欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • TPS61106PW图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • TPS61106PW 现货库存
  • 数量22000 
  • 厂家TI/德州仪器 
  • 封装TSSOP20 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • TPS61106PW图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • TPS61106PW 现货库存
  • 数量6000 
  • 厂家TI 
  • 封装20-TSSOP 
  • 批号24+ 
  • 假一罚百,TI专营!深圳有库存,北美、新加坡可发货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • TPS61106PW图
  • 深圳市能元时代电子有限公司

     该会员已使用本站10年以上
  • TPS61106PW 现货库存
  • 数量92000 
  • 厂家TI/德州仪器 
  • 封装TSSOP20 
  • 批号24+ 
  • 原装现货假一罚十!可含税长期供货
  • QQ:2885637848QQ:2885637848 复制
    QQ:2885658492QQ:2885658492 复制
  • 0755-84502810 QQ:2885637848QQ:2885658492
  • TPS61106PW图
  • 深圳市亿智腾科技有限公司

     该会员已使用本站8年以上
  • TPS61106PW 现货库存
  • 数量8860 
  • 厂家TEXASINSTRUMENTS 
  • 封装N/A 
  • 批号16+ 
  • 全新原装现货★★特价供应★★。★★特价★★假一赔十,工厂客户可放款
  • QQ:799387964QQ:799387964 复制
    QQ:2777237833QQ:2777237833 复制
  • 0755-82566711 QQ:799387964QQ:2777237833
  • TPS61106PW图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • TPS61106PW 现货库存
  • 数量9000 
  • 厂家TI/BB 
  • 封装 
  • 批号2024+ 
  • 全新原装现货,全网最低价
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • TPS61106PW图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TPS61106PW
  • 数量65000 
  • 厂家TI 
  • 封装TSSOP20 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • TPS61106PW图
  • 深圳市隆亿诚科技有限公司

     该会员已使用本站3年以上
  • TPS61106PW
  • 数量3253 
  • 厂家TI/德州仪器 
  • 封装TSSOP20 
  • 批号22+ 
  • 支持检测.现货价优!
  • QQ:778039761QQ:778039761 复制
  • -0755-82710221 QQ:778039761
  • TPS61106PW图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • TPS61106PW
  • 数量30000 
  • 厂家TI 
  • 封装TSSOP20 
  • 批号2018+ 
  • TI一级代理商专营进口原装现货假一赔十
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • TPS61106PW图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TPS61106PW
  • 数量3295 
  • 厂家TI/德州仪器 
  • 封装NA/ 
  • 批号23+ 
  • 原厂直销,现货供应,账期支持!
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • TPS61106PW图
  • 集好芯城

     该会员已使用本站13年以上
  • TPS61106PW
  • 数量18395 
  • 厂家TI/德州仪器 
  • 封装TSSOP20 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TPS61106PWG4图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • TPS61106PWG4
  • 数量5000 
  • 厂家TI 
  • 封装20-TSSOP 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • TPS61106PW图
  • 深圳市浩兴林电子有限公司

     该会员已使用本站16年以上
  • TPS61106PW
  • 数量3500 
  • 厂家TI 
  • 封装TSSOP 20 
  • 批号2017+ 
  • 特价出售,全新原装,部分无铅
  • QQ:382716594QQ:382716594 复制
    QQ:351622092QQ:351622092 复制
  • 0755-82532799 QQ:382716594QQ:351622092
  • TPS61106PW图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • TPS61106PW
  • 数量7136 
  • 厂家TI 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • TPS61106PW图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • TPS61106PW
  • 数量12245 
  • 厂家TI/德州仪器 
  • 封装TSSOP20 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • TPS61106PW图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • TPS61106PW
  • 数量6142 
  • 厂家TI/德州仪器 
  • 封装TSSOP20 
  • 批号06+ 
  • ▉原装正品▉低价力挺实单全系列可订
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • TPS61106PW图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TPS61106PW
  • 数量18530 
  • 厂家TI/BB 
  • 封装TSSOP2.. 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • TPS61106PW图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • TPS61106PW
  • 数量3577 
  • 厂家TI 
  • 封装20-TSSOP(0.173,4.40mm 宽) 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • TPS61106PW图
  • 深圳市能元时代电子有限公司

     该会员已使用本站10年以上
  • TPS61106PW
  • 数量92000 
  • 厂家TI/德州仪器 
  • 封装TSSOP20 
  • 批号24+ 
  • 原装现货假一罚十!可含税长期供货
  • QQ:2885637848QQ:2885637848 复制
    QQ:2885658492QQ:2885658492 复制
  • 0755-84502810 QQ:2885637848QQ:2885658492
  • TPS61106PW图
  • 深圳市芯柏然科技有限公司

     该会员已使用本站7年以上
  • TPS61106PW
  • 数量23480 
  • 厂家TI 
  • 封装TSSOP20 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、价格低于市场
  • QQ:287673858QQ:287673858 复制
  • 0755-82533534 QQ:287673858
  • TPS61106PW图
  • 深圳市亿智腾科技有限公司

     该会员已使用本站8年以上
  • TPS61106PW
  • 数量16680 
  • 厂家TI 
  • 封装TSSOP20 
  • 批号16+ 
  • 假一赔十★全新原装现货★★特价供应★工厂客户可放款
  • QQ:799387964QQ:799387964 复制
    QQ:2777237833QQ:2777237833 复制
  • 0755-82566711 QQ:799387964QQ:2777237833
  • TPS61106PW图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • TPS61106PW
  • 数量660000 
  • 厂家Texas Instruments(德州仪器) 
  • 封装20-TSSOP (0.173 
  • 批号4.40mm Width) 
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • TPS61106PWR图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • TPS61106PWR
  • 数量6500000 
  • 厂家Texas Instruments 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008961396QQ:3008961396 复制
  • 0755-21008751 QQ:3008961396
  • TPS61106PW图
  • 北京力通科信电子有限公司

     该会员已使用本站10年以上
  • TPS61106PW
  • 数量890 
  • 厂家TI 
  • 封装 20-TSSOP  
  • 批号12+ 
  • 正品,刚到货
  • QQ:2355365902QQ:2355365902 复制
    QQ:2355365899QQ:2355365899 复制
  • 010-82625766 QQ:2355365902QQ:2355365899
  • TPS61106PW图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • TPS61106PW
  • 数量6500000 
  • 厂家Texas Instruments(德州仪器) 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • TPS61106PW图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • TPS61106PW
  • 数量8800 
  • 厂家TI/德州仪器 
  • 封装TSSOP20 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • TPS61106PW图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TPS61106PW
  • 数量63668 
  • 厂家TI 
  • 封装TSSOP20 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • TPS61106PW图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • TPS61106PW
  • 数量9500 
  • 厂家TI(德州仪器) 
  • 封装20-TSSOP(0.173,4.40mm 宽) 
  • 批号23+/24+ 
  • 绝对原装正品,可开13%专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • TPS61106PW图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • TPS61106PW
  • 数量12000 
  • 厂家TI 
  • 封装TSSOP-20 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • TPS61106PW图
  • 深圳市宏诺德电子科技有限公司

     该会员已使用本站8年以上
  • TPS61106PW
  • 数量68000 
  • 厂家TI 
  • 封装TSSOP20 
  • 批号22+ 
  • 全新进口原厂原装,优势现货库存,有需要联系电话:18818596997 QQ:84556259
  • QQ:84556259QQ:84556259 复制
    QQ:783839662QQ:783839662 复制
  • 0755- QQ:84556259QQ:783839662
  • TPS61106PW图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • TPS61106PW
  • 数量14500 
  • 厂家Texas Instruments 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • TPS61106PWRG4图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • TPS61106PWRG4
  • 数量14500 
  • 厂家Texas Instruments 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • TPS61106PWG4图
  • 深圳市一线半导体有限公司

     该会员已使用本站15年以上
  • TPS61106PWG4
  • 数量14500 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • TPS61106PWR图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • TPS61106PWR
  • 数量14500 
  • 厂家Texas Instruments 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • TPS61106PW图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • TPS61106PW
  • 数量1001 
  • 厂家TI 
  • 封装SSOP-20 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:1415691092QQ:1415691092 复制
  • 133-5299-5145(微信同号) QQ:1415691092
  • TPS61106PWRG4图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • TPS61106PWRG4
  • 数量1001 
  • 厂家TI 
  • 封装SSOP-20 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:97877805QQ:97877805 复制
  • 171-4729-0036(微信同号) QQ:97877805

产品型号TPS61106PW的概述

芯片 TPS61106PW 概述 TPS61106PW 是德州仪器(Texas Instruments)推出的一款高效升压转换器,广泛应用于调节电源供给的领域。这款芯片能够将低电压的直流电源转换为高电压输出,适用于各种便携式设备、LED 驱动、以及其他需要稳定电源的应用。TPS61106PW 具备多种保护特性,确保在不同的工作条件下,系统可以稳定、安全地运行。 芯片 TPS61106PW 的详细参数 TPS61106PW 的主要电气参数如下: - 输入电压范围:2.3 V 至 5.5 V - 输出电压范围:可调输出,最大可达 28 V - 最大输出电流:通常不超过 1 A - 切换频率:可以调节,通常在 500 kHz 到 2.2 MHz 之间 - 效率:在不同负载情况下,最高可达 90% 以上 - 热关断温度:通常设定在 150 °C - 封装类型:PW 封装,器件尺寸为 16 引脚...

产品型号TPS61106PW的Datasheet PDF文件预览

TPS61100, TPS61103  
TPS61106, TPS61107  
(
4
,
1
5
m
m
x
4
,
1
5
m
m
)
(
6
,
6
m
m
x
6
,
4
m
m
)
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
DUAL-OUTPUT, SINGLE-CELL BOOST CONVERTER  
Low EMI-Converter (Integrated Antiringing  
Switch)  
Load Disconnect During Shutdown  
Auto Discharge Allows the Device to  
Discharge Output Capacitor During Shutdown  
Overtemperature Protection  
EVM Available (TPS6110XEVM-216)  
FEATURES  
Synchronous 95% Efficient Boost Converter  
Integrated 120 mA LDO for Second Output  
Voltage  
TSSOP-20 and QFN-24 Package  
65 µA (Typ) Total Device Quiescent Current  
0.8 V to 3.3 V Input Voltage Range  
Adjustable Output Voltage up to 5.5 V and  
Fixed Output Voltage Options  
APPLICATIONS  
All Single or Dual Cell Battery Operated  
Products Which Use Two System Voltages  
Like DSP C5X Applications  
Internet Audio Player, PDAs, Digital Still  
Cameras and Other Portable Equipment  
Power-Save Mode for Improved Efficiency at  
Low Output Power  
Battery Supervision  
Power Good Output  
Pushbutton Function for Start-Up  
TYPICAL APPLICATION  
SWN  
VBAT  
LBI  
Battery  
V
CC1  
VOUT  
FB  
TPS61100  
ON  
OFF  
SKIPEN  
ADEN  
ON  
ON  
PGOOD  
OFF  
Control  
Outputs  
Control  
Inputs  
LBO1  
LBO2  
OFF  
OFF  
EN  
ENPB  
LDOIN  
ON  
ON  
V
CC2  
LDOOUT  
LDOEN  
OFF  
LDOSENSE  
GND PGND  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2002–2004, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
These devices have limited built-in ESD protection. The leads should be shorted together or the device  
placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.  
DESCRIPTION  
The TPS6110x devices provide a complete power supply solution for products powered by either one or two  
Alkaline, NiCd, or NiMH battery cells. The converter generates two stable output voltages that are either adjusted  
by an external resistor divider or fixed internally on the chip. It stays in operation with supply voltages down to  
0.8 V. The implemented boost converter is based on a fixed frequency, pulse-width-modulation (PWM) controller  
using a synchronous rectifier to obtain maximum efficiency.  
The maximum peak current in the boost switch is limited to a value of 1800 mA.  
The converter can be disabled to minimize battery drain. During shutdown, the load is completely disconnected  
from the battery. An auto discharge function allows discharging the output capacitors during shutdown mode.  
This is especially useful in microcontroller applications where the microcontroller or microprocessor should not  
remain active due to the stored voltage on the output capacitors. Programming the ADEN-pin disables this  
feature. A low-EMI mode is implemented to reduce ringing and in effect lower radiated electromagnetic energy  
when the converter enters the discontinuous conduction mode. A power good output at the boost stage provides  
additional control of cascaded power supply components.  
The built-in LDO can be used for a second output voltage derived either from the boost output or directly from  
the battery. The output voltage of this LDO can be programmed by an external resistor divider or is fixed  
internally on the chip. The LDO can be enabled separately i.e., using the power good of the boost stage.  
The device is packaged in a 20-pin TSSOP (20 PW) package or in a 24-pin QFN (24 RGE) package.  
AVAILABLE PACKAGE OPTIONS  
PACKAGE  
20-Pin TSSOP  
24-Pin QFN  
CODE  
PW  
RGE  
AVAILABLE OUTPUT VOLTAGE OPTIONS  
OUTPUT  
VOLTAGE  
DC/DC  
OUTPUT  
VOLTAGE  
LDO  
TA  
PART NUMBER(1) PART NUMBER(1)  
Adjustable  
3.3 V  
Adjustable  
Adjustable  
1.5 V  
TPS61100PW  
TPS61103PW  
TPS61106PW  
TPS61107PW  
TPS61100RGE  
TPS61103RGE  
TPS61106RGE  
TPS61107RGE  
40°C to 85°C  
3.3 V  
3.3 V  
1.8 V  
(1) The PW package is available taped and reeled. Add R suffix to device type (e.g., TPS61100PWR) to  
order quantities of 2000 devices per reel. The RGE package is only available in reels. Add R suffix to  
device type (e.g. TPS61100RGER) to order quantities of 3000 devices per reel.  
2
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
FUNCTIONAL BLOCK DIAGRAM  
SWN  
VOUT  
Anti-  
Ringing  
VBAT  
Auto  
Discharge  
PGND  
Gate  
CONTROL  
PGND  
PGND  
Error  
Amplifier  
Regulator  
FB  
V
ref  
Control Logic  
Oscillator  
Temperature  
Control  
EN  
ENPB  
PGOOD  
LDOEN  
SKIPEN  
ADEN  
LDOIN  
LDOOUT  
Low Dropout  
Regulator  
GND  
Auto  
Discharge  
Low Battery  
Comparator  
LDOSENSE  
LBI  
LBO1  
LBO2  
GND  
3
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
Terminal Functions  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
ADEN  
PW  
5
RGE  
3
I
I
Auto discharge enable (1/VBAT enabled, 0/GND disabled)  
Boost-enable input. (1/VBAT enabled, 0/GND disabled)  
Boost-enable input (pushbutton). (0/GND enabled. 1/VBAT disabled)  
Boost-voltage feedback of adjustable versions  
Control/logic ground  
EN  
4
2
ENPB  
FB  
3
24  
21  
8
I
20  
10  
2
I
GND  
I/O  
I
LBI  
23  
11  
12  
5
Low battery comparator input (comparator enabled with EN)  
Low battery comparator output 1 (open drain)  
Low battery comparator output 2 (open drain)  
LDO-enable input (1/VBAT enabled, 0/GND disabled)  
LDO output  
LBO1  
LBO2  
LDOEN  
LDOOUT  
LDOIN  
LDOSENSE  
12  
13  
7
O
O
I
9
7
O
I
8
6
LDO input  
6
4
I
LDO feedback for voltage adjustment, must be connected to LDOOUT at fixed output voltage  
versions  
NC  
17  
11  
1
9, 10  
15  
No connection  
PGND  
PGOOD  
SKIPEN  
SWN  
I/O  
Power ground  
15  
O
I
Boost output power good (1 : good, 0 : failure) (open drain)  
Enable/disable Power save mode (1: VBAT enabled, 0: GND disabled)  
Boost switch input  
18  
18  
14, 16  
13, 14,  
16, 17  
I
VBAT  
VOUT  
1
22  
I
Supply pin  
19  
19, 20  
O
Boost output  
PW PACKAGE  
(TOP VIEW)  
RGE PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VBAT  
FB  
LBI  
ENPB  
EN  
VOUT  
SKIPEN  
NC  
SWN  
PGOOD  
SWN  
LBO2  
LBO1  
PGND  
NC  
EN  
ADEN  
SKIPEN  
SWN  
SWN  
PGOOD  
SWN  
SWN  
ADEN  
LDOSENSE  
LDOEN  
LDOIN  
TPS6110X  
LDOSENSE  
LDOEN  
LDOIN  
LDOOUT  
GND  
NC – No internal connection  
4
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
DETAILED DESCRIPTION  
SYNCHRONOUS RECTIFIER  
The device integrates an N-channel and a P-channel MOSFET transistor to realize a synchronous rectifier.  
Because the commonly used discrete Schottky rectifier is replaced with a low RDS(ON) PMOS switch, the power  
conversion efficiency reaches 95%. To avoid ground shift due to the high currents in the NMOS switch, two  
separate ground pins are used. The reference for all control functions is the GND pin. The source of the NMOS  
switch is connected to PGND. Both grounds must be connected on the PCB at only one point close to the GND  
pin. A special circuit is applied to disconnect the load from the input during shutdown of the converter. In  
conventional synchronous rectifier circuits, the backgate diode of the high-side PMOS is forward biased in  
shutdown and allows current flowing from the battery to the output. This device however uses a special circuit  
which takes the cathode of the backgate diode of the high-side PMOS and disconnects it from the source when  
the regulator is not enabled (EN = low).  
The benefit of this feature for the system design engineer is that the battery is not depleted during shutdown of  
the converter. No additional components have to be added to the design to make sure that the battery is  
disconnected from the output of the converter.  
CONTROLLER CIRCUIT  
The controller circuit of the device is based on a fixed frequency multiple feedforward controller topology. Input  
voltage, output voltage, and voltage drop on the NMOS switch are monitored and forwarded to the regulator. So  
changes in the operating conditions of the converter directly affect the duty cycle and must not take the indirect  
and slow way through the control loop and the error amplifier. The control loop, determined by the error amplifier,  
only has to handle small signal errors. The input for it is the feedback voltage on the FB pin or, at fixed output  
voltage versions, the voltage on the internal resistor divider. It is compared with the internal reference voltage to  
generate an accurate and stable output voltage.  
The peak current of the NMOS switch is also sensed to limit the maximum current flowing through the switch and  
the inductor. The nominal peak current limit is set to 1500 mA.  
An internal temperature sensor prevents the device from getting overheated in case of excessive power  
dissipation.  
DEVICE ENABLE  
The device is put into operation when EN is set high. It is put into a shutdown mode when EN is set to GND. It  
also can be enabled with a low signal on ENPB. This forces the converter to start up as long as the low signal is  
applied. During this time EN must be set high to prevent the converter from going down into shutdown mode  
again. If EN is high, a negative signal on ENPB is ignored.  
In shutdown mode, the regulator stops switching, all internal control circuitry including the low-battery comparator  
is switched off, and the load is isolated from the input (as described in the synchronous rectifier section). This  
also means that the output voltage can drop below the input voltage during shutdown. During start-up of the  
converter, the duty cycle and the peak current are limited in order to avoid high peak currents drawn from the  
battery.  
An undervoltage lockout function prevents device start-up if the supply voltage on VBAT is lower than  
approximately 0.7 V. When in operation and the battery is being discharged, the device automatically enters the  
shutdown mode if the voltage on VBAT drops below approximately 0.7 V. This undervoltage lockout function is  
implemented in order to prevent the malfunctioning of the converter.  
LDO ENABLE  
When the voltage is applied at VBAT, the LDO can be separately enabled and disabled by using the LDOEN pin  
in the same way as the EN pin at the dc/dc converter stage described above.  
POWER GOOD  
The PGOOD pin stays high impedance when the dc/dc converter delivers an output voltage within a defined  
voltage window. So it can be used to enable the converter after pushbutton start-up, or to enable any connected  
circuitry such as cascaded converters (LDO) or processor circuits.  
5
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
DETAILED DESCRIPTION (continued)  
POWER SAVE MODE  
The SKIPEN pin can be used to select different operation modes. To enable power save, SKIPEN must be set  
high. Power save mode is used to improve efficiency at light load. In power save mode the converter only  
operates when the output voltage trips below a set threshold voltage. It ramps up the output voltage with one or  
several pulses and goes again into power save mode once the output voltage exceeds the set threshold voltage.  
This power save mode can be disabled by setting the SKIPEN to GND.  
AUTO DISCHARGE  
The auto discharge function is needed in applications where the supply voltage of a microcontroller,  
microprocessor or memory has to be removed during shutdown in order to make sure that the system quickly  
goes in a defined state. The auto discharge function is enabled when the ADEN is set high. It is disabled when  
the ADEN is set to GND. When the auto discharge function is enabled, the output capacitor is discharged after  
the device is programmed in the shutdown mode. The output capacitor is discharged by an integrated switch of  
400 , hence the discharge time depends on the size of the output capacitor.  
LOW BATTERY DETECTOR CIRCUIT—LBI/LBO  
The low-battery detector circuit is typically used to supervise the battery voltage and to generate an error flag  
when the battery voltage drops below a user-set threshold voltage. The function is active only when the device is  
enabled. When the device is disabled, both LBO-pin are high-impedance. There are three programmed  
thresholds, 400 mV, 450 mV, and 500 mV. The outputs on LBO1 and LBO2 are shown as follows:  
LBI INPUT  
LBO1  
LBO2  
(mV)  
0-400  
0
1
0
1
0
0
1
1
400-450  
450-500  
500-VBAT  
1 means that the output stays at high-impedance and 0 means that the output goes active low. If there is only  
one LBO output needed, both outputs can be tied together. Then the switching threshold is at 500 mV at LBI.  
The battery voltage, at which the detection circuit switches, can be programmed with a resistive divider  
connected to the LBI-pin. The resistive divider scales down the battery voltage to a voltage level of 400 mV  
(450 mV, 500 mV), which is then compared to the LBI threshold voltage. The LBI-pin has a built-in hysteresis of  
10 mV. See the application section for more details about the programming of the LBI-threshold. If the  
low-battery detection circuit is not used, the LBI-pin should be connected to GND (or to VBAT) and the LBO-pin  
can be left unconnected. Do not let the LBI-pin float.  
LOW-EMI SWITCH  
The device integrates a circuit that removes the ringing that typically appears on the SW-node when the  
converter enters discontinuous current mode. In this case, the current through the inductor ramps to zero and the  
rectifying PMOS switch is turned off to prevent a reverse current flowing from the output capacitors back to the  
battery. Due to the remaining energy that is stored in parasitic components of the semiconductor and the  
inductor, a ringing on the SW-pin is induced. The integrated antiringing switch clamps this voltage to VBAT and  
therefore dampens ringing.  
LDO  
The built-in LDO can be used to generate a second output voltage derived from the dc/dc converter output, from  
the battery, or from another power source like an ac adapter or a USB power rail. The LDOSENSE input must be  
connected to LDOOUT at fixed output voltage versions.  
6
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
UNIT  
Input voltage range on VBAT, LBI, SKIPEN, EN, ENPB, ADEN, FB, LDOEN  
Input voltage range on SWN, VOUT, LDOIN, LDOOUT, LDOSENSE, PGOOD, LBO1, LBO2  
Operating free air temperature range, TA  
-0.3 V to 3.6 V  
-0.3 V to 7 V  
-40°C to 85°C  
150°C  
Maximum junction temperature, TJ  
Storage temperature range, Tstg  
-65°C to 150°C  
260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10s  
(1) Stresses beyond those listed under,, absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under,, recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM  
MAX UNIT  
VI  
L
Supply voltage at VBAT  
Boost—inductor  
0.8  
3.3  
V
4.7  
10  
10  
µH  
µF  
µF  
µF  
µF  
°C  
Ci  
Co  
Ci  
Co  
TJ  
Boost—input capacitor  
Boost—output capacitor  
LDO—input capacitor  
22 100  
1
LDO—output capacitor  
Operating virtual junction temperature  
1
2.2  
-40  
125  
7
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
ELECTRICAL CHARACTERISTICS  
over recommended free-air temperature range and over recommended input voltage range (typical at an ambient temperature  
range of 25°C) (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
BOOST STAGE  
Input voltage for start-up  
Input voltage once started  
Output voltage  
RL > = 66 at Vo = 3.3 V  
0.85  
1.1  
3.3  
5.5  
V
V
VI(b)  
0.8  
1.5  
Vo(b)  
V
Minimum possible output power  
Reference voltage  
PW package, VBAT 1.5 V  
600  
500  
500  
mW  
mV  
Vref  
f
485  
320  
515  
Oscillator frequency  
800 kHz  
Switch current limit  
Vo = 3.3 V  
1200 1500 1800  
610  
mA  
mA  
Startup current limit  
Boost switch on resistance  
Sync switch on resistance  
Total accuracy  
Vo = 3.3 V  
Vo = 3.3 V  
180  
180  
300 mΩ  
300 mΩ  
3%  
-3%  
Auto discharge switch resistance  
400  
25  
VBAT IO = 0 mA, VEN = VBAT = 3.3 V, Vo = 3.3 V, ENLDO = 0  
VOUT IO = 0 mA, VEN = VBAT = 3.3 V, Vo = 3.3 V, ENLDO = 0  
VEN = 0 V  
40  
20  
5
µA  
µA  
µA  
Boost quiescent current  
Boost shutdown current  
12  
0.5  
LDO STAGE  
VI(LDO)  
Input voltage range  
1.5  
0.9  
120  
80  
7
V
V
Vo(LDO) Output voltage  
3.6  
VI 1.8 V  
270  
Io(LDO)  
Output current  
mA  
VI < 1.8 V  
LDO short circuit current limit  
Minimum voltage drop  
Total accuracy  
500  
300  
mA  
mV  
VI 1.8 V, Io(LDO) = 120 mA  
I
o 1 mA  
±3%  
0.6%  
0.6%  
Line regulation  
LDOIN change form 1.8 V to 2.6 V at 100 mA  
Load change from 10% to 90%  
Load regulation  
Auto discharge switch resistance  
400  
27  
LDOIN  
VBAT  
40  
40  
1
LDO quiescent current  
LDO shutdown current  
LDOIN = 7 V, VBAT = 1.2 V, EN = 0  
µA  
µA  
27  
0.01  
8
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
over recommended free-air temperature range and over recommended input voltage range (typical at an ambient temperature  
range of 25°C) (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CONTROL STAGE  
VIL  
LBI1 voltage threshold  
LBI2 voltage threshold  
VLBI voltage decreasing  
VLBI voltage decreasing  
VLBI voltage decreasing  
390  
440  
490  
400  
450  
500  
10  
410  
460  
510  
mV  
mV  
mV  
mV  
µA  
V
LBI3 voltage threshold  
LBI input hysteresis  
LBI input current  
EN = Vbat or GND  
0.01  
0.04  
10  
0.1  
0.4  
LBO1 output low voltage  
LBO1 output low current  
LBO1 output leakage current  
LBO2 output low voltage  
LBO2 output low current  
LBO2 output leakage current  
Vo = 3.3 V, IOL = 10 µA  
µA  
µA  
V
VLBO = 3.3 V  
0.01  
0.04  
10  
0.1  
0.4  
Vo = 3.3 V, IOL = 10 µA  
µA  
µA  
VLBO = 3.3 V  
0.01  
0.1  
EN, ENPB, LDOEN, SKIPEN and ADEN input  
low voltage  
VIL  
VIH  
0.2 × VBAT  
EN, ENPB, LDOEN, SKIPEN and ADEN input  
high voltage  
0.8 × VBAT  
EN, ENPB, LDOEN, SKIPEN and ADEN input  
current  
Clamped on GND or VBAT  
Vo = 3.3 V  
0.01  
0.1  
µA  
Powergood threshold  
0.9xVo 0.92xVo  
0.95xVo  
Powergood delay  
30  
0.04  
10  
µs  
V
Powergood output low voltage  
Powergood output low current  
Powergood output leakage current  
Overtemperature protection  
Overtemperature hysteresis  
Vo = 3.3 V, IOL = 10 µA  
0.4  
0.1  
µA  
µA  
°C  
°C  
0.01  
140  
20  
PARAMETER MEASUREMENT INFORMATION  
U1  
L1  
10 µH  
SWN  
VBAT  
LBI  
V
VOUT  
FB  
CC1  
R3  
Boost Output  
C6  
2.2 µF  
C4  
100 µF  
R1  
R2  
C3  
10 µF  
Power  
Supply  
R6  
R5  
LDOIN  
V
CC2  
SKIPEN  
ADEN  
EN  
LDOOUT  
LDO Output  
C5  
LDOSENSE  
R7 R8 R9  
ENPB  
R4  
List of Components:  
U1 = TPS6110x  
L1 = SUMIDA CDRH74–100  
C3, C5, C6 = X7R/X5R Ceramic  
C4 = Low ESR Tantalum  
LDOEN  
LBO1  
LBO2  
Control  
Outputs  
PGOOD  
PGND  
GND  
TPS6110x  
9
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
TYPICAL CHARACTERISTICS  
Table of Graphs  
BOOST CONVERTER  
Figure  
vs Input voltage for VOUT = 3.3 V, 5.0 V  
1
2
Maximum output current  
vs Input voltage for VOUT = 1.8 V, 2.5 V  
vs Output current for VIN = 1.2 V, VOUT = 1.5 V  
vs Output current for VIN = 1.2 V, VOUT = 2.5 V  
vs Output current for VIN = 1.2 V, VOUT = 3.3 V  
vs Output current for VIN = 1.8 V, VOUT = 2.5 V  
vs Output current for VIN = 2.4 V, VOUT = 3.3 V  
vs Output current for VIN = 2.4 V, VOUT = 5.0 V  
vs Input voltage for Iout = 10 mA/100 mA/200 mA, VOUT = 3.3 V  
vs Output current TPS61103/6  
3
4
5
Efficiency  
6
7
8
9
Output voltage  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Minimum start-up supply voltage  
No-load supply current into VBAT  
No-load supply current into VOUT  
vs Load resistance  
vs Input voltage  
vs Input voltage  
Output voltage (ripple) in continuous modeInductor current  
Output voltage (ripple) in power save modeInductor current  
Load transient response for output current step of 40 mA to 120 mA  
Line transient response for supply voltage step from 1 V to 1.5 V at Iout = 100 mA  
Boost converter start-up after enable  
Waveforms  
LDO  
vs Input voltage for VOUT = 2.5 V, 3.3 V  
vs Input voltage for VOUT = 1.5 V, 1.8 V  
vs Output current TPS61106  
19  
20  
21  
22  
23  
24  
25  
26  
27  
Maximum output current  
Output voltage  
Dropout voltage  
vs Output current TPS61100 at 3.3 V TPS61106  
vs Input voltage  
No-load supply current into LDOIN  
PSRR  
vs Frequency  
Load transient response for output current step of 20 mA to 100 mA  
Line transient response for supply voltage step from 1.8 V to 2.4 V at Iout = 100 mA  
LDO start-up after enable  
Waveforms  
10  
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
MAXIMUM OUTPUT CURRENT  
MAXIMUM OUTPUT CURRENT  
vs  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
1.2  
1.4  
1.2  
1
TPS61100  
TPS61100  
1
0.8  
0.6  
0.4  
0.2  
0
V
= 3.3 V  
O
0.8  
0.6  
0.4  
V
O
= 1.8 V  
V = 2.5 V  
O
V
= 5 V  
O
0.2  
0
0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4  
0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
3
3.2  
V - Input Voltage - V  
I
V - Input Voltage - V  
I
Figure 1.  
Figure 2.  
EFFICIENCY  
vs  
OUTPUT CURRENT  
EFFICIENCY  
vs  
OUTPUT CURRENT  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
TPS61100  
TPS61100  
V
V
= 1.5 V,  
O
V
V
= 2.5 V,  
O
= 1.2 V  
BAT  
= 1.2 V  
BAT  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
I
O
- Output Current - mA  
I
O
- Output Current - mA  
Figure 3.  
Figure 4.  
11  
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
TYPICAL CHARACTERISTICS (continued)  
EFFICIENCY  
vs  
OUTPUT CURRENT  
EFFICIENCY  
vs  
OUTPUT CURRENT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TPS61100  
TPS61106  
= 1.2 V  
10  
V
V
= 2.5 V,  
O
V
BAT  
= 1.8 V  
BAT  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
I
O
- Output Current - mA  
I
O
- Output Current - mA  
Figure 5.  
Figure 6.  
EFFICIENCY  
vs  
OUTPUT CURRENT  
EFFICIENCY  
vs  
OUTPUT CURRENT  
100  
100  
90  
80  
70  
60  
50  
40  
30  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
10  
0
TPS61100  
TPS61106  
= 2.4 V  
V
V
= 5 V,  
V
BAT  
O
= 2.4 V  
BAT  
0.1  
1
I
10  
100  
1000  
0.1  
1
10  
100  
I
O
- Output Current - mA  
- Output Current - mA  
O
Figure 7.  
Figure 8.  
12  
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
TYPICAL CHARACTERISTICS (continued)  
EFFICIENCY  
vs  
INPUT VOLTAGE  
OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
3.34  
3.32  
3.3  
100  
90  
TPS61103/6  
VBAT = 1.2 V  
I
= 100 mA  
O
80  
70  
60  
50  
40  
30  
I
= 10 mA  
O
3.28  
3.26  
3.24  
3.22  
I
O
= 250 mA  
20  
10  
0
3.2  
TPS61106  
2.2 2.4 2.6 2.8  
3.18  
100  
1000  
0.8  
1
1.2 1.4 1.6 1.8  
2
3
3.2  
0.1  
1
10  
I
O
- Output Current - mA  
V - Input Voltage - V  
I
Figure 9.  
Figure 10.  
MINIMUM START-UP SUPPLY VOLTAGE  
NO-LOAD SUPPLY CURRENT INTO VBAT  
vs  
vs  
LOAD RESISTANCE  
INPUT VOLTAGE  
30  
25  
20  
15  
10  
1
0.95  
0.9  
TPS61106  
85°C  
25°C  
-40°C  
0.85  
0.8  
0.75  
0.7  
5
0
10  
100  
1k  
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6  
Load Resistance -  
V - Input Voltage - V  
I
Figure 11.  
Figure 12.  
13  
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
TYPICAL CHARACTERISTICS (continued)  
NO-LOAD SUPPLY CURRENT INTO VOUT  
vs  
INPUT VOLTAGE  
OUTPUT VOLTAGE IN CONTINUOUS MODE  
16  
Output Voltage  
20 mV/Div, AC  
TPS61106  
85°C  
14  
25°C  
12  
-40°C  
10  
Inductor Current  
200 mA/Div, DC  
8
6
4
2
0
Timebase - 1 µs/Div  
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6  
V - Input Voltage - V  
I
Figure 13.  
Figure 14.  
OUTPUT VOLTAGE IN POWER SAVE MODE  
LOAD TRANSIENT RESPONSE  
Output Voltage  
50 mV/Div, AC  
Output Current  
50 mA/Div, DC  
Output Voltage  
20 mV/Div, AC  
Inductor Current  
200 mA/Div, DC  
Timebase - 500 µs/Div  
Timebase - 500 µs/Div  
Figure 15.  
Figure 16.  
14  
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
TYPICAL CHARACTERISTICS (continued)  
LINE TRANSIENT RESPONSE  
BOOST-CONVERTER START-UP AFTER ENABLE  
Input Voltage  
500 mV/Div, DC  
Enable  
2 V/Div, DC  
Output Voltage  
2 V/Div, DC  
Voltage at SW  
2 V/Div, DC  
Output Voltage  
50 mV/Div, AC  
Input Current  
500 mA/Div, DC  
Timebase - 2 ms/Div  
Timebase - 400 µs/Div  
Figure 17.  
Figure 18.  
MAXIMUM LDO OUTPUT CURRENT  
MAXIMUM LDO OUTPUT CURRENT  
vs  
vs  
LDO INPUT VOLTAGE  
LDO INPUT VOLTAGE  
0.35  
0.3  
0.35  
V
O
= 2.5 V  
0.3  
0.25  
0.2  
V
O
= 1.5 V  
0.25  
0.2  
V
O
= 3.3 V  
V
O
= 1.8 V  
0.15  
0.1  
0.15  
0.1  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
LDO Input Voltage - V  
LDO Input Voltage - V  
Figure 19.  
Figure 20.  
15  
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
TYPICAL CHARACTERISTICS (continued)  
LDO OUTPUT VOLTAGE  
vs  
LDO OUTPUT CURRENT  
LDO DROPOUT VOLTAGE  
vs  
LDO OUTPUT CURRENT  
1.51  
3.5  
3
TPS61106  
LDOIN = 1.8 V  
1.5  
2.5  
2
1.49  
1.48  
1.47  
TPS61106  
(LDO OUTPUT  
VOLTAGE 1.5 V)  
1.5  
1
1.46  
1.45  
TPS61100  
(LDO OUTPUT  
VOLTAGE 3.3 V)  
0.5  
0
0
50  
100  
150  
200  
0
100  
200  
300  
400  
500  
LDO Output Current - mA  
LDO Output Current - mA  
Figure 21.  
Figure 22.  
SUPPLY CURRENT INTO LDOIN  
vs  
PSRR  
vs  
FREQUENCY  
LDOIN INPUT VOLTAGE  
35  
30  
25  
20  
15  
10  
80  
70  
85°C  
25°C  
LDO Output Current 10 mA  
60  
50  
-40°C  
40  
30  
LDO Output Current 100 mA  
20  
TPS61106  
LDOIN = 3.3 V  
5
0
10  
0
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6  
LDOIN Input Voltage - V  
100k  
1M  
1k  
10k  
10M  
f - Frequency - Hz  
Figure 23.  
Figure 24.  
16  
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
TYPICAL CHARACTERISTICS (continued)  
LDO LOAD TRANSIENT RESPONSE  
LDO LINE TRANSIENT RESPONSE  
Input Voltage  
1 V/Div, DC  
Output Current  
50 mA/Div, DC  
Output Voltage  
10 mV/Div, AC  
Output Voltage  
20 mV/Div, AC  
Timebase - 2 ms/Div  
Timebase - 1 ms/Div  
Figure 25.  
Figure 26.  
LDO START-UP AFTER ENABLE  
LDO-Enable  
2 V/Div, DC  
LDO-Output Voltage  
1 V/Div, DC  
Input Current  
50 mA/Div, DC  
Timebase - 50 µs/Div  
Figure 27.  
17  
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
APPLICATION INFORMATION  
DESIGN PROCEDURE  
The TPS6110x boost converters are intended for systems powered by a single-cell NiCd or NiMH battery with a  
typical terminal voltage between 0.9 V and 1.6 V. They can also be used in systems powered by two-cell NiCd or  
NiMH batteries with a typical stack voltage between 1.8 V and 3.2 V. Additionally, single- or dual-cell, primary  
and secondary alkaline battery cells can be the power source in systems where the TPS6110x is used.  
Programming the Output Voltage  
Boost Converter  
The output voltage of the TPS61100 boost converter section can be adjusted with an external resistor divider.  
The typical value of the voltage on the FB pin is 500 mV. The maximum allowed value for the output voltage is  
5.5 V. The current through the resistive divider should be about 100 times greater than the current into the FB  
pin. The typical current into the FB pin is 0.01 µA and the voltage across R6 is typically 500 mV. Based on those  
two values, the recommended value for R6 should be lower than 500 k, in order to set the divider current at 1  
µA or higher. Because of internal compensation circuitry the value for this resistor should be in the range of 200  
k. From that, the value of resistor R3, depending on the needed output voltage (VO), can be calculated using  
Equation 1:  
V
V
O
O
R3 + R6   
–1 + 180 kW   
–1  
ǒ Ǔ ǒ Ǔ  
V
500 mV  
FB  
(1)  
If as an example, an output voltage of 3.3 V is needed, a 1-Mresistor should be chosen for R3.  
U1  
L1  
SWN  
10 µH  
VBAT  
LBI  
V
CC1  
Boost Output  
VOUT  
FB  
R3  
C6  
2.2 µF  
C4  
100 µF  
R1  
R2  
C3  
10 µF  
Power  
Supply  
R6  
R5  
LDOIN  
V
CC2  
SKIPEN  
ADEN  
EN  
LDOOUT  
LDO Output  
C5  
LDOSENSE  
R7 R8 R9  
ENPB  
R4  
LDOEN  
LBO1  
LBO2  
Control  
Outputs  
PGOOD  
PGND  
GND  
TPS61100  
Figure 28. Typical Application Circuit for Adjustable Output Voltage Option  
LDO  
Programming the output voltage at the LDO follows almost the same rules as at the boost converter section. The  
maximum programmable output voltage at the LDO is 3.3 V. Since reference and internal feedback circuitry are  
similar, as they are at the boost converter section, R4 also should be in the 200-krange. The calculation of the  
value of R5 can be done using the following Equation 2:  
V
V
O
O
R5 + R4   
–1 + 180 kW   
–1  
ǒ Ǔ ǒ Ǔ  
V
500 mV  
FB  
(2)  
If as an example, an output voltage of 1.5 V is needed, a 360 k-resistor should be chosen for R5.  
18  
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
APPLICATION INFORMATION (continued)  
Programming the LBI/LBO Threshold Voltage  
The current through the resistive divider should be about 100 times greater than the current into the LBI pin. The  
typical current into the LBI pin is 0.01 µA, and the voltage across R2 is equal to the LBI voltage threshold that is  
generated on-chip, which has a value of 400 mV, 450 mV or 500 mV. The recommended value for R2is therefore  
in the range of 500 k. From that, the value of resistor R1, depending on the desired minimum battery voltage  
VBAT, can be calculated using Equation 3.  
V
V
BAT  
LBI-threshold  
BAT  
R1 + R2   
–1 + 390 kW   
–1  
ǒ
Ǔ ǒ Ǔ  
V
450 mV  
(3)  
For example, if the low-battery detection circuit should flag an error condition for the 450 mV threshold on the  
LBO outputs at a battery voltage of 1.23 V, a 680-kresistor should be chosen for R1. The resulting battery  
voltages of the other thresholds can be calculated using Equation 4:  
680 kW  
390 kW  
R1  
R2  
ǒ Ǔ  
ǒ
) 1Ǔ  
V
+ V  
 
) 1 + 500 mV   
BAT  
LBI-threshold  
(4)  
The result for the 500-mV threshold in our example is 1.37 V and for the 400-mV threshold 1.1 V. This results in  
the following truth table for the battery supervisor outputs:  
VBAT [V]  
0-1.1  
LBO1  
LBO2  
0
1
0
1
0
0
1
1
1.1-1.23  
1.23-1.37  
1.37-VBAT max  
If the application requires only a simple LBI/LBO function both LBO outputs can be connected together. The LBI  
threshold then is 500 mV.  
The outputs of the low battery supervisor are simple open-drain outputs that go active low if the dedicated battery  
voltage drops below the programmed threshold voltage on LBI. The output requires a pullup resistor with a  
recommended value of 1 M. The maximum voltage which is used to pull up the LBO outputs should not exceed  
the output voltage of the boost converter. If not used, the LBO pin can be left floating or tied to GND.  
Inductor Selection  
A boost converter normally requires two main passive components for storing energy during the conversion. A  
boost inductor and a storage capacitor at the output are required. To select the boost inductor, it is  
recommended to keep the possible peak inductor current below the current limit threshold of the power switch in  
the chosen configuration. For example, the current limit threshold of the TPS6110x's switch is 1200 mA at an  
output voltage of 3.3 V. The highest peak current through the inductor and the switch depends on the output  
load, the input (VBAT), and the output voltage (VOUT). Estimation of the maximum average inductor current can be  
done using Equation 5:  
V
OUT  
  0.8  
I
+ I  
 
L
OUT  
V
BAT  
(5)  
For example, for an output current of 100 mA at 3.3 V, at least 515 mA of current flows through the inductor at a  
minimum input voltage of 0.8 V.  
19  
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
The second parameter for choosing the inductor is the desired current ripple in the inductor. Normally, it is  
advisable to work with a ripple of less than 20% of the average inductor current. A smaller ripple reduces the  
magnetic hysteresis losses in the inductor, as well as output voltage ripple and EMI. But in the same way,  
regulation time at load changes rises. In addition, a larger inductor increases the total system costs. With those  
parameters, it is possible to calculate the value for the inductor by using Equation 6:  
  ǒVOUT BATǓ  
V
–V  
BAT  
L +  
DI   ƒ   V  
L
OUT  
(6)  
Parameter 0 is the switching frequency andIL is the ripple current in the inductor, i.e., 20% × IL. In this example,  
the desired inductor has the value of 12 µH. With this calculated value and the calculated currents, it is possible  
to choose a suitable inductor. Care has to be taken that load transients and losses in the circuit can lead to  
higher currents as estimated in Equation 5. Also, the losses in the inductor caused by magnetic hysteresis losses  
and copper losses are a major parameter for total circuit efficiency.  
Table 1. Inductors  
VENDOR  
RECOMMENDED INDUCTOR SERIES  
CDRH73  
CDRH74  
Sumida  
CDRH5D18  
CDRH6D38  
DR73  
Coiltronics  
Murata  
DR74  
LQS66C  
LQN6C  
SLF 7045  
SLF 7032  
WE-PD Type M  
WE-PD Type S  
TDK  
Wurth Electronic  
CAPACITOR SELECTION  
Input Capacitor  
At least a 10-µF input capacitor is recommended to improve transient behavior of the regulator and EMI behavior  
of the total power supply circuit. A ceramic capacitor or a tantalum capacitor with a 100-nF ceramic capacitor in  
parallel, placed close to the IC, is recommended.  
Output Capacitor Boost Converter  
The major parameter necessary to define the output capacitor is the maximum allowed output voltage ripple of  
the converter. This ripple is determined by two parameters of the capacitor, the capacitance and the ESR. It is  
possible to calculate the minimum capacitance needed for the defined ripple, supposing that the ESR is zero, by  
using Equation 7:  
  ǒVOUT BATǓ  
I
* V  
OUT  
C
+
min  
ƒ   DV   V  
OUT  
(7)  
Parameter f is the switching frequency and V is the maximum allowed ripple.  
20  
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
With a chosen ripple voltage of 15 mV, a minimum capacitance of 10 µF is needed. The total ripple is larger due  
to the ESR of the output capacitor. This additional component of the ripple can be calculated using Equation 8:  
DV  
I
R
ESR  
OUT  
ESR  
(8)  
An additional ripple of 10 mV is the result of using a tantalum capacitor with a low ESR of 100 m. The total  
ripple is the sum of the ripple caused by the capacitance and the ripple caused by the ESR of the capacitor. In  
this example, the total ripple is 25 mV. It is possible to improve the design by enlarging the capacitor or using  
smaller capacitors in parallel to reduce the ESR or by using better capacitors with lower ESR, like ceramics. So,  
trade-offs have to be made between performance and costs of the converter circuit.  
Output Capacitor LDO  
To ensure stable output regulation, it is required to use an output capacitor at the LDO output. We recommend  
using ceramic capacitors in the range from 1 µF up to 4.7 µF. At 4.7 µF and above it is recommended to use  
standard ESR tantalum. There is no maximum capacitance value.  
LAYOUT CONSIDERATIONS  
As for all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
tracks. The input capacitor, output capacitor, and the inductor should be placed as close as possible to the IC.  
Use a common ground node for power ground and a different one for control ground to minimize the effects of  
ground noise. Connect these ground nodes at any place close to one of the ground pins of the IC.  
The feedback divider should be placed as close as possible to the control ground pin of the IC. To lay out the  
control ground, it is recommended to use short traces as well, separated from the power ground traces. This  
avoids ground shift problems, which can occur due to superimposition of power ground current and control  
ground current.  
APPLICATION EXAMPLES  
U1  
L1  
SWN  
10 µH  
3.3 V,  
>250 mA  
VBAT  
LBI  
VOUT  
C6  
2.2 µF  
C4  
100 µF  
R1  
R2  
C3  
10 µF  
LDOIN  
1.5 V,  
>120 mA  
SKIPEN  
ADEN  
EN  
LDOOUT  
C5  
2.2 µF  
LDOSENSE  
R7 R8 R9  
ENPB  
LDOEN  
List of Components:  
U1 = TPS61106  
L1 = SUMIDA CDRH74–100  
C3, C5, C6 = X7R/X5R Ceramic  
C4 = Low ESR Tantalum  
LBO1  
LBO2  
LBO1  
LBO2  
PGOOD  
PGND  
PGOOD  
GND  
TPS61106  
Figure 29. Solution for Maximum Output Power  
21  
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
U1  
L1  
SWN  
VBAT  
10 µH  
3.3 V  
1.5 V  
VOUT  
C6  
2.2 µF  
C4  
100 µF  
R1  
C3  
10 µF  
LBI  
R2  
LDOIN  
SKIPEN  
ADEN  
EN  
LDOOUT  
C5  
2.2 µF  
LDOSENSE  
R7 R8 R9  
ENPB  
LDOEN  
List of Components:  
U1 = TPS61106  
L1 = SUMIDA 5D18–100  
C3, C5, C6 = X7R/X5R Ceramic  
C4 = Low ESR, Low Profile Tantalum  
LBO1  
LBO2  
LBO1  
LBO2  
PGOOD  
PGND  
PGOOD  
GND  
TPS61106  
Figure 30. Low Profile Solution, Maximum Height 1,8 mm  
6 V  
C7  
DS1  
U1  
C8  
1 µF  
0.1 µF  
L1  
SWN  
10 µH  
VBAT  
LBI  
VOUT  
3.3 V  
1.5 V  
C6  
2.2 µF  
C4  
100 µF  
R1  
R2  
C3  
10 µF  
LDOIN  
SKIPEN  
ADEN  
EN  
LDOOUT  
C5  
2.2 µF  
LDOSENSE  
List of Components:  
U1 = TPS61106  
L1 = SUMIDA CDRH74–100  
C3, C5, C6,  
C7, C8 = X7R/X5R Ceramic  
C4 = Low ESR Tantalum  
DS1 = BAT54S  
R7 R8 R9  
ENPB  
LDOEN  
LBO1  
LBO2  
LBO1  
LBO2  
PGOOD  
PGND  
PGOOD  
GND  
TPS61106  
Figure 31. Dual Power Supply With Auxiliary Positive Output Voltage  
22  
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
–3 V  
C7  
DS1  
C8  
1 µF  
U1  
0.1 µF  
L1  
SWN  
VBAT  
10 µH  
VOUT  
3.3 V  
C6  
2.2 µF  
C4  
100 µF  
R1  
C3  
10 µF  
LBI  
R2  
LDOIN  
1.5 V  
SKIPEN  
ADEN  
EN  
LDOOUT  
C5  
2.2 µF  
LDOSENSE  
R7 R8 R9  
List of Components:  
U1 = TPS61106  
L1 = SUMIDA CDRH74–100  
C3, C5, C6,  
ENPB  
LDOEN  
LBO1  
LBO2  
LBO1  
LBO2  
C7, C8 = X7R/X5R Ceramic  
C4 = Low ESR Tantalum  
DS1 = BAT54S  
PGOOD  
PGND  
PGOOD  
GND  
TPS61106  
Figure 32. Dual Power Supply With Auxiliary Negative Output Voltage  
U1  
L1  
SWN  
10 µH  
VBAT  
LBI  
VOUT  
FB  
R3  
C6  
22 µF  
R1  
R2  
C3  
10 µF  
R6  
R5  
LDOIN  
LDOOUT  
SKIPEN  
ADEN  
EN  
3.3 V  
C5  
LDOSENSE  
2.2 µF  
R7 R8 R9  
ENPB  
LDOEN  
R4  
List of Components:  
U1 = TPS61100  
LBO1  
LBO2  
LBO1  
LBO2  
L1 = SUMIDA CDRH74–100  
C3, C5 = X7R/X5R Ceramic  
C6 = X7R/X5R Ceramic or Low  
ESR Tantalum  
PGOOD  
PGND  
PGOOD  
GND  
TPS61100  
Figure 33. Single Output Using LDO as Filter  
23  
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
U1  
L1  
SWN  
VBAT  
10 µH  
3.3 V  
1.5 V  
VOUT  
C6  
2.2 µF  
C4  
100 µF  
R1  
C3  
10 µF  
LBI  
R2  
LDOIN  
LDOOUT  
C5  
2.2 µF  
SKIPEN  
ADEN  
EN  
LDOSENSE  
R10  
R7 R8 R9  
ENPB  
LDOEN  
LBO1  
LBO2  
LBO1  
LBO2  
List of Components:  
U1 = TPS61106  
L1 = SUMIDA 5D18–100  
C3, C5, C6 = X7R/X5R Ceramic  
C4 = Low ESR Tantalum  
PGOOD  
PGND  
GND  
TPS61106  
Figure 34. Simple Solution Using a Pushbutton for Start-Up  
D1  
USB-Input  
4.2 V – 5.5 V  
List of Components:  
D2  
U1 = TPS61100  
L1 = SUMIDA CDRH73–100  
C3, C6 = X7R/X5R Ceramic  
C4 = Low ESR Tantalum  
D1 = ON-Semiconductor MBR0520  
R12  
180 kΩ  
U1  
L1  
SWN  
VBAT  
10 µH  
V
CC  
3.3 V System  
Supply  
VOUT  
FB  
R3 1 MΩ  
C6  
2.2 µF  
C4  
100 µF  
R1  
C3  
10 µF  
LBI  
R6  
180 kΩ  
R2  
LDOIN  
SYNC  
ADEN  
EN  
LDOOUT  
R5 1.022 MΩ  
LDOSENSE  
R10  
680 kΩ  
R7 R8 R9  
ENPB  
R4  
180 kΩ  
LDOEN  
LBO1  
LBO2  
R11  
1 MΩ  
Control  
Outputs  
PGOOD  
PGND  
GND  
TPS61100  
Figure 35. Dual Input Power Supply  
24  
TPS61100, TPS61103  
TPS61106, TPS61107  
www.ti.com  
SLVS411BJUNE 2002REVISED APRIL 2004  
U1  
L1  
SWN  
VBAT  
10 µH  
VOUT  
FB  
OUTPUT  
C3  
10 µF  
R3  
R6  
C6  
2.2 µF  
C4  
100 µF  
INPUT  
R1  
LBI  
R11  
R10  
R2  
LDOIN  
LDOOUT  
LDOOUT  
C5  
2.2 µF  
SKIPEN  
ADEN  
SKIPEN  
ADEN  
EN  
R5  
R4  
LDOSENSE  
EN  
R7 R8 R9  
ENPB  
LDOEN  
LBO1  
LBO2  
PGOOD  
PGND  
LBO1  
LBO2  
PGOOD  
GND  
TPS6110XRGE  
ENPB  
LDOEN  
Figure 36. TPS6110x EVM Circuit Diagram  
THERMAL INFORMATION  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the  
power-dissipation limits of a given component.  
Three basic approaches for enhancing thermal performance are listed below.  
Improving the power dissipation capability of the PCB design.  
Improving the thermal coupling of the component to the PCB.  
Introducing airflow in the system.  
The maximum junction temperature (TJ) of the TPS6110x devices is 150°C. The thermal resistance of the 20-pin  
TSSOP package (PW) isRΘJA = 155 K/W (QFN package, RGE, 161 K/W). Specified regulator operation is  
assured to a maximum ambient temperature TA of 85°C. Therefore, the maximum power dissipation is about 420  
mW. More power can be dissipated if the maximum ambient temperature of the application is lower.  
T
* T  
J(MAX)  
R
A
150°C * 85°C  
155 kńW  
P
+
+
+ 420 mW  
D(MAX)  
qJA  
(9)  
25  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  
配单直通车
TPS61106PW产品参数
型号:TPS61106PW
Brand Name:Texas Instruments
是否Rohs认证: 符合
生命周期:Obsolete
零件包装代码:TSSOP
包装说明:TSSOP, TSSOP20,.25
针数:20
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:5.81
模拟集成电路 - 其他类型:SWITCHING REGULATOR
控制模式:CURRENT-MODE
控制技术:PULSE WIDTH MODULATION
最大输入电压:3.3 V
最小输入电压:0.8 V
标称输入电压:1.8 V
JESD-30 代码:R-PDSO-G20
JESD-609代码:e4
长度:6.5 mm
湿度敏感等级:1
功能数量:1
端子数量:20
最高工作温度:85 °C
最低工作温度:-40 °C
最大输出电流:1.8 A
封装主体材料:PLASTIC/EPOXY
封装代码:TSSOP
封装等效代码:TSSOP20,.25
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, THIN PROFILE, SHRINK PITCH
峰值回流温度(摄氏度):260
认证状态:Not Qualified
座面最大高度:1.2 mm
子类别:Switching Regulator or Controllers
表面贴装:YES
切换器配置:BOOST
最大切换频率:800 kHz
温度等级:INDUSTRIAL
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:GULL WING
端子节距:0.65 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:4.4 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!