欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • TPA3008D2PHPRG4
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • TPA3008D2PHPRG4图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • TPA3008D2PHPRG4 现货库存
  • 数量28600 
  • 厂家08+ 
  • 封装24 
  • 批号21+ 
  • 原装现货库存,价格优势
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • TPA3008D2PHPRG4图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • TPA3008D2PHPRG4
  • 数量5600 
  • 厂家TI 
  • 封装TQFP-48 
  • 批号23+ 
  • 只做原装正品,深圳现货
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • TPA3008D2PHPRG4图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TPA3008D2PHPRG4
  • 数量56024 
  • 厂家TI 
  • 封装QFP 
  • 批号2023+ 
  • 绝对原装正品现货,全新深圳原装进口现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • TPA3008D2PHPRG4图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • TPA3008D2PHPRG4
  • 数量8650000 
  • 厂家TI 
  • 封装原厂封装 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • TPA3008D2PHPRG4图
  • 深圳市芯捷微半导体有限公司

     该会员已使用本站1年以上
  • TPA3008D2PHPRG4
  • 数量35601 
  • 厂家TI/德州仪器 
  • 封装TQFP-48 
  • 批号23+ 
  • 芯捷微原厂原装正品热卖
  • QQ:3004285388QQ:3004285388 复制
  • 16625139831 QQ:3004285388
  • TPA3008D2PHPRG4图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • TPA3008D2PHPRG4
  • 数量19500 
  • 厂家TI 
  • 封装QFP 
  • 批号2018+ 
  • TI一级授权代理品牌进口原装现货假一赔十
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • TPA3008D2PHPRG4图
  • 深圳市惠诺德电子有限公司

     该会员已使用本站7年以上
  • TPA3008D2PHPRG4
  • 数量29500 
  • 厂家TI 
  • 封装QFP 
  • 批号21+ 
  • 只做原装现货代理
  • QQ:1211267741QQ:1211267741 复制
    QQ:1034782288QQ:1034782288 复制
  • 159-7688-9073 QQ:1211267741QQ:1034782288
  • TPA3008D2PHPRG4图
  • 深圳市芯柏然科技有限公司

     该会员已使用本站7年以上
  • TPA3008D2PHPRG4
  • 数量23480 
  • 厂家TI 
  • 封装TQFP48 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、价格低于市场
  • QQ:287673858QQ:287673858 复制
  • 0755-82533534 QQ:287673858
  • TPA3008D2PHPRG4图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TPA3008D2PHPRG4
  • 数量3274 
  • 厂家TI/德州仪器 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • TPA3008D2PHPRG4图
  • 集好芯城

     该会员已使用本站13年以上
  • TPA3008D2PHPRG4
  • 数量17816 
  • 厂家TI/德州仪器 
  • 封装TQFP-48 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TPA3008D2PHPRG4图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • TPA3008D2PHPRG4
  • 数量12000 
  • 厂家TI 
  • 封装HTQFP EP 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • TPA3008D2PHPRG4图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • TPA3008D2PHPRG4
  • 数量6328 
  • 厂家TI-德州仪器 
  • 封装QFP-48 
  • 批号▉▉:2年内 
  • ▉▉¥37.1元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • TPA3008D2PHPRG4图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • TPA3008D2PHPRG4
  • 数量660000 
  • 厂家Texas Instruments(德州仪器) 
  • 封装SC-70-6 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • TPA3008D2PHPRG4图
  • 首天国际(深圳)科技有限公司

     该会员已使用本站16年以上
  • TPA3008D2PHPRG4
  • 数量40000 
  • 厂家TI 
  • 封装原厂封装 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 0755-82807802 QQ:528164397QQ:1318502189
  • TPA3008D2PHPRG4图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • TPA3008D2PHPRG4
  • 数量72282 
  • 厂家TI/德州仪器 
  • 封装48-HTQFP 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • TPA3008D2PHPRG4图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • TPA3008D2PHPRG4
  • 数量4845 
  • 厂家TI 
  • 封装TQFP48 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755- QQ:2881894392QQ:2881894393
  • TPA3008D2PHPRG4图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • TPA3008D2PHPRG4
  • 数量9800 
  • 厂家TI/德州仪器 
  • 封装TQFP-48 
  • 批号23+ 
  • 进口原装原盘原标签假一赔十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • TPA3008D2PHPRG4图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • TPA3008D2PHPRG4
  • 数量6500 
  • 厂家TI 
  • 封装TQFP-48 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • TPA3008D2PHPRG4图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TPA3008D2PHPRG4
  • 数量85000 
  • 厂家TI/德州仪器 
  • 封装TQFP-48 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • TPA3008D2PHPRG4图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TPA3008D2PHPRG4
  • 数量18530 
  • 厂家TI 
  • 封装QFP 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • TPA3008D2PHPRG4图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • TPA3008D2PHPRG4
  • 数量4865 
  • 厂家TI 
  • 封装48-HTQFP(7x7) 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • TPA3008D2PHPRG4图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TPA3008D2PHPRG4
  • 数量13880 
  • 厂家TI/德州仪器 
  • 封装TQFP-48 
  • 批号21+ 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • TPA3008D2PHPRG4图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • TPA3008D2PHPRG4
  • 数量5800 
  • 厂家TI 
  • 封装HTQFP48 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • TPA3008D2PHPRG4图
  • 深圳市驰天熠电子有限公司

     该会员已使用本站1年以上
  • TPA3008D2PHPRG4
  • 数量33560 
  • 厂家TI(德州仪器) 
  • 封装HTQFP-48 
  • 批号23+ 
  • 全新原装,优势价格,支持配单
  • QQ:3003795629QQ:3003795629 复制
    QQ:534325024QQ:534325024 复制
  • 86-15802056765 QQ:3003795629QQ:534325024
  • TPA3008D2PHPRG4图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • TPA3008D2PHPRG4
  • 数量6500000 
  • 厂家N/A 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • TPA3008D2PHPRG4图
  • 深圳市华兴微电子有限公司

     该会员已使用本站16年以上
  • TPA3008D2PHPRG4
  • 数量5000 
  • 厂家TI 
  • 封装N/A 
  • 批号23+ 
  • 只做进口原装QQ询价,专营射频微波十五年。
  • QQ:604502381QQ:604502381 复制
  • 0755-83002105 QQ:604502381
  • TPA3008D2PHPRG4图
  • 齐创科技(上海北京青岛)有限公司

     该会员已使用本站14年以上
  • TPA3008D2PHPRG4
  • 数量18200 
  • 厂家TI 
  • 封装HTQFP48 
  • 批号25+热销 
  • 【现货库存】全新原装假一罚百热卖现货
  • QQ:2394092314QQ:2394092314 复制
    QQ:792179102QQ:792179102 复制
  • 021-62153656 QQ:2394092314QQ:792179102
  • TPA3008D2PHPRG4图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • TPA3008D2PHPRG4
  • 数量24 
  • 厂家TI/德州仪器 
  • 封装TQFP-48 
  • 批号24+ 
  • 原装现货
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • TPA3008D2PHPRG4图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • TPA3008D2PHPRG4
  • 数量5800 
  • 厂家TI(德州仪器) 
  • 封装48-PowerTQFP 
  • 批号23+/24+ 
  • 绝对原装正品,可开13%专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • TPA3008D2PHPRG4图
  • 上海金庆电子技术有限公司

     该会员已使用本站15年以上
  • TPA3008D2PHPRG4
  • 数量5100 
  • 厂家TI 
  • 封装 
  • 批号新 
  • 全新原装 货期两周
  • QQ:1484215649QQ:1484215649 复制
    QQ:729272152QQ:729272152 复制
  • 021-51872561 QQ:1484215649QQ:729272152
  • TPA3008D2PHPRG4图
  • 深圳市励创源科技有限公司

     该会员已使用本站2年以上
  • TPA3008D2PHPRG4
  • 数量35600 
  • 厂家TI 
  • 封装QFP 
  • 批号21+ 
  • 诚信经营,原装现货,假一赔十,欢迎咨询15323859243
  • QQ:815442201QQ:815442201 复制
    QQ:483601579QQ:483601579 复制
  • -0755-82711370 QQ:815442201QQ:483601579
  • TPA3008D2PHPRG4图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • TPA3008D2PHPRG4
  • 数量20000 
  • 厂家TI/德州仪器 
  • 封装TQFP-48 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • TPA3008D2PHPRG4图
  • 深圳市旺能芯科技有限公司

     该会员已使用本站4年以上
  • TPA3008D2PHPRG4
  • 数量15000 
  • 厂家TI/德州仪器 
  • 封装TQFP-48 
  • 批号22+ 
  • 深圳全新原装库存现货
  • QQ:2881495751QQ:2881495751 复制
  • 13602549709 QQ:2881495751
  • TPA3008D2PHPRG4图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • TPA3008D2PHPRG4
  • 数量7800 
  • 厂家TI/德州仪器 
  • 封装TQFP-48 
  • 批号20+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • TPA3008D2PHPRG4图
  • 深圳市恒意创鑫电子有限公司

     该会员已使用本站10年以上
  • TPA3008D2PHPRG4
  • 数量9000 
  • 厂家TI/德州仪器 
  • 封装TQFP-48 
  • 批号22+ 
  • 全新原装公司现货,支持实单
  • QQ:1493457560QQ:1493457560 复制
  • 0755-83235429 QQ:1493457560
  • TPA3008D2PHPRG4图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • TPA3008D2PHPRG4
  • 数量24 
  • 厂家TI 
  • 封装TQFP-48 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • TPA3008D2PHPRG4图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • TPA3008D2PHPRG4
  • 数量14500 
  • 厂家Texas Instruments 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • TPA3008D2PHPRG4图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TPA3008D2PHPRG4
  • 数量98500 
  • 厂家TI/德州仪器 
  • 封装TQFP-48 
  • 批号23+ 
  • 真实库存全新原装正品!专业配单
  • QQ:308365177QQ:308365177 复制
  • 0755-13418564337 QQ:308365177
  • TPA3008D2PHPRG4图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • TPA3008D2PHPRG4
  • 数量1000 
  • 厂家TI 
  • 封装QFP-48 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!单价:104元
  • QQ:97877805QQ:97877805 复制
  • 171-4729-0036(微信同号) QQ:97877805

产品型号TPA3008D2PHPRG4的概述

TPA3008D2PHPRG4芯片概述 TPA3008D2PHPRG4是一种由德州仪器(Texas Instruments)公司设计与生产的音频放大器芯片,专为高效能的音频应用而打造。该芯片在音频放大领域中表现出色,尤其适用于便携式音频设备和家庭音响系统。TPA3008D2PHPRG4采用了先进的集成电路技术,具备出色的音质和能效,能够为各种音频应用提供清晰且强劲的声音输出。 TPA3008D2PHPRG4详细参数 TPA3008D2PHPRG4的主要参数如下: 1. 工作电压:TPA3008D2PHPRG4能在4.5V至26V的范围内正常工作,这为设计者提供了良好的灵活性,能够适应多种不同的供电需求。 2. 输出功率:该芯片的额定输出功率为2×8W,能够提供高达2×15W的效果,适合推送多种扬声器,同时保持较低的失真。 3. 失真度:总谐波失真(THD)在1W输出功率下小于1...

产品型号TPA3008D2PHPRG4的Datasheet PDF文件预览

TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
10-W STEREO CLASS-D AUDIO POWER AMPLIFIER  
FEATURES  
DESCRIPTION  
10-W/Channel Into an 16-Load From a  
17-V Supply  
The TPA3008D2 is a 10-W (per channel) efficient,  
class-D audio amplifier for driving bridged-tied stereo  
speakers. The TPA3008D2 can drive stereo speakers  
as low as 8 . The high efficiency of the TPA3008D2  
eliminates the need for external heatsinks when  
playing music.  
Up to 92% Efficient, Class-D Operation  
Eliminates Need For Heatsinks  
8.5-V to 18-V Single-Supply Operation  
Four Selectable, Fixed Gain Settings  
The gain of the amplifier is controlled by two gain  
select pins. The gain selections are 15.3, 21.2, 27.2,  
and 31.8 dB.  
Differential Inputs Minimizes Common-Mode  
Noise  
Space-Saving, Thermally Enhanced  
PowerPAD™ Packaging  
The outputs are fully protected against shorts to  
GND, VCC, and output-to-output shorts. A fault ter-  
minal allows short-circuit fault reporting and automatic  
recovery. Thermal protection ensures that the maxi-  
mum junction temperature is not exceeded.  
Thermal and Short-Circuit Protection  
With Auto Recovery Option  
Pinout Similar to TPA3000D Family  
APPLICATIONS  
LCD Monitors and TVs  
All-In-One PCs  
PVCC  
PVCC  
10 µF  
10 µF  
220 nF  
220 nF  
0.1 µF  
0.1 µF  
1 µF  
Shutdown/Mute  
Control  
VCLAMPR  
SHUTDOWN  
NC  
RINN  
Right Differential  
Inputs  
0.47 µF  
NC  
RINP  
AVCC  
0.47 µF  
0.47 µF  
0.47 µF  
0.47 µF  
AVCC  
V2P5  
LINP  
Left Differential  
Inputs  
NC  
LINN  
NC  
AGND  
10 µF  
0.1 µF  
TPA3008D2  
AVDDREF  
NC  
AVDD  
1 µF  
GAIN0  
GAIN1  
FAULT  
COSC  
Gain  
Control  
220 pF  
ROSC  
120 kΩ  
AGND  
VCLAMPL  
NC  
1 µF  
0.1 µF  
10 µF  
0.1 µF  
10 µF  
220 nF  
PVCC  
220 nF  
PVCC  
†Optional output filter for EMI suppression  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2004, Texas Instruments Incorporated  
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
These devices have limited built-in ESD protection. The leads should be shorted together or the device  
placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
(1)  
TPA3008D2  
Supply voltage range  
Load Impedance, RL  
AVCC, PVCC  
-0.3 V to 20 V  
6 Ω  
SHUTDOWN  
-0.3 V to VCC + 0.3 V  
-0.3 V to 6 V  
Input voltage range, VI  
GAIN0, GAIN1, RINN, RINP, LINN, LINP  
Continuous total power dissipation  
Operating free–air temperature range, TA  
Operating junction temperature range, TJ  
Storage temperature range, Tstg  
See Dissipation Rating Table  
- 40°C to 85°C  
- 40°C to 150°C  
- 65°C to 150°C  
260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
DISSIPATION RATING TABLE  
DERATING  
PACKAGE  
TA25°C  
θJC  
FACTOR  
(1/θJA  
TA = 70°C  
TA = 85°C  
)
PHP  
4.3 W  
1.14 °C/W(1)  
34.7 mW/°C(1)  
2.7 W  
2.2 W  
(1) Based on a JEDEC high-K PCB with the PowerPAD™ soldered to a thermal land on the  
printed-circuit board. See the PowerPAD Thermally Enhanced Package application note (SLMA002).  
The PowerPAD must be soldered to the PCB.  
RECOMMENDED OPERATING CONDITIONS  
TA = 25°C (unless otherwise noted)  
MIN  
8.5  
2
MAX  
UNIT  
V
Supply voltage, VCC  
PVCC, AVCC  
18  
High-level input voltage, VIH  
Low-level input voltage, VIL  
SHUTDOWN, GAIN0, GAIN1  
SHUTDOWN, GAIN0, GAIN1  
SHUTDOWN, VI = VCC = 18 V  
GAIN0, GAIN1, VI = 5.5 V, VCC = 18 V  
SHUTDOWN, VI = 0 V, VCC = 18 V  
GAIN0, GAIN1, VI = 5.5 V, VCC = 18 V  
FAULT, IOH = 100 µA  
V
0.8  
10  
1
V
µA  
µA  
µA  
µA  
V
High-level input current, IIH  
Low-level input current, IIL  
1
1
High-level output voltage, VOH  
Low-level output voltage, VOL  
AVDD - 0.8 V  
FAULT, IOL = -100 µA  
AGND + 0.8 V  
V
Frequency is set by selection of ROSC and COSC  
(see the Application Information Section).  
Oscillator frequency, fOSC  
200  
-40  
300  
85  
kHz  
Operating free–air temperature, TA  
°C  
2
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
AVAILABLE OPTIONS  
TA  
PACKAGED DEVICE  
48-PIN HTQFP (PHP)(1)  
-40°C to 85°C  
TPA3008D2PHP  
(1) The PHP package is available taped and reeled. To order a taped  
and reeled part, add the suffix R to the part number (e.g.,  
TPA3008D2PHPR).  
DC ELECTRICAL CHARACTERISTICS  
TA = 25°C, VCC = 12 V, RL = 8 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
5
MAX  
UNIT  
mV  
V
Class-D output offset voltage  
(measured differentially)  
INN and INP connected together,  
Gain = 31.8 dB  
|VOO  
|
2
55  
V2P5  
AVDD  
2.5-V Bias voltage  
No load  
2.5  
5
IL = 10 mA, SHUTDOWN = 2 V,  
VCC = 8.5 V to 18 V  
+5-V internal supply voltage  
4.5  
5.5  
V
PSRR  
ICC  
Power supply rejection ratio  
Quiescent supply current  
VCC = 11.5 V to 12.5 V  
-76  
11  
dB  
SHUTDOWN = 2 V, no load  
22  
25  
mA  
Quiescent supply current in shut-  
down mode  
ICC(SD)  
SHUTDOWN = 0 V  
1.6  
µA  
High side  
600  
500  
1100  
15.3  
21.2  
27.2  
31.8  
16  
VCC = 12 V,  
Drain-source on-state resistance IO = 1 A,  
rDS(on)  
Low side  
mΩ  
TJ = 25°C  
Total  
1300  
16.2  
21.8  
27.8  
32.5  
GAIN0 = 0.8 V  
GAIN0 = 2 V  
GAIN0 = 0.8 V  
GAIN0 = 2 V  
14.6  
20.5  
26.4  
31.1  
GAIN1 = 0.8 V  
G
Gain  
dB  
GAIN1 = 2 V  
ton  
toff  
Turnon time  
Turnoff time  
C(V2P5) = 1 µF, SHUTDOWN = 2 V  
C(V2P5) = 1 µF, SHUTDOWN = 0.8 V  
ms  
µs  
60  
AC ELECTRICAL CHARACTERISTICS  
TA = 25°C, VCC = 12 V, RL = 8 , (unless otherwise noted)  
PARAMETER  
kSVR Supply voltage rejection ratio  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
200 mVPP ripple from 20 Hz to 1 kHz,  
Gain = 15.6 dB, Inputs ac-coupled to GND  
-70  
dB  
THD+N = 0.13%, f = 1 kHz, RL = 8 Ω  
THD+N = 10%, f = 1 kHz, RL = 8 Ω  
5
8.5  
THD+N = 0.16%, f = 1 kHz, RL = 16 ,  
VCC = 17 V  
PO  
Continuous output power  
W
5
THD+N = 10%, f = 1 kHz, RL = 16 ,  
VCC = 17 V  
10  
Total harmonic distortion plus  
noise  
THD+N  
Vn  
PO = 1 W, f = 1 kHz, RL = 8 Ω  
0.1%  
20 Hz to 22 kHz, A-weighted filter,  
Gain = 15.6 dB  
Output integrated noise floor  
Crosstalk  
-80  
-93  
dB  
dB  
PO = 1 W, RL = 8 , Gain = 15.6 dB,  
f = 1 kHz  
Maximum output at THD+N < 0.5%,  
f = 1 kHz, Gain = 15.6 dB  
SNR  
Signal-to-noise ratio  
97  
dB  
Thermal trip point  
Thermal hystersis  
150  
20  
°C  
°C  
3
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
FUNCTIONAL BLOCK DIAGRAM  
V2P5  
PVCC  
V2P5  
VClamp  
Gen  
VCLAMPR  
BSRN  
PVCCR(2)  
Gate  
Drive  
ROUTN(2)  
Deglitch  
and  
PWM  
Mode  
Logic  
PGNDR  
BSRP  
PVCCR(2)  
RINN  
Gain  
Adj.  
RINP  
V2P5  
Gate  
Drive  
ROUTP(2)  
PGNDR  
To Gain Adj.  
Blocks and  
Start-up Logic  
4
GAIN0  
GAIN1  
Gain  
Control  
FAULT  
V2P5  
SC  
Detect  
ROSC  
COSC  
Ramp  
Start-up and  
Protection  
Logic  
Biases  
Generator  
Thermal  
VDDok  
VCCok  
VDD  
and  
References  
AVCC  
AV REF  
DD  
AVDD  
AVCC  
5-V LDO  
AVDD  
PVCC  
AGND(2)  
VCLAMPL  
TTL Input  
Buffer  
(VCC Compl)  
SHUTDOWN  
VClamp  
Gen  
BSLN  
PVCCL(2)  
Gate  
Drive  
LOUTN(2)  
V2P5  
Deglitch  
and  
PWM  
Mode  
Logic  
PGNDL  
BSLP  
PVCCL(2)  
LINN  
LINP  
Gain  
Adj.  
Gate  
Drive  
LOUTP(2)  
PGNDL  
4
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
PHP PACKAGE  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
3
4
5
6
7
8
9
10  
36  
35  
34  
33  
32  
VCLAMPR  
NC  
SHUTDOWN  
RINN  
RINP  
NC  
AV  
V2P5  
CC  
LINP  
NC  
LINN  
NC  
31  
30  
29  
28  
27  
26  
TPA3008D2  
AV REF  
AGND  
DD  
AV  
NC  
GAIN0  
GAIN1  
FAULT  
NC  
DD  
COSC  
ROSC  
11  
12  
AGND  
VCLAMPL  
25  
13 14 15 16 17 18 19 20 21 22 23 24  
5
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
TERMINAL FUNCTIONS  
PIN NAME  
AGND  
PIN NUMBER  
26, 30  
I/O  
DESCRIPTION  
-
-
Analog ground for digital/analog cells in core  
AVCC  
33  
High-voltage analog power supply, not connected internally to PVCCR or PVCCL  
5-V Regulated output for use by internal cells and GAIN0, GAIN1 pins only. Not  
specified for driving other external circuitry.  
AVDD  
29  
O
AVDDREF  
BSLN  
7
O
5-V Reference output—connect to gain setting resistor or directly to GAIN0, GAIN1.  
Bootstrap I/O for left channel, negative high-side FET  
13  
24  
48  
37  
28  
-
-
BSLP  
Bootstrap I/O for left channel, positive high-side FET  
BSRN  
BSRP  
-
Bootstrap I/O for right channel, negative high-side FET  
-
Bootstrap I/O for right channel, positive high-side FET  
COSC  
I/O  
I/O for charge/discharging currents onto capacitor for ramp generator.  
Short-circuit detect fault output.  
FAULT = high, short-circuit detected.  
FAULT = low, normal operation.  
FAULT  
11  
O
Status is reset when power is cycled or SHUTDOWN is cycled.  
GAIN0  
GAIN1  
LINN  
9
10  
I
I
Gain select least significant bit. TTL logic levels with compliance to AVDD.  
Gain select most significant bit. TTL logic levels with compliance to AVDD  
.
6
I
Negative audio input for left channel  
LINP  
5
I
Positive audio input for left channel  
LOUTN  
LOUTP  
16, 17  
20, 21  
O
O
Class-D 1/2-H-bridge negative output for left channel  
Class-D 1/2-H-bridge positive output for left channel  
8, 12, 31, 32,  
34, 35  
NC  
-
No internal connection  
PGNDL  
PGNDR  
18, 19  
42, 43  
-
-
Power ground for left channel H-bridge  
Power ground for right channel H-bridge  
Power supply for left channel H-bridge (internally connected to pins 22 and 23), not  
connected to PVCCR or AVCC  
PVCCL  
PVCCL  
PVCCR  
PVCCR  
14, 15  
22, 23  
38, 39  
46, 47  
-
-
-
-
.
Power supply for left channel H-bridge (internally connected to pins 14 and 15), not  
connected to PVCCR or AVCC  
.
Power supply for right channel H-bridge (internally connected to pins 46 and 47),  
not connected to PVCCL or AVCC  
.
Power supply for right channel H-bridge (internally connected to pins 38 and 39),  
not connected to PVCCL or AVCC  
.
RINP  
3
2
I
I
Positive audio input for right channel  
RINN  
Negative audio input for right channel  
ROSC  
ROUTN  
ROUTP  
27  
I/O  
O
O
I/O current setting resistor for ramp generator.  
44, 45  
40, 41  
Class-D 1/2-H-bridge negative output for right channel  
Class-D 1/2-H-bridge positive output for right channel  
Shutdown signal for IC (low = shutdown, high = operational). TTL logic levels with  
SHUTDOWN  
1
I
compliance to VCC  
.
VCLAMPL  
VCLAMPR  
V2P5  
25  
36  
4
-
-
Internally generated voltage supply for left channel bootstrap capacitors.  
Internally generated voltage supply for right channel bootstrap capacitors.  
2.5-V Reference for analog cells.  
O
Connect to AGND and PGND—should be the center point for both grounds. Internal  
resistive connection to AGND.  
Thermal Pad  
-
-
6
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
TYPICAL CHARACTERISTICS  
TABLE OF GRAPHS  
FIGURE  
THD+N  
THD+N  
Total harmonic distortion + noise  
Total harmonic distortion + noise  
Closed-loop response  
Output power  
vs Frequency  
1, 2, 3, 4  
5, 6  
7
vs Output power  
vs Supply voltage  
vs Output power  
vs Total output power  
vs Total output power  
vs Frequency  
8, 9  
10  
Efficiency  
Efficiency  
11  
VCC  
Supply current  
12  
Crosstalk  
13  
kSVR  
Supply ripple rejection ratio  
Commom-mode rejection ratio  
vs Frequency  
14  
CMRR  
vs Frequency  
15  
TOTAL HARMONIC DISTORTION + NOISE  
TOTAL HARMONIC DISTORTION + NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
10  
10  
V
R
= 18 V,  
= 16 W,  
CC  
V
R
= 12 V,  
= 16 W,  
CC  
L
L
Gain = 21.6 dB  
Gain = 21.6 dB  
1
1
P
O
= 0.5 W  
0.1  
0.1  
0.01  
P
O
= 2.5 W  
P
O
= 1 W  
P
= 1 W  
O
0.01  
P
= 2.5 W  
O
P
O
= 0.5 W  
0.005  
20  
100  
1 k  
10 k 20 k  
1 k  
20  
100  
10 k 20 k  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 1.  
Figure 2.  
7
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
TOTAL HARMONIC DISTORTION + NOISE  
TOTAL HARMONIC DISTORTION + NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
10  
10  
V
CC  
= 12 V,  
V
R
= 18 V,  
= 8 W,  
CC  
R
= 8 W  
L
L
Gain = 21.6 dB  
Gain = 21.6 dB  
1
1
P
O
= 2.5 W  
P
O
= 0.5 W  
0.1  
P
O
= 1 W  
0.1  
P
O
= 1 W  
P
O
= 2.5 W  
0.01  
P
O
= 5 W  
0.01  
0.005  
20  
100  
20  
100  
1 k  
10 k 20 k  
1 k  
10 k 20 k  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 3.  
Figure 4.  
TOTAL HARMONIC DISTORTION + NOISE  
TOTAL HARMONIC DISTORTION + NOISE  
vs  
vs  
OUTPUT POWER  
OUTPUT POWER  
20  
10  
10  
V
R
= 12 V,  
= 8 W,  
V
R
= 18 V,  
= 16 W,  
CC  
CC  
L
L
Gain = 21.6 dB  
Gain = 21.6 dB  
1
1
1 kHz  
0.1  
1 kHz  
0.1  
20 kHz  
20 Hz  
20 kHz  
20 Hz  
0.01  
0.01  
20m  
100 m 200 m  
1
2
10 20  
20m  
100 m 200 m  
1
2
10 20  
P
− Output Power − W  
P
− Output Power − W  
O
O
Figure 5.  
Figure 6.  
8
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
OUTPUT POWER  
vs  
SUPPLY VOLTAGE  
CLOSED-LOOP RESPONSE  
40  
12  
11  
10  
9
R
L
= 16 W  
150  
100  
50  
36  
32  
28  
24  
20  
16  
12  
8
THD+N = 10%  
Gain  
8
7
Phase  
0
6
5
THD+N = 1%  
−50  
4
3
V
R
= 12 V,  
= 8 Ω,  
CC  
−100  
−150  
L
2
Gain = 32 dB  
33 kHz, RC LPF  
4
1
0
0
10  
100  
1k  
10k  
80k  
10 11 12 13 14 15 16 17 18  
8
9
V
CC  
− Supply Voltage − V  
f − Frequency − Hz  
Figure 7.  
Figure 8.  
OUTPUT POWER  
vs  
SUPPLY VOLTAGE  
EFFICIENCY  
vs  
OUTPUT POWER  
12  
100  
V
CC  
= 18 V,  
R
L
= 8 W  
R
L
= 16 W  
11  
10  
90  
80  
9
8
7
70  
60  
50  
THD+N = 10%  
6
5
4
3
40  
30  
20  
10  
THD+N = 1%  
Power represented by dashed line  
may require external heatsinking  
2
0
8
9
10  
11  
12  
13  
14  
0
1
2
3
4
5
6
7
8
9
10  
V
CC  
− Supply Voltage − V  
P
O
− Output Power (Per Channel) − W  
Figure 9.  
Figure 10.  
9
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
EFFICIENCY  
SUPPLY CURRENT  
vs  
TOTAL OUTPUT POWER  
vs  
TOTAL OUTPUT POWER  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.0  
1.8  
1.6  
LC Filter,  
Resistive Load,  
Stereo Operation  
16 W  
8 W  
V
= 12 V,  
CC  
R
1.4  
1.2  
1
= 8 W  
L
V
CC  
= 12 V,  
= 16 W  
R
L
0.8  
0.6  
0.4  
0.2  
V
R
= 18 V,  
= 16 W  
CC  
L
V
CC  
= 12 V,  
LC Filter,  
Resistive Load,  
Stereo Operation  
0
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
2
4
6
8
10 12 14 16 18 20  
P
O
− Total Output Power − W  
P
O
− Total Output Power − W  
Figure 11.  
Figure 12.  
CROSSTALK  
vs  
FREQUENCY  
SUPPLY RIPPLE REJECTION RATIO  
vs  
FREQUENCY  
0
0
V
P
= 12 V,  
= 2.5 W,  
CC  
−10  
O
V
CC  
= 12 V,  
−10  
Gain = 21.6 dB  
= 8W  
V
= 200 mV ,  
PP  
(RIPPLE)  
R
−20  
L
R
L
= 8 W,  
−20  
−30  
−40  
−50  
Gain = 15.6 dB  
−30  
−40  
−50  
−60  
−70  
−60  
−70  
−80  
−90  
−80  
−90  
−100  
−100  
20  
100  
1 k  
10 k 20 k  
20  
100  
1 k  
10 k 20 k  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 13.  
Figure 14.  
10  
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
COMMON-MODE REJECTION RATIO  
vs  
FREQUENCY  
0
V
CC  
= 12 V,  
Gain = 15.6 dB,  
= 8 W,  
−10  
R
L
Output Referred  
−20  
−30  
−40  
−50  
−60  
−70  
20  
100  
1 k  
10 k 20 k  
f − Frequency − Hz  
Figure 15.  
11  
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
APPLICATION INFORMATION  
*
*
1 nF  
1 nF  
PVCC  
220 nF  
PVCC  
220 nF  
10 mF  
0.1 mF  
10 mF  
0.1 mF  
1 mF  
Shutdown/Mute  
Control  
SHUTDOWN  
VCLAMPR  
RINN  
NC  
NC  
Right Differential  
0.47 mF  
0.47 mF  
0.47 mF  
0.47 mF  
0.47 mF  
Inputs  
RINP  
AVCC  
V2P5  
AVCC  
LINP  
Left Differential  
Inputs  
NC  
NC  
LINN  
0.1 mF  
10 mF  
TPA3008D2  
AVDDREF  
NC  
AGND  
AVDD  
COSC  
1 mF  
GAIN0  
GAIN1  
Gain  
Control  
220 pF  
ROSC  
120 kW  
Fault Reporting  
AGND  
FAULT  
NC  
VCLAMPL  
1 mF  
0.1 mF  
0.1 mF  
10 mF  
1 nF  
10 mF  
220 nF  
PVCC  
220 nF  
PVCC  
1 nF  
*
*
*
Chip ferrite bead (example: Fair-Rite 251206700743) shown for EMI suppression.  
Figure 16. Stereo Class-D With Differential Inputs  
12  
 
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
APPLICATION INFORMATION (continued)  
CLASS-D OPERATION  
This section focuses on the class-D operation of the TPA3008D2.  
Traditional Class-D Modulation Scheme  
The traditional class-D modulation scheme, which is used in the TPA032D0x family, has a differential output  
where each output is 180 degrees out of phase and changes from ground to the supply voltage, VCC. Therefore,  
the differential prefiltered output varies between positive and negative VCC, where filtered 50% duty cycle yields  
0 V across the load. The traditional class-D modulation scheme with voltage and current waveforms is shown in  
Figure 17. Note that even at an average of 0 V across the load (50% duty cycle), the current to the load is high,  
causing high loss and thus causing a high supply current.  
OUTP  
OUTN  
+12 V  
Differential Voltage  
0 V  
Across Load  
−12 V  
Current  
Figure 17. Traditional Class-D Modulation Scheme's Output Voltage and Current Waveforms Into an  
Inductive Load With No Input  
TPA3008D2 Modulation Scheme  
The TPA3008D2 uses a modulation scheme that still has each output switching from 0 to the supply voltage.  
However, OUTP and OUTN are now in phase with each other with no input. The duty cycle of OUTP is greater  
than 50% and OUTN is less than 50% for positive output voltages. The duty cycle of OUTP is less than 50% and  
OUTN is greater than 50% for negative output voltages. The voltage across the load sits at 0 V throughout most  
of the switching period, greatly reducing the switching current, which reduces any I2R losses in the load.  
13  
 
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
APPLICATION INFORMATION (continued)  
OUTP  
OUTN  
Output = 0 V  
Differential  
+12 V  
Voltage  
0 V  
Across  
−12 V  
Load  
Current  
OUTP  
OUTN  
Output > 0 V  
Differential  
Voltage  
Across  
Load  
+12 V  
0 V  
−12 V  
Current  
Figure 18. The TPA3008D2 Output Voltage and Current Waveforms Into an Inductive Load  
Efficiency: LC Filter Required With the Traditional Class-D Modulation Scheme  
The main reason that the traditional class-D amplifier needs an output filter is that the switching waveform results  
in maximum current flow. This causes more loss in the load, which causes lower efficiency. The ripple current is  
large for the traditional modulation scheme, because the ripple current is proportional to voltage multiplied by the  
time at that voltage. The differential voltage swing is 2 x VCC, and the time at each voltage is half the period for  
the traditional modulation scheme. An ideal LC filter is needed to store the ripple current from each half cycle for  
the next half cycle, while any resistance causes power dissipation. The speaker is both resistive and reactive,  
whereas an LC filter is almost purely reactive.  
The TPA3008D2 modulation scheme has little loss in the load without a filter because the pulses are short and  
the change in voltage is VCC instead of 2 x VCC. As the output power increases, the pulses widen, making the  
ripple current larger. Ripple current could be filtered with an LC filter for increased efficiency, but for most  
applications the filter is not needed.  
An LC filter with a cutoff frequency less than the class-D switching frequency allows the switching current to flow  
through the filter instead of the load. The filter has less resistance than the speaker, which results in less power  
dissipation, therefore increasing efficiency.  
14  
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
APPLICATION INFORMATION (continued)  
Effects of Applying a Square Wave Into a Speaker  
Audio specialists have advised for years not to apply a square wave to speakers. If the amplitude of the  
waveform is high enough and the frequency of the square wave is within the bandwidth of the speaker, the  
square wave could cause the voice coil to jump out of the air gap and/or scar the voice coil. A 250-kHz switching  
frequency, however, does not significantly move the voice coil, as the cone movement is proportional to 1/f2 for  
frequencies beyond the audio band.  
Damage may occur if the voice coil cannot handle the additional heat generated from the high-frequency  
switching current. The amount of power dissipated in the speaker may be estimated by first considering the  
overall efficiency of the system. If the on-resistance (rds(on)) of the output transistors is considered to cause the  
dominant loss in the system, then the maximum theoretical efficiency for the TPA3008D2 with an 8-load is as  
follows:  
R
8
L
Efficiency (theoretical, %) +  
  100% +  
  100% + 86%  
(8 ) 1.3)  
ǒ
ds(on)Ǔ  
R ) r  
L
(1)  
The maximum measured output power is approximately 8.5 W with an 12-V power supply. The total theoretical  
power supplied (P(total)) for this worst-case condition would therefore be as follows:  
P
O
8.5 W  
0.86  
P
+
+
+ 9.88 W  
(total)  
Efficiency  
(2)  
The efficiency measured in the lab using an 8-speaker was 81%. The power not accounted for as dissipated  
across the rDS(on) may be calculated by simply subtracting the theoretical power from the measured power:  
Other losses  
P
(measured)  
P
(theoretical)  
10.49  
9.88  
0.61 W  
(total)  
(total)  
(3)  
The quiescent supply current at 12 V is measured to be 22 mA. It can be assumed that the quiescent current  
encapsulates all remaining losses in the device, i.e., biasing and switching losses. It may be assumed that any  
remaining power is dissipated in the speaker and is calculated as follows:  
P
0.61 W  
(12 V 22 mA)  
0.35 W  
(dis)  
(4)  
Note that these calculations are for the worst-case condition of 8.5 W delivered to the speaker. Because the 0.35  
W is only 4% of the power delivered to the speaker, it may be concluded that the amount of power actually  
dissipated in the speaker is relatively insignificant. Furthermore, this power dissipated is well within the  
specifications of most loudspeaker drivers in a system, as the power rating is typically selected to handle the  
power generated from a clipping waveform.  
When to Use an Output Filter for EMI Suppression  
Design the TPA3008D2 without the filter if the traces from amplifier to speaker are short (< 50 cm). Powered  
speakers, where the speaker is in the same enclosure as the amplifier, is a typical application for class-D without  
a filter.  
Most applications require a ferrite bead filter. The ferrite filter reduces EMI around 1 MHz and higher (FCC and  
CE only test radiated emissions greater than 30 MHz). When selecting a ferrite bead, choose one with high  
impedance at high frequencies, but low impedance at low frequencies.  
Use a LC output filter if there are low frequency (<1 MHz) EMI-sensitive circuits and/or there are long wires from  
the amplifier to the speaker.  
When both an LC filter and a ferrite bead filter are used, the LC filter should be placed as close as possible to  
the IC followed by the ferrite bead filter.  
15  
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
APPLICATION INFORMATION (continued)  
33 µH  
OUTP  
C
2
L
1
C
1
0.1 µF  
0.47 µF  
33 µH  
OUTN  
C
3
L
2
0.1 µF  
Figure 19. Typical LC Output Filter, Cutoff Frequency of 27 kHz, Speaker Impedance = 8 Ω  
Ferrite  
Chip Bead  
OUTP  
1 nF  
Ferrite  
Chip Bead  
OUTN  
1 nF  
Figure 20. Typical Ferrite Chip Bead Filter (Chip bead example: Fair-Rite 2512067007Y3)  
Gain setting via GAIN0 and GAIN1 inputs  
The gain of the TPA3008D2 is set by two input terminals, GAIN0 and GAIN1.  
The gains listed in Table 1 are realized by changing the taps on the input resistors inside the amplifier. This  
causes the input impedance (Zi) to be dependent on the gain setting. The actual gain settings are controlled by  
ratios of resistors, so the gain variation from part-to-part is small. However, the input impedance may shift by  
20% due to shifts in the actual resistance of the input resistors.  
For design purposes, the input network (discussed in the next section) should be designed assuming an input  
impedance of 26 k, which is the absolute minimum input impedance of the TPA3008D2. At the lower gain  
settings, the input impedance could increase as high as 165 kΩ  
Table 1. Gain Setting  
INPUT IMPEDANCE  
AMPLIFIER GAIN (dB)  
(k)  
TYP  
137  
88  
GAIN1  
GAIN0  
TYP  
15.3  
21.2  
27.2  
31.8  
0
0
1
1
0
1
0
1
52  
33  
INPUT RESISTANCE  
Each gain setting is achieved by varying the input resistance of the amplifier that can range from its smallest  
value, 33 k, to the largest value, 137 k. As a result, if a single capacitor is used in the input high-pass filter,  
the -3 dB or cutoff frequency changes when changing gain steps.  
16  
 
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
Z
f
C
i
Z
i
IN  
Input  
Signal  
The -3-dB frequency can be calculated using Equation 5. Use Table 1 for Zi values.  
1
f +  
2p Z C  
i
i
(5)  
INPUT CAPACITOR, CI  
In the typical application, an input capacitor (Ci) is required to allow the amplifier to bias the input signal to the  
proper dc level for optimum operation. In this case, Ci and the input impedance of the amplifier (Zi) form a  
high-pass filter with the corner frequency determined in Equation 6.  
−3 dB  
1
f
+
c
2pZ C  
i
i
f
c
(6)  
The value of Ci is important, as it directly affects the bass (low-frequency) performance of the circuit. Consider  
the example where Zi is 137 kand the specification calls for a flat bass response down to 20 Hz. Equation 6 is  
reconfigured as Equation 7.  
1
C +  
i
2pZ f  
c
i
(7)  
In this example, Ci is 58 nF; so, one would likely choose a value of 0.1 µF as this value is commonly used. If the  
gain is known and is constant, use Zi from Table 1 to calculate Ci. A further consideration for this capacitor is the  
leakage path from the input source through the input network (Ci) and the feedback network to the load. This  
leakage current creates a dc offset voltage at the input to the amplifier that reduces useful headroom, especially  
in high gain applications. For this reason, a low-leakage tantalum or ceramic capacitor is the best choice. When  
polarized capacitors are used, the positive side of the capacitor should face the amplifier input in most  
applications as the dc level there is held at 2.5 V, which is likely higher than the source dc level. Note that it is  
important to confirm the capacitor polarity in the application.  
For the best pop performance, CI should be less than or equal to 1µF.  
Power Supply Decoupling,CS  
The TPA3008D2 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling  
to ensure that the output total harmonic distortion (THD) is as low as possible. Power supply decoupling also  
prevents oscillations for long lead lengths between the amplifier and the speaker. The optimum decoupling is  
achieved by using two capacitors of different types that target different types of noise on the power supply leads.  
For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR)  
ceramic capacitor, typically 0.1 µF placed as close as possible to the device VCC lead works best. For filtering  
lower frequency noise signals, a larger aluminum electrolytic capacitor of 10 µF or greater placed near the audio  
power amplifier is recommended. The 10-µF capacitor also serves as local storage capacitor for supplying  
current during large signal transients on the amplifier outputs.  
17  
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
BSN and BSP Capacitors  
The full H-bridge output stages use only NMOS transistors. Therefore, they require bootstrap capacitors for the  
high side of each output to turn on correctly. A 220-nF ceramic capacitor, rated for at least 25 V, must be  
connected from each output to its corresponding bootstrap input. Specifically, one 220-nF capacitor must be  
connected from xOUTP to xBSP, and one 220-nF capacitor must be connected from xOUTN to xBSN. (See the  
application circuit diagram in Figure 16.)  
The bootstrap capacitors connected between the BSxx pins and corresponding output function as a floating  
power supply for the high-side N-channel power MOSFET gate drive circuitry. During each high-side switching  
cycle, the bootstrap capacitors hold the gate-to-source voltage high enough to keep the high-side MOSFETs  
turned on.  
VCLAMP Capacitors  
To ensure that the maximum gate-to-source voltage for the NMOS output transistors is not exceeded, two  
internal regulators clamp the gate voltage. Two 1-µF capacitors must be connected from VCLAMPL (pin 25) and  
VCLAMPR (pin 36) to ground and must be rated for at least 25 V. The voltages at the VCLAMP terminals vary  
with VCC and may not be used for powering any other circuitry.  
Internal Regulated 5-V Supply (AVDD  
)
The AVDD terminal (pin 29) is the output of an internally generated 5-V supply, used for the oscillator,  
preamplifier, and volume control circuitry. It requires a 1-µF capacitor, placed close to the pin, to keep the  
regulator stable.  
This regulated voltage can be used to control GAIN0 and GAIN1 terminals, but should not be used to drive  
external circuitry.  
Differential Input  
The differential input stage of the amplifier cancels any noise that appears on both input lines of the channel. To  
use the TPA3008D2 with a differential source, connect the positive lead of the audio source to the INP input and  
the negative lead from the audio source to the INN input. To use the TPA3008D2 with a single-ended source, ac  
ground the INP or INN input through a capacitor equal in value to the input capacitor on INN or INP and apply  
the audio source to either input. In a single-ended input application, the unused input should be ac grounded at  
the audio source instead of at the device input for best noise performance.  
SHUTDOWN OPERATION  
The TPA3008D2 employs a shutdown mode of operation designed to reduce supply current (ICC) to the absolute  
minimum level during periods of nonuse for power conservation. The SHUTDOWN input terminal should be held  
high (see specification table for trip point) during normal operation when the amplifier is in use. Pulling  
SHUTDOWN low causes the outputs to mute and the amplifier to enter a low-current state. Never leave  
SHUTDOWN unconnected, because amplifier operation would be unpredictable.  
For the best power-off pop performance, place the amplifier in the shutdown mode prior to removing the power  
supply voltage.  
USING LOW-ESR CAPACITORS  
Low-ESR capacitors are recommended throughout this application section. A real (as opposed to ideal) capacitor  
can be modeled simply as a resistor in series with an ideal capacitor. The voltage drop across this resistor  
minimizes the beneficial effects of the capacitor in the circuit. The lower the equivalent value of this resistance,  
the more the real capacitor behaves like an ideal capacitor.  
18  
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
SHORT-CIRCUIT PROTECTION AND AUTOMATIC RECOVERY FEATURE  
The TPA3008D2 has short-circuit protection circuitry on the outputs that prevents damage to the device during  
output-to-output shorts, output-to-GND shorts, and output-to-VCC shorts. When a short circuit is detected on the  
outputs, the part immediately disables the output drive. This is a latched fault and must be reset by cycling the  
voltage on the SHUTDOWN pin to a logic low and back to the logic high state for normal operation. This clears  
the short-circuit flag and allows for normal operation if the short was removed. If the short was not removed, the  
protection circuitry again activates.  
The fault terminal can be used for automatic recovery from a short-circuit event, or used to monitor the status  
with an external GPIO.  
THERMAL PROTECTION  
Thermal protection on the TPA3008D2 prevents damage to the device when the internal die temperature  
exceeds 150°C. There is a ±15 degree tolerance on this trip point from device to device. Once the die  
temperature exceeds the thermal set point, the device enters into the shutdown state and the outputs are  
disabled. This is not a latched fault. The thermal fault is cleared once the temperature of the die is reduced by  
20°C. The device begins normal operation at this point with no external system interaction.  
PRINTED-CIRCUIT BOARD (PCB) LAYOUT  
Because the TPA3008D2 is a class-D amplifier that switches at a high frequency, the layout of the printed-circuit  
board (PCB) should be optimized according to the following guidelines for the best possible performance.  
Decoupling capacitors—The high-frequency 0.1-µF decoupling capacitors should be placed as close to the  
PVCC (pins 14, 15, 22, 23, 38, 39, 46, and 47) and AVCC (pin 33) terminals as possible. The V2P5 (pin 4)  
capacitor, AVDD (pin 29) capacitor, and VCLAMP (pins 25 and 36) capacitor should also be placed as close  
to the device as possible. Large (10 µF or greater) bulk power supply decoupling capacitors should be  
placed near the TPA3008D2 on the PVCCL, PVCCR, and AVCC terminals.  
Grounding—The AVCC (pin 33) decoupling capacitor, AVDD (pin 29) capacitor, V2P5 (pin 4) capacitor, COSC  
(pin 28) capacitor, and ROSC (pin 27) resistor should each be grounded to analog ground (AGND, pins 26  
and 30). The PVCC decoupling capacitors should each be grounded to power ground (PGND, pins 18, 19,  
42, and 43). Analog ground and power ground may be connected at the PowerPAD, which should be used  
as a central ground connection or star ground for the TPA3008D2. Basically, an island should be created  
with a single connection to PGND at the PowerPAD.  
Output filter—The ferrite EMI filter (Figure 20) should be placed as close to the output terminals as possible  
for the best EMI performance. The LC filter (Figure 19) should be placed close to the outputs. The capacitors  
used in both the ferrite and LC filters should be grounded to power ground. If both filters are used, the LC  
filter should be placed first, following the outputs.  
PowerPAD—The PowerPAD must be soldered to the PCB for proper thermal performance and optimal  
reliability. The dimensions of the PowerPAD thermal land should be 5 mm by 5 mm (197 mils by 197 mils).  
The PowerPAD size measures 4,55 x 4,55 mm. Four rows of solid vias (four vias per row, 0,3302 mm or 13  
mils diameter) should be equally spaced underneath the thermal land. The vias should connect to a solid  
copper plane, either on an internal layer or on the bottom layer of the PCB. The vias must be solid vias, not  
thermal relief or webbed vias. For additional information, see the PowerPAD Thermally Enhanced Package  
application note, (SLMA002).  
For an example layout, see the TPA3008D2 Evaluation Module (TPA3008D2EVM) User Manual, (SLOU165).  
Both the EVM user manual and the PowerPAD application note are available on the TI Web site at  
http://www.ti.com.  
19  
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
BASIC MEASUREMENT SYSTEM  
This application note focuses on methods that use the basic equipment listed below:  
Audio analyzer or spectrum analyzer  
Digital multimeter (DMM)  
Oscilloscope  
Twisted-pair wires  
Signal generator  
Power resistor(s)  
Linear regulated power supply  
Filter components  
EVM or other complete audio circuit  
Figure 21 shows the block diagrams of basic measurement systems for class-AB and class-D amplifiers. A sine  
wave is normally used as the input signal because it consists of the fundamental frequency only (no other  
harmonics are present). An analyzer is then connected to the APA output to measure the voltage output. The  
analyzer must be capable of measuring the entire audio bandwidth. A regulated dc power supply is used to  
reduce the noise and distortion injected into the APA through the power pins. A System Two audio measurement  
system (AP-II) (Reference 1) by Audio Precision includes the signal generator and analyzer in one package.  
The generator output and amplifier input must be ac-coupled. However, the EVMs already have the ac-coupling  
capacitors, (CIN), so no additional coupling is required. The generator output impedance should be low to avoid  
attenuating the test signal, and is important because the input resistance of APAs is not high. Conversely, the  
analyzer-input impedance should be high. The output impedance, ROUT, of the APA is normally in the hundreds  
of milliohms and can be ignored for all but the power-related calculations.  
Figure 21(a) shows a class-AB amplifier system. It takes an analog signal input and produces an analog signal  
output. This amplifier circuit can be directly connected to the AP-II or other analyzer input.  
This is not true of the class-D amplifier system shown in Figure 21(b), which requires low-pass filters in most  
cases in order to measure the audio output waveforms. This is because it takes an analog input signal and  
converts it into a pulse-width modulated (PWM) output signal that is not accurately processed by some  
analyzers.  
20  
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
Power Supply  
Analyzer  
20 Hz − 20 kHz  
Signal  
Generator  
APA  
RL  
(a) Basic Class−AB  
Power Supply  
Class-D APA  
Low-Pass RC  
Filter  
RL(A)  
Analyzer  
20 Hz − 20 kHz  
Signal  
Generator  
Low-Pass RC  
Filter  
(b) Filter-Free and Traditional Class-D  
(A)  
For efficiency measurements with filter-free class-D, R should be an inductive load like a speaker.  
L
Figure 21. Audio Measurement Systems  
The TPA3008D2 uses a modulation scheme that does not require an output filter for operation, but they do  
sometimes require an RC low-pass filter when making measurements. This is because some analyzer inputs  
cannot accurately process the rapidly changing square-wave output and therefore record an extremely high level  
of distortion. The RC low-pass measurement filter is used to remove the modulated waveforms so the analyzer  
can measure the output sine wave.  
DIFFERENTIAL INPUT AND BTL OUTPUT  
All of the class-D APAs and many class-AB APAs have differential inputs and bridge-tied load (BTL) outputs.  
Differential inputs have two input pins per channel and amplify the difference in voltage between the pins.  
Differential inputs reduce the common-mode noise and distortion of the input circuit. BTL is a term commonly  
used in audio to describe differential outputs. BTL outputs have two output pins providing voltages that are 180  
degrees out of phase. The load is connected between these pins. This has the added benefits of quadrupling the  
output power to the load and eliminating a dc blocking capacitor.  
A block diagram of the measurement circuit is shown in Figure 22. The differential input is a balanced input,  
meaning the positive (+) and negative (-) pins have the same impedance to ground. Similarly, the BTL output  
equates to a balanced output.  
21  
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
Evaluation Module  
Audio Power  
Amplifier  
Generator  
CIN  
Analyzer  
Low−Pass  
RC Filter  
RGEN  
RIN  
RIN  
ROUT  
ROUT  
RANA  
CANA  
RL  
VGEN  
CIN  
Low−Pass  
RC Filter  
RGEN  
RANA  
CANA  
Twisted-Pair Wire  
Twisted-Pair Wire  
Figure 22. Differential Input, BTL Output Measurement Circuit  
The generator should have balanced outputs, and the signal should be balanced for best results. An unbalanced  
output can be used, but it may create a ground loop that affects the measurement accuracy. The analyzer must  
also have balanced inputs for the system to be fully balanced, thereby cancelling out any common-mode noise in  
the circuit and providing the most accurate measurement.  
The following general rules should be followed when connecting to APAs with differential inputs and BTL outputs:  
Use a balanced source to supply the input signal.  
Use an analyzer with balanced inputs.  
Use twisted-pair wire for all connections.  
Use shielding when the system environment is noisy.  
Ensure that the cables from the power supply to the APA, and from the APA to the load, can handle the large  
currents (see Table 2).  
Table 2 shows the recommended wire size for the power supply and load cables of the APA system. The real  
concern is the dc or ac power loss that occurs as the current flows through the cable. These recommendations  
are based on 12-inch long wire with a 20-kHz sine-wave signal at 25°C.  
Table 2. Recommended Minimum Wire Size for Power Cables  
DC POWER LOSS  
(MW)  
AC POWER LOSS  
(MW)  
POUT (W)  
RL()  
AWG Size  
10  
4
4
8
8
18  
18  
22  
22  
22  
22  
28  
28  
16  
3.2  
2
40  
8
18  
3.7  
2.1  
1.6  
42  
8.5  
8.1  
6.2  
2
1
8
< 0.75  
1.5  
6.1  
CLASS-D RC LOW-PASS FILTER  
An RC filter is used to reduce the square-wave output when the analyzer inputs cannot process the pulse-width  
modulated class-D output waveform. This filter has little effect on the measurement accuracy because the cutoff  
frequency is set above the audio band. The high frequency of the square wave has negligible impact on  
measurement accuracy because it is well above the audible frequency range, and the speaker cone cannot  
respond at such a fast rate. The RC filter is not required when an LC low-pass filter is used, such as with the  
class-D APAs that employ the traditional modulation scheme (TPA032D0x, TPA005Dxx).  
The component values of the RC filter are selected using the equivalent output circuit as shown in Figure 23. RL  
is the load impedance that the APA is driving for the test. The analyzer input impedance specifications should be  
available and substituted for RANA and CANA. The filter components, RFILT and CFILT, can then be derived for the  
system. The filter should be grounded to the APA near the output ground pins or at the power supply ground pin  
to minimize ground loops.  
22  
TPA3008D2  
www.ti.com  
SLOS435AMAY 2004REVISED JULY 2004  
Load  
RC Low-Pass Filters  
RFILT  
AP Analyzer Input  
CANA  
RANA  
CFILT  
VL= V  
IN  
RL  
VOUT  
RFILT  
CANA  
RANA  
CFILT  
To APA  
GND  
Figure 23. Measurement Low-Pass Filter Derivation Circuit-Class-D APAs  
The transfer function for this circuit is shown in Equation 8 where ωO = REQCEQ, REQ = RFILT || RANA and  
CEQ = (CFILT + CANA). The filter frequency should be set above fMAX, the highest frequency of the measurement  
bandwidth, to avoid attenuating the audio signal. Equation 9 provides this cutoff frequency, fC. The value of RFILT  
must be chosen large enough to minimize current that is shunted from the load, yet small enough to minimize the  
attenuation of the analyzer-input voltage through the voltage divider formed by RFILT and RANA. A rule of thumb is  
that RFILT should be small (~100 ) for most measurements. This reduces the measurement error to less than  
1% for RANA 10 k.  
R
ANA  
ǒ Ǔ  
R
)R  
V
ANA  
FILT  
OUT  
+
ǒ Ǔ  
V
w
IN  
1 ) jǒ Ǔ  
w
O
(8)  
(9)  
Ǹ
f
+ 2   f  
C
MAX  
An exception occurs with the efficiency measurements, where RFILT must be increased by a factor of ten to  
reduce the current shunted through the filter. CFILT must be decreased by a factor of ten to maintain the same  
cutoff frequency. See Table 3 for the recommended filter component values.  
Once fC is determined and RFILT is selected, the filter capacitance is calculated using Equation 9. When the  
calculated value is not available, it is better to choose a smaller capacitance value to keep fC above the minimum  
desired value calculated in Equation 10.  
1
C
+
FILT  
2p   f   R  
C
FILT  
(10)  
Table 3 shows recommended values of RFILT and CFILT based on common component values. The value of fC  
was originally calculated to be 28 kHz for an fMAX of 20 kHz. CFILT, however, was calculated to be 57,000 pF, but  
the nearest values of 56,000 pF and 51,000 pF were not available. A 47,000-pF capacitor was used instead, and  
fC is 34 kHz, which is above the desired value of 28 kHz.  
Table 3. Typical RC Measurement Filter Values  
MEASUREMENT  
Efficiency  
RFILT  
1000 Ω  
100 Ω  
CFILT  
5,600 pF  
56,000 pF  
All other measurements  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Feb-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TPA3008D2PHP  
TPA3008D2PHPR  
TPA3008D2PHPRG4  
ACTIVE  
ACTIVE  
ACTIVE  
HTQFP  
HTQFP  
HTQFP  
PHP  
48  
48  
48  
250  
None  
None  
CU NIPDAU Level-3-220C-168 HR  
CU NIPDAU Level-3-220C-168 HR  
PHP  
1000  
PHP  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  
配单直通车
TPA3008D2PHPRG4产品参数
型号:TPA3008D2PHPRG4
Brand Name:Texas Instruments
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
零件包装代码:QFP
包装说明:HTFQFP, TQFP48,.35SQ
针数:48
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.33.00.01
风险等级:5.1
标称带宽:22 kHz
商用集成电路类型:AUDIO AMPLIFIER
增益:31.8 dB
JESD-30 代码:S-PQFP-G48
JESD-609代码:e4
长度:7 mm
湿度敏感等级:4
信道数量:2
功能数量:1
端子数量:48
最高工作温度:85 °C
最低工作温度:-40 °C
标称输出功率:10 W
封装主体材料:PLASTIC/EPOXY
封装代码:HTFQFP
封装等效代码:TQFP48,.35SQ
封装形状:SQUARE
封装形式:FLATPACK, HEAT SINK/SLUG, THIN PROFILE, FINE PITCH
峰值回流温度(摄氏度):260
电源:12 V
认证状态:Not Qualified
座面最大高度:1.2 mm
子类别:Audio/Video Amplifiers
最大压摆率:22 mA
最大供电电压 (Vsup):18 V
最小供电电压 (Vsup):8.5 V
表面贴装:YES
技术:CMOS
温度等级:INDUSTRIAL
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:GULL WING
端子节距:0.5 mm
端子位置:QUAD
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:7 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!