal shutdown circuitry. The IC family uses  
anON/OFFcontrolschemeandoffersadesignexiblesolution  
with a low system cost and extended power capability.  
Applications  
Chargers/adapters for cell/cordless phones, PDAs, digital  
cameras, MP3/portable audio, shavers, etc.  
February 2006  
TNY274-280  
BYPASS/  
MULTI-FUNCTION  
(BP/M)  
DRAIN  
(D)  
REGULATOR  
5.85 V  
LINE UNDER-VOLTAGE  
115 µA  
25 µA  
FAULT  
PRESENT  
BYPASS PIN  
UNDER-VOLTAGE  
+
-
AUTO-  
RESTART  
COUNTER  
5.85 V  
4.9 V  
VILIMIT  
CURRENT  
LIMIT STATE  
MACHINE  
RESET  
6.4 V  
CURRENT LIMIT  
COMPARATOR  
-
ENABLE  
1.0 V + VT  
1.0 V  
+
JITTER  
CLOCK  
DC  
MAX  
THERMAL  
SHUTDOWN  
OSCILLATOR  
ENABLE/  
UNDER-  
VOLTAGE  
(EN/UV)  
S
Q
Q
R
LEADING  
EDGE  
BLANKING  
SOURCE  
(S)  
PI-4077-013106  
Figure 2. Functional Block Diagram.  
Pin Functional Description  
P Package (DIP-8C)  
G Package (SMD-8C)  
DRAIN (D) Pin:  
This pin is the power MOSFET drain connection. It provides  
internal operating current for both start-up and steady-state  
operation.  
EN/UV  
BP/M  
S
S
1
2
8
7
BYPASS/MULTI-FUNCTION (BP/M) Pin:  
This pin has multiple functions:  
6
5
S
S
4
D
1. It is the connection point for an external bypass capacitor  
for the internally generated 5.85 V supply.  
2. It is a mode selector for the current limit value, depending  
on the value of the capacitance added. Use of a 0.1 µF  
capacitor results in the standard current limit value. Use of  
a 1 µF capacitor results in the current limit being reduced to  
that of the next smaller device size. Use of a 10 µF capacitor  
results in the current limit being increased to that of the next  
larger device size for TNY275-280.  
PI-4078-080905  
Figure 3. Pin Configuration.  
witha Zenerconnectedfrom the BP/Mpintoa bias winding  
supply.  
3. It provides a shutdown function. When the current into the  
bypass pin exceeds 5.5 mA, the device latches off until the  
BP/M voltage drops below 4.9 V, during a power down.  
This can be used to provide an output overvoltage function  
ENABLE/UNDER-VOLTAGE (EN/UV) Pin:  
Thispinhasdualfunctions:enableinputandlineunder-voltage  
sense. During normal operation, switching of the power  
E
2/06  
2
TNY274-280  
MOSFET is controlled by this pin. MOSFET switching is  
terminated when a current greater than a threshold current is  
drawn from this pin. Switching resumes when the current being  
pulled from the pin drops to less than a threshold current. A  
modulation of the threshold current reduces group pulsing. The  
threshold current is between 60 µA and 115 µA.  
maximum duty cycle signal (DCMAX) and the clock signal that  
indicates the beginning of each cycle.  
The oscillator incorporates circuitry that introduces a small  
amount of frequency jitter, typically 8 kHz peak-to-peak, to  
minimize EMI emission. The modulation rate of the frequency  
jitter is set to 1 kHz to optimize EMI reduction for both average  
and quasi-peak emissions. The frequency jitter should be  
measured with the oscilloscope triggered at the falling edge of  
the DRAIN waveform. The waveform in Figure 4 illustrates  
the frequency jitter.  
TheEN/UVpinalsosenseslineunder-voltageconditionsthrough  
an external resistor connected to the DC line voltage. If there is  
noexternalresistorconnectedtothispin, TinySwitch-IIIdetects  
its absence and disables the line under-voltage function.  
SOURCE (S) Pin:  
Enable Input and Current Limit State Machine  
This pin is internally connected to the output MOSFET source  
for high voltage power return and control circuit common.  
The enable input circuit at the EN/UV pin consists of a low  
impedance source follower output set at 1.2 V. The current  
through the source follower is limited to 115 µA. When the  
current out of this pin exceeds the threshold current, a low  
logic level (disable) is generated at the output of the enable  
circuit, until the current out of this pin is reduced to less than  
the threshold current. This enable circuit output is sampled  
at the beginning of each cycle on the rising edge of the clock  
signal. If high, the power MOSFET is turned on for that cycle  
(enabled). If low, the power MOSFET remains off (disabled).  
Since the sampling is done only at the beginning of each cycle,  
subsequent changes in the EN/UVpin voltage or current during  
the remainder of the cycle are ignored.  
TinySwitch-III Functional  
Description  
TinySwitch-IIIcombinesahighvoltagepowerMOSFETswitch  
withapowersupplycontrollerinonedevice.Unlikeconventional  
PWM (pulse width modulator) controllers, it uses a simple  
ON/OFF control to regulate the output voltage.  
Thecontrollerconsistsofanoscillator,enablecircuit(senseand  
logic), current limit state machine, 5.85 V regulator, BYPASS/  
MULTI-FUNCTIONpinunder-voltage,overvoltagecircuit,and  
current limit selection circuitry, over- temperature protection,  
current limit circuit, leading edge blanking, and a 700 V power  
MOSFET. TinySwitch-III incorporates additional circuitry for  
line under-voltage sense, auto-restart, adaptive switching cycle  
on-time extension, and frequency jitter. Figure 2 shows the  
functional block diagram with the most important features.  
The current limit state machine reduces the current limit by  
discrete amounts at light loads when TinySwitch-III is likely to  
switch in the audible frequency range. The lower current limit  
raises the effective switching frequency above the audio range  
andreducesthetransformeruxdensity,includingtheassociated  
audible noise. The state machine monitors the sequence of  
enable events to determine the load condition and adjusts the  
current limit level accordingly in discrete amounts.  
Oscillator  
The typical oscillator frequency is internally set to an average  
of 132 kHz. Two signals are generated from the oscillator: the  
Undermostoperatingconditions(exceptwhenclosetono-load),  
the low impedance of the source follower keeps the voltage on  
the EN/UV pin from going much below 1.2 V in the disabled  
state. This improves the response time of the optocoupler that  
is usually connected to this pin.  
600  
500  
VDRAIN  
400  
5.85 V Regulator and 6.4 V Shunt Voltage Clamp  
The 5.85 V regulator charges the bypass capacitor connected  
to the BYPASS pin to 5.85 V by drawing a current from the  
voltage on the DRAIN pin whenever the MOSFET is off. The  
BYPASS/MULTI-FUNCTIONpinistheinternalsupplyvoltage  
node. When the MOSFET is on, the device operates from the  
energy stored in the bypass capacitor. Extremely low power  
consumption of the internal circuitry allows TinySwitch-III to  
operate continuously from current it takes from the DRAIN  
pin. A bypass capacitor value of 0.1 µF is sufficient for both  
high frequency decoupling and energy storage.  
300  
200  
100  
0
136 kHz  
128 kHz  
0
5
10  
Time (µs)  
Figure 4. Frequency Jitter.  
E
2/06  
3
TNY274-280  
In addition, there is a 6.4 V shunt regulator clamping the  
BYPASS/MULTI-FUNCTION pin at 6.4 V when current  
is provided to the BYPASS/MULTI-FUNCTION pin  
through an external resistor. This facilitates powering of  
TinySwitch-III externally through a bias winding to decrease  
the no-load consumption to well below 50 mW.  
Auto-Restart  
In the event of a fault condition such as output overload, output  
short circuit, or an open loop condition, TinySwitch-III enters  
into auto-restart operation. An internal counter clocked by the  
oscillator is reset every time the EN/UV pin is pulled low. If the  
EN/UV pin is not pulled low for 64 ms, the power MOSFET  
switching is normally disabled for 2.5 seconds (except in the  
caseoflineunder-voltagecondition, inwhichcaseitisdisabled  
until the condition is removed). The auto-restart alternately  
enables and disables the switching of the power MOSFET until  
the fault condition is removed. Figure 5 illustrates auto-restart  
circuit operation in the presence of an output short circuit.  
BYPASS/MULTI-FUNCTION Pin Under-Voltage  
TheBYPASS/MULTI-FUNCTIONpinunder-voltagecircuitry  
disables the power MOSFET when the BYPASS/MULTI-  
FUNCTION pin voltage drops below 4.9 V in steady state  
operation.OncetheBYPASS/MULTI-FUNCTIONpinvoltage  
drops below 4.9 V in steady state operation, it must rise back  
to 5.85 V to enable (turn-on) the power MOSFET.  
In the event of a line under-voltage condition, the switching of  
the power MOSFET is disabled beyond its normal 2.5 seconds  
until the line under-voltage condition ends.  
Over Temperature Protection  
Thethermalshutdowncircuitrysensesthedietemperature. The  
threshold is typically set at 142 °C with 75 °C hysteresis. When  
thedietemperaturerisesabovethisthresholdthepowerMOSFET  
is disabled and remains disabled until the die temperature falls  
by 75 °C, at which point it is re-enabled. A large hysteresis of  
75 °C (typical) is provided to prevent overheating of the PC  
board due to a continuous fault condition.  
Adaptive Switching Cycle On-Time Extension  
Adaptive switching cycle on-time extension keeps the cycle  
on until current limit is reached, instead of prematurely  
terminating after the DCMAX signal goes low. This feature  
reduces the minimum input voltage required to maintain  
regulation, extending hold-up time and minimizing the size  
of bulk capacitor required. The on-time extension is disabled  
during the startup of the power supply, until the power supply  
output reaches regulation.  
Current Limit  
ThecurrentlimitcircuitsensesthecurrentinthepowerMOSFET.  
When this current exceeds the internal threshold (ILIMIT), the  
powerMOSFETisturnedofffortheremainderofthatcycle.The  
current limit state machine reduces the current limit threshold  
by discrete amounts under medium and light loads.  
Line Under-Voltage Sense Circuit  
TheDClinevoltagecanbemonitoredbyconnectinganexternal  
resistorfromtheDClinetotheEN/UVpin. Duringpower-upor  
when the switching of the power MOSFET is disabled in auto-  
restart, the current into the EN/UV pin must exceed 25 µA to  
initiateswitchingofthepowerMOSFET.Duringpower-up,this  
isaccomplishedbyholdingtheBYPASS/MULTI-FUNCTION  
pin to 4.9 V while the line under-voltage condition exists. The  
BYPASS/MULTI-FUNCTION pin then rises from 4.9 V to  
5.85Vwhenthelineunder-voltageconditiongoesaway.Whenthe  
switchingofthepowerMOSFETisdisabledinauto-restartmode  
andalineunder-voltageconditionexists,theauto-restartcounter  
is stopped. This stretches the disable time beyond its normal  
2.5 seconds until the line under-voltage condition ends.  
The leading edge blanking circuit inhibits the current limit  
comparator for a short time (tLEB) after the power MOSFET is  
turned on. This leading edge blanking time has been set so that  
currentspikescausedbycapacitanceandsecondary-siderectifier  
reverse recovery time will not cause premature termination of  
the switching pulse.  
300  
200  
The line under-voltage circuit also detects when there is  
no external resistor connected to the EN/UV pin (less than  
~1 µAinto the pin). In this case the line under-voltage function  
is disabled.  
100  
0
10  
TinySwitch-III Operation  
5
TinySwitch-III devices operate in the current limit mode. When  
enabled, the oscillator turns the power MOSFET on at the  
beginning of each cycle. The MOSFET is turned off when the  
current ramps up to the current limit or when the DCMAX limit is  
reached. Since the highest current limit level and frequency of  
a TinySwitch-III design are constant, the power delivered to the  
0
2500  
5000  
0
Time (ms)  
Figure 5. Auto-Restart Operation.  
E
2/06  
4
TNY274-280  
loadisproportionaltotheprimaryinductanceofthetransformer  
and peak primary current squared. Hence, designing the supply  
involves calculating the primary inductance of the transformer  
for the maximum output power required. If the TinySwitch-III  
is appropriately chosen for the power level, the current in the  
calculated inductance will ramp up to current limit before the  
DCMAX limit is reached.  
not to proceed with the next switching cycle. The sequence of  
cycles is used to determine the current limit. Once a cycle is  
started, it always completes the cycle (even when the EN/UV  
pin changes state half way through the cycle). This operation  
results in a power supply in which the output voltage ripple  
is determined by the output capacitor, amount of energy per  
switch cycle and the delay of the feedback.  
Enable Function  
TinySwitch-III senses the EN/UV pin to determine whether or  
The EN/UV pin signal is generated on the secondary by  
comparing the power supply output voltage with a reference  
voltage. The EN/UV pin signal is high when the power supply  
output voltage is less than the reference voltage.  
V
EN  
In a typical implementation, the EN/UV pin is driven by an  
optocoupler. The collector of the optocoupler transistor is  
connected to the EN/UV pin and the emitter is connected to  
the SOURCE pin. The optocoupler LED is connected in series  
withaZenerdiodeacrosstheDCoutputvoltagetoberegulated.  
When the output voltage exceeds the target regulation voltage  
level (optocoupler LED voltage drop plus Zener voltage), the  
optocoupler LED will start to conduct, pulling the EN/UV pin  
low. The Zener diode can be replaced by a TL431 reference  
circuit for improved accuracy.  
CLOCK  
DC  
MAX  
I
DRAIN  
ON/OFF Operation with Current Limit State Machine  
The internal clock of the TinySwitch-III runs all the time. At  
the beginning of each clock cycle, it samples the EN/UV pin to  
decide whether or not to implement a switch cycle, and based  
on the sequence of samples over multiple cycles, it determines  
the appropriate current limit. At high loads, the state machine  
sets the current limit to its highest value. At lighter loads, the  
state machine sets the current limit to reduced values.  
V
DRAIN  
PI-2749-082305  
Figure 6. Operation at Near Maximum Loading.  
V
V
EN  
EN  
CLOCK  
CLOCK  
DC  
DC  
MAX  
MAX  
I
I
DRAIN  
DRAIN  
V
DRAIN  
V
DRAIN  
PI-2377-082305  
PI-2667-082305  
Figure 8. Operation at Medium Loading.  
Figure 7. Operation at Moderately Heavy Loading.  
E
2/06  
5
TNY274-280  
200  
100  
V
V
EN  
DC-INPUT  
0
CLOCK  
10  
DC  
MAX  
V
5
0
BYPASS  
I
400  
200  
0
DRAIN  
V
DRAIN  
1
2
0
Time (ms)  
V
Figure 11. Power-Up Without Optional External UV Resistor  
Connected to EN/UV Pin.  
DRAIN  
PI-2661-082305  
200  
Figure 9. Operation at Very Light Load.  
V
100  
0
DC-INPUT  
At near maximum load, TinySwitch-III will conduct during  
nearly all of its clock cycles (Figure 6). At slightly lower load,  
it will “skip” additional cycles in order to maintain voltage  
regulation at the power supply output (Figure 7). At medium  
loads,cycleswillbeskippedandthecurrentlimitwillbereduced  
(Figure 8).At very light loads, the current limit will be reduced  
even further (Figure 9). Only a small percentage of cycles will  
occur to satisfy the power consumption of the power supply.  
400  
300  
V
200  
100  
0
DRAIN  
The response time of the ON/OFF control scheme is very fast  
compared to PWM control. This provides tight regulation and  
excellent transient response.  
.5  
1
0
Time (s)  
Figure 12. Normal Power-Down Timing (without UV).  
200  
V
100  
200  
DC-INPUT  
0
100  
0
10  
V
5
400  
300  
BYPASS  
0
400  
200  
100  
0
200  
0
1
2
2.5  
5
0
0
Time (s)  
Time (ms)  
Figure 13. Slow Power-Down Timing with Optional External  
Figure 10. Power-Up with Optional External UV Resistor (4 M)  
(4 M) UV Resistor Connected to EN/UV Pin.  
Connected to EN/UV Pin.  
E
2/06  
6
TNY274-280  
Power Up/Down  
Functional Description above). This has two main benefits.  
First, for a nominal application, this eliminates the cost of a  
bias winding and associated components. Secondly, for battery  
charger applications, the current-voltage characteristic often  
allows the output voltage to fall close to zero volts while still  
delivering power. TinySwitch-III accomplishes this without a  
forward bias winding and its many associated components. For  
applications that require very low no-load power consumption  
(50 mW), a resistor from a bias winding to the BYPASS/  
MULTI-FUNCTION pin can provide the power to the chip.  
The minimum recommended current supplied is 1 mA. The  
BYPASS/MULTI-FUNCTION pin in this case will be clamped  
at 6.4 V. This method will eliminate the power draw from the  
DRAIN pin, thereby reducing the no-load power consumption  
and improving full-load efficiency.  
The TinySwitch-III requires only a 0.1 µF capacitor on the  
BYPASS/MULTI-FUNCTION pin to operate with standard  
current limit. Because of its small size, the time to charge this  
capacitor is kept to an absolute minimum, typically 0.6 ms. The  
time to charge will vary in proportion to the BYPASS/MULTI-  
FUNCTIONpincapacitorvaluewhenselectingdifferentcurrent  
limits. Due to the high bandwidth of the ON/OFF feedback,  
there is no overshoot at the power supply output. When an  
external resistor (4 M) is connected from the positive DC  
input to the EN/UV pin, the power MOSFET switching will  
be delayed during power-up until the DC line voltage exceeds  
the threshold (100 V). Figures 10 and 11 show the power-up  
timing waveform in applications with and without an external  
resistor (4 M) connected to the EN/UV pin.  
Understartupandoverloadconditions,whentheconductiontime  
is less than 400 ns, the device reduces the switching frequency  
to maintain control of the peak drain current.  
Current Limit Operation  
Each switching cycle is terminated when the DRAIN current  
reaches the current limit of the device. Current limit operation  
providesgoodlineripplerejectionandrelativelyconstantpower  
delivery independent of input voltage.  
During power-down, when an external resistor is used, the  
power MOSFET will switch for 64 ms after the output loses  
regulation. The power MOSFET will then remain off without  
any glitches since the under-voltage function prohibits restart  
when the line voltage is low.  
BYPASS/MULTI-FUNCTION Pin Capacitor  
The BYPASS/MULTI-FUNCTION pin can use a ceramic  
capacitor as small as 0.1 µF for decoupling the internal power  
supplyofthedevice.Alargercapacitorsizecanbeusedtoadjust  
the current limit. For TNY275-280, a 1 µF BP/M pin capacitor  
will select a lower current limit equal to the standard current  
limit of the next smaller device and a 10 µF BP/M pin capacitor  
will select a higher current limit equal to the standard current  
limit of the next larger device. The higher current limit level of  
the TNY280 is set to 850 mA typical. The TNY274 MOSFET  
does not have the capability for increased current limit so this  
feature is not available in this device.  
Figure 12 illustrates a typical power-down timing waveform.  
Figure 13 illustrates a very slow power-down timing waveform  
as in standby applications. The external resistor (4 M) is  
connected to the EN/UV pin in this case to prevent unwanted  
restarts.  
No bias winding is needed to provide power to the chip  
because it draws the power directly from the DRAIN pin (see  
E
2/06  
7
TNY274-280  
C5  
2.2 nF  
250 VAC  
L2  
D7  
Ferrite Bead  
3.5 × 7.6 mm  
VR1  
BYV28-200  
T1  
+12 V, 1 A  
P6KE150A  
NC  
8
6
J3  
J4  
C11  
100 µF  
25 V  
C10  
1000 µF  
25 V  
D1  
1N4007  
F1  
D2  
R2  
1
3
1N4007  
100 Ω  
RTN  
C4  
10 nF  
1 kV  
3.15 A  
J1  
R1  
C1  
6.8 µF  
400 V  
C2  
22 µF  
400 V  
1 kΩ  
R7  
20 Ω  
4
85-265  
VAC  
RV1  
275 VAC  
D5  
1N4007GP  
2
5
D6  
UF4003  
R5*  
3.6 MΩ  
J2  
D3  
1N4007  
D4  
1N4007  
VR2  
1N5255B  
28 V  
L1  
1 mH  
C6  
VR3  
BZX79-C11  
11 V  
1 µF  
60 V  
R3  
47 Ω  
1/8 W  
*R5 and R8 are optional  
components  
R6  
390 Ω  
1/8 W  
R8*  
21 kΩ  
1%  
C7 is configurable to adjust  
U1 current limit, see circuit  
description  
U2  
PC817A  
D
EN/UV  
BP/M  
S
S
R4  
2 kΩ  
1/8 W  
C7 †  
100 nF  
50 V  
TinySwitch-III  
U1  
TNY278P  
PI-4244-021406  
Figure 14. TNY278P, 12 V, 1 A Universal Input Power Supply.  
LED forward drop, current will flow in the optocoupler LED.  
This will cause the transistor of the optocoupler to sink current.  
When this current exceeds the ENABLE pin threshold current  
the next switching cycle is inhibited. When the output voltage  
fallsbelowthefeedbackthreshold,aconductioncycleisallowed  
to occur and, by adjusting the number of enabled cycles, output  
regulation is maintained. As the load reduces, the number of  
enabled cycles decreases, lowering the effective switching  
frequencyandscalingswitchinglosseswithload. Thisprovides  
almost constant efficiency down to very light loads, ideal for  
meeting energy efficiency requirements.  
Applications Example  
The circuit shown in Figure 14 is a low cost, high efficiency,  
flyback power supply designed for 12 V, 1 A output from  
universal input using the TNY278.  
The supply features under-voltage lockout, primary sensed  
output overvoltage latching shutdown protection, high  
efficiency (>80%), and very low no-load consumption  
(<50mWat265VAC). Outputregulationisaccomplishedusing  
a simple zener reference and optocoupler feedback.  
The rectified and filtered input voltage is applied to the primary  
winding of T1. The other side of the transformer primary is  
driven by the integrated MOSFET in U1. Diode D5, C2, R1,  
R2, and VR1 comprise the clamp circuit, limiting the leakage  
inductance turn-off voltage spike on the DRAIN pin to a safe  
value. The use of a combination a Zener clamp and parallel  
RC optimizes both EMI and energy efficiency. Resistor R2  
allows the use of a slow recovery, low cost, rectifier diode by  
limiting the reverse current through D5. The selection of a  
slow diode also improves efficiency and conducted EMI but  
should be a glass passivated type, with a specified recovery  
time of 2 µs.  
As the TinySwitch-III devices are completely self-powered,  
there is no requirement for an auxiliary or bias winding on the  
transformer. However by adding a bias winding, the output  
overvoltage protection feature can be configured, protecting  
the load against open feedback loop faults.  
When an overvoltage condition occurs, such that bias voltage  
exceeds the sum ofVR2 and the BYPASS/MULTIFUNCTION  
(BP/M) pinvoltage(28V+5.85V),currentbeginstoowintothe  
BP/Mpin. Whenthiscurrentexceeds5mAtheinternallatching  
shutdown circuit in TinySwitch-III is activated. This condition  
is reset when the BP/M pin voltage drops below 2.6 V after  
removal of the AC input. In the example shown, on opening  
the loop, the OVP trips at an output of 17 V.  
The output voltage is regulated by the Zener diode VR3. When  
theoutputvoltageexceedsthesumoftheZenerandoptocoupler  
E
2/06  
8
TNY274-280  
For lower no-load input power consumption, the bias winding  
may also be used to supply the TinySwitch-III device. Resistor  
R8 feeds current into the BP/M pin, inhibiting the internal high  
voltage current source that normally maintains the BP/M pin  
capacitor voltage (C7) during the internal MOSFET off time.  
This reduces the no-load consumption of this design from  
140 mW to 40 mW at 265 VAC.  
Key Application Considerations  
TinySwitch-lll Design Considerations  
Output Power Table  
The data sheet output power table (Table 1) represents the  
minimum practical continuous output power level that can be  
obtained under the following assumed conditions:  
Under-voltage lockout is configured by R5 connected between  
the DC bus and EN/UV pin of U1. When present, switching  
is inhibited until the current in the EN/UV pin exceeds 25 µA.  
This allows the startup voltage to be programmed within the  
normal operating input voltage range, preventing glitching of  
the output under abnormal low voltage conditions and also on  
removal of the AC input.  
1. The minimum DC input voltage is 100 V or higher for  
85 VAC input, or 220 V or higher for 230 VAC input or  
115 VAC with a voltage doubler. The value of the input  
capacitance should be sized to meet these criteria for AC  
input designs.  
2. Efficiency of 75%.  
3. Minimum data sheet value of I2f.  
4. Transformer primary inductance tolerance of ±10%.  
5. Reflected output voltage (VOR) of 135 V.  
6. Voltage only output of 12 V with a fast PN rectifier diode.  
7. Continuous conduction mode operation with transient KP*  
value of 0.25.  
8. Increased current limit is selected for peak and open frame  
power columns and standard current limit for adapter  
columns.  
9. The part is board mounted with SOURCE pins soldered to  
a sufficient area of copper and/or a heatsink is used to keep  
the SOURCE pin temperature at or below 110 °C.  
10. Ambient temperature of 50 °C for open frame designs and  
40 °C for sealed adapters.  
In addition to the simple input pi filter (C1, L1, C2) for  
differential mode EMI, this design makes use of E-Shield™  
shielding techniques in the transformer to reduce common  
mode EMI displacement currents, and R2 and C4 as a damping  
network to reduce high frequency transformer ringing. These  
techniques, combined with the frequency jitter of TNY278,  
give excellent conducted and radiated EMI performance with  
this design achieving >12 dBµV of margin to EN55022 Class  
B conducted EMI limits.  
For design flexibility the value of C7 can be selected to pick one  
of the 3 current limits options in U1. This allows the designer  
to select the current limit appropriate for the application.  
*Below a value of 1, KP is the ratio of ripple to peak primary  
current. To prevent reduced power capability due to premature  
termination of switching cycles a transient KP limit of ≥0.25  
Standardcurrentlimit(ILIMIT)isselectedwitha0.1µFBP/M  
pin capacitor and is the normal choice for typical enclosed  
adapter applications.  
When a 1 µF BP/M pin capacitor is used, the current  
limit is reduced (ILIMITred or ILIMIT-1) offering reduced RMS  
device currents and therefore improved efficiency, but at  
the expense of maximum power capability. This is ideal  
for thermally challenging designs where dissipation must  
be minimized.  
When a 10 µF BP/M pin capacitor is used, the current  
limit is increased (ILIMITinc or ILIMIT+1), extending the power  
capability for applications requiring higher peak power or  
continuous power where the thermal conditions allow.  
is recommended. This prevents the initial current limit (IINIT  
from being exceeded at MOSFET turn on.  
)
For reference, Table 2 provides the minimum practical power  
deliveredfromeachfamilymemberatthethreeselectablecurrent  
limitvalues. Thisassumesopenframeoperation(notthermally  
limited) and otherwise the same conditions as listed above.  
These numbers are useful to identify the correct current limit  
to select for a given device and output power requirement.  
Overvoltage Protection  
The output overvoltage protection provided by TinySwitch-III  
uses an internal latch that is triggered by a threshold current  
of approximately 5.5 mA into the BP/M pin. In addition to an  
internal filter, the BP/M pin capacitor forms an external filter  
providing noise immunity from inadvertent triggering. For the  
bypass capacitor to be effective as a high frequency filter, the  
capacitorshouldbelocatedascloseaspossibletotheSOURCE  
and BP/M pins of the device.  
Furtherexibilitycomesfromthecurrentlimitsbetweenadjacent  
TinySwitch-IIIfamilymembersbeingcompatible. Thereduced  
current limit of a given device is equal to the standard current  
limitofthenextsmallerdeviceandtheincreasedcurrentlimitis  
equal to the standard current limit of the next larger device.  
E
2/06  
9
TNY274-280  
OUTPUT POWER TABLE  
230 VAC ±15%  
85-265 VAC  
PRODUCT  
ILIMIT-1  
ILIMIT  
ILIMIT+1  
ILIMIT-1  
ILIMIT  
ILIMIT+1  
TNY274 P or G  
TNY275 P or G  
TNY276 P or G  
TNY277 P or G  
TNY278 P or G  
TNY279 P or G  
TNY280 P or G  
9
10.9  
12  
9.1  
15.1  
19.4  
23.7  
28  
7.1  
8.4  
8.5  
9.3  
7.1  
10.8  
11.8  
15.1  
19.4  
23.7  
28  
11.8  
15.1  
18.5  
21.8  
25.2  
28.5  
15.3  
19.6  
24  
9.2  
11.9  
15.3  
18.6  
22  
11.8  
15.1  
18.5  
21.8  
28.4  
32.7  
32.2  
36.6  
25.4  
Table 2. Minimum Practical Power at Three Selectable Current Limit Levels.  
For best performance of the OVP function, it is recommended  
thatarelativelyhighbiaswindingvoltageisused,intherangeof  
15V-30V. Thisminimizestheerrorvoltageonthebiaswinding  
due to leakage inductance and also ensures adequate voltage  
during no-load operation from which to supply the BP/M pin  
for reduced no-load consumption.  
practically eliminates audible noise. Vacuum impregnation  
of the transformer should not be used due to the high primary  
capacitanceandincreasedlossesthatresult.Higheruxdensities  
are possible, however careful evaluation of the audible noise  
performance should be made using production transformer  
samples before approving the design.  
Selecting the Zener diode voltage to be approximately 6 V  
above the bias winding voltage (28 V for 22 V bias winding)  
gives good OVP performance for most designs, but can be  
adjusted to compensate for variations in leakage inductance.  
Adding additional filtering can be achieved by inserting a low  
value (10 to 47 ) resistor in series with the bias winding  
diode and/or the OVP Zener as shown by R7 and R3 in  
Figure 14. The resistor in series with the OVPZener also limits  
the maximum current into the BP/M pin.  
Ceramic capacitors that use dielectrics such as Z5U, when used  
in clamp circuits, may also generate audio noise. If this is the  
case, try replacing them with a capacitor having a different  
dielectric or construction, for example a film type.  
TinySwitch-lll Layout Considerations  
Layout  
See Figure 15 for a recommended circuit board layout for  
TinySwitch-III.  
Reducing No-load Consumption  
AsTinySwitch-IIIisself-poweredfromtheBP/Mpincapacitor,  
there is no need for an auxillary or bias winding to be provided  
onthetransformerforthispurpose. Typicalno-loadconsumption  
whenself-poweredis<150mWat265VACinput. Theaddition  
ofabiaswindingcanreducethisdownto<50mWbysupplying  
theTinySwitch-IIIfromthelowerbiasvoltageandinhibitingthe  
internal high voltage current source. To achieve this, select the  
value of the resistor (R8 in Figure 14) to provide the data sheet  
DRAIN supply current. In practice, due to the reduction of the  
bias voltage at low load, start with a value equal to 40% greater  
thanthedatasheetmaximumcurrent,andthenincreasethevalue  
of the resistor to give the lowest no-load consumption.  
Single Point Grounding  
Useasinglepointgroundconnectionfromtheinputltercapacitor  
to the area of copper connected to the SOURCE pins.  
Bypass Capacitor (CBP)  
The BP/M pin capacitor should be located as near as possible  
to the BP/M and SOURCE pins.  
Primary Loop Area  
The area of the primary loop that connects the input filter  
capacitor, transformer primary and TinySwitch-III together  
should be kept as small as possible.  
Audible Noise  
Primary Clamp Circuit  
The cycle skipping mode of operation used in TinySwitch-III  
can generate audio frequency components in the transformer.  
To limit this audible noise generation the transformer should  
be designed such that the peak core flux density is below  
3000 Gauss (300 mT). Following this guideline and using the  
standard transformer production technique of dip varnishing  
Aclamp is used to limit peak voltage on the DRAIN pin at turn  
off. This can be achieved by using an RCD clamp or a Zener  
(~200 V) and diode clamp across the primary winding. In all  
cases, to minimize EMI, care should be taken to minimize the  
circuit path from the clamp components to the transformer and  
TinySwitch-III.  
E
2/06  
10  
TNY274-280  
Input Filter  
Capacitor  
TOP VIEW  
Y1-  
Capacitor  
+
HV DC  
INPUT  
-
T
r
a
n
s
f
o
r
Output Filter  
Capacitor  
S
S S S  
C
BP  
m
e
r
TinySwitch-III  
EN/UV BP/M D  
Opto-  
coupler  
DC  
OUT  
+
-
Maximize hatched copper  
areas (  
) for optimum  
heatsinking  
PI-4278-013006  
Figure 15. Recommended Circuit Board Layout for TinySwitch-III with Under-Voltage Lock Out Resistor.  
Thermal Considerations  
Optocoupler  
The four SOURCE pins are internally connected to the IC lead  
frameandprovidethemainpathtoremoveheatfromthedevice.  
ThereforealltheSOURCEpinsshouldbeconnectedtoacopper  
area underneath the TinySwitch-III to act not only as a single  
point ground, but also as a heatsink. As this area is connected  
to the quiet source node, this area should be maximized for  
good heatsinking. Similarly for axial output diodes, maximize  
the PCB area connected to the cathode.  
Place the optocoupler physically close to the TinySwitch-III  
to minimizing the primary-side trace lengths. Keep the high  
current, high voltage drain and clamp traces away from the  
optocoupler to prevent noise pick up.  
Output Diode  
For best performance, the area of the loop connecting the  
secondary winding, the output diode and the output filter  
capacitor, should be minimized. In addition, sufficient copper  
area should be provided at the anode and cathode terminals  
of the diode for heatsinking. A larger area is preferred at the  
quiet cathode terminal. A large anode area can increase high  
frequency radiated EMI.  
Y-Capacitor  
The placement of the Y-capacitor should be directly from the  
primary input filter capacitor positive terminal to the common/  
return terminal of the transformer secondary. Such a placement  
will route high magnitude common mode surge currents away  
from the TinySwitch-III device. Note – if an input π (C, L, C)  
EMI filter is used then the inductor in the filter should be placed  
between the negative terminals of the input filter capacitors.  
E
2/06  
11  
TNY274-280  
startup. Repeatundersteadystateconditionsandverifythat  
the leading edge current spike event is below ILIMIT(Min)at the  
endofthetLEB(Min). Underallconditions, themaximumdrain  
current should be below the specified absolute maximum  
ratings.  
Quick Design Checklist  
As with any power supply design, all TinySwitch-III designs  
should be verified on the bench to make sure that component  
specificationsarenotexceededunderworstcaseconditions. The  
following minimum set of tests is strongly recommended:  
3. Thermal Check – At specified maximum output power,  
minimuminputvoltageandmaximumambienttemperature,  
verify that the temperature specifications are not exceeded  
for TinySwitch-III, transformer, output diode, and output  
capacitors. Enough thermal margin should be allowed for  
part-to-part variation of the RDS(ON) of TinySwitch-III as  
specifiedinthedatasheet. Underlowline,maximumpower,  
a maximum TinySwitch-III SOURCE pin temperature of  
110 °C is recommended to allow for these variations.  
1. Maximum drain voltage – Verify that VDS does not exceed  
650 V at highest input voltage and peak (overload) output  
power. The 50 V margin to the 700 V BVDSS specification  
gives margin for design variation.  
2. Maximumdraincurrent–Atmaximumambienttemperature,  
maximum input voltage and peak output (overload) power,  
verify drain current waveforms for any signs of transformer  
saturation and excessive leading edge current spikes at  
E
2/06  
12  
TNY274-280  
ABSOLUTE MAXIMUM RATINGS(1,5)  
DRAIN Voltage ................................................-0.3 V to 700 V Lead Temperature(4) ....................................................... 260 °C  
DRAIN Peak Current: TNY274.......................400 (750) mA(2)  
TNY275.....................560 (1050) mA(2) Notes:  
TNY276.....................720 (1350) mA(2) 1. All voltages referenced to SOURCE, TA = 25 °C.  
TNY277.....................880 (1650) mA(2) 2. The higher peak DRAIN current is allowed while the  
TNY278...................1040 (1950) mA(2)  
DRAIN voltage is simultaneously less than 400 V.  
TNY279 ................. 1200 (2250) mA(2) 3. Normally limited by internal circuitry.  
TNY280 ................. 1360 (2550) mA(2) 4. 1/16 in. from case for 5 seconds.  
EN/UV Voltage ................................................... -0.3 V to 9 V 5. Maximum ratings specified may be applied one at a time,  
EN/UV Current ........................................................... 100 mA  
BP/M Voltage ......................................................-0.3 V to 9 V  
Storage Temperature ......................................-65 °C to 150 °C  
Operating Junction Temperature(3) .................-40 °C to 150 °C  
without causing permanent damage to the product.  
Exposure to Absolute Maximum Rating conditions for  
extended periods of time may affect product reliability.  
THERMAL IMPEDANCE  
Notes:  
Thermal Impedance: P or G Package:  
(θJA) ........................... 70 °C/W(2); 60 °C/W(3)  
(θJC)(1) ............................................... 11 °C/W  
1. Measured on the SOURCE pin close to plastic interface.  
2. Soldered to 0.36 sq. in. (232 mm2), 2 oz. (610 g/m2) copper clad.  
3. Soldered to 1 sq. in. (645 mm2), 2 oz. (610 g/m2) copper clad.  
Conditions  
SOURCE = 0 V; TJ = -40 to 125 °C  
See Figure 16  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
(Unless Otherwise Specified)  
CONTROL FUNCTIONS  
Average  
124  
132  
8
140  
Output Frequency  
fOSC  
TJ = 25 °C  
See Figure 4  
kHz  
%
in Standard Mode  
Peak-Peak Jitter  
Maximum Duty  
DCMAX  
Cycle  
S1 Open  
62  
65  
EN/UV Pin Upper  
IDIS  
-150  
-115  
-90  
µA  
Turnoff Threshold  
Current  
IEN/UV = 25 µA  
IEN/UV = -25 µA  
1.8  
0.8  
2.2  
1.2  
2.6  
1.6  
EN/UV Pin  
Voltage  
VEN  
V
EN/UV Current > IDIS (MOSFET Not  
Switching) See Note A  
IS1  
290  
µA  
TNY274  
TNY275  
275  
295  
310  
365  
445  
510  
630  
360  
400  
430  
460  
540  
640  
760  
DRAIN Supply  
Current  
EN/UV Open  
(MOSFET  
Switching at fOSC  
TNY276  
TNY277  
TNY278  
TNY279  
TNY280  
IS2  
µA  
)
See Note B  
E
2/06  
13  
TNY274-280  
Parameter  
Conditions  
SOURCE = 0 V; TJ = -40 to 125 °C  
See Figure 16  
Symbol  
Min  
Typ  
Max  
Units  
(Unless Otherwise Specified)  
CONTROL FUNCTIONS (cont.)  
TNY274  
TNY275-279  
TNY280  
-6  
-3.8  
-5.4  
-6.8  
-2.3  
-3.5  
-4.6  
5.85  
-1.8  
-2.5  
-3.9  
-1  
VBP/M = 0 V,  
TJ = 25 °C  
See Note C, D  
ICH1  
-8.3  
-9.7  
-4.1  
-5  
BP/M Pin Charge  
Current  
mA  
TNY274  
VBP/M = 4 V,  
TJ = 25 °C  
See Note C, D  
ICH2  
TNY275-279  
TNY280  
-1.5  
-2.1  
6.15  
-6.6  
5.6  
VBP/M  
See Note C  
V
V
BP/M Pin Voltage  
BP/M Pin Voltage  
Hysteresis  
VBP/MH  
0.80  
6.0  
0.95  
6.4  
1.20  
6.7  
BP/M Pin Shunt  
Voltage  
VSHUNT  
IBP = 2 mA  
V
EN/UV Pin Line  
Under-Voltage  
Threshold  
ILUV  
TJ = 25 °C  
22.5  
25  
27.5  
µA  
CIRCUIT PROTECTION  
TNY274  
TJ = 25 °C  
di/dt = 50 mA/µs  
233  
256  
326  
419  
512  
605  
698  
196  
233  
250  
275  
350  
450  
550  
650  
750  
210  
250  
267  
294  
374  
481  
588  
695  
802  
233  
277  
See Note E  
TNY275  
TJ = 25 °C  
di/dt = 55 mA/µs  
See Note E  
TNY276  
TJ = 25 °C  
di/dt = 70 mA/µs  
Standard Current  
Limit (BP/M  
See Note E  
TNY277  
TJ = 25 °C  
di/dt = 90 mA/µs  
ILIMIT  
mA  
Capacitor =  
0.1 µF)  
See Note D  
See Note E  
TNY278  
TJ = 25 °C  
di/dt = 110 mA/µs  
See Note E  
TNY279  
TJ = 25 °C  
di/dt = 130 mA/µs  
See Note E  
TNY280  
TJ = 25 °C  
di/dt = 150 mA/µs  
See Note E  
TNY274  
TJ = 25 °C  
di/dt = 50 mA/µs  
Reduced Current  
Limit (BP/M  
See Note E  
ILIMITred  
mA  
TNY275  
TJ = 25 °C  
di/dt = 55 mA/µs  
Capacitor = 1 µF)  
See Note E  
E
2/06  
14  
TNY274-280  
Conditions  
SOURCE = 0 V; TJ = -40 to 125 °C  
See Figure 16  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
(Unless Otherwise Specified)  
CIRCUIT PROTECTION (cont.)  
TNY276  
TJ = 25 °C  
di/dt = 70 mA/µs  
256  
326  
419  
512  
605  
196  
326  
419  
512  
605  
698  
791  
275  
350  
450  
550  
650  
210  
350  
450  
550  
650  
750  
305  
388  
499  
610  
721  
233  
388  
499  
610  
721  
833  
943  
See Note E  
TNY277  
TJ = 25 °C  
di/dt = 90 mA/µs  
See Note E  
Reduced Current  
Limit (BP/M  
Capacitor = 1 µF)  
See Note D  
TNY278  
TJ = 25 °C  
di/dt = 110 mA/µs  
ILIMITred  
mA  
See Note E  
TNY279  
TJ = 25 °C  
di/dt = 130 mA/µs  
See Note E  
TNY280  
TJ = 25 °C  
di/dt = 150 mA/µs  
See Note E  
TNY274  
TJ = 25 °C  
di/dt = 50 mA/µs  
See Note E, F  
TNY275  
TJ = 25 °C  
di/dt = 55 mA/µs  
See Note E  
TNY276  
TJ = 25 °C  
di/dt = 70 mA/µs  
See Note E  
Increased Current  
Limit (BP/M  
Capacitor = 10 µF)  
See Note D  
TNY277  
TJ = 25 °C  
di/dt = 90 mA/µs  
ILIMITinc  
mA  
See Note E  
TNY278  
TJ = 25 °C  
di/dt = 110 mA/µs  
See Note E  
TNY279  
TJ = 25 °C  
di/dt = 130 mA/µs  
See Note E  
TNY280  
TJ = 25 °C  
di/dt = 150 mA/µs  
850  
I2f  
See Note E  
Standard  
Current Limit  
0.9 ×  
I2f  
1.12 ×  
I2f  
I2f = ILIMIT(TYP)  
×
2
I2f  
A2Hz  
Power Coefficient  
Initial Current Limit  
Reduced or  
Increased  
Current Limit  
fOSC(TYP)  
0.9 ×  
I2f  
1.16 ×  
I2f  
I2f  
See Figure 19  
TJ = 25 °C, See Note G  
0.75 ×  
ILIMIT(MIN)  
IINIT  
mA  
ns  
Leading Edge  
Blanking Time  
TJ = 25 °C  
See Note G  
tLEB  
170  
135  
215  
150  
142  
Current Limit  
Delay  
TJ = 25 °C  
See Note G, H  
tILD  
ns  
Thermal Shutdown  
Temperature  
TSD  
150  
°C  
E
2/06  
15  
TNY274-280  
Parameter  
Conditions  
SOURCE = 0 V; TJ = -40 to 125 °C  
See Figure 16  
Symbol  
Min  
Typ  
Max  
Units  
(Unless Otherwise Specified)  
CIRCUIT PROTECTION (cont.)  
Thermal Shut-  
TSDH  
down Hysteresis  
75  
°C  
BP/M Pin Shut-  
ISD  
4
5.5  
7.5  
3.6  
mA  
down Threshold  
Current  
BP/M Pin Power-  
Up Reset Thresh-  
old Voltage  
VBP/M(RESET)  
1.6  
2.6  
V
OUTPUT  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
28  
42  
32  
48  
TNY274  
ID = 25 mA  
19  
22  
TNY275  
ID = 28 mA  
29  
33  
14  
16  
TNY276  
ID = 35 mA  
21  
24  
7.8  
11.7  
5.2  
7.8  
3.9  
5.8  
2.6  
3.9  
9.0  
13.5  
6.0  
9.0  
4.5  
6.7  
3.0  
4.5  
ON-State  
Resistance  
TNY277  
ID = 45 mA  
RDS(ON)  
TNY278  
ID = 55 mA  
TNY279  
ID = 65 mA  
TNY280  
ID = 75 mA  
VBP/M = 6.2 V  
TNY274-276  
TNY277-278  
TNY279-280  
50  
VEN/UV = 0 V  
VDS = 560 V  
TJ = 125 °C  
See Note I  
IDSS1  
100  
200  
OFF-State Drain  
Leakage Current  
µA  
VDS = 375 V,  
TJ = 50 °C  
See Note G, I  
VBP/M = 6.2 V  
VEN/UV = 0 V  
IDSS2  
15  
Breakdown  
Voltage  
VBP = 6.2 V, VEN/UV = 0 V,  
See Note J, TJ = 25 °C  
BVDSS  
700  
50  
V
V
DRAIN Supply  
Voltage  
E
2/06  
16  
TNY274-280  
Conditions  
SOURCE = 0 V; TJ = -40 to 125 °C  
See Figure 16  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
(Unless Otherwise Specified)  
OUTPUT (cont.)  
Auto-Restart  
ON-Time at fOSC  
TJ = 25 °C  
tAR  
64  
3
ms  
%
See Note K  
Auto-Restart  
Duty Cycle  
DCAR  
TJ = 25 °C  
NOTES:  
A. IS1 is an accurate estimate of device controller current consumption at no-load, since operating frequency is so  
low under these conditions. Total device consumption at no-load is the sum of IS1 and IDSS2  
.
B Since the output MOSFET is switching, it is difficult to isolate the switching current from the supply current at the  
DRAIN. An alternative is to measure the BP/M pin current at 6.1 V.  
C. BP/M pin is not intended for sourcing supply current to external circuitry.  
D. To ensure correct current limit it is recommended that nominal 0.1 µF / 1 µF / 10 µF capacitors are used. In  
addition, the BP/M capacitor value tolerance should be equal or better than indicated below across the ambient  
temperature range of the target application. The minimum and maximum capacitor values are guaranteed by  
characterization.  
Tolerance Relative to Nominal  
Nominal BP/M  
Pin Cap Value  
Capacitor Value  
Min  
MAX  
+100%  
+100%  
NA  
0.1 µF  
1 µF  
-60%  
-50%  
-50%  
10 µF  
E. For current limit at other di/dt values, refer to Figure 23.  
F. TNY274 does not set an increased current limit value, but with a 10 µF BP/M pin capacitor the current limit is the  
same as with a 1 µF BP/M pin capacitor (reduced current limit value).  
G. This parameter is derived from characterization.  
H. This parameter is derived from the change in current limit measured at 1X and 4X of the di/dt shown in the ILIMIT  
specification.  
I. IDSS1 is the worst case OFF state leakage specification at 80% of BVDSS and maximum operating junction  
temperature. IDSS2 is a typical specification under worst case application conditions (rectified 265 VAC) for no-load  
consumption calculations.  
J. Breakdown voltage may be checked against minimum BVDSS specification by ramping the DRAIN pin voltage up  
to but not exceeding minimum BVDSS  
.
K. Auto-restart on time has the same temperature characteristics as the oscillator (inversely proportional to  
frequency).  
E
2/06  
17  
TNY274-280  
470  
5 W  
S2  
470 Ω  
S
S
D
S1  
2 M  
S
S
BP/M  
50 V  
EN/UV  
10 V  
150 V  
0.1 µF  
NOTE: This test circuit is not applicable for current limit or output characteristic measurements.  
PI-4079-080905  
Figure 16. General Test Circuit.  
DC  
(internal signal)  
MAX  
t
P
EN/UV  
t
EN/UV  
V
DRAIN  
1
tP  
=
fOSC  
PI-2364-012699  
Figure 18. Output Enable Timing.  
Figure 17. Duty Cycle Measurement.  
0.8  
Figure 19. Current Limit Envelope.  
E
2/06  
18  
TNY274-280  
Typical Performance Characteristics  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.1  
1.0  
0.9  
0
-50 -25  
0
25  
50 75 100 125  
-50 -25  
0
25 50 75 100 125 150  
Junction Temperature (°C)  
Junction Temperature (°C)  
Figure 21. Frequency vs. Temperature.  
Figure 20. Breakdown vs. Temperature.  
1.2  
1
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.8  
Normalized  
di/dt = 1  
TNY274  
TNY275  
TNY276  
TNY277  
TNY278 110 mA/µs  
TNY279 130 mA/µs  
TNY280 150 mA/µs  
50 mA/µs  
55 mA/µs  
70 mA/µs  
90 mA/µs  
0.6  
0.4  
0.2  
Note: For the  
normalized current  
limit value, use the  
typical current limit  
specified for the  
appropriate BP/M  
capacitor.  
0
0
-50  
0
50  
100  
150  
1
2
3
4
Temperature (°C)  
Normalized di/dt  
Figure 22. Standard Current Limit vs. Temperature.  
Figure 23. Current Limit vs. di/dt.  
300  
1000  
Scaling Factors:  
TNY274 1.0  
250  
TNY275 1.5  
TNY276 2.0  
TNY277 3.5  
TNY278 5.5  
TNY279 7.3  
200  
100  
Scaling Factors:  
TNY274 1.0  
TNY275 1.5  
TNY276 2.0  
TNY277 3.5  
TNY278 5.5  
TNY279 7.3  
TNY280 11  
TNY280 11  
150  
100  
10  
1
TCASE=25 °C  
TCASE=100 °C  
50  
0
0
2
4
6
8
10  
0
100 200 300 400 500 600  
DRAIN Voltage (V)  
Figure 24. Output Characteristic.  
Drain Voltage (V)  
Figure 25. COSS vs. Drain Voltage.  
E
2/06  
19  
TNY274-280  
Typical Performance Characteristics (cont.)  
50  
1.2  
1.0  
Scaling Factors:  
TNY274 1.0  
40  
TNY275 1.5  
TNY276 2.0  
TNY277 3.5  
TNY278 5.5  
TNY279 7.3  
TNY280 11  
0.8  
0.6  
30  
20  
10  
0
0.4  
0.2  
0
-50 -25  
Junction Temperature (°C)  
Figure 27. Under-Voltage Threshold vs. Temperature.  
0
25 50 75 100 125  
0
200  
400  
600  
DRAIN Voltage (V)  
Figure 26. Drain Capacitance Power.  
E
2/06  
20  
TNY274-280  
PART ORDERING INFORMATION  
TinySwitch Product Family  
Series Number  
Package Identifier  
G
P
Plastic Surface Mount SMD-8C  
Plastic DIP-8C  
Lead Finish  
N
Pure Matte Tin (Pb-Free)  
Tape & Reel and Other Options  
Blank Standard Configurations  
TL  
Tape & Reel, 1000 pcs min./mult., G Package only  
TNY 278 G N - TL  
DIP-8C  
D S .004 (.10)  
Notes:  
-E-  
1. Package dimensions conform to JEDEC specification  
MS-001-AB (Issue B 7/85) for standard dual-in-line (DIP)  
package with .300 inch row spacing.  
2. Controlling dimensions are inches. Millimeter sizes are  
shown in parentheses.  
.240 (6.10)  
.260 (6.60)  
3. Dimensions shown do not include mold flash or other  
protrusions. Mold flash or protrusions shall not exceed  
.006 (.15) on any side.  
4. Pin locations start with Pin 1, and continue counter-clock-  
wise to Pin 8 when viewed from the top. The notch and/or  
dimple are aids in locating Pin 1. Pin 3 is omitted.  
5. Minimum metal to metal spacing at the package body for  
the omitted lead location is .137 inch (3.48 mm).  
6. Lead width measured at package body.  
Pin 1  
-D-  
.367 (9.32)  
.387 (9.83)  
7. Lead spacing measured with the leads constrained to be  
perpendicular to plane T.  
.057 (1.45)  
.068 (1.73)  
(NOTE 6)  
.125 (3.18)  
.145 (3.68)  
.015 (.38)  
MINIMUM  
-T-  
SEATING  
PLANE  
.008 (.20)  
.015 (.38)  
.120 (3.05)  
.140 (3.56)  
.300 (7.62) BSC  
(NOTE 7)  
.100 (2.54) BSC  
.048 (1.22)  
.053 (1.35)  
.137 (3.48)  
MINIMUM  
P08C  
.300 (7.62)  
.390 (9.91)  
.014 (.36)  
.022 (.56)  
T E D S .010 (.25) M  
PI-3933-100504  
E
2/06  
21  
TNY274-280  
SMD-8C  
Notes:  
D S .004 (.10)  
.046 .060 .060 .046  
1. Controlling dimensions are  
inches. Millimeter sizes are  
shown in parentheses.  
2. Dimensions shown do not  
include mold flash or other  
protrusions. Mold flash or  
protrusions shall not exceed  
.006 (.15) on any side.  
3. Pin locations start with Pin 1,  
and continue counter-clock-  
wise to Pin 8 when viewed  
from the top. Pin 3 is omitted.  
4. Minimum metal to metal  
spacing at the package body  
for the omitted lead location  
is .137 inch (3.48 mm).  
5. Lead width measured at  
package body.  
-E-  
.080  
.086  
.186  
.286  
.372 (9.45)  
.388 (9.86)  
.010 (.25)  
E S  
.240 (6.10)  
.260 (6.60)  
.420  
Pin 1  
Pin 1  
.137 (3.48)  
MINIMUM  
Solder Pad Dimensions  
.100 (2.54) (BSC)  
6. D and E are referenced  
datums on the package  
body.  
.367 (9.32)  
.387 (9.83)  
-D-  
.057 (1.45)  
.068 (1.73)  
(NOTE 5)  
.125 (3.18)  
.145 (3.68)  
.004 (.10)  
.032 (.81)  
.037 (.94)  
.048 (1.22)  
.053 (1.35)  
°
°
.009 (.23)  
0 - 8  
.036 (0.91)  
.044 (1.12)  
.004 (.10)  
.012 (.30)  
G08C  
PI-4015-013106  
E
2/06  
22  
TNY274-280  
E
2/06  
23  
TNY274-280  
Revision Notes  
Date  
1/06  
D
E
Release final data sheet.  
Corrected figure numbers and references.  
2/06  
For the latest updates, visit our website: www.powerint.com  
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume  
any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY  
DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.  
PATENT INFORMATION  
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S.  
and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrationsʼ patents  
may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.  
LIFE SUPPORT POLICY  
POWER INTEGRATIONSʼ PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS  
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:  
1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform,  
when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or death to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or effectiveness.  
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, EcoSmart, Clampless, E-Shield, Filterfuse,  
PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies.  
©Copyright 2006, Power Integrations, Inc.  
Power Integrations Worldwide Sales Support Locations  
JAPAN  
WORLD HEADQUARTERS  
5245 Hellyer Avenue  
San Jose, CA 95138, USA.  
Main: +1-408-414-9200  
Customer Service:  
Phone: +1-408-414-9665  
Fax: +1-408-414-9765  
e-mail: usasales@powerint.com  
GERMANY  
Rueckertstrasse 3  
D-80336, Munich  
Germany  
Phone: +49-89-5527-3910  
Fax: +49-89-5527-3920  
e-mail: eurosales@powerint.com  
TAIWAN  
5F, No. 318, Nei Hu Rd., Sec. 1  
Nei Hu Dist.  
Taipei, Taiwan 114, R.O.C.  
Phone: +886-2-2659-4570  
Fax: +886-2-2659-4550  
e-mail: taiwansales@powerint.com  
Keihin Tatemono 1st Bldg 2-12-20  
Shin-Yokohama, Kohoku-ku,  
Yokohama-shi, Kanagawa ken,  
Japan 222-0033  
Phone: +81-45-471-1021  
Fax: +81-45-471-3717  
e-mail: japansales@powerint.com  
KOREA  
RM 602, 6FL  
CHINA (SHANGHAI)  
Rm 807-808A  
Pacheer Commercial Centre,  
555 Nanjing Rd. West  
Shanghai, P.R.C. 200041  
Phone: +86-21-6215-5548  
Fax: +86-21-6215-2468  
e-mail: chinasales@powerint.com  
INDIA  
EUROPE HQ  
1st Floor, St. Jamesʼs House  
East Street, Farnham  
Surrey GU9 7TJ  
United Kingdom  
Phone: +44 (0) 1252-730-140  
Fax: +44 (0) 1252-727-689  
e-mail: eurosales@powerint.com  
261/A, Ground Floor  
7th Main, 17th Cross,  
Sadashivanagar  
Bangalore, India 560080  
Phone: +91-80-5113-8020  
Fax: +91-80-5113-8023  
e-mail: indiasales@powerint.com  
Korea City Air Terminal B/D, 159-6  
Samsung-Dong, Kangnam-Gu,  
Seoul, 135-728, Korea  
Phone: +82-2-2016-6610  
Fax: +82-2-2016-6630  
e-mail: koreasales@powerint.com  
SINGAPORE  
CHINA (SHENZHEN)  
ITALY  
APPLICATIONS HOTLINE  
51 Newton Road  
#15-08/10 Goldhill Plaza  
Singapore, 308900  
Phone: +65-6358-2160  
Fax: +65-6358-2015  
e-mail: singaporesales@powerint.com  
Rm 2206-2207, Block A,  
Electronics Science & Technology Bldg.  
2070 Shennan Zhong Rd.  
Shenzhen, Guangdong,  
Via Vittorio Veneto 12  
20091 Bresso MI  
Italy  
Phone: +39-028-928-6000  
Fax: +39-028-928-6009  
e-mail: eurosales@powerint.com  
World Wide +1-408-414-9660  
APPLICATIONS FAX  
World Wide +1-408-414-9760  
China, 518031  
Phone: +86-755-8379-3243  
Fax: +86-755-8379-5828  
e-mail: chinasales@powerint.com  
E
2/06  
24  
配单直通车
TNY277PN产品参数
型号:TNY277PN
是否Rohs认证:符合
生命周期:Active
IHS 制造商:POWER INTEGRATIONS INC
零件包装代码:DIP
包装说明:DIP, DIP7/8,.3
针数:8
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
Factory Lead Time:14 weeks
风险等级:0.87
Samacsys Confidence:4
Samacsys Status:Released
Samacsys PartID:532717
Samacsys Pin Count:8
Samacsys Part Category:Power Supply
Samacsys Package Category:Dual-In-Line Packages
Samacsys Footprint Name:PDIP-8C (P Package)_1
Samacsys Released Date:2017-09-02 09:36:16
Is Samacsys:N
模拟集成电路 - 其他类型:SWITCHING REGULATOR
控制模式:CURRENT-MODE
控制技术:PULSE WIDTH MODULATION
最大输入电压:2.6 V
最小输入电压:1.8 V
标称输入电压:2.2 V
JESD-30 代码:R-PDIP-T7
JESD-609代码:e3
长度:9.575 mm
功能数量:1
端子数量:7
最高工作温度:125 °C
最低工作温度:-40 °C
最大输出电流:0.481 A
封装主体材料:PLASTIC/EPOXY
封装代码:DIP
封装等效代码:DIP7/8,.3
封装形状:RECTANGULAR
封装形式:IN-LINE
峰值回流温度(摄氏度):NOT SPECIFIED
认证状态:Not Qualified
子类别:Power Management Circuits
最大供电电流 (Isup):0.46 mA
表面贴装:NO
切换器配置:SINGLE
最大切换频率:140 kHz
温度等级:AUTOMOTIVE
端子面层:Matte Tin (Sn)
端子形式:THROUGH-HOLE
端子节距:2.54 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:7.62 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!