欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • TPS61240DRVR
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • TPS61240DRVR图
  • 集好芯城

     该会员已使用本站13年以上
  • TPS61240DRVR 现货库存
  • 数量26759 
  • 厂家TI(德州仪器) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TPS61240DRVR图
  • 深圳市恒嘉威智能科技有限公司

     该会员已使用本站7年以上
  • TPS61240DRVR 现货库存
  • 数量14324 
  • 厂家TI/德州仪器 
  • 封装SON6 
  • 批号21+ 
  • 原装恒嘉威价格最实在
  • QQ:1036846627QQ:1036846627 复制
    QQ:2274045202QQ:2274045202 复制
  • -0755-23942980 QQ:1036846627QQ:2274045202
  • TPS61240DRVR图
  • 深圳市创德丰电子有限公司

     该会员已使用本站15年以上
  • TPS61240DRVR 现货库存
  • 数量84 
  • 厂家TI 
  • 封装SON6 
  • 批号10+ 
  • 一定原装房间现货
  • QQ:2851807192QQ:2851807192 复制
    QQ:2851807191QQ:2851807191 复制
  • 86-755-83226910, QQ:2851807192QQ:2851807191
  • TPS61240DRVR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TPS61240DRVR 现货库存
  • 数量3000 
  • 厂家TI 
  • 封装WSON (DRV) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TPS61240DRVR图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • TPS61240DRVR 现货库存
  • 数量5000 
  • 厂家TI 
  • 封装SON6 
  • 批号23+ 
  • 全新原装,公司现货销售!
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • TPS61240DRVR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • TPS61240DRVR 现货库存
  • 数量3000 
  • 厂家TI 
  • 封装SON6 
  • 批号23+ 
  • 原装正品特价销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • TPS61240DRVR图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • TPS61240DRVR 现货库存
  • 数量6851 
  • 厂家TI 
  • 封装SON6 
  • 批号24+ 
  • 全新原装现货,可开增值税发票,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • TPS61240DRVR图
  • 深圳市千喜电子实业有限公司

     该会员已使用本站4年以上
  • TPS61240DRVR 现货库存
  • 数量60000 
  • 厂家代理英飞凌/NXP/圣邦微 
  • 封装现货型号超2000+上亿库存/欢迎询价 
  • 批号23+ 
  • 主营/英飞凌INFINEON全系列优势现货/NXP/TI/ST/圣邦微/询价为准谢谢!
  • QQ:415263630QQ:415263630 复制
  • 15889658433 QQ:415263630
  • TPS61240DRVR图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • TPS61240DRVR 现货库存
  • 数量18500 
  • 厂家TI(德州仪器) 
  • 封装WSON-6 
  • 批号23+ 
  • ★★全网低价,原装原包★★
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • TPS61240DRVR图
  • 深圳市昌和盛利电子有限公司

     该会员已使用本站11年以上
  • TPS61240DRVR 现货库存
  • 数量30000 
  • 厂家TI【原装正品】 
  • 封装SON6 
  • 批号▊ NEW ▊ 
  • ▊▊★代理TI▊▊全系列销售【100%全新原装正品】★长期供应,量大可订,价格优惠!
  • QQ:1551106297QQ:1551106297 复制
    QQ:3059638860QQ:3059638860 复制
  • 0755-23125986 QQ:1551106297QQ:3059638860
  • TPS61240DRVR图
  • 深圳市宏芯微科技有限公司

     该会员已使用本站15年以上
  • TPS61240DRVR 现货库存
  • 数量12586 
  • 厂家TI 
  • 封装QFN6 
  • 批号20+ 
  • 公司优势现货库存,价格优势,假冒必究,应对市场激烈竞争,超低价热卖
  • QQ:1678302500QQ:1678302500 复制
  • 0755-82815382 QQ:1678302500
  • TPS61240DRVR图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • TPS61240DRVR 现货库存
  • 数量23200 
  • 厂家TI 
  • 封装N/A 
  • 批号21+ 
  • 全新原装有现货库存--价格有优势
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • TPS61240DRVR图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • TPS61240DRVR 热卖库存
  • 数量12800 
  • 厂家TI 
  • 封装SON 
  • 批号23+ 
  • 原装进口特价现货!
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • TPS61240DRVR图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • TPS61240DRVR
  • 数量5000 
  • 厂家TI/德州仪器 
  • 封装WSON-6 
  • 批号21+ 
  • 原厂原包装,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • TPS61240DRVR图
  • 深圳市正纳电子有限公司

     该会员已使用本站2年以上
  • TPS61240DRVR
  • 数量13668 
  • 厂家TI(德州仪器) 
  • 封装SON-6 
  • 批号22+ 
  • 只做原装 ¥¥¥
  • QQ:2881664480QQ:2881664480 复制
  • 0755-82524192 QQ:2881664480
  • TPS61240DRVR图
  • 深圳市一呈科技有限公司

     该会员已使用本站9年以上
  • TPS61240DRVR
  • 数量9019 
  • 厂家TI/德州仪器 
  • 封装SON6 
  • 批号20+ 
  • ▉原装正品▉低价力挺实单全系列可订
  • QQ:3003797048QQ:3003797048 复制
    QQ:3003797050QQ:3003797050 复制
  • 0755-82779553 QQ:3003797048QQ:3003797050
  • TPS61240DRVR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TPS61240DRVR
  • 数量64517 
  • 厂家TI 
  • 封装SON6 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • TPS61240DRVR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TPS61240DRVR
  • 数量85000 
  • 厂家TI/德州仪器 
  • 封装WSON-6 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • TPS61240DRVR图
  • 集好芯城

     该会员已使用本站13年以上
  • TPS61240DRVR
  • 数量19006 
  • 厂家TI/德州仪器 
  • 封装SON-6 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TPS61240DRVR图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • TPS61240DRVR
  • 数量1298 
  • 厂家TI/德州仪器 
  • 封装SON6 
  • 批号2021+ 
  • 低价力挺实单
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • TPS61240DRVR图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • TPS61240DRVR
  • 数量5600 
  • 厂家TI 
  • 封装SON 
  • 批号23+ 
  • 只做原装正品,深圳现货
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • TPS61240DRVR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • TPS61240DRVR
  • 数量8800 
  • 厂家TI/德州仪器 
  • 封装SON6 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • TPS61240DRVR图
  • 深圳市积美福电子科技有限公司

     该会员已使用本站4年以上
  • TPS61240DRVR
  • 数量3000 
  • 厂家TI/德州仪器 
  • 封装WSON-6 
  • 批号21+ 
  • 自己原包装现货 实单?|原装?| 现货
  • QQ:647176908QQ:647176908 复制
    QQ:499959596QQ:499959596 复制
  • 0755-83228296 QQ:647176908QQ:499959596
  • TPS61240DRVR图
  • 深圳市创德丰电子有限公司

     该会员已使用本站15年以上
  • TPS61240DRVR
  • 数量84 
  • 厂家TI 
  • 封装SON6 
  • 批号10+ 
  • 一定原装房间现货
  • QQ:2851807192QQ:2851807192 复制
    QQ:2851807191QQ:2851807191 复制
  • 86-755-83226910, QQ:2851807192QQ:2851807191
  • TPS61240DRVR图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • TPS61240DRVR
  • 数量5000 
  • 厂家TI 
  • 封装QFN 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • TPS61240DRVR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TPS61240DRVR
  • 数量3000 
  • 厂家TI 
  • 封装WSON (DRV) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TPS61240DRVR.图
  • 芯德微联(深圳)电子有限公司

     该会员已使用本站2年以上
  • TPS61240DRVR.
  • 数量9800 
  • 厂家专营TI/BB 
  • 封装原厂封装 
  • 批号21+ 
  • 原厂渠道,全新原装现货,欢迎查询!
  • QQ:979645034QQ:979645034 复制
  • 0755-83505154 QQ:979645034
  • TPS61240DRVR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TPS61240DRVR
  • 数量16032 
  • 厂家TI(德州仪器) 
  • 封装WSON6 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • TPS61240DRVR图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • TPS61240DRVR
  • 数量35000 
  • 厂家TI/德州仪器 
  • 封装SON6 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • TPS61240DRVR图
  • 深圳市芯必得电子科技有限公司

     该会员已使用本站10年以上
  • TPS61240DRVR
  • 数量15000 
  • 厂家TI/德州仪器 
  • 封装WSON6 
  • 批号22+ 
  • 只做原装全系列供应可提供技术支持
  • QQ:2853778621QQ:2853778621 复制
  • 0755-82203002 QQ:2853778621

产品型号TPS61240DRVR的概述

TPS61240DRVR 概述 TPS61240DRVR 是德州仪器(Texas Instruments)公司推出的一款高效升压转换器。该芯片专为低输出电流应用设计,能够将较低电池电压(例如1节锂离子电池或镍氢电池)的能量有效提升至更高的输出电压,适用于便携式电子设备、传感器、以及其他需要稳定电源的小型设备。TPS61240DRVR 的高转换效率和宽输入电压范围使其在市场上具有竞争力,广泛应用于各种应用场景。 详细参数 TPS61240DRVR 的主要参数包括: - 输入电压范围:该芯片的输入电压范围为 2.3V 至 5.5V,适合常见的电池供电系统。 - 输出电压范围:输出电压可以在 1.8V 至 5.5V 之间调节,具有灵活的应用能力。 - 最大输出功率:TPS61240DRVR 在良好的散热条件下可提供最大输出功率高达 1.2W。 - 最大输出电流:芯片在负载电流高达 600mA...

产品型号TPS61240DRVR的Datasheet PDF文件预览

TPS61240, TPS61241  
www.ti.com .............................................................................................................................................................. SLVS806AAPRIL 2009REVISED MAY 2009  
3.5-MHz High Efficiency Step-Up Converter  
1
FEATURES  
DESCRIPTION  
Efficiency > 90% at Nominal Operating  
Conditions  
The TPS6124x device is a high efficient synchronous  
step up DC-DC converter optimized for products  
powered by either a three-cell alkaline, NiCd or  
NiMH, or one-cell Li-Ion or Li-Polymer battery. The  
TPS6124x supports output currents up to 450mA.  
The TPS61240 has an input valley current limit of  
500mA, and the TPS61241 has an input valley  
current of 600mA.  
Total DC Output Voltage Accuracy 5.0V±2%  
Typical 30 µA Quiescent Current  
Best in Class Line and Load Transient  
Wide VIN Range From 2.3V to 5.5V  
Output current up to 450mA  
Automatic PFM/PWM Mode transition  
With an input voltage range of 2.3V to 5.5V the  
device supports batteries with extended voltage  
range and are ideal to power portable applications  
like mobile phones and other portable equipment.  
The TPS6124x boost converter is based on a  
quasi-constant on-time valley current mode control  
scheme.  
Low Ripple Power Save Mode for Improved  
Efficiency at Light Loads  
Internal Softstart, 250µs typical Start-Up time  
3.5MHz Typical Operating Frequency  
Load Disconnect During Shutdown  
Current Overload and Thermal Shutdown  
Protection  
The TPS6124x presents a high impedance at the  
VOUT pin when shut down. This allows for use in  
applications that require the regulated output bus to  
be driven by another supply while the TPS6124x is  
shut down.  
Three Surface-Mount External Components  
Required (One MLCC Inductor, Two Ceramic  
Capacitors)  
Total Solution Size <13 mm2  
During light loads the device will automatically pulse  
skip allowing maximum efficiency at lowest quiescent  
currents. In the shutdown mode, the current  
consumption is reduced to less than 1µA.  
Available in a 6-pin WCSP and 2×2-SON  
Package  
APPLICATIONS  
TPS6124x allows the use of small inductors and  
capacitors to achieve a small solution size. During  
shutdown, the load is completely disconnected from  
the battery. The TPS6124x is available in a 6-pin  
WCSP and 2×2 SON package.  
USB-OTG Applications  
Portable HDMI Applications  
Cell Phones, Smart-Phones  
PDAs, Pocket PCs  
Portable Media Players  
Digital Cameras  
TPS61240  
V
1 mH  
V
5 V  
L
V
OUT  
OUT  
C
4.7 mF  
OUT  
V
IN  
IN  
FB  
C
EN  
2.2 mF  
IN  
GND  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009, Texas Instruments Incorporated  
TPS61240, TPS61241  
SLVS806AAPRIL 2009REVISED MAY 2009 .............................................................................................................................................................. www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION  
TA  
OUTPUT  
VOLTAGE(2)  
PACKAGE  
DESIGNATOR(1)(3)  
PACKAGE  
MARKING  
PART NUMBER(1)  
PACKAGE  
ORDERING  
6-WCSP  
6-QFN  
YFF  
DRV  
YFF  
TPS61240YFF  
TPS61240DRV  
TPS61241YFF  
GM  
OCJ  
NF  
TPS61240  
TPS61241  
–40°C to 85°C  
5V Fixed  
6-WCSP  
(1) The YFF package is available in tape on reel. Add R suffix (TPS61240YFFR) to order quantities of 3000 parts per reel. Add a T suffix  
(TPS61240YFFT) to order quantities of 250 parts.  
(2) Contact TI for other fixed output voltage options.  
(3) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
VALUE  
–0.3 to 7  
–2.0 to 7  
–2.0 to 14  
Internally limited  
4
UNIT  
VI  
Input voltage range on VIN, L, EN  
Voltage on VOUT  
V
V
V
A
Voltage on FB  
Peak output current  
Human Body Model  
kV  
ESD rating(3)  
CDM Charged Device Model  
Machine Model  
500  
200  
V
TJ  
Maximum operating junction temperature  
Storage temperature range  
–40 to 125  
–65 to 150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) The human body model is a 100pF capacitor discharged through a 1.5 kresistor into each pin. The machine model is a 200pF  
capacitor discharged directly into each pin.  
DISSIPATION RATINGS TABLE(1)  
POWER RATING  
A 25°C  
DERATING FACTOR ABOVE  
TA = 25°C  
PACKAGE  
RθJA  
T
DRV  
YFF  
76°C/W  
1300mW  
800mW  
13mW/°C  
8mW/°C  
125°C/W  
(1) Maximum power dissipation is a function of TJ(max), θJA and TA. The maximum allowable power dissipation at  
any allowable ambient temperature is PD = [TJ(max)-TA] / θJA.  
(2) This thermal data is measured with high-K board (4 layer board according to JESD51-7 JEDEC standard).  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM MAX UNIT  
Supply voltage at VIN  
2.3  
–40  
–40  
5.5  
85  
V
TA  
TJ  
Operating ambient temperature  
Operating junction temperature  
°C  
°C  
125  
2
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s) :TPS61240, TPS61241  
TPS61240, TPS61241  
www.ti.com .............................................................................................................................................................. SLVS806AAPRIL 2009REVISED MAY 2009  
ELECTRICAL CHARACTERISTICS  
Over full operating ambient temperature range, typical values are at TA = 25°C. Unless otherwise noted, specifications apply  
for condition VIN = EN = 3.6V. External components CIN = 2.2µF, COUT = 4.7µF 0603, L = 1µH, refer to PARAMETER  
MEASUREMENT INFORMATION.  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
DC/DC STAGE  
VIN  
Input voltage range  
2.3  
4.9  
5.5  
5.1  
V
V
VOUT  
Fixed output voltage range  
Ripple voltage, PWM mode  
Output current  
2.3 V VIN 5.5 V, 0 mA IOUT 200 mA  
ILOAD = 150 mA  
5.0  
VO_Ripple  
20 mVpp  
mA  
VIN 2.3 V to 5.5 V  
200  
VOUT = VGS = 5.0 V (TPS61240)  
VOUT = VGS = 5.0 V (TPS61241)  
VOUT = VGS = 5.0 V  
500 600  
600 700  
200 350  
290  
Switch valley current limit  
Short circuit current  
mA  
mApk  
mΩ  
High side MOSFET on-resistance(1) VIN = VGS = 5.0V, TA = 25°C(1)  
(1)  
Low Side MOSFET on-resistance(1) VIN = VGS = 5.0 V, TA = 25°C  
250  
mΩ  
Operating quiescent current  
Shutdown current  
IOUT = 0 mA, Power save mode  
EN = GND  
30  
40  
1.5  
2.5  
µA  
µA  
µA  
ISW  
Reverse leakage current VOUT  
EN = 0, VOUT = 5 V  
Leakage current from battery to  
VOUT  
EN = GND  
2.5  
µA  
VIN 600 mVp-p AC square wave, 200Hz,  
12.5% DC at 50/200mA load  
Line transient response  
±25 ±50 mVpk  
0–50 mA, 50–0 mA VIN = 3.6V TRise = TFall = 0.1µs  
50  
Load transient response  
Input bias current, EN  
mVpk  
150  
50–200 mA, 200–50 mA, VIN = 3.6 V, TRise = TFall = 0.1µs  
IIN  
EN = GND or VIN  
Falling  
0.01  
2.0  
1.0  
2.1  
2.2  
µA  
V
VUVLO  
Undervoltage lockout threshold  
Rising  
2.1  
V
CONTROL STAGE  
VIH  
VIL  
High level input voltage, EN  
2.3 V VIN 5.5 V  
2.3 V VIN 5.5 V  
Falling  
1.0  
V
V
Low level input voltage, EN  
0.4  
5.9  
6.0  
OVC  
tStart  
Input over-voltage threshold  
V
Rising  
Time from active EN to start switching, no-load until VOUT  
is stable 5V  
Start-up time  
300  
µs  
DC/DC STAGE  
Freq  
See Figure 7 (Frequency Dependancy vs IOUT  
Increasing junction temperature  
)
3.5  
140  
20  
MHz  
°C  
Thermal shutdown  
Thermal shutdown hysteresis  
TSD  
Decreasing junction temperature  
°C  
(1) DRV package has an increased RDSon of about 40mdue to bond wire resistance.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s) :TPS61240, TPS61241  
TPS61240, TPS61241  
SLVS806AAPRIL 2009REVISED MAY 2009 .............................................................................................................................................................. www.ti.com  
PIN ASSIGNMENTS  
WCSP PACKAGE  
View From Underside  
View From Topside  
A2  
A2  
B2  
C2  
A1  
A1  
B1  
C1  
0,4 mm pitch  
Bump dia: 0,25 0,05 mm  
0,6 0,025 mm hiꢀh  
B2  
C2  
B1  
C1  
QFN PACKAGE (TOP VIEW)  
1
2
3
6
5
4
PIN FUNCTIONS  
PIN NO.  
WCSP  
PIN NAME FUNCTION  
REMARKS  
QFN  
2
6
5
4
3
1
B2  
A1  
B1  
C1  
C2  
A2  
VOUT  
VIN  
L
Output  
Connected to load  
Supply voltage  
Supply from battery  
Boost and rectifying switch input  
Inductor connection to FETs  
Positive polarity. Low = IC shutdown.  
Feedback for regulation.  
Power ground and IC ground  
EN  
FB  
Enable  
Feedback input  
Ground  
GND  
4
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s) :TPS61240, TPS61241  
TPS61240, TPS61241  
www.ti.com .............................................................................................................................................................. SLVS806AAPRIL 2009REVISED MAY 2009  
FUNCTIONAL BLOCK DIAGRAM  
L
V
OUT  
V
IN  
FB  
Current  
Sense  
R
1
Int.  
Resistor  
Network  
-
R
2
Softstart  
+
Thermal  
Shutdown  
+
_
EN  
V
REF  
Control  
Logic  
GND  
Undervoltage  
Lockout  
GND  
PARAMETER MEASUREMENT INFORMATION  
TPS61240  
1 mH  
V
5 V  
L
V
V
OUT  
OUT  
C
4.7 mF  
OUT  
V
IN  
IN  
FB  
GND  
C
EN  
2.2 mF  
IN  
List of Components  
COMPONENT  
REFERENCE  
PART NUMBER  
MANUFACTURER  
VALUE  
CIN  
COUT  
L
JMK105BJ225MV  
JDK105BJ475MV  
MDT2012-CH1R0AN  
Taiyo Yuden  
Taiyo Yuden  
TOKO  
2.2 µF, X5R, 6.3 V, 0402  
4.7 µF, X5R, 6.3 V, 0402  
1.0 µH, 900mA, 0805  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s) :TPS61240, TPS61241  
TPS61240, TPS61241  
SLVS806AAPRIL 2009REVISED MAY 2009 .............................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS  
Table of Graphs  
Figure  
Maximum Output Current  
Efficiency  
vs Input Voltage  
1
2
vs Output Current, Vout = 5V, Vin = [2.3V; 3.0V; 3.6V; 4.2V]  
vs Input Voltage, Vout = 5V, Iout = [100uA; 1mA; 10mA; 100mA; 200mA]  
at No Output Load, Device Disabled  
3
Input Current  
4
vs Output Current, Vout = 5V, Vin = [2.3V; 3.0V; 3.6V; 4.2V]  
vs Input Voltage  
5
Output Voltage  
Frequency  
6
vs Output Load, Vout = 5V, Vin = [3.0V; 4.0V; 5.0V]  
Output Voltage Ripple, PFM Mode, Iout = 10mA  
Output Voltage Ripple, PWM Mode, Iout = 150mA  
Load Transient Response, Vin = 3.6V, 0 - 50mA  
Load Transient Response, Vin = 3.6V, 50 - 200mA  
Line Transient Response, Vin = 3.6V - 4.2V, Iout = 50mA  
Line Transient Response, Vin = 3.6V - 4.2V, Iout = 200mA  
Startup after Enable, Vin = 3.6V, Vout = 5V, Load = 5KΩ  
Startup after Enable, Vin = 3.6V, Vout = 5V, Load = 16.5Ω  
Startup and Shutdown, Vin = 3.6V, Vout = 5V, Load = 16.5Ω  
7
8
9
10  
11  
12  
13  
14  
15  
16  
Waveforms  
100  
0.8  
0.7  
0.6  
0.5  
V = 4.2 V  
I
V = 3.6 V  
I
90  
80  
70  
V = 3 V  
I
V = 2.3 V  
I
60  
50  
40  
30  
20  
10  
0.4  
25°C  
-40°C  
0.3  
0.2  
0.1  
0
85°C  
0
0.00001 0.0001  
0.001  
0.01  
0.1  
1
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
I
- Output Current - A  
V - Input Voltage - V  
O
I
Figure 1. Maximum Output Current vs Input Voltage  
Figure 2. Efficiency vs Output Current  
6
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s) :TPS61240, TPS61241  
TPS61240, TPS61241  
www.ti.com .............................................................................................................................................................. SLVS806AAPRIL 2009REVISED MAY 2009  
100  
90  
80  
70  
60  
50  
40  
30  
20  
0.070  
0.060  
0.050  
I
= 200 mA  
O
-40°C  
85°C  
25°C  
I
= 100 mA  
O
0.040  
0.030  
0.020  
0.010  
0
I
= 10 mA  
O
I
= 1 mA  
O
I
= 100 mA  
O
10  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2.8  
3.3  
3.8  
4.3  
- Input Voltage - V  
2.3  
4.8  
5.3  
V - Input Voltage - V  
V
I
IN  
Figure 3. Efficiency vs Input Voltage  
Figure 4. Input at No Output Load  
5.10  
5.05  
5.10  
5.08  
V = 4.2 V  
I
IO = 100 mA  
IO = 1 mA  
5.06  
5.04  
5.02  
5
IO = 10 mA  
5
V = 3.6 V  
I
IO = 100 mA  
4.98  
4.96  
4.94  
IO = 200 mA  
V = 3 V  
I
V = 2.3 V  
I
4.95  
4.90  
4.92  
4.90  
0.01  
0.1  
1
10  
- Output Current - mA  
100  
1000  
2.3  
2.8  
3.3  
3.8  
4.3  
V - Input Voltage - V  
4.8  
5.3  
I
O
I
Figure 5. Output Voltage vs Output Current  
Figure 6. Output Voltage vs Input Voltage  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s) :TPS61240, TPS61241  
TPS61240, TPS61241  
SLVS806AAPRIL 2009REVISED MAY 2009 .............................................................................................................................................................. www.ti.com  
5.5  
V
= 3.6 V, V  
OUT  
= 5 V, I = 10 mA  
OUT  
IN  
V
= 20 mV/div  
OUT  
5
4.5  
4
SW = 5 V/div  
5 V  
I
= 200 mA/div  
4 V  
COIL  
3 V  
3.5  
3
t - Time Base - 1 ms/div  
100 150 200  
I
250 300 350 400 450 500  
- Output Current - mA  
O
Figure 7. Frequency vs Output Load  
Figure 8. Output Voltage Ripple – PFM Mode  
V
= 3.6 V, V  
= 5 V, I  
= 150 mA  
IN  
OUT  
OUT  
V
= 10 mV/div  
OUT  
V
= 100 mV/dIV  
OUT  
V
= 3.6 V  
SW = 5 V/div  
IN  
V
I
= 5 V  
OUT  
= 0 - 50 mA  
OUT  
I
= 100 mA/dIV  
COIL  
I
= 200 mA/div  
COIL  
50 mA  
0 mA  
I
= 100 mA/div  
OUT  
t - Time Base - 20 ms/div  
Figure 9. Output Voltage Ripple – PWM Mode  
t - Time Base - 20 ms/div  
Figure 10. Load Transient Response 0mA–50mA and  
50mA–0mA  
8
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s) :TPS61240, TPS61241  
TPS61240, TPS61241  
www.ti.com .............................................................................................................................................................. SLVS806AAPRIL 2009REVISED MAY 2009  
V
= 1 V/div  
IN  
V
OUT  
= 200 mV/div  
V
= 50 mv/div  
OUT  
V
V
I
= 3.6 V  
= 5 V  
IN  
V
V
I
= 3.6 V - 4.2 V  
= 5 V  
OUT  
IN  
= 50 - 200 mA  
I
COIL  
= 200 mA/div  
OUT  
OUT  
= 50 mA  
OUT  
I
= 200 mA/div  
COIL  
200 mA  
50 mA  
I
= 200 mA/div  
OUT  
t - Time Base - 100 ms/div  
t - Time Base - 20 ms/div  
Figure 11. Load Transient Response 0mA–200mA and  
200mA–0mA  
Figure 12. Line Transient Response 3.6V–4.2V at 50mA  
Load  
EN = 5 V/div  
V
= 1 V/div  
IN  
V
= 1 V/div  
OUT  
V
= 50 mv/div  
OUT  
V
V
I
= 3.6 V - 4.2 V  
= 5 V  
IN  
OUT  
I
= 200 mA/div  
V
V
I
= 3.6 V  
= 5 V  
= 200 mA  
COIL  
IN  
OUT  
OUT  
= 10 mA  
OUT  
I
= 200 mA/div  
COIL  
t - Time Base - 50 ms/div  
t - Time Base - 100 ms/div  
Figure 13. Line Transient Response 3.6V–4.2V at 200mA  
Load  
Figure 14. Startup After Enable – No Load  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s) :TPS61240, TPS61241  
TPS61240, TPS61241  
SLVS806AAPRIL 2009REVISED MAY 2009 .............................................................................................................................................................. www.ti.com  
EN = 5 V/div  
EN = 5 V/div  
V
= 1 V/div  
OUT  
V
V
I
= 3.6 V  
= 5 V  
IN  
V
= 2 V/div  
OUT  
OUT  
V
V
I
= 3.6 V  
= 5 V  
IN  
= 150 mA  
OUT  
OUT  
V
= 1 V/div  
= 150 mA  
IN  
OUT  
I
= 200 mA/div  
I
= 200 mA/div  
COIL  
COIL  
t - Time Base - 100 ms/div  
t - Time Base - 200 ms/div  
Figure 15. Startup After Enable – With Load  
Figure 16. Startup and Shutdown  
DETAILED DESCRIPTION  
OPERATION  
The TPS6124x Boost Converter operates with typically 3.5MHz fixed frequency pulse width modulation (PWM) at  
moderate to heavy load currents. At light load currents the converter will automatically enter Power Save Mode  
and operates then in PFM (Pulse Frequency Modulation) mode. During PWM operation the converter uses a  
unique fast response quasi-constant on-time valley current mode controller scheme which allows “Best in Class”  
line and load regulation allowing the use of small ceramic input and output capacitors.  
Based on the VIN/VOUT ratio, a simple circuit predicts the required on-time. At the beginning of the switching  
cycle, the low-side N-MOS switch is turned-on and the inductor current ramps up to a defined peak current. In  
the second phase, once the peak current is reached, the current comparator trips, the on-timer is reset turning off  
the switch, and the current through the inductor then decays to an internally set valley current limit. Once this  
occurs, the on-timer is set to turn the boost switch back on again and the cycle is repeated.  
CURRENT LIMIT OPERATION  
The current limit circuit employs a valley current sensing scheme. Current limit detection occurs during the off  
time through sensing of the voltage drop across the synchronous rectifier.  
The output voltage is reduced as the power stage of the device operates in a constant current mode. The  
maximum continuous output current (IOUT(CL)), before entering current limit operation, can be defined by  
Equation 1 as shown.  
1
2
V
D
f
V
- V  
OUT IN  
IN  
I
= (1 - D) ´ (I  
+
DI ) with DI =  
L
´
and D »  
OUT(CL)  
VALLEY  
L
L
V
OUT  
(1)  
Figure 17 illustrates the inductor and rectifier current waveforms during current limit operation. The output  
current, IOUT, is the average of the rectifier ripple current waveform. When the load current is increased such that  
the lower peak is above the current limit threshold, the off time is lengthened to allow the current to decrease to  
this threshold before the next on-time begins (so called frequency fold-back mechanism).  
10  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s) :TPS61240, TPS61241  
 
TPS61240, TPS61241  
www.ti.com .............................................................................................................................................................. SLVS806AAPRIL 2009REVISED MAY 2009  
I
PEAK  
I
L
Current Limit  
Threshold  
I
= I  
LIM  
VALLEY  
Rectifier  
Current  
I
DI  
OUT(CL)  
L
I
OUT(DC)  
Increased  
Load Current  
I
IN(DC)  
f
Inductorr  
Current  
I
IN(DC)  
DI  
L
V
D
f
IN  
ΔI  
=
×
L
L
Figure 17. Inductor/Rectifier Currents in Current Limit Operation  
POWER-SAVE MODE  
The TPS6124x family of devices integrates a power save mode to improve efficiency at light load. In power save  
mode the converter only operates when the output voltage trips below a set threshold voltage. It ramps up the  
output voltage with several pulses and goes into power save mode once the output voltage exceeds the set  
threshold voltage.  
Output  
Voltage  
PFM mode at light load  
PFM ripple about 0.015 x V  
OUT  
1.006 x V  
OUT NOM.  
V
OUT NOM.  
PWM mode at heavy load  
The PFM mode is left and PWM mode entered in case the output current can not longer be supported in PFM  
mode.  
UNDER-VOLTAGE LOCKOUT  
The under voltage lockout circuit prevents the device from malfunctioning at low input voltages and from  
excessive discharge of the battery. It disables the output stage of the converter once the falling VIN trips the  
under-voltage lockout threshold VUVLO. The under-voltage lockout threshold VUVLO for falling VIN is typically 2.0V.  
The device starts operation once the rising VIN trips under-voltage lockout threshold VUVLO again at typ. 2.1V.  
INPUT OVER-VOLTAGE PROTECTION  
In the event of an overvoltage condition appearing on the input rail, the output voltage will also experience the  
overvoltage due to being in dropout condition. A input overvoltage protection feature has been implemented into  
the TPS6124x which has an input overvoltage threshold of 6.0V. Once this level is triggered, the device will go  
into a shutdown mode to protect itself. If the voltage drops to 5.9V or below, the device will startup once more  
into normal operation.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s) :TPS61240, TPS61241  
TPS61240, TPS61241  
SLVS806AAPRIL 2009REVISED MAY 2009 .............................................................................................................................................................. www.ti.com  
ENABLE  
The device is enabled setting EN pin to high. At first, the internal reference is activated and the internal analog  
circuits are settled. Afterwards, the soft start is activated and the output voltage is ramped up. The output  
voltages reaches its nominal value in typically 250 µs after the device has been enabled.  
The EN input can be used to control power sequencing in a system with various DC/DC converters. The EN pin  
can be connected to the output of another converter, to drive the EN pin high and getting a sequencing of supply  
rails. With EN = GND, the device enters shutdown mode.  
SOFT START  
The TPS6124x has an internal soft start circuit that controls the ramp up of the output voltage. The output  
voltages reaches its nominal value within tStart of typically 250µs after EN pin has been pulled to high level. The  
output voltage ramps up from 5% to its nominal value within tRAMP of typ. 300µs.  
This limits the inrush current in the converter during start up and prevents possible input voltage drops when a  
battery or high impedance power source is used.  
During soft start, the switch current limit is reduced to 300mA until the output voltage reaches VIN. Once the  
output voltage trips this threshold, the device operates with its nominal current limit ILIMF  
.
LOAD DISCONNECT  
Load disconnect electrically removes the output from the input of the power supply when the supply is disabled.  
This is especially important during shutdown. In shutdown of a boost converter, the load is still connected to the  
input through the inductor and catch diode. Since the input voltage is still connected to the output, a small current  
continues to flow, even when the supply is disabled. Even small leakage currents significantly reduce battery life  
during extended periods of off time.  
The benefit of this implemented feature for the system design engineer is that the battery is not depleted during  
shutdown of the converter. No additional components must be added to the design to make sure that the battery  
is disconnected from the output of the converter.  
THERMAL SHUTDOWN  
As soon as the junction temperature, TJ, exceeds 140°C (typical) the device goes into thermal shutdown. In this  
mode, the High Side and Low Side MOSFETs are turned-off. When the junction temperature falls below the  
thermal shutdown hysteresis, the device continuous operation.  
12  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s) :TPS61240, TPS61241  
TPS61240, TPS61241  
www.ti.com .............................................................................................................................................................. SLVS806AAPRIL 2009REVISED MAY 2009  
APPLICATION INFORMATION  
TPS61240  
1 mH  
V
5 V  
L
V
V
OUT  
OUT  
C
4.7 mF  
OUT  
V
IN  
IN  
FB  
C
EN  
2.2 mF  
IN  
GND  
Figure 18. TPS61240 Fixed 5.0V for HDMI / USB-OTG Applications  
TPS61240  
1 mH  
V
5 V  
OUT  
L
V
V
OUT  
C
4.7 mF  
OUT  
V
IN  
IN  
FB  
EN  
C
2.2 mF  
GND  
IN  
Figure 19. TPS61240 Fixed 5.0V With Schottky Diode for Output Overvoltage Protection  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s) :TPS61240, TPS61241  
 
 
TPS61240, TPS61241  
SLVS806AAPRIL 2009REVISED MAY 2009 .............................................................................................................................................................. www.ti.com  
DESIGN PROCEDURE  
PROGRAMMING THE OUTPUT VOLTAGE  
The output voltage is set by a resistor divider internally. The FB pin is used to sense the output voltage. To  
configure the output properly, the FB pin needs to be connected directly as shown in Figure 18 and Figure 19.  
INDUCTOR SELECTION  
To make sure that the TPS6124x devices can operate, an inductor must be connected between pin VIN and pin  
L. A boost converter normally requires two main passive components for storing energy during the conversion. A  
boost inductor and a storage capacitor at the output are required. To select the boost inductor, it is  
recommended to keep the possible peak inductor current below the current limit threshold of the power switch in  
the chosen configuration. The highest peak current through the inductor and the switch depends on the output  
load, the input (VIN), and the output voltage (VOUT). Estimation of the maximum average inductor current can be  
done using Equation 2.  
VOUT  
IL_MAX » IOUT  
´
η ´ V  
IN  
(2)  
For example, for an output current of 200mA at 5.0V VOUT, at least 540mA of average current flows through the  
inductor at a minimum input voltage of 2.3V.  
The second parameter for choosing the inductor is the desired current ripple in the inductor. Normally, it is  
advisable to work with a ripple of less than 20% of the average inductor current. A smaller ripple reduces the  
magnetic hysteresis losses in the inductor, as well as output voltage ripple and EMI. But in the same way,  
regulation time at load changes rises. In addition, a larger inductor increases the total system size and cost. With  
these parameters, it is possible to calculate the value of the minimum inductance by using Equation 3.  
V
´
V
- V  
OUT IN  
(
DIL ´ f ´ VOUT  
)
IN  
LMIN  
»
(3)  
Parameter f is the switching frequency and ΔIL is the ripple current in the inductor, i.e., 20% x IL. In this example,  
the desired inductor has the value of 1.7 µH. With this calculated value and the calculated currents, it is possible  
to choose a suitable inductor. In typical applications a 1.0 µH inductance is recommended. The device has been  
optimized to operate with inductance values between 1.0 µH and 2.2 µH. It is recommended that inductance  
values of at least 1.0 µH is used, even if Equation 3 yields something lower. Care has to be taken that load  
transients and losses in the circuit can lead to higher currents as estimated in Equation 3. Also, the losses in the  
inductor caused by magnetic hysteresis losses and copper losses are a major parameter for total circuit  
efficiency.,  
With the chosen inductance value, the peak current for the inductor in steady state operation can be calculated.  
Equation 4 shows how to calculate the peak current I.  
V
´ D  
I
V
- V  
OUT IN  
IN  
OUT  
I
=
+
with D =  
L(peak)  
2 ´ f ´ L  
(1 - D) ´ η  
V
OUT  
(4)  
This would be the critical value for the current rating for selecting the inductor. It also needs to be taken into  
account that load transients and error conditions may cause higher inductor currents.  
Table 1. List of Inductors  
Manufacturer  
Series  
Dimensions  
TOKO  
MDT2012-CH1R0AN  
KSLI-201210AG-1R0  
KSLI-201610AG-1R0  
LQM21PN1R0MC0  
MIPS2012D1R0-X2  
2.0 x 1.2 x 1.0 max. height  
2.0 x 1.2 x 1.0 max. height  
2.0 x 1.6 x 1.0 max. height  
2.0 x 1.2 x 0.55 max. height  
2.0 x 1.2 x 1.0 max. height  
Hitachi Metals  
Murata  
FDK  
14  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s) :TPS61240, TPS61241  
 
 
 
TPS61240, TPS61241  
www.ti.com .............................................................................................................................................................. SLVS806AAPRIL 2009REVISED MAY 2009  
INPUT CAPACITOR  
At least 2.2µF input capacitor is recommended to improve transient behavior of the regulator and EMI behavior  
of the total power supply circuit. It is recommended to place a ceramic capacitor as close as possible to the VIN  
and GND pins  
OUTPUT CAPACITOR  
For the output capacitor, it is recommended to use small ceramic capacitors placed as close as possible to the  
VOUT and GND pins of the IC. If, for any reason, the application requires the use of large capacitors which can  
not be placed close to the IC, using a smaller ceramic capacitor in parallel to the large one is recommended.  
This small capacitor should be placed as close as possible to the VOUT and GND pins of the IC. To get an  
estimate of the recommended minimum output capacitance, Equation 5 can be used.  
IOUT ´ V  
- V  
IN  
(
f ´ DV ´ VOUT  
)
OUT  
Cmin  
=
(5)  
Parameter f is the switching frequency and ΔV is the maximum allowed ripple.  
With a chosen ripple voltage of 10 mV, a minimum effective capacitance of 2.7 µF is needed. The total ripple is  
larger due to the ESR of the output capacitor. This additional component of the ripple can be calculated using  
ΔVESR = IOUT x RESR  
A capacitor with a value in the range of the calculated minimum should be used. This is required to maintain  
control loop stability. There are no additional requirements regarding minimum ESR. There is no upper limit for  
the output capacitance value. Larger capacitors cause lower output voltage ripple as well as lower output voltage  
drop during load transients.  
Note that ceramic capacitors have a DC Bias effect, which will have a strong influence on the final effective  
capacitance needed. Therefore the right capacitor value has to be chosen very carefully. Package size and  
voltage rating in combination with material are responsible for differences between the rated capacitor value and  
the effective capacitance.  
CHECKING LOOP STABILITY  
The first step of circuit and stability evaluation is to look from a steady-state perspective at the following signals:  
Switching node, SW  
Inductor current, IL  
Output ripple voltage, VO(AC)  
These are the basic signals that need to be measured when evaluating a switching converter. When the  
switching waveform shows large duty cycle jitter or the output voltage or inductor current shows oscillations, the  
regulation loop may be unstable. This is often a result of board layout and/or L-C combination.  
As a next step in the evaluation of the regulation loop, the load transient response is tested. The time between  
the application of the load transient and the turn on of the P-channel MOSFET, the output capacitor must supply  
all of the current required by the load. VO immediately shifts by an amount equal to ΔI(LOAD) × ESR, where ESR is  
the effective series resistance of CO. ΔI(LOAD) begins to charge or discharge CO generating a feedback error  
signal used by the regulator to return VO to its steady-state value. The results are most easily interpreted when  
the device operates in PWM mode. During this recovery time, VO can be monitored for settling time, overshoot or  
ringing that helps judge the converter’s stability. Without any ringing, the loop has usually more than 45° of phase  
margin. Because the damping factor of the circuitry is directly related to several resistive parameters (e.g.,  
MOSFET rDS(on)) that are temperature dependant, the loop stability analysis has to be done over the input voltage  
range, load current range, and temperature range.  
LAYOUT CONSIDERATIONS  
As for all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
tracks. The input and output capacitor, as well as the inductor should be placed as close as possible to the IC.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s) :TPS61240, TPS61241  
 
TPS61240, TPS61241  
SLVS806AAPRIL 2009REVISED MAY 2009 .............................................................................................................................................................. www.ti.com  
Use a common ground node for power ground and a different one for control ground to minimize the effects of  
ground noise. Connect these ground nodes at any place close to one of the ground pins of the IC. The feedback  
divider should be placed as close as possible to the control ground pin of the IC. To lay out the control ground, it  
is recommended to use short traces as well, separated from the power ground traces. This avoids ground shift  
problems, which can occur due to superimposition of power ground current and control ground current.  
16  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s) :TPS61240, TPS61241  
TPS61240, TPS61241  
www.ti.com .............................................................................................................................................................. SLVS806AAPRIL 2009REVISED MAY 2009  
LAYOUT GUIDELINES  
VIN  
GND  
CI  
L
CO  
EN  
Figure 20. Suggested Layout (Top)  
THERMAL INFORMATION  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependant issues such as thermal coupling, airflow, added  
heat sinks, and convection surfaces, and the presence of other heat-generating components, affect the  
power-dissipation limits of a given component.  
Three basic approaches for enhancing thermal performance are listed below:  
Improving the power dissipation capability of the PCB design  
Improving the thermal coupling of the component to the PCB  
Introducing airflow into the system  
The maximum recommended junction temperature (TJ) of the TPS6124x devices is 105°C. The thermal  
resistance of the 6-pin CSP package (YFF-6) is RθJA = 125°C/W. Regulator operation is specified to a maximum  
steady-state ambient temperature TA of 85°C. Therefore, the maximum power dissipation is about 160 mW.  
PD(Max) = [TJ(max)-TA] / θJA = [105°C - 85°C] / 125°C/W = 160mW  
CHIP SCALE PACKAGE DIMENSIONS  
The TPS6124x device is available in a 6-bump chip scale package (YFF, NanoFreeTM). The package dimensions  
are given as:  
D = 1.30 ±0.03 mm  
E = 0.926 ±0.03 mm  
Chip Scale Package  
(Bottom View)  
Chip Scale Package  
(Top View)  
A2  
B2  
C2  
A1  
B1  
C1  
YMSCC  
LLLL  
A1  
D
Code:  
• YM - Year Month date code  
• S - Assembly site code  
• CC - Chip Code  
E
• LLLL - Lot trace code  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s) :TPS61240, TPS61241  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-May-2009  
PACKAGING INFORMATION  
Orderable Device  
TPS61240DRVR  
TPS61240DRVT  
TPS61240YFFR  
TPS61240YFFT  
TPS61241YFFR  
TPS61241YFFT  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SON  
DRV  
6
6
6
6
6
6
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SON  
DRV  
YFF  
YFF  
YFF  
YFF  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
3000 Green (RoHS &  
no Sb/Br)  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
250 Green (RoHS &  
no Sb/Br)  
3000 Green (RoHS &  
no Sb/Br)  
250 Green (RoHS &  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-May-2009  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
TPS61240DRVR  
TPS61240DRVT  
SON  
SON  
DRV  
DRV  
6
6
3000  
250  
179.0  
179.0  
8.4  
8.4  
2.2  
2.2  
2.2  
2.2  
1.2  
1.2  
4.0  
4.0  
8.0  
8.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-May-2009  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS61240DRVR  
TPS61240DRVT  
SON  
SON  
DRV  
DRV  
6
6
3000  
250  
195.0  
195.0  
200.0  
200.0  
45.0  
45.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  
配单直通车
TPS61240DRVR产品参数
型号:TPS61240DRVR
Brand Name:Texas Instruments
是否无铅:不含铅
是否Rohs认证:符合
生命周期:Active
IHS 制造商:TEXAS INSTRUMENTS INC
零件包装代码:SON
包装说明:SON-6
针数:6
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
Factory Lead Time:6 weeks
风险等级:0.85
Is Samacsys:N
其他特性:ALSO HAS PFM CONTROL TECHNIQUE
模拟集成电路 - 其他类型:SWITCHING REGULATOR
控制模式:CURRENT-MODE
控制技术:PULSE WIDTH MODULATION
最大输入电压:5.5 V
最小输入电压:2.3 V
标称输入电压:3.6 V
JESD-30 代码:S-PDSO-N6
JESD-609代码:e4
长度:2 mm
湿度敏感等级:1
功能数量:1
端子数量:6
最高工作温度:85 °C
最低工作温度:-40 °C
最大输出电流:0.45 A
最大输出电压:5 V
最小输出电压:5 V
标称输出电压:5 V
封装主体材料:PLASTIC/EPOXY
封装代码:HVSON
封装形状:SQUARE
封装形式:SMALL OUTLINE, HEAT SINK/SLUG, VERY THIN PROFILE
峰值回流温度(摄氏度):260
认证状态:Not Qualified
座面最大高度:0.8 mm
表面贴装:YES
切换器配置:BOOST
最大切换频率:3500 kHz
温度等级:INDUSTRIAL
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:NO LEAD
端子节距:0.65 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:2 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!