欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • TPS54233DR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • TPS54233DR 现货库存
  • 数量3000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 原装正品特价销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • TPS54233DR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • TPS54233DR 现货库存
  • 数量3000 
  • 厂家TI/德州仪器 
  • 封装SOIC-8 
  • 批号21+ 
  • 羿芯诚只做原装 原厂渠道 价格优势
  • QQ:2881498351QQ:2881498351 复制
  • 0755-22968581 QQ:2881498351
  • TPS54233DR图
  • 集好芯城

     该会员已使用本站13年以上
  • TPS54233DR 现货库存
  • 数量13261 
  • 厂家TI(德州仪器) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TPS54233DR图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • TPS54233DR 现货库存
  • 数量3802 
  • 厂家TI/德州仪器 
  • 封装8-SOIC 
  • 批号22+ 
  • 原装正品现货,可开专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • TPS54233DR图
  • 深圳市昌和盛利电子有限公司

     该会员已使用本站11年以上
  • TPS54233DR 现货库存
  • 数量28500 
  • 厂家TI【原装正品】 
  • 封装SOP-8 
  • 批号▊ NEW ▊ 
  • ▊▊★代理TI▊▊全系列销售【100%全新原装正品】★长期供应,量大可订,价格优惠!
  • QQ:1551106297QQ:1551106297 复制
    QQ:3059638860QQ:3059638860 复制
  • 0755-23125986 QQ:1551106297QQ:3059638860
  • TPS54233DR图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • TPS54233DR 现货库存
  • 数量8000 
  • 厂家TI(德州仪器) 
  • 封装8-SOIC 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • TPS54233DR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TPS54233DR 现货库存
  • 数量16999 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装正品现货
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • TPS54233DR图
  • 深圳市恒嘉威智能科技有限公司

     该会员已使用本站7年以上
  • TPS54233DR 现货库存
  • 数量14324 
  • 厂家TI/德州仪器 
  • 封装SOP-8 
  • 批号21+ 
  • 原装恒嘉威价格最实在
  • QQ:1036846627QQ:1036846627 复制
    QQ:2274045202QQ:2274045202 复制
  • -0755-23942980 QQ:1036846627QQ:2274045202
  • TPS54233DR图
  • 深圳市亿智腾科技有限公司

     该会员已使用本站8年以上
  • TPS54233DR 现货库存
  • 数量8860 
  • 厂家TEXASINSTRUMENTS 
  • 封装N/A 
  • 批号16+ 
  • 全新原装现货★★特价供应★★。★★特价★★假一赔十,工厂客户可放款
  • QQ:799387964QQ:799387964 复制
    QQ:2777237833QQ:2777237833 复制
  • 0755-82566711 QQ:799387964QQ:2777237833
  • TPS54233DR图
  • 深圳市捷立辉科技有限公司

     该会员已使用本站10年以上
  • TPS54233DR 现货库存
  • 数量7723 
  • 厂家TI/德州仪器 
  • 封装SOIC 
  • 批号21+20+ 
  • 进口原装现货,公司真实库存
  • QQ:1803576909QQ:1803576909 复制
  • -0755-82792948 QQ:1803576909
  • TPS54233DR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TPS54233DR 现货库存
  • 数量2500 
  • 厂家TI 
  • 封装SOIC (D) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TPS54233DR图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • TPS54233DR 现货热卖
  • 数量15390 
  • 厂家TI 
  • 封装原封﹢■ 
  • 批号21+ 
  • █TI原装现货长期供应商样品支持
  • QQ:2881664480QQ:2881664480 复制
  • 0755-83532193 QQ:2881664480
  • TPS54233DR图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • TPS54233DR
  • 数量5300 
  • 厂家TI(德州仪器) 
  • 封装SOIC-8 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • TPS54233DR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TPS54233DR
  • 数量85000 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • TPS54233DR图
  • 深圳市旺能芯科技有限公司

     该会员已使用本站4年以上
  • TPS54233DR
  • 数量15000 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号22+ 
  • 深圳全新原装库存现货
  • QQ:2881495751QQ:2881495751 复制
  • 13602549709 QQ:2881495751
  • TPS54233DR图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • TPS54233DR
  • 数量39107 
  • 厂家TI 
  • 封装SOP8 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • TPS54233DR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • TPS54233DR
  • 数量5680 
  • 厂家TI 
  • 封装SOIC-8 
  • 批号23+ 
  • 原装正品特价销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • TPS54233DR图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • TPS54233DR
  • 数量3000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 原装正品长期供货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • TPS54233DR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • TPS54233DR
  • 数量3657 
  • 厂家TI/德州仪器 
  • 封装SOP-8 
  • 批号21+ 
  • 羿芯诚只做原装 原厂渠道 价格优势
  • QQ:2881498351QQ:2881498351 复制
  • 0755-22968581 QQ:2881498351
  • TPS54233DR图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • TPS54233DR
  • 数量102790 
  • 厂家TI 
  • 封装SOP8 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507162QQ:2355507162 复制
  • 86-0755-83210909 QQ:2355507165QQ:2355507162
  • TPS54233DR图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • TPS54233DR
  • 数量3577 
  • 厂家TI 
  • 封装8-SOIC(0.154,3.90mm 宽) 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • TPS54233DR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TPS54233DR
  • 数量4586 
  • 厂家TI/德州仪器 
  • 封装NA/ 
  • 批号23+ 
  • 原厂直销,现货供应,账期支持!
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • TPS54233DR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • TPS54233DR
  • 数量85000 
  • 厂家TI/德州仪器 
  • 封装SOP 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • TPS54233DR图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • TPS54233DR
  • 数量4851 
  • 厂家TI 
  • 封装SOP8 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • TPS54233DR图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • TPS54233DR
  • 数量55000 
  • 厂家TI/德州仪器 
  • 封装8-SOIC 
  • 批号23+ 
  • 只做原装正品假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • TPS54233DR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TPS54233DR
  • 数量30938 
  • 厂家TI(德州仪器) 
  • 封装SOP8 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • TPS54233DR图
  • 集好芯城

     该会员已使用本站13年以上
  • TPS54233DR
  • 数量15487 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TPS54233DR图
  • 深圳市西源信息科技有限公司

     该会员已使用本站9年以上
  • TPS54233DR
  • 数量8800 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号最新批号 
  • 原装现货零成本有接受价格就出
  • QQ:3533288158QQ:3533288158 复制
    QQ:408391813QQ:408391813 复制
  • 0755-84876394 QQ:3533288158QQ:408391813
  • TPS54233DR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TPS54233DR
  • 数量53929 
  • 厂家TI 
  • 封装SOIC-8 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • TPS54233DR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TPS54233DR
  • 数量12500 
  • 厂家TI/德州仪器 
  • 封装SOIC-8 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • TPS54233DR图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • TPS54233DR
  • 数量13500 
  • 厂家TI/德州仪器 
  • 封装SOIC-8 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • TPS54233DR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TPS54233DR
  • 数量18530 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • TPS54233DRG4图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • TPS54233DRG4
  • 数量1705 
  • 厂家TI 
  • 封装SOP8 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • TPS54233DR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • TPS54233DR
  • 数量8800 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132

产品型号TPS54233DR的概述

芯片TPS54233DR的概述 TPS54233DR是一款由德州仪器(Texas Instruments)公司设计和生产的降压开关稳压器。这款芯片专为高效能、小体积的电源管理解决方案而开发,主要应用在需要稳定电源供应的各种电子装置中。TPS54233DR能够将较高的输入电压有效地转换为所需的输出电压,其内置的高侧和低侧MOSFET减少了外部元件的需求,从而降低了整机的成本和尺寸。这款芯片的高效能和集成化特点,使其在诸如电池供电设备、工业控制系统、通信设备和消费类电子产品中广受欢迎。 芯片TPS54233DR的详细参数 TPS54233DR的输入电压范围为4.5V至17V,输出电压可调至1.2V至15V,同时在负载电流上最高可达到3A。此器件的开关频率为300kHz,在一些情况下可调至更高频率,旨在优化功率效率和电路设计的紧凑性。TPS54233DR还集成了多个保护机制,譬如过流保护、过...

产品型号TPS54233DR的Datasheet PDF文件预览

TPS54233  
www.ti.com .............................................................................................................................................................................................. SLUS859OCTOBER 2008  
2A, 28V INPUT, STEP DOWN SWIFT™ DC/DC CONVERTER WITH ECO-MODE™  
1
FEATURES  
DESCRIPTION  
2
3.5V to 28V Input Voltage Range  
Adjustable Output Voltage Down to 0.8V  
The TPS54233 is a 28-V, 2-A non-synchronous buck  
converter that integrates a low Rds(on) high side  
MOSFET. To increase efficiency at light loads, a  
pulse skipping Eco-mode™ feature is automatically  
activated. Furthermore, the 1 µA shutdown supply  
current allows the device to be used in battery  
powered applications. Current mode control with  
internal slope compensation simplifies the external  
compensation calculations and reduces component  
count while allowing the use of ceramic output  
capacitors. A resistor divider programs the Hysteresis  
of the input under-voltage lockout. An overvoltage  
transient protection circuit limits voltage overshoots  
during startup and transient conditions. A cycle by  
cycle current limit scheme, frequency fold back and  
thermal shutdown protect the device and the load in  
the event of an overload condition. The TPS54233 is  
available in an 8-pin SOIC package that has been  
internally optimized to improve thermal performance.  
Integrated 80 mHigh Side MOSFET Supports  
up to 2A Continuous Output Current  
High Efficiency at Light Loads with a Pulse  
Skipping Eco-mode™  
Fixed 300kHz Switching Frequency  
Typical 1µA Shutdown Quiescent Current  
Adjustable Slow Start Limits Inrush Currents  
Programmable UVLO Threshold  
Overvoltage Transient Protection  
Cycle by Cycle Current Limit, Frequency Fold  
Back and Thermal Shutdown Protection  
Available in Easy-to-Use SOIC8 Package  
Supported by SwitcherPro™ Software Tool  
(http://focus.ti.com/docs/toolsw/folders/print/s  
witcherpro.html)  
For SWIFT™ Documentation, See the TI  
Website at www.ti.com/swift  
APPLICATIONS  
Consumer Applications such as Set-Top  
Boxes, CPE Equipment, LCD Displays,  
Peripherals, and Battery Chargers  
Industrial and Car Audio Power Supplies  
5V, 12V and 24V Distributed Power Systems  
SIMPLIFIED SCHEMATIC  
EFFICIENCY  
100  
Ren1  
V
= 3.3 V  
V
O
V
= 12 V  
IN  
= 8 V  
95  
90  
85  
EN  
VIN  
CI  
VIN  
IN  
V
= 15 V  
IN  
Ren2  
TPS54233  
CBOOT  
BOOT  
PH  
LO  
V
= 18 V  
IN  
80  
75  
70  
VOUT  
SS  
CO  
D1  
RO1  
COMP  
C1  
R3  
CSS  
65  
60  
C2  
VSENSE  
GND  
RO2  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
I
- Output Current - A  
O
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
SWIFT, Eco-mode, SwitcherPro are trademarks of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008, Texas Instruments Incorporated  
TPS54233  
SLUS859OCTOBER 2008.............................................................................................................................................................................................. www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION(1)  
TJ  
PACKAGE  
SWITCHING FREQUENCY  
PART NUMBER(2)  
–40°C to 150°C  
8 pin SOIC  
300 kHz  
TPS54233D  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) The D package is also available taped and reeled. Add an R suffix to the device type (i.e., TPS54233DR). See applications section of  
data sheet for layout information.  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
–0.3 to 30  
–0.3 to 5  
38  
UNIT  
VIN  
EN  
BOOT  
Input Voltage  
V
VSENSE  
–0.3 to 3  
–0.3 to 3  
–0.3 to 3  
8
COMP  
SS  
BOOT-PH  
Output Voltage  
Source Current  
Sink Current  
PH  
–0.6 to 30  
–5  
V
PH (10 ns transient from ground to negative peak)  
EN  
100  
µA  
mA  
µA  
A
BOOT  
VSENSE  
PH  
100  
10  
6
VIN  
6
A
COMP  
SS  
100  
µA  
200  
Electrostatic Discharge (HBM)  
Electrostatic Discharge (CDM)  
Operating Junction Temperature  
Storage Temperature  
2
kV  
V
500  
–40 to 150  
–65 to 150  
°C  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
PACKAGE DISSIPATION RATINGS(1) (2)(3)  
PACKAGE  
THERMAL IMPEDANCE JUNCTION TO  
AMBIENT  
PSEUDO THERMAL IMPEDANCE JUNCTION TO  
TOP  
SOIC8  
100 °C/W  
5 °C/W  
(1) Maximum power dissipation may be limited by overcurrent protection  
(2) Power rating at a specific ambient temperature TA should be determined with a junction temperature of 150°C. This is the point where  
distortion starts to substantially increase. Thermal management of the PCB should strive to keep the junction temperature at or below  
150°C for best performance and long-term reliability. See power dissipation estimate in application section of this data sheet for more  
information.  
(3) Test board conditions:  
a. 2 inches x 1.5 inches, 2 layers, thickness: 0.062 inch  
b. 2-ounce copper traces located on the top and bottom of the PCB  
c. 6 thermal vias located under the device package  
2
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS54233  
TPS54233  
www.ti.com .............................................................................................................................................................................................. SLUS859OCTOBER 2008  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.5  
TYP  
MAX UNIT  
Operating Input Voltage on (VIN pin)  
Operating junction temperature, TJ  
28  
V
–40  
150  
°C  
ELECTRICAL CHARACTERISTICS  
TJ = –40°C to 150°C, VIN = 3.5V to 28V (unless otherwise noted)  
DESCRIPTION  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY VOLTAGE (VIN PIN)  
Internal undervoltage lockout threshold  
Shutdown supply current  
Operating – non switching supply current  
ENABLE AND UVLO (EN PIN)  
Enable threshold  
Rising and Falling  
3.5  
4
V
EN = 0V, VIN = 12V, –40°C to 85°C  
VSENSE = 0.85 V  
1
µA  
µA  
75  
110  
Rising and Falling  
1.25  
-1  
1.35  
V
Input current  
Enable threshold – 50 mV  
Enable threshold + 50 mV  
µA  
µA  
Input current  
-4  
VOLTAGE REFERENCE  
Voltage reference  
0.772  
0.8 0.828  
V
HIGH-SIDE MOSFET  
On resistance  
BOOT-PH = 3 V, VIN = 3.5 V  
BOOT-PH = 6 V, VIN = 12 V  
115  
80  
200  
150  
m  
ERROR AMPLIFIER  
Error amplifier transconductance (gm)  
Error amplifier DC gain(1)  
–2 µA < ICOMP < 2 µA, V(COMP) = 1 V  
VSENSE = 0.8 V  
92  
800  
2.7  
±7  
µmhos  
V/V  
Error amplifier unity gain bandwidth(1)  
Error amplifier source/sink current  
Switch current to COMP transconductance  
SWITCHING FREQUENCY  
TPS54233 Switching Frequency  
Minimum controllable on time  
Maximum controllable duty ratio(1)  
PULSE SKIPPING ECO-MODE™  
Pulse skipping Eco-mode™ switch current threshold  
CURRENT LIMIT  
5 pF capacitance from COMP to GND pins  
V(COMP) = 1.0 V, 100 mV overdrive  
VIN = 12 V  
MHz  
µA  
9
A/V  
VIN = 12V  
210  
90  
300  
105  
93  
390  
130  
kHz  
ns  
VIN = 12V, 25°C  
BOOT-PH = 6 V  
%
100  
3.5  
mA  
A
Current limit threshold  
VIN = 12 V  
2.3  
THERMAL SHUTDOWN  
Thermal Shutdown  
165  
°C  
SLOW START (SS PIN)  
Charge current  
V(SS) = 0.4 V  
V(SS) = 0.4 V  
2
µA  
SS to VSENSE matching  
10  
mV  
(1) Specified by design  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TPS54233  
TPS54233  
SLUS859OCTOBER 2008.............................................................................................................................................................................................. www.ti.com  
DEVICE INFORMATION  
PIN ASSIGNMENTS  
8
7
6
5
1
2
3
4
PH  
BOOT  
VIN  
GND  
EN  
COMP  
VSENSE  
SS  
TERMINAL FUNCTIONS  
TERMINAL  
DESCRIPTION  
NAME  
NO.  
BOOT  
1
A 0.1 µF bootstrap capacitor is required between BOOT and PH. If the voltage on this capacitor falls below the  
minimum requirement, the high-side MOSFET is forced to switch off until the capacitor is refreshed.  
VIN  
EN  
2
3
Input supply voltage, 3.5 V to 28 V.  
Enable pin. Pull below 1.25V to disable. Float to enable. Programming the input undervoltage lockout with two  
resistors is recommended.  
SS  
4
5
6
7
8
Slow start pin. An external capacitor connected to this pin sets the output rise time.  
Inverting node of the gm error amplifier.  
VSENSE  
COMP  
GND  
PH  
Error amplifier output, and input to the PWM comparator. Connect frequency compensation components to this pin.  
Ground.  
The source of the internal high-side power MOSFET.  
4
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS54233  
TPS54233  
www.ti.com .............................................................................................................................................................................................. SLUS859OCTOBER 2008  
FUNCTIONAL BLOCK DIAGRAM  
EN  
VIN  
165C  
Thermal  
Shutdown  
1 mA  
3 mA  
Shutdown  
Shutdown  
Logic  
1.25 V  
Enable  
Threshold  
Enable  
Comparator  
Boot  
Charge  
ECO-MODE  
Minimum Clamp  
Boot  
UVLO  
BOOT  
2.1V  
Error  
Amplifier  
9 A/V  
Current  
Sense  
PWM  
Comparator  
PWM  
Latch  
VSENSE  
R
Q
80 mW  
2 mA  
Gate  
Drive  
Logic  
gm = 92 mA/V  
DC gain = 800 V/V  
BW = 2.7 MHz  
S
Voltage  
Reference  
SS  
Slope  
Compensation  
2 kW  
S
0.8 V  
Shutdown  
PH  
Discharge  
Logic  
VSENSE  
Frequency  
Shift  
Oscillator  
GND  
COMP  
Maximum  
Clamp  
TYPICAL CHARACTERISTICS  
CHARACTERIZATION CURVES  
ON RESISTANCE  
vs  
JUNCTION TEMPERATURE  
SHUTDOWN QUIESCENT CURRENT  
SWITCHING FREQUENCY  
vs  
JUNCTION TEMPERATURE  
vs  
INPUT VOLTAGE  
4
3
110  
310  
305  
300  
VIN = 12 V  
105  
VIN = 12 V  
TJ = 150°C  
100  
95  
90  
85  
80  
75  
TJ = -40°C  
2
295  
290  
1
0
TJ = 25°C  
70  
65  
60  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
3
8
13  
18  
23  
28  
TJ - Junction Temperature - °C  
TJ - Junction Temperature - °C  
VI - Input Voltage - V  
Figure 1.  
Figure 2.  
Figure 3.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TPS54233  
TPS54233  
SLUS859OCTOBER 2008.............................................................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
MINIMUM CONTROLLABLE ON  
MINIMUM CONTROLLABLE DUTY  
VOLTAGE REFERENCE  
vs  
JUNCTION TEMPERATURE  
TIME  
RATIO  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
4
3.75  
3.50  
140  
130  
0.8240  
0.8180  
VIN = 12 V  
VIN = 12 V  
0.8120  
0.8060  
0.8000  
120  
110  
100  
0.7940  
0.7880  
0.7820  
0.7760  
3.25  
3
-50  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
TJ - Junction Temperature - °C  
TJ - Junction Temperature - °C  
TJ - Junction Temperature - °C  
Figure 4.  
Figure 5.  
Figure 6.  
SS CHARGE CURRENT  
vs  
JUNCTION TEMPERATURE  
CURRENT LIMIT THRESHOLD  
vs  
INPUT VOLTAGE  
4
2.10  
TJ = 25°C  
TJ = -40°C  
2
3.5  
TJ = 150°C  
1.90  
3
-50  
-25  
0
25  
50  
75  
100  
125  
150  
3
8
13  
18  
23  
28  
VI - Input Voltage - V  
TJ - Junction Temperature - °C  
Figure 7.  
Figure 8.  
SUPPLEMENTAL APPLICATION CURVES  
TYPICAL MAXIMUM OUTPUT  
VOLTAGE  
vs  
MAXIMUM POWER DISSIPATION  
vs  
INPUT VOLTAGE  
JUNCTION TEMPERATURE  
30  
25  
20  
15  
150  
125  
IO = 1 A  
100  
75  
IO = 2 A  
10  
5
50  
0
25  
3
8
13  
18  
23  
28  
0
0.2  
0.4  
PD  
0.6  
0.8  
1
1.2  
VI - Input Voltage - V  
-
Power Dissipation - W  
Figure 9.  
Figure 10.  
6
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS54233  
TPS54233  
www.ti.com .............................................................................................................................................................................................. SLUS859OCTOBER 2008  
TYPICAL CHARACTERISTICS (continued)  
OVERVIEW  
The TPS54233 is a 28-V, 2-A, step-down (buck) converter with an integrated high-side n-channel MOSFET. To  
improve performance during line and load transients, the device implements a constant frequency, current mode  
control which reduces output capacitance and simplifies external frequency compensation design. The  
TPS54233 has a pre-set switching frequency of 300kHz.  
The TPS54233 needs a minimum input voltage of 3.5V to operate normally. The EN pin has an internal pull-up  
current source that can be used to adjust the input voltage under-voltage lockout (UVLO) with two external  
resistors. In addition, the pull-up current provides a default condition when the EN pin is floating for the device to  
operate. The operating current is 75 µA typically when not switching and under no load. When the device is  
disabled, the supply current is 1µA typically.  
The integrated 80 mhigh-side MOSFET allows for high efficiency power supply designs with continuous output  
currents up to 2A.  
The TPS54233 reduces the external component count by integrating the boot recharge diode. The bias voltage  
for the integrated high-side MOSFET is supplied by an external capacitor on the BOOT to PH pin. The boot  
capacitor voltage is monitored by an UVLO circuit and will turn the high-side MOSFET off when the voltage falls  
below a preset threshold of 2.1V typically. The output voltage can be stepped down to as low as the reference  
voltage.  
By adding an external capacitor, the slow start time of the TPS54233 can be adjustable which enables flexible  
output filter selection.  
To improve the efficiency at light load conditions, the TPS54233 enters a special pulse skipping Eco-modeTM  
when the peak inductor current drops below 100mA typically.  
The frequency foldback reduces the switching frequency during startup and over current conditions to help  
control the inductor current. The thermal shut down gives the additional protection under fault conditions.  
DETAILED DESCRIPTION  
FIXED FREQUENCY PWM CONTROL  
The TPS54233 uses a fixed frequency, peak current mode control. The internal switching frequency of the  
TPS54233 is fixed at 300kHz.  
ECO-MODETM  
The TPS54233 is designed to operate in pulse skipping Eco-modeTM at light load currents to boost light load  
efficiency. When the peak inductor current is lower than 100 mA typically, the COMP pin voltage falls to 0.5V  
typically and the device enters Eco-modeTM . When the device is in Eco-modeTM, the COMP pin voltage is  
clamped at 0.5V internally which prevents the high side integrated MOSFET from switching. The peak inductor  
current must rise above 100mA for the COMP pin voltage to rise above 0.5V and exit Eco-modeTM. Since the  
integrated current comparator catches the peak inductor current only, the average load current entering  
Eco-modeTM varies with the applications and external output filters.  
VOLTAGE REFERENCE (Vref)  
The voltage reference system produces a ±2% initial accuracy voltage reference (±3.5% over temperature) by  
scaling the output of a temperature stable bandgap circuit. The typical voltage reference is designed at 0.8V.  
BOOTSTRAP VOLTAGE (BOOT)  
The TPS54233 has an integrated boot regulator and requires a 0.1 µF ceramic capacitor between the BOOT and  
PH pin to provide the gate drive voltage for the high-side MOSFET. A ceramic capacitor with an X7R or X5R  
grade dielectric is recommended because of the stable characteristics over temperature and voltage. To improve  
drop out, the TPS54233 is designed to operate at 100% duty cycle as long as the BOOT to PH pin voltage is  
greater than 2.1V typically.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TPS54233  
TPS54233  
SLUS859OCTOBER 2008.............................................................................................................................................................................................. www.ti.com  
ENABLE AND ADJUSTABLE INPUT UNDER-VOLTAGE LOCKOUT (VIN UVLO)  
The EN pin has an internal pull-up current source that provides the default condition of the TPS54233 operating  
when the EN pin floats.  
The TPS54233 is disabled when the VIN pin voltage falls below internal VIN UVLO threshold. It is recommended  
to use an external VIN UVLO to add Hysteresis unless VIN is greater than (VOUT + 2V). To adjust the VIN  
UVLO with Hysteresis, use the external circuitry connected to the EN pin as shown in Figure 11. Once the EN  
pin voltage exceeds 1.25V, an additional 3µA of hysteresis is added. Use Equation 1 and Equation 2 to calculate  
the resistor values needed for the desired VIN UVLO threshold voltages. The VSTART is the input start threshold  
voltage, the VSTOP is the input stop threshold voltage and the VEN is the enable threshold voltage of 1.25V. The  
VSTOP should always be greater than 3.5V.  
VIN  
Ren1  
Ren2  
1 mA  
3 mA  
+
-
EN  
1.25 V  
Figure 11. Adjustable Input Under-Voltage Lockout  
VSTART - VSTOP  
Ren1 =  
3 mA  
(1)  
(2)  
VEN  
Ren2 =  
VSTART - V  
EN + 1 mA  
Ren1  
PROGRAMMABLE SLOW START USING SS PIN  
It is highly recommended to program the slow start time externally because no slow start time is implemented  
internally. The TPS54233 effectively uses the lower voltage of the internal voltage reference or the SS pin  
voltage as the power supply’s reference voltage fed into the error amplifier and will regulate the output  
accordingly. A capacitor (Css) on the SS pin to ground implements a slow start time. The TPS54233 has an  
internal pull-up current source of 2µA that charges the external slow start capacitor. The equation for the slow  
start time (10% to 90%) is shown in Equation 3 . The Vref is 0.8V and the Iss current is 2µA.  
CSS nF ´ V  
V
( ) ref ( )  
TSS ms =  
( )  
ISS mA  
( )  
(3)  
The slow start time should be set between 1ms to 10ms to ensure good start-up behavior. The slow start  
capacitor should be no more than 27 nF.  
If during normal operation, the input voltage drops below the VIN UVLO threshold, or the EN pin is pulled below  
1.25 V, or a thermal shutdown event occurs, the TPS54233 stops switching.  
ERROR AMPLIFIER  
The TPS54233 has a transconductance amplifier for the error amplifier. The error amplifier compares the  
VSENSE voltage to the internal effective voltage reference presented at the input of the error amplifier. The  
transconductance of the error amplifier is 92 µA/V during normal operation. Frequency compensation  
components are connected between the COMP pin and ground.  
SLOPE COMPENSATION  
In order to prevent the sub-harmonic oscillations when operating the device at duty cycles greater than 50%, the  
TPS54233 adds a built-in slope compensation which is a compensating ramp to the switch current signal.  
8
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS54233  
 
 
 
 
TPS54233  
www.ti.com .............................................................................................................................................................................................. SLUS859OCTOBER 2008  
CURRENT MODE COMPENSATION DESIGN  
To simplify design efforts using the TPS54233, the typical designs for common applications are listed in Table 1.  
For designs using ceramic output capacitors, proper derating of ceramic output capacitance is recommended  
when doing the stability analysis. This is because the actual ceramic capacitance drops considerably from the  
nominal value when the applied voltage increases. Advanced users may refer to the Step by Step Design  
Procedure in the Application Information section for the detailed guidelines or use SwitcherPro™ Software tool  
(http://focus.ti.com/docs/toolsw/folders/print/switcherpro.html).  
Table 1. Typical Designs (Referring to Simplified Schematic on page 1)  
VIN  
(V)  
VOUT  
(V)  
Fsw  
(kHz)  
Lo  
(µH)  
Co  
RO1  
(k)  
RO2  
(k)  
C2  
(pF)  
C1  
(pF)  
R3  
(k)  
12  
12  
12  
12  
12  
12  
12  
12  
5
300  
300  
300  
300  
300  
300  
300  
300  
22  
15  
10  
6.8  
22  
15  
10  
6.8  
Ceramic 47 µF  
Ceramic 47µF  
10  
10.2  
10  
1.91  
3.24  
8.06  
80.6  
1.91  
3.24  
8.06  
80.6  
68  
47  
1800  
4700  
4700  
4700  
220  
21  
21  
3.3  
1.8  
0.9  
5
Ceramic 100 µF x 2  
Ceramic 100 µFx2  
Aluminum 330 µF/160 mΩ  
Aluminum 470 µF/160 mΩ  
SP 220 µF/12 mΩ  
100  
100  
56  
21  
10  
21  
10  
40.2  
30.9  
40.2  
21  
3.3  
1.8  
0.9  
10.2  
10  
220  
100  
100  
220  
4700  
1800  
SP 220 µF/12 mΩ  
10  
OVERCURRENT PROTECTION AND FREQUENCY SHIFT  
The TPS54233 implements current mode control that uses the COMP pin voltage to turn off the high-side  
MOSFET on a cycle by cycle basis. Every cycle the switch current and the COMP pin voltage are compared;  
when the peak inductor current intersects the COMP pin voltage, the high-side switch is turned off. During  
overcurrent conditions that pull the output voltage low, the error amplifier responds by driving the COMP pin high,  
causing the switch current to increase. The COMP pin has a maximum clamp internally, which limit the output  
current.  
The TPS54233 provides robust protection during short circuits. There is potential for overcurrent runaway in the  
output inductor during a short circuit at the output. The TPS54233 solves this issue by increasing the off time  
during short circuit conditions by lowering the switching frequency. The switching frequency is divided by 8, 4, 2,  
and 1 as the voltage ramps from 0V to 0.8V on VSENSE pin. The relationship between the switching frequency  
and the VSENSE pin voltage is shown in Table 2.  
Table 2. Switching Frequency Conditions  
SWITCHING FREQUENCY  
300 kHz  
VSENSE PIN VOLTAGE  
VSENSE 0.6 V  
300 kHz / 2  
0.6 V > VSENSE 0.4 V  
0.4 V > VSENSE 0.2 V  
0.2 V > VSENSE  
300 kHz / 4  
300 kHz / 8  
OVERVOLTAGE TRANSIENT PROTECTION  
The TPS54233 incorporates an overvoltage transient protection (OVTP) circuit to minimize output voltage  
overshoot when recovering from output fault conditions or strong unload transients. The OVTP circuit includes an  
overvoltage comparator to compare the VSENSE pin voltage and internal thresholds. When the VSENSE pin  
voltage goes above 109% × Vref, the high-side MOSFET will be forced off. When the VSENSE pin voltage falls  
below 107% × Vref, the high-side MOSFET will be enabled again.  
THERMAL SHUTDOWN  
The device implements an internal thermal shutdown to protect itself if the junction temperature exceeds 165°C.  
The thermal shutdown forces the device to stop switching when the junction temperature exceeds the thermal  
trip threshold. Once the die temperature decreases below 165°C, the device reinitiates the power up sequence.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TPS54233  
 
 
TPS54233  
SLUS859OCTOBER 2008.............................................................................................................................................................................................. www.ti.com  
APPLICATION INFORMATION  
Figure 12. Typical Application Schematic  
10  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS54233  
 
TPS54233  
www.ti.com .............................................................................................................................................................................................. SLUS859OCTOBER 2008  
STEP BY STEP DESIGN PROCEDURE  
The following design procedure can be used to select component values for the TPS54233. Alternately, the  
SwitcherPro™Software may be used to generate a complete design. The SwitcherPro™ Software uses an  
iterative design procedure and accesses a comprehensive database of components when generating a design.  
This section presents a simplified discussion of the design process.  
To begin the design process a few parameters must be decided upon. The designer needs to know the following:  
Input voltage range  
Output voltage  
Input ripple voltage  
Output ripple voltage  
Output current rating  
Operating frequency  
For this design example, use the following as the input parameters  
Table 3. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Output voltage  
EXAMPLE VALUE  
8 V to 18 V  
3.3 V  
Input ripple voltage  
Output ripple voltage  
Output current rating  
Operating Frequency  
300 mV  
30 mV  
2 A  
300 kHz  
SWITCHING FREQUENCY  
The switching frequency for the TPS54233 is fixed at 300 kHz.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TPS54233  
TPS54233  
SLUS859OCTOBER 2008.............................................................................................................................................................................................. www.ti.com  
OUTPUT VOLTAGE SET POINT  
The output voltage of the TPS54233 is externally adjustable using a resistor divider network. In the application  
circuit of Figure 12, this divider network is comprised of R5 and R6. The relationship of the output voltage to the  
resistor divider is given by Equation 4 and Equation 5:  
R5 ´ VREF  
R6 =  
VOUT - VREF  
(4)  
R5  
é
ù
VOUT = VREF  
´
+1  
ê
ú
R6  
ë
û
(5)  
Choose R5 to be approximately 10.0 k. Slightly increasing or decreasing R5 can result in closer output voltage  
matching when using standard value resistors. In this design, R4 = 10.2 kand R = 3.24 k, resulting in a 3.31  
V output voltage. The zero ohm resistor R4 is provided as a convenient place to break the control loop for  
stability testing.  
INPUT CAPACITORS  
The TPS54233 requires an input decoupling capacitor and depending on the application, a bulk input capacitor.  
The typical recommended value for the decoupling capacitor is 10 µF. A high-quality ceramic type X5R or X7R is  
recommended. The voltage rating should be greater than the maximum input voltage. A smaller value may be  
used as long as all other requirements are met; however 10 µF has been shown to work well in a wide variety of  
circuits. Additionally, some bulk capacitance may be needed, especially if the TPS54233 circuit is not located  
within about 2 inches from the input voltage source. The value for this capacitor is not critical but should be rated  
to handle the maximum input voltage including ripple voltage, and should filter the output so that input ripple  
voltage is acceptable. For this design two 4.7 µF capacitors are used for the input decoupling capacitor. They are  
X7R dielectric rated for 50 V. The equivalent series resistance (ESR) is approximately 2m, and the current  
rating is 3 A. Additionally, a small 0.01 µF capacitor is included for high frequency filtering.  
This input ripple voltage can be approximated by Equation 6  
IOUT(MAX) ´ 0.25  
DV  
=
+ IOUT(MAX) ´ ESRMAX  
(
)
IN  
CBULK ´ fSW  
(6)  
Where IOUT(MAX) is the maximum load current, fSW is the switching frequency, CBULK is the bulk capacitor value  
and ESRMAX is the maximum series resistance of the bulk capacitor.  
The maximum RMS ripple current also needs to be checked. For worst case conditions, this can be  
approximated by Equation 7  
IOUT(MAX)  
ICIN  
=
2
(7)  
In this case, the input ripple voltage would be 143 mV and the RMS ripple current would be 1.5 A. It is also  
important to note that the actual input voltage ripple will be greatly affected by parasitics associated with the  
layout and the output impedance of the voltage source. The actual input voltage ripple for this circuit is shown in  
Design Parameters and is larger than the calculated value. This measured value is still below the specified input  
limit of 300 mV. The maximum voltage across the input capacitors would be VIN max plus ΔVIN/2. The chosen  
bulk and bypass capacitors are each rated for 50 V and the ripple current capacity is greater than 3 A, both  
providing ample margin. It is very important that the maximum ratings for voltage and current are not exceeded  
under any circumstance.  
OUTPUT FILTER COMPONENTS  
Two components need to be selected for the output filter, L1 and C2. Since the TPS54233 is an externally  
compensated device, a wide range of filter component types and values can be supported.  
Inductor Selection  
To calculate the minimum value of the output inductor, use Equation 8  
12  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS54233  
 
 
 
 
TPS54233  
www.ti.com .............................................................................................................................................................................................. SLUS859OCTOBER 2008  
VOUT(MAX)  
´
VIN(MAX) - VOUT  
(
´ KIND ´IOUT ´FSW  
)
LMIN  
=
V
IN(MAX)  
(8)  
KIND is a coefficient that represents the amount of inductor ripple current relative to the maximum output current.  
In general, this value is at the discretion of the designer; however, the following guidelines may be used. For  
designs using low ESR output capacitors such as ceramics, a value as high as KIND = 0.3 may be used. When  
using higher ESR output capacitors, KIND = 0.2 yields better results.  
For this design example, use KIND = 0.3 and the minimum inductor value is calculated to be 5.7µH. For this  
design, a large value was chosen: 6.8 µH.  
For the output filter inductor, it is important that the RMS current and saturation current ratings not be exceeded.  
The RMS inductor current can be found from Equation 9  
æ
ç
ç
è
ö2  
÷
VOUT  
´
V
- VOUT  
(
)
IN(MAX)  
1
IL(RMS)  
=
I2OUT(MAX)  
+
´
÷
12  
V
´ LOUT ´ FSW ´ 0.7  
IN(MAX)  
ø
(9)  
and the peak inductor current can be determined with Equation 10  
VOUT  
´
V
- VOUT  
(
IN(MAX)  
)
IN(MAX)  
IL(PK) = IOUT(MAX)  
+
1.4 ´ V  
´ LOUT ´ FSW  
(10)  
For this design, the RMS inductor current is 3.02 A and the peak inductor current is 3.54 A. The chosen inductor  
is a Sumida CDRH103-6R8 6.8 µH. It has a saturation current rating of 3.84 A and an RMS current rating of 3.60  
A, meeting these requirements. Smaller or larger inductor values can be used depending on the amount of ripple  
current the designer wishes to allow so long as the other design requirements are met. Larger value inductors  
will have lower ac current and result in lower output voltage ripple, while smaller inductor values will increase ac  
current and output voltage ripple. In general, inductor values for use with the TPS54233 are in the range of  
6.8 µH to 47µH.  
Capacitor Selection  
The important design factors for the output capacitor are dc voltage rating, ripple current rating, and equivalent  
series resistance (ESR). The dc voltage and ripple current ratings cannot be exceeded. The ESR is important  
because along with the inductor current it determines the amount of output ripple voltage. The actual value of the  
output capacitor is not critical, but some practical limits do exist. Consider the relationship between the desired  
closed loop crossover frequency of the design and LC corner frequency of the output filter. In general, it is  
desirable to keep the closed loop crossover frequency at less than 1/5 of the switching frequency. With high  
switching frequencies such as the 300-kHz frequency of this design, internal circuit limitations of the TPS54233  
limit the practical maximum crossover frequency to about 25 kHz. In general, the closed loop crossover  
frequency should be higher than the corner frequency determined by the load impedance and the output  
capacitor. This limits the minimum capacitor value for the output filter to:  
CO _ min =1/(2´p ´ RO ´ FCO _ max  
)
(11)  
Where RO is the output load impedance (VO/IO) and fCO is the desired crossover frequency. For a desired  
maximum crossover of 25 kHz the minimum value for the output capacitor is around 3.8µF. This may not satisfy  
the output ripple voltage requirement. The output ripple voltage consists of two components; the voltage change  
due to the charge and discharge of the output filter capacitance and the voltage change due to the ripple current  
times the ESR of the output filter capacitor. The output ripple voltage can be estimated by:  
é
ê
ë
ù
ú
û
(D - 0.5)  
VOPP = I LPP  
+ RESR  
4 ´ FSW ´ CO  
(12)  
13  
Where NC is the number of output capacitors in parallel.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS54233  
 
 
TPS54233  
SLUS859OCTOBER 2008.............................................................................................................................................................................................. www.ti.com  
The maximum ESR of the output capacitor is determined by the amount of allowable output ripple as specified in  
the initial design parameters; so the maximum specified ESR as listed in the capacitor data sheet is given by  
Equation 13:  
D - 0.5  
VOPPMAX  
(
)
4 ´ FSW ´ CO  
ESRmax  
=
-
ILPP  
(13)  
Where ΔVp-p is the desired peak-to-peak output ripple.  
For this design example, a single 470-µF aluminum electrolytic output capacitor is chosen for C9. This is a  
Panasonic, EEVFK1A471P rated at 10 V with a maximum ESR of 160mand a ripple current rating of 600 mA.  
The maximum RMS output ripple current can be calculated using Equation 14  
æ
ç
ö
÷
VOUT × V  
- VOUT  
(
)
× LOUT × FSW × NC  
IN(MAX)  
1
ICOUT(RMS)  
=
×
ç
÷
V
12  
IN(MAX)  
è
ø
(14)  
The calculated total RMS ripple current is 216 mA and the maximum total ESR required is 43 m. These output  
capacitors exceed the requirements by a wide margin and will result in a reliable, high-performance design. The  
selected output capacitor must be rated for a voltage greater than the desired output voltage plus = the ripple  
voltage. Any derating amount must also be included.  
Other capacitor types work well with the TPS54233, depending on the needs of the application.  
COMPENSATION COMPONENTS  
The external compensation used with the TPS54233 allows for a wide range of output filter configurations. A  
large range of capacitor values and types of dielectric are supported. The design example uses ceramic X5R  
dielectric output capacitors, but other types are supported.  
A Type II compensation scheme is recommended for the TPS54233. The compensation components are chosen  
to set the desired closed loop cross over frequency and phase margin for output filter components. The type II  
compensation has the following characteristics; a dc gain component, a low frequency pole, and a mid frequency  
zero / pole pair.  
The dc gain is determined by Equation 15:  
Vggm ´ VREF  
GDC  
=
VO  
(15)  
Where:  
Vggm = 800  
VREF = 0.8 V  
The low-frequency pole is determined by Equation 16:  
VPO = 1/ 2 ´ p ´ R  
(
´CZ  
)
OO  
(16)  
(17)  
(18)  
The mid-frequency zero is determined by Equation 17:  
FZ1 = 1/ 2 ´ p ´ R ´CZ  
(
)
Z
And, the mid-frequency pole is given by Equation 18:  
= 1/ 2 ´ p ´ R ´CP  
F
(
)
P1  
Z
The first step is to choose the closed loop crossover frequency. In general, the closed-loop crossover frequency  
should be less than 1/8 of the minimum operating frequency, but for the TPS54233it is recommended that the  
maximum closed loop crossover frequency be not greater than 25 kHz. Next, the required gain and phase boost  
of the crossover network needs to be calculated. By definition, the gain of the compensation network must be the  
inverse of the gain of the modulator and output filter. For this design example, where the ESR zero is less than  
the closed loop crossover frequency, the gain of the modulator and output filter can be approximated by  
Equation 19:  
14  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS54233  
 
 
 
 
 
 
TPS54233  
www.ti.com .............................................................................................................................................................................................. SLUS859OCTOBER 2008  
æ
ç
è
ö
æ
ç
è
ö
RO  
RO  
Gain = 20 log  
- 20 log  
÷
÷
RSENSE ø  
RESR ø  
(19)  
Where:  
RSENSE = 1/9  
RO = VO/IO  
RESR = Equivalent series resistance of the output capacitor  
The phase loss is given by Equation 20:  
PL = a tan 2 ´ p ´ FCO ´RESR ´ CO - a tan 2 ´ p ´ FCO ´RO ´ CO  
(
(
)
)
(20)  
Where:  
RESR = Equivalent series resistance of the output capacitor  
RO = VO/IO  
Now that the phase loss is known the required amount of phase boost to meet the phase margin requirement  
can be determined. The required phase boost is given by Equation 21:  
PB = PM - 90deg -PL  
)
(
(21)  
Where PM = the desired phase margin.  
A zero / pole pair of the compensation network will be placed symmetrically around the intended closed loop  
frequency to provide maximum phase boost at the crossover point. The amount of separation can be determined  
by Equation 22 and the resultant zero and pole frequencies are given by Equation 23 and Equation 24  
PB  
æ
ç
è
ö
÷
ø
k = tan  
+ 45deg  
2
(22)  
FCO  
k
FZ1 =  
(23)  
(24)  
FP1 = FCO ´k  
The low-frequency pole is set so that the gain at the crossover frequency is equal to the inverse of the gain of the  
modulator and output filter. Due to the relationships established by the pole and zero relationships, the value of  
RZ can be derived directly by Equation 25 :  
VO ´ ROA ´ 0.98  
RZ  
=
GMCOMP ´ Vggm ´ VREF ´ RESR  
(25)  
Where:  
VO = Output voltage  
ROA = 8.696 MΩ  
GMCOMP = 9 A/V  
Vggm = 800  
VREF = 0.8 V  
RESR = Equivalent series resistance of the output capacitor  
With RZ known, CZ and CP can be calculated using Equation 26 and Equation 27:  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TPS54233  
 
 
 
 
 
 
 
TPS54233  
SLUS859OCTOBER 2008.............................................................................................................................................................................................. www.ti.com  
1
CZ =  
2´p ´ FZ1 ´ Rz  
(26)  
1
CP =  
2´p ´ FP1 ´ Rz  
(27)  
For this design, a singe 470-µF output capacitor is used. The ESR is approximately .160 . The desired closed  
loop crossover frequency is 22000 Hz.  
Using Equation 19 and Equation 20, the output stage gain and phase loss are equivalent as:  
Gain = –3.114 dB  
and  
PL - –4.96 degrees  
For 60 degrees of phase margin, Equation 21 requires no additional phase boost, so K can be set equal to 1.  
Equation 22, Equation 23, and Equation 24 are used to find the zero and pole frequencies of:  
FZ1 = 22000 Hz  
And  
FP1 = 22000 Hz  
RZ, CZ, and CP are calculated using Equation 25, Equation 26, and Equation 27:  
2.5 ´ 8.696 ´ 106 ´ 0.98  
Rz =  
Cz =  
Cp =  
= 30.5 kW  
= 237 pF  
= 237 pF  
9 ´ 800 ´ 0.8 ´ 0.160  
(28)  
(29)  
(30)  
1
2 ´ p ´ 22000 ´ 30500  
1
2 ´ p ´ 22000 ´ 30500  
Using standard values for R3, C6, and C7 in the application schematic of Figure 12:  
R3 = 30.9 kΩ  
C6 = 220 pF  
C7 = 220 pF  
The measured overall loop response for the circuit is given in Figure 20. Note that the actual closed loop  
crossover frequency is higher than intended at about 25 kHz. This is primarily due to variation in the actual  
values of the output filter components and tolerance variation of the internal feed-forward gain circuitry. Overall  
the design has greater than 60 degrees of phase margin and will be completely stable over all combinations of  
line and load variability.  
BOOTSTRAP CAPACITOR  
Every TPS54233 design requires a bootstrap capacitor, C4. The bootstrap capacitor must be 0.1 µF. The  
bootstrap capacitor is located between the PH pins and BOOT pin. The bootstrap capacitor should be a  
high-quality ceramic type with X7R or X5R grade dielectric for temperature stability.  
16  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS54233  
 
 
TPS54233  
www.ti.com .............................................................................................................................................................................................. SLUS859OCTOBER 2008  
CATCH DIODE  
The TPS54233 is designed to operate using an external catch diode between PH and GND. The selected diode  
must meet the absolute maximum ratings for the application: Reverse voltage must be higher than the maximum  
voltage at the PH pin, which is VINMAX + 0.5 V. Peak current must be greater than IOUTMAX plus on half the  
peak to peak inductor current. Forward voltage drop should be small for higher efficiencies. It is important to note  
that the catch diode conduction time is typically longer than the high-side FET on time, so attention paid to diode  
parameters can make a marked improvement in overall efficiency. Additionally, check that the device chosen is  
capable of dissipating the power losses. For this design, a Diodes, Inc. B340A is chosen, with a reverse voltage  
of 40 V, forward current of 3 A, and a forward voltage drop of 0.5 V.  
OUTPUT VOLTAGE LIMITATIONS  
Due to the internal design of the TPS54233, there are both upper and lower output voltage limits for any given  
input voltage. The upper limit of the output voltage set point is constrained by the maximum duty cycle of 91%  
and is given by Equation 31:  
VOmax = 0.91 ×  
V
(
(
- IO max × RDSon max + V  
)
-
I
(
× RL - VD  
)
)
IN min  
D
O max  
(31)  
Where:  
VIN min = Minimum input voltage  
IO max = Maximum load current  
VD = Catch diode forward voltage  
RL = Output inductor series resistance  
The equation assumes maximum on resistance for the internal high-side FET.  
The lower limit is constrained by the minimum controllable on time which may be as high as 160 ns. The  
approximate minimum output voltage for a given input voltage and minimum load current is given by Equation 32:  
VOmin = 0.051 ´  
V
((  
- IOmin ´ Rin + V  
)
-
D ) (O min  
I
´ RL - VD  
)
IN max  
(32)  
Where:  
VIN max = Maximum input voltage  
IO min = Minimum load current  
VD = Catch diode forward voltage  
RL = Output inductor series resistance  
This equation assumes nominal on-resistance for the high-side FET and accounts for worst case variation of  
operating frequency set point. Any design operating near the operational limits of the device should be carefully  
checked to assure proper functionality.  
POWER DISSIPATION ESTIMATE  
The following formulas show how to estimate the device power dissipation under continuous conduction mode  
operations. They should not be used if the device is working in the discontinuous conduction mode (DCM) or  
pulse skipping Eco-modeTM  
.
The device power dissipation includes:  
1) Conduction loss: Pcon = IOUT2 x Rds(on) x VOUT/VIN  
2) Switching loss: Psw = 0.5 x 10-9 x VIN2 x IOUT x Fsw  
3) Gate charge loss: Pgc = 22.8 x 10-9 x Fsw  
4) Quiescent current loss: Pq = 0.075 x 10-3 x VIN  
Where:  
IOUT is the output current (A).  
Rds(on) is the on-resistance of the high-side MOSFET ().  
VOUT is the output voltage (V).  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TPS54233  
 
 
TPS54233  
SLUS859OCTOBER 2008.............................................................................................................................................................................................. www.ti.com  
VIN is the input voltage (V).  
Fsw is the switching frequency (Hz).  
So  
Ptot = Pcon + Psw + Pgc + Pq  
For given TA , TJ = TA + Rth x Ptot.  
For given TJMAX = 150°C, TAMAX = TJMAX– Rth x Ptot.  
Where:  
Ptot is the total device power dissipation (W).  
TA is the ambient temperature (°C).  
TJ is the junction temperature (°C) .  
Rth is the thermal resistance of the package (°C/W).  
TJMAX is maximum junction temperature (°C).  
TAMAX is maximum ambient temperature (°C).  
PCB LAYOUT  
The VIN pin should be bypassed to ground with a low ESR ceramic bypass capacitor. Care should be taken to  
minimize the loop area formed by the bypass capacitor connections, the VIN pin, and the anode of the catch  
diode. The typical recommended bypass capacitance is 10-µF ceramic with a X5R or X7R dielectric and the  
optimum placement is closest to the VIN pins and the source of the anode of the catch diode. See Figure 13 for  
a PCB layout example. The GND D pin should be tied to the PCB ground plane at the pin of the IC. The source  
of the low-side MOSFET should be connected directly to the top side PCB ground area used to tie together the  
ground sides of the input and output capacitors as well as the anode of the catch diode. The PH pin should be  
routed to the cathode of the catch diode and to the output inductor. Since the PH connection is the switching  
node, the catch diode and output inductor should be located very close to the PH pins, and the area of the PCB  
conductor minimized to prevent excessive capacitive coupling. For operation at full rated load, the top side  
ground area must provide adequate heat dissipating area. The TPS54233 uses a fused lead frame so that the  
GND pin acts as a conductive path for heat dissipation from the die. Many applications have larger areas of  
internal or back side ground plane available, and the top side ground area can be connected to these areas  
using multiple vias under or adjacent to the device to help dissipate heat. The additional external components  
can be placed approximately as shown. It may be possible to obtain acceptable performance with alternate  
layout schemes, however this layout has been shown to produce good results and is intended as a guideline.  
18  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS54233  
TPS54233  
www.ti.com .............................................................................................................................................................................................. SLUS859OCTOBER 2008  
OUTPUT  
FILTER  
CAPACITOR  
Vout  
TOPSIDE  
GROUND  
AREA  
Feedback Trace  
Route BOOT CAPACITOR  
trace on other layer to provide  
wide path for topside ground  
OUTPUT  
INDUCTOR  
CATCH  
DIODE  
PH  
INPUT  
BYPASS  
CAPACITOR  
BOOT  
CAPACITOR  
PH  
BOOT  
VIN  
EN  
GND  
COMP  
Vin  
UVLO  
RESISTOR  
DIVIDER  
SS  
VSENSE  
RESISTOR  
DIVIDER  
COMPENSATION  
NETWORK  
SLOW START  
CAPACITOR  
Signal VIA  
Thermal VIA  
Figure 13. TPS54233 Board Layout  
Estimated Circuit Area  
The estimated printed circuit board area for the components used in the design of Figure 12 is 0.72 in2. This area  
does not include test points or connectors.  
ELECTROMAGNETIC INTERFERENCE (EMI) CONSIDERATIONS  
As EMI becomes a rising concern in more and more applications, the internal design of the TPS54233 takes  
measures to reduce the EMI. The high-side MOSFET gate drive is designed to reduce the PH pin voltage  
ringing. The internal IC rails are isolated to decrease the noise sensitivity. A package bond wire scheme is used  
to lower the parasitics effects.  
To achieve the best EMI performance, external component selection and board layout are equally important.  
Follow the Step by Step Design Procedure above to prevent potential EMI issues.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TPS54233  
TPS54233  
SLUS859OCTOBER 2008.............................................................................................................................................................................................. www.ti.com  
APPLICATION CURVES  
100  
100  
95  
V
= 3.3 V  
O
V
= 12 V  
95  
IN  
V
= 8 V  
V
= 15 V  
V
= 18 V  
V
= 12 V  
IN  
IN  
V
= 15 V  
IN  
IN  
IN  
90  
90  
85  
85  
80  
75  
V
= 18 V  
IN  
80  
75  
70  
V
= 18 V  
IN  
70  
65  
60  
65  
60  
55  
50  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
0
20 40 60 80 100 120 140 160 180 200  
- Output Current - mA  
I
- Output Current - A  
I
O
O
Figure 14. TPS54233 Efficiency  
Figure 15. TPS54233 Low Current Efficiency  
0.05  
0.04  
0.03  
0.02  
0.025  
0.020  
0.015  
0.010  
0.005  
0
I
= 1 A  
O
V
= 18 V  
IN  
V
= 8 V  
IN  
V
= 12 V  
0.01  
0
IN  
-0.005  
-0.01  
-0.02  
-0.010  
-0.015  
V
= 15 V  
IN  
-0.03  
-0.04  
-0.020  
-0.025  
8
9
10 11 12 13 14 15 16 17 18  
0
0.2 0.4 0.6 0.8  
I
1
- Output Current - A  
1.2 1.4 1.6 1.8  
2
V - Input Voltage -V  
I
O
Figure 16. TPS54233 Load Regulation  
Figure 17. TPS54233 Line Regulation  
20  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS54233  
TPS54233  
www.ti.com .............................................................................................................................................................................................. SLUS859OCTOBER 2008  
180  
60  
V
OUT  
I
OUT  
-180  
-60  
10  
1M  
f - Frequency - Hz  
Figure 18. TPS54233 Transient Response  
Figure 19. TPS54233 Loop Response  
V
OUT  
V
IN  
PH  
PH  
Figure 20. TPS54233 Input Ripple  
Figure 21. TPS54233 Output Ripple  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TPS54233  
TPS54233  
SLUS859OCTOBER 2008.............................................................................................................................................................................................. www.ti.com  
V
IN  
ENA  
V
OUT  
V
OUT  
Figure 22. TPS54233 Start Up  
Figure 23. TPS54233 Start-up Relative to Enable  
V
OUT  
PH  
Figure 24. TPS54233 Eco-mode™ Operation  
22  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS54233  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Nov-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
TPS54233DR  
SOIC  
D
8
2500  
330.0  
12.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Nov-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
346.0 346.0 29.0  
TPS54233DR  
D
8
2500  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  
配单直通车
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!