欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • TPS5102IDBT图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • TPS5102IDBT 现货库存
  • 数量6000 
  • 厂家TI 
  • 封装30-SSOP 
  • 批号24+ 
  • 假一罚百,TI专营!深圳有库存,北美、新加坡可发货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • TPS5102IDBT图
  • 深圳市亿智腾科技有限公司

     该会员已使用本站8年以上
  • TPS5102IDBT 现货库存
  • 数量8860 
  • 厂家TEXASINSTRUMENTS 
  • 封装N/A 
  • 批号16+ 
  • 全新原装现货★★特价供应★★。★★特价★★假一赔十,工厂客户可放款
  • QQ:799387964QQ:799387964 复制
    QQ:2777237833QQ:2777237833 复制
  • 0755-82566711 QQ:799387964QQ:2777237833
  • TPS5102IDBT图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • TPS5102IDBT 现货库存
  • 数量9000 
  • 厂家TI/BB 
  • 封装 
  • 批号2024+ 
  • 全新原装现货,全网最低价
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • TPS5102IDBTRG4图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • TPS5102IDBTRG4 热卖库存
  • 数量8620 
  • 厂家TI 
  • 封装TSSOP-30 
  • 批号24+ 
  • 绝对全新原装进口现货热卖,价格优势
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • TPS5102IDBT图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TPS5102IDBT
  • 数量85000 
  • 厂家TI 
  • 封装TSSOP30 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • TPS5102IDBTR图
  • 深圳市华科泰电子商行

     该会员已使用本站13年以上
  • TPS5102IDBTR
  • 数量904 
  • 厂家TI 
  • 封装TSSOP-30 
  • 批号0406+ 
  • 绝对原装现货特价
  • QQ:405945546QQ:405945546 复制
    QQ:1439873477QQ:1439873477 复制
  • 0755-82567800 QQ:405945546QQ:1439873477
  • TPS5102IDBT图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • TPS5102IDBT
  • 数量30000 
  • 厂家TI 
  • 封装TSSOP30 
  • 批号2018+ 
  • TI一级代理商专营进口原装现货假一赔十
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • TPS5102IDBT图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • TPS5102IDBT
  • 数量5600 
  • 厂家TI 
  • 封装TSSOP 
  • 批号23+ 
  • 只做原装正品,深圳现货
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • TPS5102IDBT图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • TPS5102IDBT
  • 数量12000 
  • 厂家TI 
  • 封装SM8-30 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • TPS5102IDBT图
  • 北京耐芯威科技有限公司

     该会员已使用本站13年以上
  • TPS5102IDBT
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装30-TSSOP 
  • 批号21+ 
  • 全新原装、现货库存,欢迎询价
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 86-010-010-62104931 QQ:2880824479QQ:1344056792
  • TPS5102IDBT图
  • 北京耐芯威科技有限公司

     该会员已使用本站12年以上
  • TPS5102IDBT
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装30-TSSOP 
  • 批号21+ 
  • 全新原装、现货库存,欢迎询价
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 96-010-62104931 QQ:2880824479QQ:1344056792
  • TPS5102IDBTRG4图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • TPS5102IDBTRG4
  • 数量19800 
  • 厂家TI/德州仪器 
  • 封装TSSOP 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • TPS5102IDBT图
  • 深圳市宏诺德电子科技有限公司

     该会员已使用本站8年以上
  • TPS5102IDBT
  • 数量68000 
  • 厂家TI 
  • 封装TSSOP30 
  • 批号22+ 
  • 全新进口原厂原装,优势现货库存,有需要联系电话:18818596997 QQ:84556259
  • QQ:84556259QQ:84556259 复制
    QQ:783839662QQ:783839662 复制
  • 0755- QQ:84556259QQ:783839662
  • TPS5102IDBT图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TPS5102IDBT
  • 数量66107 
  • 厂家TI 
  • 封装TSSOP30 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • TPS5102IDBT图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • TPS5102IDBT
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装30-TSSOP 
  • 批号2024+ 
  • 全新原装、现货库存,欢迎询价
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • TPS5102IDBTRG4图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • TPS5102IDBTRG4
  • 数量12300 
  • 厂家TI/德州仪器 
  • 封装TSSOP 
  • 批号24+ 
  • ★原装真实库存★13点税!
  • QQ:2353549508QQ:2353549508 复制
    QQ:2885134615QQ:2885134615 复制
  • 0755-83201583 QQ:2353549508QQ:2885134615
  • TPS5102IDBT图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • TPS5102IDBT
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装30-TSSOP 
  • 批号2024+ 
  • 全新原装、现货库存,欢迎询价
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • TPS5102IDBT图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TPS5102IDBT
  • 数量18530 
  • 厂家TI 
  • 封装TSSOP3.. 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • TPS5102IDBT图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • TPS5102IDBT
  • 数量30760 
  • 厂家TI 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • TPS5102IDBT图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • TPS5102IDBT
  • 数量12245 
  • 厂家TI/德州仪器 
  • 封装TSSOP30 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • TPS5102IDBT图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • TPS5102IDBT
  • 数量6328 
  • 厂家TI-德州仪器 
  • 封装TSSOP-30 
  • 批号▉▉:2年内 
  • ▉▉¥46.2元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • TPS5102IDBT图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TPS5102IDBT
  • 数量11530 
  • 厂家Texas Instruments 
  • 封装30-TSSOP 
  • 批号23+ 
  • 全新原装现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • TPS5102IDBTR图
  • 深圳市华来深电子有限公司

     该会员已使用本站13年以上
  • TPS5102IDBTR
  • 数量8560 
  • 厂家TI 
  • 封装SSOP 
  • 批号17+ 
  • 受权代理!全新原装现货特价热卖!
  • QQ:1258645397QQ:1258645397 复制
    QQ:876098337QQ:876098337 复制
  • 0755-83238902 QQ:1258645397QQ:876098337
  • TPS5102IDBTR图
  • 深圳市宇集芯电子有限公司

     该会员已使用本站6年以上
  • TPS5102IDBTR
  • 数量90000 
  • 厂家TI 
  • 封装TSSOP30 
  • 批号23+ 
  • 一级代理进口原装现货、假一罚十价格合理
  • QQ:1157099927QQ:1157099927 复制
    QQ:2039672975QQ:2039672975 复制
  • 0755-2870-8773手机微信同号13430772257 QQ:1157099927QQ:2039672975
  • TPS5102IDBT图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • TPS5102IDBT
  • 数量43918 
  • 厂家TI 
  • 封装SSOP30 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • TPS5102IDBTRG4图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • TPS5102IDBTRG4
  • 数量9050 
  • 厂家TI 
  • 封装TSSOP 
  • 批号2020+ 
  • 全新原装进口现货特价热卖,长期供货
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • TPS5102IDBT图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • TPS5102IDBT
  • 数量3785 
  • 厂家TI 
  • 封装TSSOP30 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755- QQ:2881894392QQ:2881894393
  • TPS5102IDBT图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • TPS5102IDBT
  • 数量26 
  • 厂家TI 
  • 封装TSSOP 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • TPS5102IDBT图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • TPS5102IDBT
  • 数量660000 
  • 厂家Texas Instruments(德州仪器) 
  • 封装30-TFSOP (0.173 
  • 批号4.40mm Width) 
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • TPS5102IDBT图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • TPS5102IDBT
  • 数量3645 
  • 厂家TI 
  • 封装30-TFSOP(0.173,4.40mm 宽) 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • TPS5102IDBT图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • TPS5102IDBT
  • 数量33507 
  • 厂家TI/德州仪器 
  • 封装TSSOP-30 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • TPS5102IDBT图
  • 深圳市驰天熠电子有限公司

     该会员已使用本站1年以上
  • TPS5102IDBT
  • 数量33560 
  • 厂家TI(德州仪器) 
  • 封装TSSOP-30 
  • 批号23+ 
  • 全新原装,优势价格,支持配单
  • QQ:3003795629QQ:3003795629 复制
    QQ:534325024QQ:534325024 复制
  • 86-15802056765 QQ:3003795629QQ:534325024

产品型号TPS5102IDBR的Datasheet PDF文件预览

TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
DBT PACKAGE  
(TOP VIEW)  
Dual, Step-Down for Notebook System  
Power  
4.5 V to 25 V Input Voltage Range  
Adjustable Output Voltage  
95% Efficiency Achievable  
INV1  
FB1  
LH1  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
OUT1_u  
LL1  
2
SOFTSTART1  
PWM_SKIP  
3
OUT1_d  
OUTGND1  
TRIP1  
4
PWM/Skip Mode Control Maintains High  
Efficiency Under Light Load Conditions  
C
5
T
R
T
GND  
REF  
6
Fixed-Frequency Operation  
Resistorless Current Protection  
Fixed High-Side Driver Voltage  
VCC_CNTP  
TRIP2  
7
8
STBY1  
STBY2  
VREF5  
9
Low Quiescent Current (0.6 mA, <1 µA for  
Standby)  
REG5V_IN  
OUTGND2  
10  
11  
V
CC  
COMP 12  
SOFTSTART2 13  
FB2 14  
19 OUT2_d  
18 LL2  
Small 30-Pin TSSOP  
EVM Available (TPS5102EVM-135)  
17 OUT2_u  
15  
16  
INV2  
LH2  
description  
TheTPS5102isadual, highefficiencycontrollerdesignedfornotebooksystempowerrequirements. Underlight  
load conditions, high efficiency is maintained as the controller switches from the PWM mode to the lower  
frequency Skip mode.  
These two operating modes, along with the synchronous-rectifier drivers, dead-time, and very low quiescent  
current, allow power to be conserved and the battery life extended, under all load conditions.  
The resistor-less current protection and fixed high-side driver voltage simplify the system design and reduce  
the external parts count. The wide input voltage range and adjustable output voltages allow flexibility for using  
the TPS5102 in notebook power supply applications.  
5 V  
R3  
+
C1  
Q1  
Q2  
R7  
GND  
L1  
R5  
C7  
C3  
U1  
R8  
D1  
Vo1  
TPS5102DBT  
+
C10  
C12  
C4  
C8  
R2  
R9  
R10  
C2  
C5  
C13  
+
C11  
Q3  
Q4  
C6  
R4  
Vo2  
R11  
D2  
L2  
C9  
R1  
R6  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1999, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
functional block diagram  
V
CC  
To Channel 2  
STNBY2  
STNBY1  
VREF5  
VREF5  
REF  
REG5V_IN  
1.185 V  
REF  
_
+
UVLO  
+
_
To  
Channel 2  
4.5 V  
RT  
CT  
OSC  
3.8 V  
To Channel 2  
LH  
To  
Channel 2  
Channel 2  
COMP  
+
_
To  
OUT_U  
LL  
1.1 V  
1 Shot  
PWM/SKIP  
OUT_D  
SOFTSTART  
SOFTSTART  
OUTGND  
_
+
Sync.  
Signal  
Skip Comp  
To  
Channel 2  
VCC_CNTP  
TRIP  
_
+
_
_
+
PWM Comp  
+
INV  
FB  
+
Error Amp  
1.185 V  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
AVAILABLE OPTIONS  
T
PACKAGE  
TSSOP(DBT)  
TPS5102IDBT  
TPS5102IDBTR  
EVM  
A
–40°C to 85°C  
TPS5102EVM-135  
Terminal Functions  
TERMINAL  
NAME  
COMP  
I/O  
DESCRIPTION  
NO.  
12  
5
I/O  
I/O  
O
Voltage monitor comparator input  
C
External capacitor connection for switching frequency adjustment  
CH1 error amp output  
T
FB1  
FB2  
GND  
INV1  
INV2  
LH1  
LH2  
LL1  
2
14  
7
O
CH2 error amp output  
Control GND  
1
I
CH1 inverting input  
15  
30  
16  
28  
18  
27  
19  
29  
17  
26  
20  
4
I
CH2 inverting input  
I/O  
I/O  
I/O  
I/O  
I/O  
O
CH1 boost capacitor connection  
CH2 boost capacitor connection  
CH1 boost circuit connection  
CH2 boost circuit connection  
CH1 low-side gate-drive output  
CH2 low-side gate-drive output  
CH1 high-side drive output  
CH2 high-side drive output  
Output GND 1  
LL2  
OUT1_d  
OUT2_d  
OUT1_u  
O
OUT2_u  
O
OUTGND1  
OUTGND2  
PWM_SKIP  
Output GND 2  
I
PWM/SKIP mode select  
L:PWM mode  
H:SKIP mode  
REF  
8
O
1.185-V reference voltage output  
REG5V_IN  
21  
6
I
External 5-V input  
R
T
I/O  
External resistor connection for switching frequency adjustment  
External capacitor connection for CH1soft start timing.  
External capacitor connection for CH2 soft start timing.  
CH1 stand-by control  
SOFTSTART1  
SOFTSTART2  
STBY1  
3
I/O  
13  
9
I/O  
I
I
I
I
STBY2  
10  
23  
25  
11  
22  
24  
CH2 stand-by control  
TRIP2  
External resistor connection for CH2 over current protection.  
External resistor connection for CH1 over current protection.  
Supply voltage input  
TRIP1  
V
CC  
V 5  
ref  
O
I
5-V internal regulator output  
VCC_CNTP  
Supply voltage sense input  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
detailed description  
Vref (1.185 V)  
The reference voltage is used to set the output voltage and the overvoltage protection (COMP).  
Vref5 (5 V)  
The internal linear voltage regulator is used for the high-side driver bootstrap voltage. Since the input voltage  
range is from 4.5 V to 25 V, this feature offers a fixed voltage for the bootstrap voltage greatly simplifying the  
drive design. It is also used for powering the low side driver. The tolerance is 6%.  
5-V Switch  
If the internal 5 V switch senses a 5-V input from REG5V_IN pin, the internal 5-V linear regulator will be  
disconnected from the MOSFET drivers. The external 5 V will be used for both the low-side driver and the high  
side bootstrap, thus increasing the efficiency.  
PWM/SKIP  
This pin is used to change between PWM and Skip mode. If the pin is lower than 0.5-V, the IC is in regular PWM  
mode; if a minimum 2-V is applied to this pin, the IC works in Skip mode. In light load condition (<0.2 A), the  
skip mode gives a short pulse to the low-side FET instead of a full pulse. By this control, switching frequency  
is lowered, reducing switching loss; also the output capacitor energy discharging through the output inductor  
and the low-side FET is prevented. Therefore, the IC can achieve high efficiency at light load conditions  
(< 0.2 A).  
err-amp  
Each channel has its own error amplifier to regulate the output voltage of the synchronous-buck converter. It  
is used in the PWM mode for the high output current condition (>0.2A). Voltage mode control is applied.  
skip comparator  
In Skip mode, each channel has its own hysteretic comparator to regulate the output voltage of the  
synchronous-buck converter. The hysteresis is set internally and typically at 8.5 mV. The delay from the  
comparator input to the driver output is typically 1.2 µs.  
low-side driver  
The low-side driver is designed to drive low-Rds(on) n-channel MOSFETs. The maximum drive voltage is 5 V  
from Vref5. The current rating of the driver is typically 1 A, source and sink.  
high-side driver  
The high side driver is designed to drive low-Rds(on) n-channel MOSFETs. The current rating of the driver is  
1 A, source and sink. When configured as a floating driver, the bias voltage to the driver is developed from Vref5,  
limiting the maximum drive voltage between OUT_u and LL to 5 V. The maximum voltage that can be applied  
between LHx and OUTGND is 30 V.  
deadtime control  
Deadtime prevents shoot–through current from flowing through the main power FETs during switching  
transitions by actively controlling the turn-on time of the MOSFETs drivers. The typical deadtime from  
low-side-driver-off to high-side-driver-on is 70 ns, and 85 ns from high-side-driver-off to low-side-driver-on.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
detailed description (continued)  
current protection  
Current protection is achieved by sensing the high-side power MOSFET drain-to-source voltage drop during  
on-time at VCC_CNTP and LL. An external resistor between Vin and TRIP pin in serial with the internal current  
source adjusts the current limit. When the voltage drop during the on-time is high enough, the current  
comparator triggers the current protection and the circuit is reset. The reset repeats until the over-current  
condition is removed.  
COMP  
COMP is an internal comparator used for any voltage protection such as the output under-voltage protection  
for notebook power applications. If the core voltage is lower than the setpoint, the comparator turns off both  
channels to prevent the notebook from damage.  
SOFT1, SOFT2  
Separate softstart terminals make it possible to set the start-up time of each output for any possibility.  
STBY1, STBY2  
Both channels can be switched into standby mode separately by grounding the STBY pin. The standby current  
is as low as 1 µA.  
ULVO  
When the input voltage goes up to about 4 V, the IC is turned on, ready to function. When the input voltage is  
lower than the turn-on value, the IC is turned off. The typical hysteresis is 40 mV.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage, Vcc (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 27 V  
Input voltage, INV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 7 V  
SOFTSTART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 7 V  
COMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 6 V  
REG5_IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 6 V  
STBY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 15 V  
Driver current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 A  
TRIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 27 V  
C
R
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 7 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 7 V  
T
T
LL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 27 V  
LH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 32 V  
OUT_u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 32 V  
OUT_d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 7 V  
PWM/SKIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 7 V  
VCC_Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 27V  
Power dissipation (T = 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874 mW  
A
Operating temperature (T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to 85°C  
A
Operating temperature (T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to 125°C  
J
Storage temperature (T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55°C to 150°C  
STG)  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values are with respect to the network ground terminal.  
2. This rating is specified at duty 10% on output rise and fall each pulse. Each pulse width (rise and fall) for the peak current should  
not exceed 2 µs.  
3. See Dissipation Rating Table for free-air temperature range above 25°C.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T = 85°C  
A
A
PACKAGE  
DBT  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
A
874 mW  
6.993 mW/°C  
454 mW  
recommended operating conditions  
PARAMETERS  
MIN NOM  
MAX  
25  
UNIT  
Supply voltage, Vcc  
4.5  
-0.1  
-0.1  
V
INV1/2 C R ,  
PWM/SKIP, SOFTSTART  
VCC_SENSE  
6
T
T
5 V_IN  
5.5  
12  
Input voltage, V  
V
I
STBY1, STBY2  
TRIP1/2  
25  
C
R
100  
82  
pF  
kΩ  
T
Oscillator frequency  
T
f
PWM  
200  
KHz  
°C  
osc  
Operation temperature range, T  
-40  
85  
A
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
electrical characteristics over recommended operating free-air temperature range, V  
(unless otherwise noted)  
= 7 V  
CC  
reference voltage  
PARAMETER  
TEST CONDITIONS  
= 25°C, = 50 µA  
MIN  
TYP  
MAX  
UNIT  
T
I
vref  
1.167 1.185 1.203  
A
Vref  
Reference voltage  
V
I
= 50 µA  
1.155  
1.215  
12  
vref  
Regin Line regulation  
Regl Load regulation  
Vcc = 4.5, 25V,  
I = 50 µA  
0.2  
0.5  
mV  
mV  
I = 0.1 µA to 1 mA  
10  
quiescent current  
PARAMETER  
TEST CONDITIONS  
Both STBY > 2.5 V,  
No switching, Vin = 4.5 – 25 V  
MIN  
TYP  
0.6  
1
MAX  
1.5  
UNIT  
mA  
Icc  
Operating current without switching  
Stand-by current  
Iccs  
Both STBY < 0.5 V, Vin = 4.5 – 25 V  
1000  
nA  
oscillator  
PARAMETER  
Frequency  
Timing resistor  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
kHz  
kΩ  
fosc  
PWM operation  
500  
R
T
56  
fdv  
fdt  
Vcc = 4.5 V to 25 V  
= -40°C to 85°C  
0.1%  
2%  
fosc change  
T
A
DC, includes internal comparator error  
1
1.1  
1.2  
0.6  
V
H-level output voltage  
L-level output voltage  
V
V
oscH  
Fosc = 200 kHz, Includes internal comparator error  
Includes internal comparator error  
1.17  
0.5  
0.4  
V
oscL  
Fosc = 200 kHz, Includes internal comparator error  
0.43  
error amp  
PARAMETER  
TEST CONDITIONS  
MIN  
50  
TYP  
MAX  
UNIT  
mV  
dB  
Vio  
Av  
Input offset voltage  
Open-loop voltage gain  
T
A
= 25°C  
±2  
±10  
GB  
Isnk  
Isrc  
Unity-gain bandwidth  
Output sink current  
Output source current  
0.8  
45  
MHz  
µA  
Vo = 0.4 V  
Vo = 1 V  
30  
300  
µA  
skip comparator  
PARAMETER  
Hysteresis window  
Offset voltage  
TEST CONDITIONS  
MIN  
TYP  
9.5  
2
MAX  
UNIT  
mV  
mV  
pA  
Vhys  
6
13  
Vhoff  
Ihbias  
Bias current  
10  
T
T
Propagation delay from INV to OUTxU  
TTL input signal  
10 mV overdrive on hysteresis band signal  
0.7  
1.2  
µs  
LHT  
µs  
LH  
Vhys is assured by design.  
The total delay in the table includes the driver delay.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
electrical characteristics over recommended operating free-air temperature range, V  
(unless otherwise noted) (continued)  
= 7 V  
CC  
driver deadtime  
PARAMETER  
Low side to high side  
High side to low side  
TEST CONDITIONS  
MIN  
TYP  
70  
MAX  
UNIT  
nS  
T
T
DRVLH  
85  
nS  
DRVHL  
standby  
PARAMETER  
H-level input voltage  
L-level input voltage  
Propagation delay  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
2.5  
IH  
STBY1, STBY2  
V
0.5  
IL  
T
T
1.5  
1.8  
turnon  
STBY to driver output  
µs  
Propagation delay  
turnoff  
5V regulator  
PARAMETER  
Output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
5.3  
20  
UNIT  
V
V
I = 10 mA  
4.7  
O
Regin  
Regl  
Ios  
Line regulation  
Vcc = 5.5 V, 25 V,  
I = 1 V, 10 mA,  
Vref = 0 V  
I = 10 mA  
mV  
mV  
mA  
Load regulation  
Vcc = 5.5 V  
40  
Short-circuit output current  
80  
5-V internal switch  
PARAMETER  
TEST CONDITIONS  
TEST CONDITIONS  
TEST CONDITIONS  
TEST CONDITIONS  
MIN  
4.2  
4.1  
30  
TYP  
MAX  
4.8  
UNIT  
V
V
V
V
TLH  
THL  
hys  
Threshold voltage  
Hysteresis  
4.7  
V
150  
mV  
UVLO  
PARAMETER  
MIN  
3.7  
3.6  
10  
TYP  
MAX  
4.2  
UNIT  
V
V
TLH  
V
THL  
V
hys  
Threshold voltage  
Hysteresis  
4.1  
V
40  
150  
mV  
current limit  
PARAMETER  
MIN  
10  
3
TYP  
15  
MAX  
20  
UNIT  
µA  
PWM mode  
Skip mode  
Internal current source  
Input offset voltage  
5
7
2.5  
mV  
driver output  
PARAMETER  
OUT_u sink current  
MIN  
0.5  
0.5  
–1  
TYP  
1.2  
MAX  
UNIT  
Vo = 3 V  
Vo = 3 V  
A
OUT_d sink current  
OUT_u source current  
OUT_d source current  
1.2  
–1.7  
–1.5  
A
–1  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
electrical characteristics over recommended operating free-air temperature range, V  
(unless otherwise noted) (continued)  
= 7 V  
CC  
softstart  
PARAMETER  
Soft-start current  
TEST CONDITIONS  
MIN  
TYP  
2.5  
MAX  
UNIT  
µA  
I
1.8  
3
CTRL  
Maximum discharge current  
0.92  
3.9  
mA  
V
V
3.4  
1.8  
4.7  
3.4  
TLH  
Threshold voltage (skip mode)  
V
2.6  
THL  
output voltage protection (COMP)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Threshold voltage  
0.9  
1.1  
1.3  
V
Progagation delay , 50% duty cycle,  
No capacitor on COMP or OUT_u pin,  
Frequency = 200 kHz  
Turnon  
Turnoff (with channel on)  
900  
400  
ns  
ns  
The delay time in the table includes the driver delay.  
PWM/SKIP  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
High to low  
Low to high  
High to low  
Low to high  
0.5  
Threshold  
V
2
550  
400  
Delay  
ns  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
QUIESCENT CURRENT (BOTH CHANNELS ON)  
QUIESCENT CURRENT (BOTH CHANNELS STANDBY)  
vs  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
800  
700  
600  
500  
400  
160  
140  
120  
100  
T
= 125°C  
J
T
J
= -40°C  
T
J
= 25°C  
T
J
= 125°C  
80  
60  
40  
300  
200  
T
J
= -40°C  
100  
0
T
= 25°C  
20  
0
J
0
10  
20  
30  
4.5  
7
10  
15  
20  
25  
V
CC  
- Supply Voltage - V  
V
CC  
- Supply Voltage - V  
Figure 1  
Figure 2  
DRIVE CURRENT (SOURCE)  
DRIVE CURRENT (SINK)  
vs  
vs  
DRIVE VOLTAGE  
DRIVE VOLTAGE  
6
5
4
3.5  
3
T
= -40°C  
J
2.5  
2
T
J
= 125°C  
T
J
= 25°C  
T
J
= 125°C  
3
2
T
J
= 25°C  
1.5  
1
T
J
= -40°C  
1
0
0.5  
0
0.1  
0.5  
1
0.1  
0.5  
1
I
- Driver Source Current - A  
I
- Driver Sink Current - A  
(src)  
(snk)  
Figure 3  
Figure 4  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
CURRENT PROTECTION SOURCE CURRENT  
CURRENT PROTECTION SOURCE CURRENT  
(SKIP MODE)  
vs  
(PWM MODE)  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
14  
13.8  
13.6  
13.4  
13.2  
13  
5.2  
5.1  
5
T
= 125°C  
= 25°C  
J
T
= 125°C  
J
4.9  
4.8  
4.7  
4.6  
T
J
T
J
= -40°C  
T
J
= 25°C  
4.5  
4.4  
T
= -40°C  
J
12.8  
12.6  
4.3  
4.2  
4.5  
7
10  
15  
20  
25  
0
10  
20  
30  
V
CC  
- Supply Voltage - V  
V
CC  
- Supply Voltage - V  
Figure 6  
Figure 5  
PWM/SKIP THRESHOLD VOLTAGE  
V
VOLTAGE  
vs  
CURRENT  
ref5  
vs  
INPUT VOLTAGE  
1
5.1  
5
T
J
= -40°C  
0.9  
0.8  
0.7  
0.6  
0.5  
T
J
= 125°C  
T
J
= 125°C  
T
J
= 25°C  
4.9  
4.8  
4.7  
4.6  
4.5  
T
J
= 25°C  
T
J
= -40°C  
0.4  
0.3  
0.2  
0.1  
0
0
10  
20  
30  
0
–10  
–20  
–30  
–40  
–50  
V - Supply Voltage - V  
I
I - Current - mA  
r
Figure 7  
Figure 8  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
SOFT START CHARGE CURRENT  
MAXIMUM OUTPUT VOLTAGE  
vs  
SWITCHING FREQUENCY  
vs  
JUNCTION TEMPERATURE  
–3  
2.5  
–2.5  
2
–2  
1.5  
–1.5  
–1  
1
0.5  
0
–0.5  
0
–40 –20  
0
25  
50  
70  
95  
125  
1
10  
100  
1000  
T
J
- Junction Temperature - °C  
Switching Frequency – kHz  
Figure 9  
Figure 10  
SWITCHING FREQUENCY  
vs  
TIMING RESISTOR  
1000  
C = 47 pF  
t
100  
C = 100 pF  
t
C = 150 pF  
t
C = 220 pF  
t
C = 330 pF  
t
10  
10  
100  
1000  
Timing Resistor - kΩ  
Figure 11  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
timing diagram  
1.17 V Typ.  
Err. Amplifier Output  
Oscillator Output  
OUTx_u  
0.43 V Typ.  
High  
Delay  
Low  
(100 nS Typ.)  
Delay  
Duty  
High  
Low  
OUTx_d  
(100 nS Typ.)  
Detected Over Current  
High  
Low  
Over-Current  
Protection  
Current Limit  
Inductor Current  
I
= 0  
L
TRIPx Voltage  
LLx Voltage  
GND  
-Vf  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
APPLICATION INFORMATION  
The design shown in this application report is a reference design for notebook applications. An evaluation  
module (EVM), TPS5102EVM-135 (SLVP135), is available for customer testing and evaluation. The intent is  
to allow a customer to fully evaluate the given design using the plug-in EVM supply shown here. For subsequent  
customer board revisions, the EVM design can be copied onto the users’ PCB to shorten design cycle.  
The following key design procedures will aid in the design of the notebook power supply using the TPS5102:  
SLVP135 EVM  
TP27  
C6  
R3  
R5  
Q1  
Q2  
TP26  
R17  
C2  
R4  
L1  
R6  
C7  
R1  
C8  
J1  
J2  
D3  
RS1  
TP24  
TP23  
TP1  
TP2  
+
+
Vo1  
J3  
D1  
C17  
C4  
C22  
+
Vo1  
TP3  
R8  
J4  
C9  
C10  
Vo1GND  
Vo1GND  
Vin  
TP22  
TP21  
TP4  
J5  
C18  
R18  
TP5  
J6  
JP1  
R9  
TP6  
J7  
Vin  
TP7  
C1  
J8  
J15  
GND  
Input GND  
Input GND  
Vo2GND  
Vo2GND  
Vo2  
R19  
C19  
C11  
TP20  
TP19  
TP8  
R10  
J9  
J16  
TP9  
GND  
J10  
J11  
J12  
J13  
J14  
R11  
R21  
TP10  
TP11  
TP12  
TP13  
TP14  
TP15  
JP2  
R12  
C12  
C13  
TP18  
C23  
Vo2  
C5  
+
D2  
RS2  
C21  
D4  
+
Q4  
C15  
TP17  
TP16  
R2  
L2  
R20  
C14  
R13  
R14  
R15  
R16  
C20  
C3  
TP25  
Q3  
TP28  
C16  
Vin  
Iin  
Vo1  
3.3 V  
3.3 V  
Io1  
Vo2  
5 V  
5 V  
Io2  
6 V to 15 V  
6 A  
4 A  
4 A  
16 V to 25 V  
2.5 A  
2.5 A  
output voltage setpoint calculation  
The output voltage is set by the reference voltage and the voltage divider. In the TPS5102, the reference voltage  
is 1.185-V, and the divider is composed of two resistors in the EVM design that are R4 and R5, or R14 and R15.  
The equation for the setpoint is:  
R1  
Vo–Vr  
Vr  
R2  
Where R1 is the top resistor (k) ( R4 or R15); R2 is the bottom resistor (k) ( R5 or R14); Vo is the required  
output voltage (V); Vr is the reference voltage (1.185 V in TPS5102).  
Example: R1 = 1 k; Vr = 1.185 V; Vo = 3.3 V, then R2 = 560 .  
Some of the most popular output voltage setpoints are calculated in the table below:  
V
1.3 V  
1 V  
1.5 V  
1 V  
1.8 V  
1 V  
2.5 V  
1 V  
3.3 V  
1 V  
5 V  
1 V  
O
R1 (top) (kΩ)  
R2 (bottom) (kΩ)  
10 V  
3.7 V  
1.9 V  
0.9 V  
0.56 V  
0.31 V  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
APPLICATION INFORMATION  
output voltage setpoint calculation (continued)  
If a higher precision resistor is used, the voltage setup can be more accurate.  
In some applications, the output voltage is required to be lower than the reference voltage. With a few extra  
components, the lower voltage can be easily achieved. The drawing below shows the method.  
V
CC  
V
O
R
R
(top)  
z1  
INV  
R
z2  
TPS5102  
R
Zener  
(bottom)  
In the schematic, the Rz1, the Rz2, and the zener are the extra components. Rz1 is used to give the zener  
enough current to build up the zener voltage. The zener voltage is added to INV through Rz2. Therefore, the  
voltage on the INV is still equal to the IC internal voltage (1.185 V) even if the output voltage is regulated at a  
lower setpoint. The equation for setting up the output voltage is shown below:  
( Vz Vr )  
Rz 2 =  
(VrVo)  
Rtop  
Vr  
Rbtm  
+
When Rz2 is the adjusting resistor for low output voltage; Vz is the zener voltage; Vr is the internal reference  
voltage; Rtop is the resistor of the voltage sensing network; Rbtm is the bottom resistor of the sensing  
network;V is the required output voltage setpoint.  
O
Example: Assuming the required output voltage setpoint is V = 0.8 V, V = 5 V; Rtop = 1 k; Rbottom = 1 k,  
O
Z
Then the Rz2 = 2.43 k.  
output inductor ripple current  
The output inductor current ripple can affect not only the efficiency, but also the output voltage ripple. The  
equation is exhibited below:  
Vin Vout Iout (Rdson RL)  
Iripple  
D
Ts  
Lout  
Where Iripple is the peak-to-peak ripple current (A) through the inductor; Vin is the input voltage (V); Vout is the  
outputvoltage(V);Ioutistheoutputcurrent; Rdsonistheon-timeresistanceofMOSFET();Disthedutycycle;  
and Ts is the switching cycle (S). From the equation, it can be seen that the current ripple can be adjusted by  
changing the output inductor value.  
Example: Vin = 5 V; Vout = 1.8 V; Iout = 5 A; Rdson = 10 m; RL = 5 m; D = 0.36; Ts = 10 µS; Lout = 6 µH  
Then, the ripple Iripple = 2 A.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
APPLICATION INFORMATION  
output capacitor RMS current  
Assuming the inductor ripple current totally goes through the output capacitor to ground, the RMS current in the  
output capacitor can be calculated as:  
I
Iorms  
12  
Where Io(rms) is the maximum RMS current in the output capacitor (A); I is the peak-to-peak inductor ripple  
current (A).  
Example: I = 2 A, so Io(rms) = 0.58 A  
input capacitor RMS current  
Assuming the input ripple current totally goes into the input capacitor to the power ground, the RMS current in  
the input capacitor can be calculated as:  
1
12  
Iirms  
Io2  
D
(1–D)  
D
Iripple2  
Where Ii(rms) is the input RMS current in the input capacitor (A); Io is the output current (A); Iripple is the  
peak-to-peak output inductor ripple current; D is the duty cycle. From the equation, it can be seen that the  
highest input RMS current usually occurs at the lowest input voltage, so it is the worst case design for input  
capacitor ripple current.  
Example: Io = 5 A; D = 0.36; Iripple = 2 A,  
Then, Ii(rms) = 2.42 A  
soft-start  
The soft-start timing can be adjusted by selecting the soft-start capacitor value. The equation is  
C
2
T
soft  
soft  
Where C  
is the soft-start capacitance (µF) (C9 or C13 in EVM design); T  
is the start-up time (S).  
soft  
soft  
Example: Tsoft = 5 mS, so Csoft = 0.01 µF.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
APPLICATION INFORMATION  
current protection  
The current limit in TPS5102 on each channel is set using an internal current source and an external resistor  
(R18 or R19). The sensed high side MOSFET drain-to-source voltage drop is compared to the set point, if the  
voltage drop exceeds the limit, the internal oscillator is activated, and it continuously reset the current limit until  
the over-current condition is removed. The equation below should be used for calculating the external resistor  
value for current protection setpoint:  
Rds(on)  
(Itrip Iind(p-p) 2)  
0.000015  
Rcl  
In skip mode,  
Rds(on)  
(Itrip Iind(p-p) 2)  
0.000005  
Rcl  
Where Rcl is the external current limit resistor (R10 or R11); Rds(on) is the high side MOSFET (Q1 or Q3)  
on-time resistance. Itrip is the required current limit; Iind(p-p) is the peak-to-peak output inductor current.  
Example for voltage mode: Rds(on) = 10 m, Itrip = 5 A, Iind = 2 A, so Rcl = 4 k.  
loop-gain compensation  
Voltage mode control is used in this controller for the output voltage regulation. To achieve fast, stabilized  
control, two parts are discussed in this section: the power stage small signal modeling and the compensation  
circuit design.  
For the buck converter, the small signal modeling circuit is shown below:  
Z
L
V
ap  
d
L
D
R
a
c
L
+
-
V
O
i
a
i
c
D
1
+
C
R
V
I
I
c
d
Z
RC  
R
C
p
From this equivalent circuit, several control transfer functions can be derived: input-to-output, output  
impedance, and control-to-output. Typically the control-to-output transfer function is used for the feedback  
control design.  
Assuming Rc and RL are much smaller than R, the simplified small signal control-to-output transfer function is:  
(1 sCRc)  
Vo  
d
Vod  
L
R
1
s C  
Rc  
R
s2LC  
L
Where C is the output capacitance; Rc is the equivalent serial resistance (ESR) in the output capacitor; L is the  
output inductor; RL is the equivalent serial resistance (DCR) in the output inductor; R is the load resistance.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
APPLICATION INFORMATION  
loop-gain compensation (continued)  
To achieve fast transient response and the better output voltage regulation, a compensation circuit is added to  
improve the feedback control. The whole system is shown:  
Power  
Stage  
PWM  
V
ref  
Compensation  
The typical compensation circuit used as an option in the EVM design is a part of the output feedback circuit.  
The circuitry is displayed below:  
C3  
R1  
C1  
R2  
R4  
C2  
_
To PWM  
+
V
ref  
R3  
This circuit is composed of one integrator, two poles, and two zeros:  
Assuming R1 << R2 and C2 << C3, the equation is:  
(
)
(
) (  
)
sC2R2  
)
sC1R1  
1
sC3R4  
(
1
Comp  
sC3R2 1 sC2R4  
1
Therefore,  
Pole1  
1
1
Zero1  
Zero2  
2 C1R1  
2 C2R2  
1
1
1
Pole2  
Integrator  
2 C2R4  
2 C3R4  
2 C3R2  
A simplified version used in the EVM design is exhibited below:  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
APPLICATION INFORMATION  
loop-gain compensation (continued)  
V
O
C3  
R2  
R4  
C2  
_
To PWM  
+
V
ref  
R3  
Assuming C2 << C3, the equation is:  
(
)
sC3R4  
1
Comp  
(
)
sC3R2 1 sC2R4  
There is one pole, one zero and one integrator:  
1
1
1
Zero  
Integrator  
Pole  
2 C3R4  
2 fC3R2  
2 C2R4  
The loop-gain concept is used to design a stable and fast feedback control. The loop-gain equation is derived  
by the control-to-output transfer function times the compensation:  
Loop–gain  
Vod  
Comp  
The amplitude and the phase of this equation can be drawn with software such as MathCad. In turn, the stability  
can be easily designed by adjusting the compensation parameters. The sample bode plot is shown below to  
explain the phase margin, gain margin, and the crossover frequency.  
The gain is drawn as 20 log (loop-gain), and the phase is in degrees. To explain them clearer, 180 degrees is  
added to the phase, so that the gain and phase share the same zero.  
The crossover frequency is the point at which the gain curve touches zero. The higher this frequency, the faster  
the transient response, since the transient recovery time is 1/(crossover frequency). The phase is the phase  
margin. The phase margin should be at least 60 degrees to cover all changes such as temperature. The gain  
margin is the gap between the gain curve and the zero when the phase curve touches zero. This margin should  
be at least 20 dB to guarantee stability over all conditions.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
APPLICATION INFORMATION  
180  
166  
152  
Phase  
138  
124  
110  
96  
82  
68  
54  
40  
Phase  
Margin  
20 Log (Loop-Gain)  
180 + Phase  
26  
12  
–2  
–16  
–30  
–44  
–58  
–72  
Gain  
Gain  
Margin  
Crossover  
–86  
–100  
3
10  
4
10  
5
10  
6
10  
10  
100  
f – Frequency – Hz  
synchronization  
Some applications require switching clock synchronization. There are two methods that can be used for  
synchronization: the triangle wave synchronization and the square wave synchronization.  
The triangle wave synchronization is displayed below:  
TPS5102  
740 mV  
Ct  
Rt  
740 mV  
It can be seen that both Rt and Ct are removed from the circuit. Therefore, two components are saved. This  
method is good for the synchronization between two controllers. If the controller needs to be synchronized with  
a digital circuit such as DSP, the square-type clock signal is usually used. The configuration exhibited below is  
for this type of application:  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
APPLICATION INFORMATION  
synchronization (continued)  
TPS5102  
Ct  
Rt  
An external resistor is added into the circuit, but Rt is still removed. Ct is kept to be a part of RC circuit generating  
triangle waveform for the controller. Assuming the peak value of the square is known, the resistor and the  
capacitor can be adjusted to achieve the correct peak-to-peak value and the offset value.  
layout guidelines  
Goodpowersupplyresultswillonlyoccurwhencareisgiventoproperdesignandlayout. Layoutwillaffectnoise  
pickup and generation and can cause a good design to perform with less than expected results. With a range  
of currents from milliamps to tens or even hundreds of amps, good power supply layout is much more difficult  
than most general PCB designs. The general design should proceed from the switching node to the output,  
then back to the driver section and, finally, parallel the low-level components. Below are several specific points  
to consider before the layout of a TPS5102 design begins.  
All sensitive analog components should be referenced to ANAGND. These include components connected  
to Vref5, Vref, INV, LH, and COMP.  
Analogground and drive ground should be isolated as much as possible. Ideally, analog ground will connect  
to the ground side of the bulk storage capacitors on V , and drive ground will connect to the main ground  
O
plane close to the source of the low-side FET.  
Connections from the drivers to the gate of the power FETs should be as short and wide as possible to  
reduce stray inductance. This becomes more critical if external gate resistors are not being used.  
The bypass capacitor for V  
should be placed close to the TPS5102.  
CC  
When configuring the high-side driver as a floating driver, the connection from LL to the power FETs should  
be as short and as wide as possible.  
When configuring the high-side driver as a floating driver, the bootstrap capacitor (connected from LH to  
LL) should be placed close to the TPS5102.  
When configuring the high-side driver as a ground-referenced driver, LL should be connected to DRVGND.  
The bulk storage capacitors across V should be placed close to the power FETS. High-frequency bypass  
In  
capacitors should be placed in parallel with the bulk capacitors and connected close to the drain of the  
high-side FET and to the source of the low-side FET.  
High-frequency bypass capacitors should be placed across the bulk storage capacitors on V .  
O
LH and LL should be connected very close to the drain and source, respectively, of the high-side FET. LH  
and LL should be routed very close to each other to minimize differential-mode noise coupling to these  
traces.  
The output voltage sensing trace should be isolated by either ground trace or Vcc trace.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
APPLICATION INFORMATION  
PWM AND SKIP MODE EFFICIENCY  
PWM AND SKIP MODE EFFICIENCY  
COMPARISON  
COMPARISON  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
Output = 3.3 V  
PWM Mode  
Output = 5 V  
Skip Mode  
PWM Mode  
Skip Mode  
65  
60  
65  
60  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
I
O
- Output Current - A  
I
O
- Output Current - A  
Figure 12  
Figure 13  
EFFICIENCY  
vs  
EFFICIENCY  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
Output = 5 V  
Output = 3.3 V  
PWM Mode  
PWM Mode  
Skip Mode  
Skip Mode  
65  
60  
65  
60  
0
1
2
3
4
5
0
1
2
3
4
5
I
O
- Output Current - A  
I
O
- Output Current - A  
Figure 14  
Figure 15  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
APPLICATION INFORMATION  
EFFICIENCY  
vs  
OUTPUT LOAD REGULATION  
OUTPUT CURRENT  
100  
95  
90  
85  
80  
75  
70  
3.4  
3.38  
3.36  
3.34  
3.32  
3.3  
Output Load = 3.3 V  
Dual Output Efficiency  
3.28  
3.26  
3.24  
65  
60  
3.22  
3.2  
0
20  
40  
60  
80  
100  
0
1
2
3
4
5
I
O
- Output Current - A  
Output Current – %  
Figure 16  
Figure 17  
OUTPUT LOAD REGULATION  
OUTPUT LINE REGULATION  
5.1  
5.08  
5.06  
5.04  
5.02  
5
3.4  
3.38  
3.36  
3.34  
3.32  
3.3  
Output Load = 5 V  
Output Line = 3.3 V  
4.98  
4.96  
4.94  
3.28  
3.26  
3.24  
4.92  
4.9  
3.22  
3.2  
0
1
2
3
4
5
0
10  
20  
30  
I
O
- Output Current - A  
V - Input Voltage - V  
I
Figure 18  
Figure 19  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
APPLICATION INFORMATION  
OUTPUT LINE REGULATION  
DIODE VERSION EFFICIENCY  
5.1  
5.09  
5.08  
5.07  
5.06  
5.05  
5.04  
5.03  
5.02  
95  
90  
85  
80  
75  
70  
Output Line = 5 V  
Output Diode Version = 3.3 V  
65  
60  
5.01  
5
5
10  
15  
20  
25  
30  
0
1
2
3
4
5
V - Input Voltage - V  
I
I
O
- Output Current - A  
Figure 20  
Figure 21  
5–V OUTPUT VOLTAGE RIPPLE  
3.3–V OUTPUT VOLTAGE RIPPLE  
Figure 22  
Figure 23  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
APPLICATION INFORMATION  
Table 1. Bill of Materials  
REF.  
PN  
RV-35V221MH10-R  
10TPB220M  
GMK325F106ZH  
GMK325F106ZH  
4TPB470M  
10TPB220M  
6TPB330M  
Standard  
DESCRIPTION  
Capacitor, electrolytic, 220 µF, 35 V  
Capacitor, POSCAP, 220 µF, 10 V  
Capacitor, ceramic, 10 µF, 35 V  
Capacitor, ceramic, 10 µF, 35 V  
Capacitor, POSCAP, 470 µF, 4 V  
Capacitor, POSCAP, 220 µF, 10 V  
Capacitor, POSCAP, 330 µF, 6.3 V  
Open, capacitor, ceramic, 0.22 µF, 16 V  
Capacitor, ceramic, 0,01 µF, 16 V  
Capacitor, ceramic, 220 pF, 16 V  
Capacitor, ceramic, 0.01 µF, 16 V  
Capacitor, ceramic, 100 pF, 16 V  
Capacitor, ceramic, 1 µF, 16 V  
Capacitor, ceramic, 2.2 µF, 35 V  
Capacitor, ceramic, 0.01 µF, 16 V  
Capacitor, ceramic, 220 pF, 16 V  
Capacitor, ceramic, 0.1 µF, 16 V  
Open, capacitor, ceramic, 0.1 µF, 16 V  
Capacitor, ceramic, 2.2 µF, 35 V  
Open  
MANUFACTURER  
ELNA  
SIZE  
10x10mm  
C1  
C1 opt  
C2  
Sanyo  
7.3x4.3mm  
1210  
Taiyo Yuden  
Taiyo Yuden  
Sanyo  
C3  
1210  
C4  
7.3x4.3mm  
7.3x4.3mm  
7.3x4.3mm  
805  
C5  
Sanyo  
C5 opt  
Sanyo  
C6  
C7  
C8  
C9  
Standard  
805  
Standard  
805  
Standard  
805  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
D1  
Standard  
805  
Standard  
muRata  
805  
GMK316F225ZG  
Standard  
Taiyo Yuden  
1206  
805  
Standard  
805  
Standard  
805  
Standard  
805  
GMK316F225ZG  
Standard  
Taiyo Yuden  
1206  
805  
Standard  
Open  
805  
GMK325F106ZH  
GMK316F225ZG  
Capacitor, ceramic, 10 µF, 35 V  
Capacitor, ceramic, 2.2 µF, 35 V  
Taiyo Yuden  
Taiyo Yuden  
1210  
1206  
7.3x4.3mm  
7.3x4.3mm  
SMC  
MBRS340T3  
Diode, Schottky, 40 V, 3 A  
Diode, Schottky, 40 V, 3 A  
Diode, Schottky, 40 V, 200 mA  
Diode, Schottky, 40 V, 200 mA  
Inductor, 6.8 µH, 4.4 A  
Motorola  
Motorola  
Digikey  
D2  
MBRS340T3  
SMC  
D3  
SD103-AWDICT-ND  
SD103-AWDICT-ND  
DO3316P-682  
3.5x1.5mm  
3.5x1.5mm  
0.5x0.37in  
0.5x0.37in  
0.040in  
D4  
Digikey  
L1  
Coilcraft  
Coilcraft  
NAS Interplex  
L2  
DO3316P-682  
Inductor, 6.8 µH, 4.4 A  
J1-J16  
CA26DA-D36W-OFC  
Edge connector, surface mount, 0.040” board, 0.090”  
standoff  
JP1  
S1132-2-ND  
Header, straight, 2-pin, 0.1 ctrs, 0.3” pins  
Shunt, jumper, 0.1”  
Sullins  
Sullins  
DigiKey # 1132-2-ND  
JP1 shunt  
S1132-14-ND  
DigiKey #  
929950-00-ND  
JP2  
R1  
S1132-14-ND  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Header, straight, 2-pin, 0.1 ctrs, 0.3” pins  
Resistor, 5.1 , 5%  
Resistor, 5.1 , 5%  
Open  
Sullins  
DigiKey # 1132-2-ND  
805  
805  
805  
805  
805  
805  
805  
R2  
R3  
R4  
R5  
R6  
R8  
Resistor, 1.21 k, 1%  
Resistor, 680 , 1%  
Resistor, 5.1 k, 5%  
Resistor, 1 k, 5%  
Option table  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
APPLICATION INFORMATION  
Table 1. Bill of Materials (continued)  
REF.  
PN  
Standard  
DESCRIPTION  
Resistor, 82 k, 5%  
MANUFACTURER  
SIZE  
R9  
805  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
Q1  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Si4410DY  
Si4410DY  
Si4410DY  
Si4410DY  
TPS5102  
Resistor, 1 k, 5%  
805  
Resistor, 0 , 5%  
805  
Resistor, 1 k, 5%  
805  
Reistor, 1 k, 5%  
805  
Resistor, 310 k, 1%  
805  
Resistor, 1 k, 1%  
805  
Open resistor, 5.1 , 5%  
Resister, 15 , 5%  
805  
805  
Resistor, 7.5 k, 5%  
805  
Resistor, 7.5 k, 5%  
805  
Resistor, 15 , 5%  
805  
Open  
805  
Transistor, MOSFET, n-ch, 30 V, 10 A, 13 m,  
Transistor, MOSFET, n-ch, 30 V, 10 A, 13 m,  
Transistor, MOSFET, n-ch, 30 V, 10 A, 13 m,  
Transistor, MOSFET, n-ch, 30 V, 10 A, 13 m,  
IC, Dual Controller  
Siliconix  
Siliconix  
Siliconix  
Siliconix  
TI  
SO-8  
SO-8  
SO-8  
SO-8  
TSSOP  
Q2  
Q3  
Q4  
U1  
Option table  
ThisEVMisdesignedtocoverasmanyapplicationsaspossible. Forsomemorespecificapplications, thecircuit  
can be simpler. The table below gives some recommendations.  
Table 2. EVM Application Recommendations  
5V INPUT VOLTAGE  
<3–A OUTPUT CURRENT  
DIODE VERSION  
Change C1 to low profile capacitor  
Sanyo 10TPB220M (220 µF, 10 V)  
Or 6TPB330M (330 µF, 6.3 V)  
Change Q1/Q2 and Q3/Q4 to dual pack MOS- Remove Q2 and Q4 to reduce the cost.  
FET, IRF7311 to reduce the cost.  
Remove R12  
Table 3. Vendor and Source Information  
MATERIAL  
MOSFETS (Q1–Q4)  
SOURCE  
In EVM Design  
PART NUMBER  
Si4410DY (SILICONIX)  
DISTRIBUTORS  
Local Distributor  
Second Source  
In EVM Design  
IRF7811 (International Rectifier)  
RV–35V221MH10–R (ELNA)  
INPUT CAPACITORS (C1)  
Bell Microproducts  
972–783–4191  
Second Source  
35CV330AX/GX (Sanyo)  
UUR1V221MNR1GS (Nichicon)  
MBRS340T3 (Motorola)  
U3FWJ44N (Toshiba)  
870–633–5030  
Future Electronics (Local Office)  
Local Distributors  
MAIN DIODES (D1 – D2)  
INDUCTORS (L1 – L2)  
In EVM Design  
Second Source  
In EVM Design  
Second Source  
Local Distributors  
DO3316P–682 (Coilcraft)  
CTDO3316P–682 (Inductor Warehouse) 800–533–8295  
972–248-3575  
CERAMIC CAPACITORS  
(C2, C3) (C12, C17, C21)  
IN EVM Design  
GMK325F106ZH  
GMK316F225ZG  
(Taiyo Yuden)  
SMEC  
512–331–1877  
Taiyo Yuden, Representative  
e–mail: mike@millsales.com  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
APPLICATION INFORMATION  
Top Layer  
Bottom Layer (Top View)  
Top Assembly  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
APPLICATION INFORMATION  
+
Load  
Load  
0 – 4 A  
0 – 4 A  
Power Supply  
5–V, 5–A Supply  
+
Test Setup  
NOTE: All wire pairs should be twisted.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
APPLICATION INFORMATION  
High current applications are described in table . The values are recommendations based on actual test circuits.  
Many variations are possible based on the requirements of the user. Performance of teh circuit is dependent  
upon the layout rather than the on specific components, if the device parameters are not exceeded. The power  
stage, having the highest current levels and greatest dv/dt rates, should be given the most attention, as both  
the supply and load can be severly affected by the power levels and edge rates.  
Table 4. High Current Applications  
REFERENCE  
DESIGNATIONS  
FUNCTION  
8-A OUTPUT  
12-A OUTPUT  
16-A OUTPUT  
4x ELNA  
2x ELNA  
3x ELNA  
C1  
Input Bulk Capacitor  
RV-35V221MH10-R  
RV-35V221MH10-R  
RV-35V221MH10-R  
220 µF, 35 V  
220 µF, 35 V  
220 µF, 35 V  
2x Taiyo Yuden  
GMK325F106ZH  
10 µF, 35 V  
3x Taiyo Yuden  
GMK325F106ZH  
10 µF, 35 V  
4x Taiyo Yuden  
GMK325F106ZH  
10 µF, 35 V  
C2 (C3)  
L1 (L2)  
Input Bypass Capacitor  
Output Filter Indicator  
Coiltronics UP4B-1R5  
1.5 µH, 13.4 A  
MicorMetals T68-8/90  
Core w/7T, #16  
1.0 µH, 25 A  
Coiltronics UP3B-2R2  
2.2 µH, 9.2 A  
2x Sanyo 4TPB470M  
470 µF, 4 V  
3x Sanyo 4TPB470M  
470 µF, 4 V  
4x Sanyo 4TPB470M  
470 µF, 4 V  
C4 (C22)  
C5 (C23)  
Q1 (Q3)  
Q2 (Q4)  
Output Filter Capacitor  
Output Filter Capacitor  
Power Switch  
2x Sanyo 6TPB330M  
330 µF, 6.3 V  
3x Sanyo 6TPB330M  
330 µF, 6.3 V  
4x Sanyo 6TPB330M  
330 µF, 6.3 V  
2x Siliconix Si4410DY  
30 V, 10 A, 13 mΩ  
3x Siliconix Si4410DY  
30 V, 10 A, 13 mΩ  
4x Siliconix Si4410DY  
30 V, 10 A, 13 mΩ  
2x Siliconix Si4410DY  
30 V, 10 A, 13 mΩ  
3x Siliconix Si4410DY  
30 V, 10 A, 13 mΩ  
4x Siliconix Si4410DY  
30 V, 10 A, 13 mΩ  
Power Switch  
R17 (R20)  
Gate Drive Resistor  
7 Ω  
5 Ω  
4 Ω  
R18 (R19)  
Current Limit Resistor  
10 kΩ  
200 kHz  
15 kΩ  
150 kHz  
20 kΩ  
100 kHz  
Switching Frequency  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
TPS5102  
DUAL, HIGH-EFFICIENCY CONTROLLER FOR NOTEBOOK PC POWER  
SLVS239 - SEPTEMBER 1999  
DBT (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
30 PINS SHOWN  
0,27  
0,17  
M
0,50  
30  
0,08  
16  
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
15  
0°-8°  
0,75  
0,50  
A
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
28  
30  
38  
44  
50  
DIM  
7,90  
7,70  
7,90  
7,70  
9,80  
9,60  
11,10  
12,60  
12,40  
A MAX  
10,90  
A MIN  
4073252/D 09/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-153  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
配单直通车
TPS5102IDBR产品参数
型号:TPS5102IDBR
生命周期:Obsolete
包装说明:,
Reach Compliance Code:unknown
风险等级:5.84
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!