欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • TPS5420DR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • TPS5420DR 现货库存
  • 数量8500 
  • 厂家TI 
  • 封装SOP8 
  • 批号24+ 
  • 只做原装正品现货销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • TPS5420DRG4图
  • 深圳市高捷芯城科技有限公司

     该会员已使用本站11年以上
  • TPS5420DRG4 现货库存
  • 数量6825 
  • 厂家TI(德州仪器) 
  • 封装SOP-8 
  • 批号23+ 
  • 百分百原装正品,可原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83062789 QQ:3007977934QQ:3007947087
  • TPS5420DR图
  • 集好芯城

     该会员已使用本站13年以上
  • TPS5420DR 现货库存
  • 数量14880 
  • 厂家TI(德州仪器) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TPS5420DR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TPS5420DR 现货库存
  • 数量16988 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装正品现货
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • TPS5420DR图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • TPS5420DR 现货库存
  • 数量21000 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号23+ 
  • 代理原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • TPS5420DR图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • TPS5420DR 现货库存
  • 数量32560 
  • 厂家TI 
  • 封装SOIC8 
  • 批号2024+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • TPS5420DR图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • TPS5420DR 现货库存
  • 数量60030 
  • 厂家TI/德州仪器 
  • 封装SOP-8 
  • 批号2023+ 
  • 专营原装正品量大可定货
  • QQ:2885134554QQ:2885134554 复制
    QQ:2885134398QQ:2885134398 复制
  • 0755-22669259 QQ:2885134554QQ:2885134398
  • TPS5420DR图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • TPS5420DR 现货库存
  • 数量8468 
  • 厂家TI 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • TPS5420DR图
  • 深圳市积美福电子科技有限公司

     该会员已使用本站4年以上
  • TPS5420DR 现货库存
  • 数量2500 
  • 厂家TI/德州仪器 
  • 封装SOIC-8 
  • 批号21+ 
  • 原装现货,假一罚十!!!
  • QQ:647176908QQ:647176908 复制
    QQ:499959596QQ:499959596 复制
  • 0755-83228296 QQ:647176908QQ:499959596
  • TPS5420DR图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • TPS5420DR 现货库存
  • 数量12500 
  • 厂家TI 
  • 封装SOIC-8 
  • 批号24+ 
  • 假一罚百,TI专营!深圳有库存,北美、新加坡可发货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • TPS5420DR图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • TPS5420DR 现货库存
  • 数量12500 
  • 厂家TI(德州仪器) 
  • 封装SOIC-8_150mil 
  • 批号1年内 
  • 全新原装 货源稳定 长期供应 提供配单
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • TPS5420DR图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • TPS5420DR 现货库存
  • 数量9000 
  • 厂家TI/BB 
  • 封装SOIC8 
  • 批号2024+ 
  • 全新原装现货,全网最低价
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • TPS5420DR图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • TPS5420DR 现货库存
  • 数量8000 
  • 厂家TI(德州仪器) 
  • 封装SOIC-8 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • TPS5420DR图
  • 深圳市恒嘉威智能科技有限公司

     该会员已使用本站7年以上
  • TPS5420DR 现货库存
  • 数量14324 
  • 厂家TI/德州仪器 
  • 封装SOP 
  • 批号21+ 
  • 原装恒嘉威价格最实在
  • QQ:1036846627QQ:1036846627 复制
    QQ:2274045202QQ:2274045202 复制
  • -0755-23942980 QQ:1036846627QQ:2274045202
  • TPS5420DR图
  • 北京奕芯科技有限公司

     该会员已使用本站12年以上
  • TPS5420DR 现货库存
  • 数量65 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 当天发货原装正品
  • QQ:335885516QQ:335885516 复制
  • 010-81030386 QQ:335885516
  • TPS5420DR图
  • 深圳市欧昇科技有限公司

     该会员已使用本站2年以上
  • TPS5420DR 现货库存
  • 数量500 
  • 厂家TI? 德州仪器 
  • 封装N/A 
  • 批号21+ 
  • 深圳现货,当天可发,真实库存
  • QQ:2885528234QQ:2885528234 复制
  • -0755-83220848 QQ:2885528234
  • TPS5420DR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TPS5420DR 现货库存
  • 数量2500 
  • 厂家TI 
  • 封装SOIC (D) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TPS5420DR图
  • 深圳市力拓辉电子有限公司

     该会员已使用本站13年以上
  • TPS5420DR 现货库存
  • 数量90000 
  • 厂家TI 
  • 封装SOP-8 
  • 批号1445+ 
  • 全新原装特价热卖中
  • QQ:2881140004QQ:2881140004 复制
    QQ:2881140005QQ:2881140005 复制
  • 755-82787180 QQ:2881140004QQ:2881140005
  • TPS5420DR图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • TPS5420DR 现货库存
  • 数量18500 
  • 厂家TI(德州仪器) 
  • 封装SOIC-8_150mil 
  • 批号24+ 
  • ★★全网低价,原装原包★★
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • TPS5420DR图
  • 深圳市驰天熠电子有限公司

     该会员已使用本站1年以上
  • TPS5420DR 现货热卖
  • 数量3754 
  • 厂家TI 
  • 封装SOP-8 
  • 批号23+ 
  • 全新原装正品,优势价格,支持BOM配单
  • QQ:3003795629QQ:3003795629 复制
    QQ:534325024QQ:534325024 复制
  • 86-15802056765 QQ:3003795629QQ:534325024
  • TPS5420DR图
  • 上海金庆电子技术有限公司

     该会员已使用本站15年以上
  • TPS5420DR 优势库存
  • 数量1000 
  • 厂家TI 
  • 封装SOIC8 
  • 批号新 
  • 全新原装 货期两周
  • QQ:1484215649QQ:1484215649 复制
    QQ:729272152QQ:729272152 复制
  • 021-51872153 QQ:1484215649QQ:729272152
  • TPS5420DR图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • TPS5420DR
  • 数量5000 
  • 厂家TI/德州仪器 
  • 封装SOP-8 
  • 批号21+ 
  • 原厂原包装,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • TPS5420DR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TPS5420DR
  • 数量65000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • TPS5420DR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TPS5420DR
  • 数量56000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • TPS5420DR图
  • 深圳市旺能芯科技有限公司

     该会员已使用本站4年以上
  • TPS5420DR
  • 数量15000 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号22+ 
  • 深圳全新原装库存现货
  • QQ:2881495751QQ:2881495751 复制
  • 13602549709 QQ:2881495751
  • TPS5420DR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • TPS5420DR
  • 数量3000 
  • 厂家TI 
  • 封装SOP-8 
  • 批号23+ 
  • 全新原装公司现货库存!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • TPS5420DR图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • TPS5420DR
  • 数量5680 
  • 厂家TI 
  • 封装SOIC-8 
  • 批号23+ 
  • 原装正品长期供货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • TPS5420DR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • TPS5420DR
  • 数量5680 
  • 厂家TI 
  • 封装SOIC-8 
  • 批号23+ 
  • 原装正品特价销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • TPS5420DR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • TPS5420DR
  • 数量3000 
  • 厂家TI 
  • 封装SOP-8 
  • 批号23+ 
  • 全新原装公司现货销售
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • TPS5420DR图
  • 深圳市能元时代电子有限公司

     该会员已使用本站10年以上
  • TPS5420DR
  • 数量50000 
  • 厂家TI 
  • 封装SOP8 
  • 批号24+ 
  • 公司原装现货可含税!假一罚十!
  • QQ:2885637848QQ:2885637848 复制
    QQ:2885658492QQ:2885658492 复制
  • 0755-84502810 QQ:2885637848QQ:2885658492
  • TPS5420DR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • TPS5420DR
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150

产品型号TPS5420DR的概述

芯片TPS5420DR的概述 TPS5420DR是一款高效集成的降压调节器,由德州仪器(Texas Instruments)公司设计与生产。该芯片主要用于将直流电压转换为较低的直流电压,广泛应用于便携式设备、通信设备、工业控制以及汽车电子等领域。TPS5420DR具备较高的转换效率和良好的负载调节性能,使其在多个电子产品中获得广泛的应用。 芯片TPS5420DR的详细参数 TPS5420DR作为一种开关降压调节器,其主要参数包括: - 输入电压范围:4.5V至17V,适应多种供电环境。 - 输出电压:可通过外部电阻分压设置,可调范围为0.8V至输出电压大于输入电源电压减去1.5V(取决于负载需求)。 - 最大输出电流:TPS5420DR具有最高可达2A的输出电流能力,适合中等功率应用。 - 开关频率:默认频率为300kHz,可通过外部电阻调节,提供灵活性和优化性能。 - 效率:在适当条...

产品型号TPS5420DR的Datasheet PDF文件预览

TPS5420  
www.ti.com  
SLVS642AAPRIL 2006REVISED AUGUST 2006  
2-A, WIDE INPUT RANGE, STEP-DOWN SWIFT™ CONVERTER  
FEATURES  
APPLICATIONS  
Consumer: Set-top Box, DVD, LCD Displays  
Industrial and Car Audio Power Supplies  
Battery Chargers, High Power LED Supply  
12-V/24-V Distributed Power Systems  
Wide Input Voltage Range: 5.5 V to 36 V  
Up to 2-A Continuous (3-A Peak) Output  
Current  
High Efficiency up to 95% Enabled by 110-m  
Integrated MOSFET Switch  
DESCRIPTION  
Wide Output Voltage Range: Adjustable  
Down to 1.22 V with 1.5% Initial Accuracy  
As a member of the SWIFT™ family of DC/DC  
regulators, the TPS5420 is a high-output-current  
PWM converter that integrates a low resistance high  
side N-channel MOSFET. Included on the substrate  
with the listed features is a high performance voltage  
error amplifier that provides tight voltage regulation  
Internal Compensation Minimizes External  
Parts Count  
Fixed 500-kHz Switching Frequency for Small  
Filter Size  
accuracy  
under  
transient  
conditions;  
an  
Improved Line Regulation and Transient  
Response by Input Voltage Feed Forward  
undervoltage-lockout circuit to prevent start-up until  
the input voltage reaches 5.5 V; an internally set  
slow-start circuit to limit inrush currents; and a  
voltage feed-forward circuit to improve the transient  
response. Using the ENA pin, shutdown supply  
current is reduced to 18 µA typically. Other features  
include an active high enable, overcurrent protection  
and thermal shutdown. To reduce design complexity  
and external component count, the TPS5420  
feedback loop is internally compensated.  
System Protected by Overcurrent Limiting  
and Thermal Shutdown  
–40°C to 125°C Operating Junction  
Temperature Range  
Available in Small 8-Pin SOIC Package  
For SWIFT Documentation, Application Notes  
and Design Software, See the TI Website at  
www.ti.com/swift  
The TPS5420 device is available in an easy to use  
8-pin SOIC package. TI provides evaluation modules  
and the SWIFT™ Designer software tool to aid in  
quickly achieving high-performance power supply  
designs to meet aggressive equipment development  
cycles.  
SIMPLIFIED SCHEMATIC  
Efficiency vs Output Current  
100  
95  
VIN  
VOUT  
VIN  
PH  
TPS5420  
90  
85  
80  
75  
70  
65  
60  
BOOT  
NC  
NC  
VI = 12 V  
VSENSE  
ENA  
GND  
55  
50  
0
0.5  
1
1.5  
2
2.5  
3
I
− Output Current− A  
O
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
SWIFT is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2006, Texas Instruments Incorporated  
TPS5420  
www.ti.com  
SLVS642AAPRIL 2006REVISED AUGUST 2006  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION  
TJ  
INPUT VOLTAGE  
OUTPUT VOLTAGE  
PACKAGE(1)  
PART NUMBER  
–40°C to 125°C  
5.5 V to 36 V  
Adjustable to 1.22 V  
SOIC (D)(2)  
TPS5420D  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) The D package is available taped and reeled. Add an R suffix to the device type (i.e., TPS5420DR).  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)  
VALUE  
–0.3 to 40(3)  
–0.3 to 50  
–0.6 to 40(3)  
–0.3 to 7  
–0.3 to 3  
10  
UNIT  
VIN  
BOOT  
PH (steady-state)  
VI  
Input voltage range  
EN  
V
VSENSE  
BOOT-PH  
PH (transient < 10 ns)  
–1.2  
IO  
Source current  
PH  
PH  
Internally Limited  
10  
Ilkg  
TJ  
Leakage current  
µA  
°C  
°C  
Operating virtual junction temperature range  
Storage temperature  
–40 to 150  
–65 to 150  
Tstg  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) Approaching the absolute maximum rating for the VIN pin may cause the voltage on the PH pin to exceed the absolute maximum rating.  
DISSIPATION RATINGS(1)(2)  
THERMAL IMPEDANCE  
JUNCTION-TO-AMBIENT  
PACKAGE  
(3)  
8 Pin D  
75°C/W  
(1) Maximum power dissipation may be limited by overcurrent protection.  
(2) Power rating at a specific ambient temperature TA should be determined with a junction temperature of 125°C. This is the point where  
distortion starts to substantially increase. Thermal management of the final PCB should strive to keep the junction temperature at or  
below 125°C for best performance and long-term reliability. See Thermal Calculations in applications section of this data sheet for more  
information.  
(3) Test board conditions:  
a. 3 in x 3 in, 2 layers, thickness: 0.062 inch.  
b. 2 oz. copper traces located on the top and bottom of the PCB.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
5.5  
NOM  
MAX  
36  
UNIT  
V
VI  
Input voltage range, VIN  
TJ  
Operating junction temperature  
–40  
125  
°C  
2
Submit Documentation Feedback  
TPS5420  
www.ti.com  
SLVS642AAPRIL 2006REVISED AUGUST 2006  
ELECTRICAL CHARACTERISTICS  
TJ = –40°C to 125°C, VIN = 5.5 V to 36 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE (VIN PIN)  
VSENSE = 2 V, Not switching, PH pin  
open  
3
4.4  
50  
mA  
IQ  
Quiescent current  
Shutdown, ENA = 0 V  
18  
µA  
UNDERVOLTAGE LOCK OUT (UVLO)  
Start threshold voltage, UVLO  
Hysteresis voltage, UVLO  
5.3  
5.5  
V
330  
mV  
VOLTAGE REFERENCE  
TJ = 25°C  
1.202  
1.196  
1.221  
1.221  
1.239  
1.245  
Voltage reference accuracy  
V
IO = 0 A – 2 A  
OSCILLATOR  
Internally set free-running frequency  
Minimum controllable on time  
Maximum duty cycle  
400  
500  
150  
600  
200  
kHz  
ns  
87%  
89%  
ENABLE (ENA PIN)  
Start threshold voltage, ENA  
Stop threshold voltage, ENA  
Hysteresis voltage, ENA  
Internal slow-start time (0 ~ 100%)  
CURRENT LIMIT  
1.3  
10  
V
V
0.5  
6.6  
450  
8
mV  
ms  
Current limit  
3
4
5
A
Current limit hiccup time  
THERMAL SHUTDOWN  
Thermal shutdown trip point  
Thermal shutdown hysteresis  
OUTPUT MOSFET  
13  
16  
20  
ms  
135  
162  
14  
°C  
°C  
VIN = 5.5 V  
150  
110  
rDS(on)  
High side power MOSFET switch  
mΩ  
VIN = 10 V - 36 V  
230  
3
Submit Documentation Feedback  
TPS5420  
www.ti.com  
SLVS642AAPRIL 2006REVISED AUGUST 2006  
PIN ASSIGNMENTS  
D PACKAGE  
(TOP VIEW)  
PH  
8
7
6
5
BOOT  
NC  
1
2
3
4
VIN  
GND  
ENA  
NC  
VSENSE  
TERMINAL FUNCTIONS  
TERMINAL  
DESCRIPTION  
NAME  
BOOT  
NC  
NO.  
1
Boost capacitor for the high-side FET gate driver. Connect 0.01 µF low ESR capacitor from BOOT pin to PH pin.  
Not connected internally.  
2, 3  
4
VSENSE  
ENA  
Feedback voltage for the regulator. Connect to output voltage divider.  
On/off control. Below 0.5 V, the device stops switching. Float the pin to enable.  
Ground.  
5
GND  
6
Input supply voltage. Bypass VIN pin to GND pin close to device package with a high quality, low ESR ceramic  
capacitor.  
VIN  
PH  
7
8
Source of the high side power MOSFET. Connected to external inductor and diode.  
4
Submit Documentation Feedback  
TPS5420  
www.ti.com  
SLVS642AAPRIL 2006REVISED AUGUST 2006  
TYPICAL CHARACTERISTICS  
MINIMUM CONTROLLABLE ON  
OSCILLATOR FREQUENCY  
OPERATING QUIESCENT CURRENT  
TIME  
vs  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
530  
520  
3.5  
180  
170  
V
= 12 V  
I
3.25  
510  
160  
150  
500  
490  
480  
3
140  
130  
120  
2.75  
2.5  
470  
460  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
− Junction Temperature − o  
C
− Junction Temperature − o  
C
J
T
− Junction Temperature − o  
C
T
T
J
J
Figure 1.  
Figure 2.  
Figure 3.  
VOLTAGE REFERENCE  
vs  
JUNCTION TEMPERATURE  
ON STATE RESISTANCE  
vs  
JUNCTION TEMPERATURE  
INTERNAL SLOW START TIME  
vs  
JUNCTION TEMPERATURE  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
1.23  
9
V
= 12 V  
I
1.225  
1.22  
8.5  
8
1.215  
1.21  
7.5  
80  
7
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
T
− Junction Temperature − o  
C
T
− Junction Temperature − o  
C
J
J
T
− Junction Temperature − o  
C
J
Figure 4.  
Figure 5.  
Figure 6.  
MINIMUM CONTROLLABLE DUTY  
SHUTDOWN QUIESCENT CURRENT  
RATIO  
vs  
vs  
INPUT VOLTAGE  
JUNCTION TEMPERATURE  
8
25  
20  
15  
10  
5
ENA = 0 V  
T
= 125oC  
J
J
7.5  
T
= 27oC  
7.5  
7.25  
T
= -40oC  
J
7
0
5
10  
15  
20  
25  
30  
35  
40  
-50  
-25  
0
25  
50  
75  
100  
125  
− Junction Temperature − o  
C
V
− Input Voltage − V  
I
T
J
Figure 7.  
Figure 8.  
5
Submit Documentation Feedback  
TPS5420  
www.ti.com  
SLVS642AAPRIL 2006REVISED AUGUST 2006  
APPLICATION INFORMATION  
FUNCTIONAL BLOCK DIAGRAM  
VIN  
VIN  
VREF  
SHDN  
Boot  
Regulator  
1.221 V Bandgap  
Reference  
Slow Start  
UVLO  
BOOT  
HICCUP  
5 µA  
SHDN  
ENABLE  
ENA  
SHDN  
VSENSE  
Z1  
Thermal  
Protection  
Error  
Amplifier  
SHDN  
SHDN  
Z2  
Ramp  
NC  
VIN  
Feed Forward  
Gain = 25  
Generator  
NC  
HICCUP  
PWM  
Comparator  
SHDN  
GND  
Overcurrent  
Protection  
Oscillator  
SHDN  
SHDN  
Gate Drive  
Control  
Gate  
Driver  
SHDN  
PH  
BOOT  
VOUT  
DETAILED DESCRIPTION  
Oscillator Frequency  
The internal free running oscillator sets the PWM switching frequency at 500 kHz. The 500 kHz switching  
frequency allows less output inductance for the same output ripple requirement resulting in a smaller output  
inductor.  
Voltage Reference  
The voltage reference system produces a precision reference signal by scaling the output of a temperature  
stable bandgap circuit. The bandgap and scaling circuits are trimmed during production testing to an output of  
1.221 V at room temperature.  
Enable (ENA) and Internal Slow Start  
The ENA pin provides electrical on/off control of the regulator. Once the ENA pin voltage exceeds the threshold  
voltage, the regulator starts operation and the internal slow start begins to ramp. If the ENA pin voltage is pulled  
below the threshold voltage, the regulator stops switching and the internal slow start resets. Connecting the pin  
to ground or to any voltage less than 0.5 V disables the regulator and activate the shutdown mode. The  
quiescent current of the TPS5420 in shutdown mode is typically 18 µA.  
The ENA pin has an internal pullup current source, allowing the user to float the ENA pin. If an application  
requires controlling the ENA pin, use open drain or open collector output logic to interface with the pin. To limit  
the start-up inrush current, an internal slow start circuit is used to ramp up the reference voltage from 0 V to its  
final value linearly. The internal slow start time is 8 ms typically.  
6
Submit Documentation Feedback  
TPS5420  
www.ti.com  
SLVS642AAPRIL 2006REVISED AUGUST 2006  
APPLICATION INFORMATION (continued)  
Undervoltage Lockout (UVLO)  
The TPS5420 incorporates an undervoltage lockout circuit to keep the device disabled when VIN (the input  
voltage) is below the UVLO start voltage threshold. During power up, internal circuits are held inactive until VIN  
exceeds the UVLO start threshold voltage. Once the UVLO start threshold voltage is reached, device start-up  
begins. The device operates until VIN falls below the UVLO stop threshold voltage. The typical hysteresis in the  
UVLO comparator is 330 mV.  
Boost Capacitor (BOOT)  
Connect a 0.01 µF low-ESR ceramic capacitor between the BOOT pin and PH pin. This capacitor provides the  
gate drive voltage for the high-side MOSFET. X7R or X5R grade dielectrics are recommended due to their  
stable values over temperature.  
Output Feedback (VSENSE)  
The output voltage of the regulator is set by feeding back the center point voltage of an external resistor divider  
network to the VSENSE pin. In steady-state operation, the VSENSE pin voltage should be equal to the voltage  
reference 1.221 V.  
Internal Compensation  
The TPS5420 implements internal compensation to simplify the regulator design. Since the TPS5420 uses  
voltage mode control, a type 3 compensation network has been designed on chip to provide a high crossover  
frequency and a high phase margin for good stability. See the Internal Compensation Network in the  
applications section for more details.  
Voltage Feed Forward  
The internal voltage feed forward provides a constant DC power stage gain despite any variations with the input  
voltage. This greatly simplifies the stability analysis and improves the transient response. Voltage feed forward  
varies the peak ramp voltage inversely with the input voltage so that the modulator and power stage gain are  
constant at the feed forward gain, i.e.  
VIN  
Feed Forward Gain =  
Ramp  
pk-pk  
(1)  
The typical feed forward gain of TPS5420 is 25.  
Pulse-Width-Modulation (PWM) Control  
The regulator employs a fixed frequency pulse-width-modulator (PWM) control method. First, the feedback  
voltage (VSENSE pin voltage) is compared to the constant voltage reference by the high gain error amplifier and  
compensation network to produce a error voltage. Then, the error voltage is compared to the ramp voltage by  
the PWM comparator. In this way, the error voltage magnitude is converted to a pulse width which is the duty  
cycle. Finally, the PWM output is fed into the gate drive circuit to control the on-time of the high-side MOSFET.  
Overcurrent Protection  
Overcurrent protection is implemented by sensing the drain-to-source voltage across the high-side MOSFET.  
The drain to source voltage is then compared to a voltage level representing the overcurrent threshold limit. If  
the drain-to-source voltage exceeds the overcurrent threshold limit, the overcurrent indicator is set true. The  
system ignores the overcurrent indicator for the leading edge blanking time at the beginning of each cycle to  
avoid any turn-on noise glitches.  
Once overcurrent indicator is set true, overcurrent protection is triggered. The high-side MOSFET is turned off  
for the rest of the cycle after a propagation delay. The overcurrent protection scheme is called cycle-by-cycle  
current limiting.  
7
Submit Documentation Feedback  
TPS5420  
www.ti.com  
SLVS642AAPRIL 2006REVISED AUGUST 2006  
APPLICATION INFORMATION (continued)  
If the sensed current continues increasing even with the cycle-by-cycle current limiting which may happen during  
short-circuit or under other circumstances, the hiccup mode overcurrent protection is triggered instead of the  
cycle-by-cycle current limiting. During the hiccup mode overcurrent protection, the voltage reference is grounded  
and the high-side MOSFET is turned off for the hiccup time. Once the hiccup time is complete, the regulator  
restarts.  
Thermal Shutdown  
The TPS5420 protects itself from overheating with an internal thermal shutdown circuit. If the junction  
temperature exceeds the thermal shutdown trip point, the voltage reference is grounded and the high-side  
MOSFET is turned off. The part is restarted under control of the slow start circuit automatically when the junction  
temperature drops 14°C below the thermal shutdown trip point.  
PCB Layout  
Connect a low ESR ceramic bypass capacitor to the VIN pin. Care should be taken to minimize the loop area  
formed by the bypass capacitor connections, the VIN pin, and the TPS5420 ground pin. The best way to do this  
is to extend the top side ground area from under the device adjacent to the VIN trace, and place the bypass  
capacitor as close as possible to the VIN pin. The minimum recommended bypass capacitance is 10-µF ceramic  
with a X5R or X7R dielectric.  
There should be a ground area on the top layer directly underneath the IC to connect the GND pin of the device  
and the anode of the catch diode. The GND pin should be tied to the PCB ground by connecting it to the ground  
area under the device as shown in Figure 9.  
The PH pin should be routed to the output inductor, catch diode and boot capacitor. Since the PH connection is  
the switching node, the inductor should be located close to the PH pin, and the area of the PCB conductor  
minimized to prevent excessive capacitive coupling. The catch diode should also be placed close to the device  
to minimize the output current loop area. Connect the boot capacitor between the phase node and the BOOT pin  
as shown. Keep the boot capacitor close to the IC and minimize the conductor trace lengths. The component  
placements and connections shown work well, but other connection routings may also be effective.  
Connect the output filter capacitor(s) as shown between the VOUT trace and GND. It is important to keep the  
loop formed by the PH pin, Lout, Cout and GND as small as is practical.  
Connect the VOUT trace to the VSENSE pin using the resistor divider network to set the output voltage. Do not  
route this trace too close to the PH trace. Due to the size of the IC package and the device pinout, the trace may  
need to be routed under the output capacitor. The routing may be done on an alternate layer if a trace under the  
output capacitor is not desired.  
If the grounding scheme shown is used via a connection to a different layer to route to the ENA pin.  
8
Submit Documentation Feedback  
TPS5420  
www.ti.com  
SLVS642AAPRIL 2006REVISED AUGUST 2006  
APPLICATION INFORMATION (continued)  
PH  
CATCH  
DIODE  
BOOT  
CAPACITOR  
INPUT  
BULK  
FILTER  
INPUT  
BYPASS  
CAPACITOR  
BOOT  
NC  
PH  
OUTPUT  
INDUCTOR  
Vin  
VIN  
GND  
ENA  
NC  
RESISTOR  
DIVIDER  
VSENSE  
VOUT  
OUTPUT  
FILTER  
CAPACITOR  
TOPSIDE GROUND AREA  
VIA to Ground Plane  
Route feedback  
trace under the output  
filter capacitor or on  
the other layer.  
Signal VIA  
Figure 9. Design Layout  
9
Submit Documentation Feedback  
TPS5420  
www.ti.com  
SLVS642AAPRIL 2006REVISED AUGUST 2006  
APPLICATION INFORMATION (continued)  
0.220  
0.080  
All dimensions in inches  
Figure 10. TPS5420 Land Pattern  
Application Circuits  
Figure 11 shows the schematic for a typical TPS5420 application. The TPS5420 can provide up to 2-A output  
current at a nominal output voltage of 5 V.  
U1  
L1  
33 mH  
C2  
0.01 mF  
TPS5420D  
TP5  
10 V - 35 V  
7
5
2
5 V  
VIN  
VIN  
1
8
4
BOOT  
PH  
VOUT  
ENA  
NC  
ENA  
C1  
4.7 mF  
C4  
4.7 mF  
+
D1  
B340A  
C3  
100 mF  
(See Note A)  
R1  
10 kW  
3
6
NC  
VSNS  
GND  
R2  
3.24 kW  
A. C3 = Tantalum AVX TPSD107M010R0080  
Figure 11. Application Circuit, 10-V — 35 V to 5-V  
10  
Submit Documentation Feedback  
 
TPS5420  
www.ti.com  
SLVS642AAPRIL 2006REVISED AUGUST 2006  
APPLICATION INFORMATION (continued)  
Design Procedure  
The following design procedure can be used to select component values for the TPS5420. Alternately, the  
SWIFT™ Designer Software may be used to generate a complete design. The SWIFT™ Designer Software  
uses an iterative design procedure and accesses a comprehensive database of components when generating a  
design. This section presents a simplified discussion of the design process.  
To begin the design process, a few parameters must be determined. The designer must know the following:  
Input voltage range  
Output voltage  
Input ripple voltage  
Output ripple voltage  
Output current rating  
Operating frequency  
Design Parameters  
For this design example, use the following as the input parameters:  
DESIGN PARAMETER(1)  
Input voltage range  
Output voltage  
EXAMPLE VALUE  
10 V to 36 V  
5 V  
Input ripple voltage  
Output ripple voltage  
Output current rating  
Operating frequency  
300 mV  
30 mV  
2 A  
500 kHz  
(1) As an additional constraint, the design is set up to be small size and low component height.  
Switching Frequency  
The switching frequency for the TPS5420 is internally set to 500 kHz. It is not possible to adjust the switching  
frequency.  
Input Capacitors  
The TPS5420 requires an input decoupling capacitor and, depending on the application, a bulk input capacitor.  
The recommended value for the decoupling capacitor is 10 µF. A high quality ceramic type X5R or X7R is  
required. For some applications, a smaller value decoupling capacitor may be used, if the input voltage and  
current ripple ratings are not exceeded. The voltage rating must be greater than the maximum input voltage,  
including ripple. For this design, two 4.7 µF capacitors, C1 and C4 are used to allow for smaller 1812 case size  
to be used while maintaining a 50 V rating.  
This input ripple voltage can be approximated by Equation 2 :  
I
x 0.25  
OUT(MAX)  
+ I  
(
x ESR  
MAX  
DV  
=
)
OUT(MAX)  
IN  
C
x ƒSW  
BULK  
(2)  
Where IOUT(MAX) is the maximum load current, fSW is the switching frequency, CI is the input capacitor value and  
ESRMAX is the maximum series resistance of the input capacitor.  
The maximum RMS ripple current also needs to be checked. For worst case conditions, this is approximated by  
Equation 3:  
11  
Submit Documentation Feedback  
 
TPS5420  
www.ti.com  
SLVS642AAPRIL 2006REVISED AUGUST 2006  
I
OUT(MAX)  
I
+
CIN  
2
(3)  
In this example, the calculated input ripple voltage is 118 mV, and the RMS ripple current is 1.0 A. The  
maximum voltage across the input capacitors would be VIN max plus delta VIN/2. The chosen input decoupling  
capacitors are rated for 50 V, and the ripple current capacity for each is 3 A at 500 kHz, providing ample margin.  
The actual measured input ripple voltage may be larger than the calculated value due to the output impedance  
of the input voltage source and parasitics associated with the layout.  
CAUTION:  
The maximum ratings for voltage and current are not to be exceeded under any  
circumstance.  
Additionally, some bulk capacitance may be needed, especially if the TPS5420 circuit is not located within  
approximately 2 inches from the input voltage source. The value for this capacitor is not critical but it should be  
rated to handle the maximum input voltage including ripple voltage and should filter the output so that input  
ripple voltage is acceptable.  
Output Filter Components  
Two components need to be selected for the output filter, L1 and C2. Since the TPS5420 is an internally  
compensated device, a limited range of filter component types and values can be supported.  
Inductor Selection  
To calculate the minimum value of the output inductor, use Equation 4:  
V
x V  
(
- V  
)
OUT  
IN(MAX) OUT  
L
=
MIN  
V
x K  
IND  
x I  
x F x 0.8  
SW  
IN(max)  
OUT  
(4)  
KIND is a coefficient that represents the amount of inductor ripple current relative to the maximum output current.  
Three things need to be considered when determining the amount of ripple current in the inductor: the peak to  
peak ripple current affects the output ripple voltage amplitude, the ripple current affects the peak switch current,  
and the amount of ripple current determines at what point the circuit becomes discontinuous. For designs using  
the TPS5420, KIND of 0.2 to 0.3 yields good results. Low output ripple voltages is obtained when paired with the  
proper output capacitor, the peak switch current is below the current limit set point, and low load currents can be  
sourced before discontinuous operation.  
For this design example, use KIND = 0.2, and the minimum inductor value is 31 µH. The next highest standard  
value used in this design is 33 µH.  
For the output filter inductor, it is important that the RMS current and saturation current ratings not be exceeded.  
The RMS inductor current can be found from Equation 5:  
2
ǒV  
OUTǓ  
V
 
* V  
IN(MAX)  
  L   F  
OUT  
1
12  
I2  
I
+
)
 
ǒ
Ǔ
Ǹ
L(RMS)  
OUT(MAX)  
V
  0.8  
IN(MAX)  
OUT  
SW  
(5)  
and the peak inductor current can be determined using Equation 6:  
V
x V  
(
- V  
OUT  
)
OUT  
IN(MAX)  
x L  
I
= I  
+
L(PK)  
OUT(MAX)  
1.6 x V  
x F  
SW  
IN(MAX)  
OUT  
(6)  
For this design, the RMS inductor current is 2.002 A, and the peak inductor current is 2.16 A. The chosen  
inductor is a Coilcraft MSS1260-333 type. The nominal inductance is 33 µH. It has a saturation current rating of  
2.2 A and a RMS current rating of 2.7 A, which meets the requirements. Inductor values for use with the  
TPS5420 are in the range of 10 µH to 100 µH.  
12  
Submit Documentation Feedback  
 
 
 
TPS5420  
www.ti.com  
SLVS642AAPRIL 2006REVISED AUGUST 2006  
Capacitor Selection  
The important design factors for the output capacitor are dc voltage rating, ripple current rating, and equivalent  
series resistance (ESR). The dc voltage and ripple current ratings cannot be exceeded. The ESR is important  
because along with the inductor ripple current it determines the amount of output ripple voltage. The actual value  
of the output capacitor is not critical, but some practical limits do exist. Consider the relationship between the  
desired closed loop crossover frequency of the design and LC corner frequency of the output filter. Due to the  
design of the internal compensation, it is recommended to keep the closed loop crossover frequency in the  
range 3 kHz to 30 kHz as this frequency range has adequate phase boost to allow for stable operation. For this  
design example, the intended closed loop crossover frequency is between 2590 Hz and 24 kHz, and below the  
ESR zero of the output capacitor. Under these conditions, the closed loop crossover frequency is related to the  
LC corner frequency as:  
2
f
LC  
f
+
CO  
85 V  
OUT  
(7)  
and the desired output capacitor value for the output filter to:  
1
  f  
C
+
OUT  
3357   L  
  V  
OUT  
CO  
OUT  
(8)  
For a desired crossover of 18 kHz and a 33-µH inductor, the calculated value for the output capacitor is 100 µF.  
The capacitor type should be chosen so that the ESR zero is above the loop crossover. The maximum ESR is:  
1
ESR  
+
MAX  
2p   C  
  f  
OUT  
CO  
(9)  
The maximum ESR of the output capacitor also determines the amount of output ripple as specified in the initial  
design parameters. The output ripple voltage is the inductor ripple current times the ESR of the output filter.  
Check that the maximum specified ESR as listed in the capacitor data sheet results in an acceptable output  
ripple voltage:  
ESR  
x V  
x V  
(
- V  
)
MAX  
x V  
OUT  
IN(MAX)  
x F  
SW  
OUT  
V
(MAX) =  
PP  
N
x L  
x 0.8  
C
IN(MAX)  
OUT  
(10)  
Where:  
VPP is the desired peak-to-peak output ripple.  
NC is the number of parallel output capacitors.  
FSW is the switching frequency.  
The minimum ESR of the output capacitor should also be considered. For a good phase margin, if the ESR is  
zero when the ESR is at its minimum, it should not be above the internal compensation poles at 24 kHz and  
54 kHz.  
The selected output capacitor must also be rated for a voltage greater than the desired output voltage plus one  
half the ripple voltage. Any derating amount must also be included. The maximum RMS ripple current in the  
output capacitor is given by Equation 11:  
V
x V  
(
- V  
)
OUT  
IN(MAX) OUT  
1
x
I
=
COUT(RMS)  
Ö12  
[
]
V
x L  
- F  
x 0.8 x N  
IN(MAX)  
OUT  
SW C  
(11)  
Where:  
NC is the number of output capacitors in parallel.  
FSW is the switching frequency.  
13  
Submit Documentation Feedback  
 
TPS5420  
www.ti.com  
SLVS642AAPRIL 2006REVISED AUGUST 2006  
For this design example, a single 100-µF output capacitor is chosen for C3. The calculated RMS ripple current is  
143 mA and the maximum ESR required is 88 m. A capacitor that meets these requirements is a AVX  
TPSD107M010R0080, rated at 10 V with a maximum ESR of 80 mand a ripple current rating of 1.369 A. This  
capacitor results in a peak-to-peak output ripple of 26 mV using equation 10. An additional small 0.1-µF ceramic  
bypass capacitor may also used, but is not included in this design.  
Other capacitor types can be used with the TPS5420, depending on the needs of the application.  
Output Voltage Setpoint  
The output voltage of the TPS5420 is set by a resistor divider (R1 and R2) from the output to the VSENSE pin.  
Calculate the R2 resistor value for the output voltage of 5 V using Equation 12:  
R1   1.221  
R2 +  
V
* 1.221  
OUT  
(12)  
For any TPS5420 design, start with an R1 value of 10 k. R2 is then 3.24 k.  
Boot Capacitor  
The boot capacitor should be 0.01 µF.  
Catch Diode  
The TPS5420 is designed to operate using an external catch diode between PH and GND. The selected diode  
must meet the absolute maximum ratings for the application: Reverse voltage must be higher than the maximum  
voltage at the PH pin, which is VINMAX + 0.5 V. Peak current must be greater than IOUTMAX plus on half the  
peak-to-peak inductor current. Forward voltage drop should be small for higher efficiencies. It is important to  
note that the catch diode conduction time is typically longer than the high-side FET on time; therefore, the diode  
parameters improve the overall efficiency. Additionally, check that the device chosen is capable of dissipating  
the power losses. For this design, a Diodes, Inc. B340A is chosen, with a reverse voltage of 40 V, forward  
current of 3 A, and a forward voltage drop of 0.5 V.  
Additional Circuits  
Figure 12 shows an application circuit using a wide input voltage range. The design parameters are similar to  
those given for the design example, with a larger value output inductor and a lower closed loop crossover  
frequency.  
U1  
TPS5420D  
L1  
27 mH  
C2  
0.01 mF  
TP5  
10 V - 21 V  
7
VIN  
5 V  
VIN  
ENA  
NC  
1
8
4
BOOT  
VOUT  
5
2
3
6
ENA  
C1  
10 mF  
+
PH  
C3  
100 mF  
(See Note A)  
D1  
B340A  
R1  
10 kW  
NC  
VSNS  
GND  
R2  
3.24 kW  
A. C3 = Tantalum AVX TPSD107M010R0080  
Figure 12. 10-V — 21-V Input to 5-V Output Application Circuit  
14  
Submit Documentation Feedback  
 
 
TPS5420  
www.ti.com  
SLVS642AAPRIL 2006REVISED AUGUST 2006  
ADVANCED INFORMATION  
Output Voltage Limitations  
Due to the internal design of the TPS5420, there are both upper and lower output voltage limits for any given  
input voltage. The upper limit of the output voltage set point is constrained by the maximum duty cycle of 87%  
and is given by:  
ǒǒV  
  0.230Ǔ ) V Ǔ* ǒI  
LǓ* V  
D
V
+ 0.87   
* I  
  R  
OUTMAX  
INMIN  
OMAX  
D
OMAX  
(13)  
Where:  
VINMIN = minimum input voltage  
IOMAX = maximum load current  
VD = catch diode forward voltage.  
RL= output inductor series resistance.  
This equation assumes maximum on resistance for the internal high side FET.  
The lower limit is constrained by the minimum controllable on time which may be as high as 200 ns. The  
approximate minimum output voltage for a given input voltage and minimum load current is given by:  
ǒǒV  
  0.110Ǔ ) V Ǔ* ǒI  
LǓ* V  
D
V
+ 0.12   
* I  
  R  
OUTMIN  
INMAX  
OMIN  
D
OMIN  
(14)  
Where:  
VINMAX = maximum input voltage  
IOMIN = minimum load current  
VD = catch diode forward voltage.  
RL= output inductor series resistance.  
This equation assumes nominal on resistance for the high side FET and accounts for worst case variation of  
operating frequency set point. Any design operating near the operational limits of the device should be  
checked to assure proper functionality.  
Internal Compensation Network  
The design equations given in the example circuit can be used to generate circuits using the TPS5420. These  
designs are based on certain assumptions, and always select output capacitors within a limited range of ESR  
values. If a different capacitor type is desired, it may be possible to fit one to the internal compensation of the  
TPS5420. Equation 15 gives the nominal frequency response of the internal voltage-mode type III compensation  
network:  
s
s
ǒ1 )  
Ǔ ǒ  
  1 )  
Ǔ
2p Fz1  
2p Fz2  
H(s) +  
s
s
s
s
ǒ Ǔ ǒ  
Ǔ ǒ  
  1 )  
Ǔ ǒ  
  1 )  
Ǔ
  1 )  
2p Fp0  
2p Fp1  
2p Fp2  
2p Fp3  
(15)  
Where  
Fp0 = 2165 Hz, Fz1 = 2170 Hz, Fz2 = 2590 Hz  
Fp1 = 24 kHz, Fp2 = 54 kHz, Fp3 = 440 kHz  
Fp3 represents the non-ideal parasitics effect.  
Using this information along with the desired output voltage, feed forward gain and output filter characteristics,  
the closed loop transfer function can be derived.  
15  
Submit Documentation Feedback  
 
TPS5420  
www.ti.com  
SLVS642AAPRIL 2006REVISED AUGUST 2006  
Thermal Calculations  
The following formulas show how to estimate the device power dissipation under continuous conduction mode  
operations. They should not be used if the device is working at light loads in the discontinuous conduction mode.  
Conduction Loss: Pcon = IOUT2 x rDS(on) x VOUT / VIN  
Switching Loss: Psw = VIN x IOUT x 0.01  
Quiescent Current Loss: Pq = VIN x 0.01  
Total Loss: Ptot = Pcon + Psw + Pq  
Given TA => Estimated Junction Temperature: TJ = TA + Rth x Ptot  
Given TJMAX = 125°C => Estimated Maximum Ambient Temperature: TAMAX = TJMAX – Rth x Ptot  
PERFORMANCE GRAPHS  
The performance graphs in Figure 13 - Figure 19 are applicable to the circuit in Figure 11. TA = 25°C. unless  
otherwise specified.  
100  
0.3  
0.2  
0.3  
0.2  
V
= 10.8 V  
I
V
= 12 V  
95  
90  
I
I
= 2 A  
V
= 15 V  
O
I
0.1  
0
0.1  
0
I
= 0 A  
O
85  
V
= 18 V  
V
= 19.8 V  
-0.1  
-0.1  
I
I
I
= 1 A  
O
80  
75  
-0.2  
-0.3  
-0.2  
-0.3  
2
2
V - Input Voltage - V  
I
0
0.5  
1
1.5  
2.5  
3
0
0.5  
1
1.5  
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
I
- Output Current - A  
O
I
- Output Current - A  
O
Figure 13. Efficiency vs. Output  
Current  
Figure 14. Output Regulation % vs.  
Output Current  
Figure 15. Input Regulation % vs.  
Input Voltage  
VIN = 100 mV/Div (AC Coupled)  
VOUT = 20 mV/Div (AC Coupled)  
V
OUT = 50 mV/Div (AC Coupled)  
PH = 5 V/Div  
PH = 5 V/Div  
IOUT = 500 mA/Div  
t - Time = 200 μs/Div  
t - Time - 1 ms / Div  
t - Time - 1 ms / Div  
Figure 16. Input Voltage Ripple  
and PH Node, IO = 3 A  
Figure 17. Output Voltage Ripple  
and PH Node, IO = 3 A  
Figure 18. Transient Response, Io  
Step 0.5 to 1.5 A  
16  
Submit Documentation Feedback  
 
TPS5420  
www.ti.com  
SLVS642AAPRIL 2006REVISED AUGUST 2006  
VIN = 10 V/Div  
ENA = 2 V/Div  
VOUT = 2 V/Div  
VOUT = 2 V/Div  
t - Time = 5 ms/Div  
t - Time = 5 ms/Div  
Figure 19. Startup Waveform, VIN  
and VOUT  
Figure 20. Startup Waveform, ENA  
and VOUT  
17  
Submit Documentation Feedback  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Sep-2006  
PACKAGING INFORMATION  
Orderable Device  
TPS5420D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS5420DG4  
TPS5420DR  
SOIC  
SOIC  
SOIC  
D
D
D
75 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS5420DRG4  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Low Power Wireless www.ti.com/lpw  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  
配单直通车
TPS5420DR产品参数
型号:TPS5420DR
Brand Name:Texas Instruments
是否无铅:不含铅
是否Rohs认证:符合
生命周期:Active
IHS 制造商:TEXAS INSTRUMENTS INC
零件包装代码:SOIC
包装说明:GREEN, PLASTIC, MS-012AA, SOIC-8
针数:8
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
Factory Lead Time:1 week
风险等级:0.72
Is Samacsys:N
其他特性:OUTPUT ADJUSTABLE DOWN TO 1.22V
模拟集成电路 - 其他类型:SWITCHING REGULATOR
控制模式:VOLTAGE-MODE
控制技术:PULSE WIDTH MODULATION
最大输入电压:36 V
最小输入电压:5.5 V
JESD-30 代码:R-PDSO-G8
JESD-609代码:e4
长度:4.9 mm
湿度敏感等级:2
功能数量:1
端子数量:8
最高工作温度:125 °C
最低工作温度:-40 °C
最大输出电流:5 A
最大输出电压:31 V
最小输出电压:1.23 V
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):260
认证状态:Not Qualified
座面最大高度:1.75 mm
表面贴装:YES
切换器配置:BUCK
最大切换频率:500 kHz
温度等级:AUTOMOTIVE
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:3.9 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!