欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • TPS62125DSGR
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • TPS62125DSGR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • TPS62125DSGR 现货库存
  • 数量3000 
  • 厂家TI 
  • 封装WSON8 
  • 批号23+ 
  • 原装正品特价销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • TPS62125DSGR图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • TPS62125DSGR 现货库存
  • 数量5000 
  • 厂家TI 
  • 封装WSON8 
  • 批号23+ 
  • 全新原装,公司现货销售!
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • TPS62125DSGR图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • TPS62125DSGR 现货库存
  • 数量36000 
  • 厂家TI 
  • 封装WSON8 
  • 批号2021+ 
  • 一级代理销售元器件芯片原装进口现货
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • TPS62125DSGR图
  • 集好芯城

     该会员已使用本站13年以上
  • TPS62125DSGR 现货库存
  • 数量20245 
  • 厂家TI(德州仪器) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TPS62125DSGR图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站6年以上
  • TPS62125DSGR 现货库存
  • 数量5300 
  • 厂家TI 
  • 封装WSON8 
  • 批号24+ 
  • 全新原装★真实库存★含13点增值税票!
  • QQ:2885134615QQ:2885134615 复制
    QQ:2353549508QQ:2353549508 复制
  • 0755-83201583 QQ:2885134615QQ:2353549508
  • TPS62125DSGR图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • TPS62125DSGR 现货库存
  • 数量9000 
  • 厂家TI 
  • 封装WSON8 
  • 批号2021+ 
  • 原装正品
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • TPS62125DSGR图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • TPS62125DSGR 现货库存
  • 数量8000 
  • 厂家TI(德州仪器) 
  • 封装WSON-8 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • TPS62125DSGR图
  • 深圳德田科技有限公司

     该会员已使用本站7年以上
  • TPS62125DSGR 现货库存
  • 数量15000 
  • 厂家TI 
  • 封装NA 
  • 批号22+ 
  • 原装现货质量保证,可出样品可开税票
  • QQ:229754250QQ:229754250 复制
  • 0755-83254070 QQ:229754250
  • TPS62125DSGR图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • TPS62125DSGR 现货库存
  • 数量3801 
  • 厂家TI 
  • 封装WSON8 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • TPS62125DSGR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TPS62125DSGR 现货库存
  • 数量3000 
  • 厂家TI 
  • 封装WSON (DSG) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TPS62125DSGR图
  • 深圳市想亚微电子有限公司

     该会员已使用本站14年以上
  • TPS62125DSGR 现货库存
  • 数量20000 
  • 厂家TI德州仪器 
  • 封装WSON8 
  • 批号21+ 
  • 原厂货源/正品保证/专注品牌/诚信经营/至尊服务
  • QQ:1272309311QQ:1272309311 复制
    QQ:756385723QQ:756385723 复制
  • 13714575141 QQ:1272309311QQ:756385723
  • TPS62125DSGR图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • TPS62125DSGR 优势库存
  • 数量9000 
  • 厂家TI德州仪器 
  • 封装WSON-8 
  • 批号21+ 
  • 进口原装现货
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820
  • TPS62125DSGR图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • TPS62125DSGR 优势库存
  • 数量21688 
  • 厂家TI 
  • 封装WSON8 
  • 批号22+ 
  • 全新原装进口现货特价热卖,长期供货
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • TPS62125DSGR图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • TPS62125DSGR 优势库存
  • 数量20000 
  • 厂家TI 
  • 封装WSON8 
  • 批号22+ 
  • 原装现货
  • QQ:1220223788QQ:1220223788 复制
    QQ:1327510916QQ:1327510916 复制
  • 86-0755-28767101 QQ:1220223788QQ:1327510916
  • TPS62125DSGR图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • TPS62125DSGR
  • 数量5000 
  • 厂家TI/德州仪器 
  • 封装WSON8 
  • 批号21+ 
  • 原厂原包装,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • TPS62125DSGR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TPS62125DSGR
  • 数量85000 
  • 厂家TI/德州仪器 
  • 封装WSON8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • TPS62125DSGR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TPS62125DSGR
  • 数量98500 
  • 厂家TI 
  • 封装WSON8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • TPS62125DSGR图
  • 深圳市旺能芯科技有限公司

     该会员已使用本站4年以上
  • TPS62125DSGR
  • 数量15000 
  • 厂家TI/德州仪器 
  • 封装WSON8 
  • 批号22+ 
  • 深圳全新原装库存现货
  • QQ:2881495751QQ:2881495751 复制
  • 13602549709 QQ:2881495751
  • TPS62125DSGR图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • TPS62125DSGR
  • 数量3000 
  • 厂家TI 
  • 封装WSON-8 
  • 批号21+ 
  • ■原装长期供应支持小批量秒发货
  • QQ:2881664480QQ:2881664480 复制
  • 0755-83532193 QQ:2881664480
  • TPS62125DSGR图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • TPS62125DSGR
  • 数量3000 
  • 厂家TI 
  • 封装WSON8 
  • 批号23+ 
  • 原装正品长期供货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • TPS62125DSGR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • TPS62125DSGR
  • 数量5680 
  • 厂家TI 
  • 封装WSON-8 
  • 批号23+ 
  • 原装正品特价销售
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • TPS62125DSGR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • TPS62125DSGR
  • 数量5000 
  • 厂家TI/德州仪器 
  • 封装WSON8 
  • 批号21+ 
  • 羿芯诚只做原装 原厂渠道 价格优势
  • QQ:2881498351QQ:2881498351 复制
  • 0755-22968581 QQ:2881498351
  • TPS62125DSGR图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • TPS62125DSGR
  • 数量12245 
  • 厂家TI/德州仪器 
  • 封装WSON8 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • TPS62125DSGR图
  • 深圳市能元时代电子有限公司

     该会员已使用本站10年以上
  • TPS62125DSGR
  • 数量26800 
  • 厂家TI/德州仪器 
  • 封装na 
  • 批号21+ 
  • 原装正品,假一罚十
  • QQ:2885637848QQ:2885637848 复制
    QQ:2885658492QQ:2885658492 复制
  • 0755-84502810 QQ:2885637848QQ:2885658492
  • TPS62125DSGR图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • TPS62125DSGR
  • 数量5600 
  • 厂家TI 
  • 封装WSON-8 
  • 批号23+ 
  • 只做原装正品,深圳现货
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • TPS62125DSGR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TPS62125DSGR
  • 数量4408 
  • 厂家TI/德州仪器 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • TPS62125DSGR图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • TPS62125DSGR
  • 数量25000 
  • 厂家TI 
  • 封装WSON-8 
  • 批号2018+ 
  • TI一级代理商原装进口现货
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • TPS62125DSGR图
  • 集好芯城

     该会员已使用本站13年以上
  • TPS62125DSGR
  • 数量13623 
  • 厂家TI/德州仪器 
  • 封装WSON8 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • TPS62125DSGR?图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TPS62125DSGR?
  • 数量16300 
  • 厂家TI 
  • 封装WSON8 
  • 批号23+ 
  • 全新原装正品现货
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • TPS62125DSGR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TPS62125DSGR
  • 数量18530 
  • 厂家TI/BB 
  • 封装WSON8 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • TPS62125DSGR图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • TPS62125DSGR
  • 数量30000 
  • 厂家TI/德州仪器 
  • 封装WSON8 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • TPS62125DSGR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • TPS62125DSGR
  • 数量19048 
  • 厂家TI(德州仪器) 
  • 封装WSON8 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087

产品型号TPS62125DSGR的概述

芯片概述 TPS62125DSGR是一款由德州仪器(Texas Instruments)公司开发的高效降压转换器。这款芯片专为便携式和小型电子设备设计,具备极佳的转换效率与超低待机功耗,广泛应用于移动设备、电池供电的系统、工业电子及汽车应用等领域。TPS62125DSGR采用了集成的电源管理设计理念,可以高效地将更高电压的电源转换为较低的电压,满足各种数字电路和模拟电路的需求。 详细参数 在了解 TPS62125DSGR 的功能特性之前,首先需要关注其关键的电气参数: - 输入电压范围:TPS62125支持的输入电压范围为 4.5V 到 17V,能够适应多种电源环境。 - 输出电压范围:输出电压可调,范围为 0.8V 到 6V;此特性极为重要,可以依据负载需求调整输出电压。 - 输出电流:最大输出电流可达到 3A,使其能够支持相对高功耗的设备。 - 转换效率:在典型应...

产品型号TPS62125DSGR的Datasheet PDF文件预览

TPS62125  
www.ti.com  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
3V-17V, 300mA Step Down Converter With Adjustable Enable Threshold And Hysteresis  
Check for Samples: TPS62125  
1
FEATURES  
DESCRIPTION  
The TPS62125 is a high efficiency synchronous step  
down converter optimized for low and ultra low power  
applications providing up to 300mA output current.  
The wide input voltage range of 3V to 17V supports  
four cell alkaline and 1 to 4 cell Li-Ion batteries in  
series configuration as well as 9V to 15V powered  
applications. The device includes a precise low power  
enable comparator which can be used as an input  
supply voltage supervisor (SVS) to address system  
specific power up and down requirements. The  
enable comparator consumes only 6µA quiescent  
current and features an accurate threshold of 1.2V  
typical as well as an adjustable hysteresis. With this  
feature, the converter can generate a power supply  
rail by extracting energy from a storage capacitor fed  
Wide Input Voltage Range 3V to 17V  
Input SVS (Supply Voltage Supervisor) with  
Adjustable Threshold / Hysteresis Consuming  
typ. 6µA Quiescent Current  
Wide Output Voltage Range 1.2V to 10V  
Typ. 13 µA Quiescent Current  
350nA typ. Shutdown Current  
Seamless Power Save Mode Transition  
DCS-ControlTM Scheme  
Low Output Ripple Voltage  
Up to 1MHz Switching Frequency  
Highest Efficiency over Wide VIN and VOUT  
Range  
from high impedance sources such as solar panels or  
TM  
current loops. With its DCS - Control  
scheme the  
Pin to Pin Compatible with TPS62160/70  
100% Duty Cycle Mode  
converter provides power save mode operation to  
maintain highest efficiency over the entire load  
current range. At light loads the converter operates in  
PFM mode (pulse frequency modulation) and  
transitions seamlessly and automatically in PWM  
(pulse width modulation) mode at higher load  
currents. The DCS - ControlTM scheme is optimized  
for low output ripple voltage in PFM mode in order to  
reduce output noise to a minimum and features  
excellent AC load regulation. An open drain power  
good output indicates once the output voltage is in  
regulation.  
Power Good Open Drain Output  
Output Discharge Function  
Small 2x2mm2 SON 8 pin Package  
APPLICATIONS  
Embedded processing  
4 cell alkaline, 1-4 cell Li-Ion battery powered  
applications  
9V - 15V standby power supply  
Energy harvesting  
Inverter (negative VOUT)  
95  
10mA  
100mA  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VOUT = 3.3V  
up to 300mA  
TPS62125  
250mA  
VIN = 4V to 17V  
L 15µH  
SW  
VIN  
1.0mA  
R1  
1.8M  
COUT  
10µF  
VOS  
FB  
EN  
CIN  
10µF  
R2  
0.25mA  
576k  
EN_hys  
GND  
VOUT = 3.3V  
L = 15mH VLF302515  
COUT = 10mF  
Rpullup  
0.1mA  
PG  
PWR GOOD  
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Input Voltage VIN(V)  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2012, Texas Instruments Incorporated  
TPS62125  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION  
TA  
PART NUMBER(1)  
VOUT  
adjustable  
1.8V  
PACKAGE MARKING  
TPS62125  
TPS62126(2)  
SAQ  
TBD  
–40°C to 85°C  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI  
Web site at www.ti.com  
(2) samples available, contact TI for further information  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
UNIT  
MIN  
- 0.3  
- 0.3  
- 0.3  
– 0.3  
- 0.3  
– 0.3  
MAX  
VIN  
20  
V
V
SW  
VIN +0.3V  
EN  
VIN +0.3V  
V
(2)  
Pin voltage range  
FB  
3.6  
12  
7
V
VOS, PG  
EN_hys  
IPG  
V
V
Power Good sink  
current  
10  
mA  
EN_hys sink current  
IEN_hys  
3
2
HBM Human body model  
CDM Charge device model  
Machine model  
kV  
ESD rating(3)  
1
100  
125  
150  
V
Maximum operating junction temperature, TJ  
Storage temperature range, Tstg  
–40  
–65  
°C  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal GND.  
(3) The human body model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin. The machine model is a 200-pF  
capacitor discharged directly into each pin.  
THERMAL INFORMATION  
TPS62125  
THERMAL METRIC(1)  
DSG  
8 PINS  
65.2  
93.3  
30.1  
0.5  
UNITS  
θJA  
Junction-to-ambient thermal resistance  
θJC(top)  
θJB  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
ψJB  
47.4  
7.2  
θJC(bottom)  
(1) For more information about traditional and new thermal metrics, see the IC PackageThermal Metrics application report, SPRA953  
2
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s) :TPS62125  
TPS62125  
www.ti.com  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM  
MAX UNIT  
Supply voltage VIN  
3
17  
200  
300  
85  
V
3V VIN < 6V  
Output current capability  
mA  
6V VIN 17V  
Operating ambient temperature TA (1), (Unless Otherwise Noted)  
–40  
–40  
°C  
°C  
Operating junction temperature range, TJ  
125  
(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA(max)) is dependent on the maximum operating junction temperature (TJ(max)) and  
the maximum power dissipation of the device in the application (PD(max)). see the IC Package Thermal Metrics application report,  
SPRA953.  
ELECTRICAL CHARACTERISTICS  
TA = –40°C to 85°C, typical values are at TA = 25°C (unless otherwise noted), VIN = 12V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
SUPPLY  
VIN  
Input voltage range(1)  
Output voltage range  
3.0  
1.2  
17  
10  
V
V
VOUT  
IOUT = 0mA, Device not switching, EN = VIN  
regulator sleeps  
,
13  
14  
6
23  
µA  
IOUT = 0mA, Device switching, VIN = 7.2V,  
VOUT = 1.2V, L = 22µH  
IQ  
Quiescent current  
µA  
VIN = 5V, EN = 1.1V, enable comparator active,  
device DC/DC converter off  
11  
VIN = 5 V = VOUT, TA = 25°C, high-side MOSFET  
switch fully turned on (100% Mode)  
IActive  
ISD  
Active mode current consumption  
Shutdown current(2)  
230 275  
0.35 2.4  
µA  
µA  
Enable comparator off, EN < 0.4V,  
VOUT = SW = 0 V, VIN = 5V  
Falling VIN  
Rising VIN  
2.8 2.85  
2.9 2.95  
V
V
VUVLO  
Undervoltage lockout threshold  
ENABLE COMPARATOR THRESHOLD AND HYSTERESIS (EN, EN_hys)  
VTH EN ON  
VTH EN OFF  
VTH EN Hys  
IIN EN  
EN pin threshold rising edge  
EN pin threshold falling edge  
EN pin hysteresis  
1.16  
1.12  
1.20 1.24  
1.15 1.19  
50  
V
V
3.0 V VIN 17V  
mV  
nA  
V
Input bias current into EN pin  
EN_hys pin output low  
EN = 1.3V  
0
50  
0.4  
50  
VEN_hyst  
IEN_hyst = 1mA, EN = 1.1V  
EN_hyst = 1.3V  
IIN EN_hyst  
Input bias current into EN_hyst pin  
0
nA  
POWER SWITCH  
VIN = 3 V, I = 100mA  
VIN = 12V, I = 100mA  
VIN = 3V, I = 100mA  
VIN = 12V, I = 100mA  
2.4  
1.5  
4
2.6  
1.3  
1
high-side MOSFET on-resistance  
RDS(ON)  
0.75  
0.6  
low-side MOSFET on-resistance  
Switch current limit high-side  
MOSFET  
ILIMF  
TSD  
VIN = 12V  
600  
750 900  
mA  
Thermal shutdown  
Increasing junction temperature  
Decreasing junction temperature  
150  
20  
°C  
°C  
Thermal shutdown hysteresis  
OUTPUT  
tONmin  
Minimum ON time  
Minimum OFF time  
VIN = 5V, VOUT = 2.5 V  
VIN = 5 V  
500  
60  
ns  
ns  
tOFFmin  
(1) The part is functional down to the falling UVLO (Under Voltage Lockout) threshold  
(2) Current into VIN pin  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s) :TPS62125  
TPS62125  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
TA = –40°C to 85°C, typical values are at TA = 25°C (unless otherwise noted), VIN = 12V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
Internal reference voltage of error  
amplifier  
VREF_FB  
0.808  
V
Feedback voltage accuracy  
Referred to internal reference (VREF_FB  
)
–2.5  
0
-0.05  
-0.004  
0
2.5  
50  
%
%/V  
%/mA  
nA  
(3)  
VFB  
Feedback voltage line regulation  
Feedback voltage load regulation  
Input bias current into FB pin  
IOUT = 100mA, 5V VIN 17V, VOUT = 3.3V  
(3)  
VOUT = 3.3V; IOUT = 1mA to 300mA, VIN = 12V  
VFB = 0.8 V  
IIN_FB  
tStart  
Time from EN high to device starts switching,  
VIN = 5V  
Regulator start-up time  
50  
µs  
tRamp  
Output voltage ramp time  
Leakage current into SW pin(4)  
Bias current into VOS pin  
Time to ramp up VOUT = 1.8V, no load  
200  
ILK_SW  
IIN_VOS  
1.8 2.85  
µA  
nA  
VOS = VIN = VSW = 1.8 V, EN = GND, device in  
shutdown mode.  
0
50  
POWER GOOD OUTPUT (PG)  
Rising VFB feedback voltage  
93  
87  
95  
90  
97  
93  
VTH_PG  
Power Good threshold voltage  
%
Falling VFB feedback voltage  
VOL  
PG pin Output low voltage  
PG pin Output high voltage  
Bias current into PG pin  
Current into PG pin IPG= 0.4mA  
Open drain output, external pull up resistor  
V(PG) = 3V, EN = 1.3V, FB = 0.85 V  
0.3  
10  
V
V
VOH  
IIN_PG  
0
50  
nA  
(3) VOUT = 3.3V, L = 15µH, COUT = 10µF  
(4) An internal resistor divider network with typ. 1Mtotal resistance is connected between SW pin and GND.  
4
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s) :TPS62125  
TPS62125  
www.ti.com  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
DEVICE INFORMATION  
PIN ASSIGNMENTS  
DSG PACKAGE  
(TOP VIEW)  
1
2
3
4
8
7
6
5
GND  
VIN  
PG  
SW  
VOS  
FB  
EN  
EN_hys  
PIN FUNCTIONS  
PIN  
I/O  
DESCRIPTION  
NAME  
GND  
VIN  
NO.  
1
PWR  
PWR  
IN  
GND supply pin.  
VIN power supply pin.  
2
EN  
3
Input pin for the enable comparator. Pulling this pin to GND turns the device into shutdown mode.  
The DC/DC converter is enabled once the rising voltage on this pin trips the enable comparator  
threshold, VTH EN ON of typ. 1.2V. The DC/DC converter is turned off once a falling voltage on this  
pin trips the threshold, VTH EN OFF of typ. 1.15V. The comparator threshold can be increased by  
connecting an external resistor to pin EN_hys. See also application section. This pin must be  
terminated.  
EN_hys  
4
OUT  
Enable Hysteresis Open-Drain Output. This pin is pulled to GND when the voltage on the EN pin is  
below the comparator threshold VTH EN ON of typ. 1.2V and the comparator has not yet tripped. The  
pin is high impedance once the enable comparator has tripped and the voltage at the pin EN is  
above the threshold VTH EN ON. The pin is pulled to GND once the falling voltage on the EN pin  
trips the threshold VTH EN OFF (1.15V typ.). This pin can be used to increase the hysteresis of the  
enable comparator. If not used, tie this pin to GND, or leave it open.  
FB  
5
IN  
This is the feedback pin for the regulator. An external resistor divider network connected to this pin  
sets the output voltage. In case of fixed output voltage option, the resistor divider is integrated and  
the pin need to be connected directly to the output voltage.  
VOS  
SW  
PG  
6
7
8
IN  
This is the output voltage sense pin for the DCS - ControlTM circuitry. This pin must be connected  
to the output voltage of the DC/DC converter.  
OUT  
OUT  
This is the switch pin and is connected to the internal MOSFET switches. Connect the inductor to  
this pin. Do not tie this pin to VIN, VOUT or GND.  
Open drain power good output. This pin is internally pulled to GND when the device is disabled or  
the output voltage is below the PG threshold. The pin is floating when the output voltage is in  
regulation and above the PG threshold. For Power Good indication, the pin van be connected via  
a pull up resistor to a voltage rail up to 10V. The pin can sink a current up to 0.4mA and maintain  
the specified high / low voltage levels. It can be used to discharge the output capacitor with up to  
10mA. In this case the current into the pin must be limited with an appropriate pull up resistor.  
More details can be found in the application section. If not used, leave the pin open, or connect to  
GND.  
Exposed  
Exposed Thermal Pad. This pad must be connected to GND.  
Thermal PAD  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s) :TPS62125  
TPS62125  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
www.ti.com  
FUNCTIONAL BLOCK DIAGRAM  
ON/  
VREF  
VREF_FB  
0.808V  
Softstart  
SD  
1.2V  
PG Comparator  
PG  
VTH_PG  
UVLO  
Comparator  
EN  
FB  
VREF  
VIN  
VUVLO  
EN_comp  
EN  
Comparator  
EN_hys  
DC-DC  
ON/OFF  
Peak Current  
Limit Comparator  
GND  
Limit  
High Side  
VIN  
Timer  
Control  
Logic  
DCS  
Control  
VIN  
PMOS  
Min. On  
VOS  
Min. OFF  
VOS  
FB  
Direct Control  
& Compensation  
Gate Driver  
Anti  
SW  
Shoot-Through  
VREF_FB  
NMOS  
Comparator  
Error  
amplifier  
GND  
fixed  
VOUT  
Thermal  
Shutdown  
Zero Current  
Comparator  
PARAMETER MEASUREMENT INFORMATION  
TPS62125  
L
VOUT  
VIN  
SW  
FB  
VIN  
R1  
COUT  
10µF (VOUT< 3.3V)  
EN  
CIN  
10µF  
=
2x 10µF (3.3V< VOUT< 6.7V)  
=
10µF+ 22µF ( VOUT> 6.7V)  
R2  
EN_hys  
GND  
VOS  
PG  
Rpullup  
PWR GOOD  
L: LPS3314 10mH, 15mH, LPS4018 22mH, VLF302515 15mH  
CIN / COUT: 10mF 0805/25V GRM21BR61E106  
22mF GRM31CR61 16V X5R, 10mF GRM21B 16V X5R  
6
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s) :TPS62125  
TPS62125  
www.ti.com  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
TYPICAL CHARACTERISTICS  
Table 1. Table Of Graphs  
PARAMETER  
FIGURE  
vs. Output Current VOUT = 1.8V, VOUT = 3.3V, VOUT = 5V, VOUT = 6.8V, VOUT = 8V ,  
VOUT = 10V  
Figure 1, Figure 3, Figure 5, Figure 7,  
Figure 9, Figure 11  
Efficiency  
vs. Input Voltage, VOUT = 1.8V, vs. Input voltage, VOUT = 3.3V, VOUT = 5V, VOUT = 6.8V, Figure 2, Figure 4, Figure 6, Figure 8,  
VOUT = 8V, VOUT = 10V  
Figure 10, Figure 12  
vs. Output Current, VOUT = 3.3V  
vs. Input Voltage, VOUT = 3.3V  
vs. Output current, VOUT = 5.0V  
vs. Input Voltage, VOUT = 5V  
vs. Output current, VOUT = 6.7V  
vs. Input Voltage, VOUT = 6.7V  
vs. Output current, VOUT = 8V  
vs. Input Voltage, VOUT = 8V  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Output Voltage VOUT  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
peak to peak Output Ripple  
Voltage VOUTpp  
vs. Output Current, VOUT = 3.3V  
Figure 21  
vs. Output Current, VOUT = 3.3V  
vs. Output Current, VOUT 5.0V  
vs. Output Current, VOUT = 8V  
vs. Input Voltage  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 34  
Figure 35  
Figure 36  
Figure 37  
Figure 38  
Figure 39  
Figure 40  
Figure 41  
Switching frequency fSW  
Shutdown current  
vs. Input Voltage  
Quiescent Current  
vs. EN Voltage, rising VEN  
vs. EN Voltage, falling VEN  
EN Comparator Thresholds vs. Input Voltage  
High Side Switch  
RDSON  
Low Side Switch  
Power Save Mode VOUT=3.3V, IOUT = 1mA  
PWM Mode VOUT= 3.3V, IOUT = 100mA  
Load Transient 5mA to 200mA, VOUT = 3.3V  
AC Load Regulation 5mA to 200mA 10kHz, VOUT = 3.3V  
Load Transient 1mA to 50mA, VOUT = 5V  
Load Transient 10mA to 200mA, VOUT = 5V  
AC Load Regulation VOUT = 5V  
Typical Operation  
Line transient response  
Hotplug  
VIN = 9V to 12V, IOUT = 100mA  
VIN overshoot exceeding Abs Max ratings  
VIN overshoot reduction with additional tantalum polymer capacitor  
Short circuit and overcurrent  
protection  
Figure 42  
Input SVS Operation  
VOUT = 5.0V  
Figure 43  
Figure 44  
No Input SVS Operation  
VOUT = 5.0V, VIN tracks VOUT  
Operation from a 0.5mA  
current source  
VOUT 3.3V, 20mA pulse load  
Figure 45  
1.8V VOUT  
3.3V VOUT  
5V VOUT  
Figure 46  
Figure 47  
Figure 48  
Figure 49  
Figure 50  
Figure 51  
Figure 52  
Startup  
8V VOUT  
EN On/Off  
Output Discharge  
using PG pin, triggered by EN Comparator  
VOUT ramp down with falling VIN  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s) :TPS62125  
TPS62125  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
www.ti.com  
95  
90  
85  
80  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
10mA  
100mA  
250mA  
1.0mA  
75  
70  
65  
60  
55  
50  
VIN = 3V  
VIN = 5V  
VIN = 7.5V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
VOUT = 1.8V  
L = 15mH LPS3314  
COUT = 10mF  
0.25mA  
VOUT = 1.8V  
L = 15mH LPS3314  
COUT = 10mF  
0.1mA  
0.01  
0.1  
1
10  
100  
1000  
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17  
Input Voltage VIN (V)  
Output Current IOUT (mA)  
Figure 1. Efficiency vs. Output Current VOUT = 1.8V  
Figure 2. Efficiency vs. Input Voltage, VOUT = 1.8V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
10mA  
100mA  
250mA  
1.0mA  
VIN = 4.0V  
VIN = 5V  
VIN = 7.5V  
VIN = 9V  
0.25mA  
VIN = 12V  
VIN = 15V  
VOUT = 3.3V  
L = 15mH VLF302515  
COUT = 10mF  
VOUT = 3.3V  
L = 15mH VLF302515  
COUT = 10mF  
0.1mA  
0.01  
0.1  
1
10  
100  
1000  
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Output Current (mA)  
Input Voltage VIN(V)  
Figure 3. Efficiency vs. Output current, VOUT = 3.3V  
Figure 4. Efficiency vs. Input voltage, VOUT = 3.3V  
8
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s) :TPS62125  
TPS62125  
www.ti.com  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100mA  
10mA  
250mA  
1.0mA  
VIN = 6.0V  
VIN = 7.5V  
VIN = 9.0V  
VIN = 12V  
VIN = 15V  
0.25mA  
VOUT = 5V  
L = 10mH LPS3314  
COUT = 2x10mF  
VOUT = 5V  
L = 10mH LPS3314  
COUT = 2x10mF  
0.1mA  
6
7
8
9
10 11 12 13 14 15 16 17  
Input Voltage VIN (V)  
0.01  
0.1  
1
10  
100  
1000  
Output Current IOUT (mA)  
Figure 5. Efficiency vs. Output Current, VOUT = 5V  
Figure 6. Efficiency vs. Input Voltage, VOUT = 5V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
10mA  
100mA  
250mA  
1.0mA  
VIN = 7.5V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
0.25mA  
VOUT = 6.7V  
VOUT = 6.7V  
L = 10mH LPS3314  
COUT = 2x10mF  
L = 10mH LPS3314  
COUT = 2x10mF  
0.1mA  
0.01  
0.1  
1
10  
100  
1000  
7
8
9
10  
11 13  
Input Voltage VIN (V)  
12  
14  
15  
16  
17  
Output Currernt IOUT (mA)  
Figure 7. Efficiency vs. Output current, VOUT = 6.8V  
Figure 8. Efficiency vs. Input Voltage, VOUT = 6.8V  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s) :TPS62125  
TPS62125  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
www.ti.com  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
100mA  
10mA  
250mA  
1.0mA  
VIN = 9.0V  
VIN = 12V  
VIN = 15V  
0.25mA  
VOUT = 8V  
70  
65  
60  
55  
50  
L = 10mH LPS3314  
COUT = 10mF+22mF  
VOUT = 8V  
0.1mA  
L = 10mH LPS3314  
COUT = 10mF + 22mF  
9
10  
11  
12  
13  
14  
15  
16  
17  
0.01  
0.1  
1
10  
100  
1000  
Output Current IOUT (mA)  
Input Voltage VIN (V)  
Figure 9. Efficiency vs. Output Current, VOUT = 8V  
Figure 10. Efficiency vs. Input Voltage, VOUT = 8V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
10mA  
100mA  
250mA  
1.0mA  
VIN = 12V  
VIN = 15V  
0.25mA  
VOUT = 10V  
L = 10mH LPS3314  
COUT = 10mF + 22mF  
0.1mA  
VOUT = 10V  
L = 10mH LPS3314  
COUT = 10mF+22mF  
0.01  
0.1  
1
10  
Output Currernt IOUT (mA)  
100  
1000  
11  
12  
13  
14 15  
Input Voltage VIN (V)  
16  
17  
Figure 11. Efficiency vs. Output Current, VOUT = 10V  
Figure 12. Efficiency vs. Input Voltage, VOUT = 10V  
10  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s) :TPS62125  
TPS62125  
www.ti.com  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
3.4  
3.35  
3.3  
3.432  
VOUT 3.3V  
VOUT 3.3V  
L = 15mH,  
COUT = 10mF  
3.399  
3.366  
3.333  
3.300  
3.267  
3.234  
L = 15mH,  
COUT = 10mF  
VIN = 5V, TA = -40°C  
VIN = 7.5V, TA = -40°C  
VIN = 12V, TA = -40°C  
IOUT = 1mA  
VIN = 5V, TA= 25°C  
IOUT = 25mA  
IOUT = 100mA  
IOUT = 150mA  
VIN = 7.5V, TA = 25°C  
VIN = 12V, TA = 25°C  
VIN = 5V, TA = 85°C  
VIN = 7.5V, TA = 85°  
VIN = 12V, TA = 85°  
3.25  
3.2  
5
6
7
8
9
10 11 12 13 14 15 16 17  
Input Voltage (V)  
0.01  
0.1  
1
10  
100  
1000  
Output Current [mA]  
Figure 13. Output Voltage vs. Output Current, VOUT = 3.3V  
Figure 14. Output Voltage vs. Input Voltage, VOUT = 3.3V  
5.15  
5.20  
VOUT 5.0V  
VOUT 5.0V  
VIN = 7.5V, TA = 25°C  
L = 10mH,  
COUT = 2x10mF  
5.1  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
L = 10mH,  
COUT = 2x10mF  
VIN = 12V, TA = 25°C  
VIN = 7.5V, TA = -40°C  
VIN = 12V, TA = -40°C  
VIN = 7.5V, TA = 85°  
VIN = 12V, TA = 85°  
5.05  
5
IOUT = 1mA  
IOUT = 25mA  
4.95  
IOUT = 100mA  
IOUT = 250mA  
4.9  
4.85  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
0.01  
0.1  
1
10  
100  
1000  
Output Current [mA]  
Input Voltage (V)  
Figure 15. Output Voltage vs. Output current, VOUT = 5.0V  
Figure 16. Output Voltage vs. Input Voltage, VOUT = 5V  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s) :TPS62125  
TPS62125  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
www.ti.com  
6.968  
6.901  
6.9  
6.85  
6.8  
VOUT 6.7V  
L = 10mH,  
COUT = 2x10mF  
VIN = 12V, TA = 25°C  
VIN = 12V, TA = -40°C  
VIN = 9V, TA = -40°C  
VIN = 9V, TA = 25°C  
6.834  
6.767  
6.700  
6.633  
6.566  
6.75  
6.7  
6.65  
6.6  
VIN = 9V, TA = 85°  
VIN = 12V, TA = 85°  
IOUT = 1mA  
IOUT = 25mA  
IOUT = 100mA  
IOUT = 250mA  
VOUT 6.7V  
L = 10mH,  
COUT = 2x10mF  
6.55  
6.5  
0.01  
0.1  
1
10  
100  
1000  
8
9
10  
11  
12 13  
Input Voltage [V]  
14  
15  
16  
17  
Output Current [mA]  
Figure 17. Output Voltage vs. Output Current, VOUT = 6.7V  
Figure 18. Output voltage vs. Input voltage, VOUT = 6.7V  
8.24  
8.32  
VOUT 8.0V  
L = 10mH,  
COUT = 10mF + 22mF  
VOUT 8.0V  
8.16  
8.08  
8
8.24  
8.16  
8.08  
8.00  
7.92  
7.84  
L = 10mH,  
COUT = 10mF + 22mF  
VIN = 15V, TA = -40°C  
VIN = 15V, TA = 25°C  
VIN = 12V, TA = -40°C  
7.92  
7.84  
7.76  
IOUT = 1mA  
VIN = 12V, TA = 25°C  
VIN = 12V, TA = 85°  
VIN = 15V, TA = 85°  
IOUT = 25mA  
IOUT = 100mA  
IOUT = 250mA  
9
10  
11  
12  
13  
14  
15  
16  
17  
0.01  
0.1  
1
10  
100  
1000  
Output Current [mA]  
Input Voltage [V]  
Figure 19. Output Voltage vs. Output Current, VOUT = 8V  
Figure 20. Output Voltage vs. Input Voltage, VOUT = 8V  
12  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s) :TPS62125  
TPS62125  
www.ti.com  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
50  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VIN = 12V  
VOUT = 3.3V  
L = 15mH  
COUT = 10mF  
VIN = 15V  
40  
30  
20  
10  
VIN = 7.5V  
VIN = 5V  
VIN = 5.0V  
VIN = 7.5V  
VIN = 12V  
VIN = 15V  
VOUT = 3.3V  
L = 15mH  
COUT = 10mF  
0
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Current (mA)  
Output Current (mA)  
Figure 21. Output Ripple Voltage vs. Output Current, VOUT  
= 3.3V  
Figure 22. Switch Frequency vs. Output Current, VOUT  
3.3V  
=
1200  
1200  
VIN = 15V  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1100  
VIN = 15V  
VIN = 12V  
VIN = 12V  
1000  
VIN = 7.5V  
900  
800  
700  
600  
500  
400  
VIN = 10V  
VOUT = 5.0V  
300  
VOUT = 8.0V  
L = 10mH  
COUT = 2x10mF  
L = 10mH  
COUT = 10mF + 22mF  
200  
100  
0
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
Output Current (mA)  
200  
250  
300  
Output Current (mA)  
Figure 23. Switch Frequency vs. Output Current, VOUT 5.0V  
Figure 24. Switch Frequency vs. Output Current, VOUT  
8V  
=
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s) :TPS62125  
 
TPS62125  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
www.ti.com  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
25  
20  
15  
10  
5
TA = 85°C  
TA = 60°C  
IQ no switching: TA= 85°C  
IQ no switching: TA= 60°C  
TA = 25°C  
TA = 0°C  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IQ no switching: TA= 25°C  
IQ no switching: TA= -40°C  
TA = -40°C  
IQ device switching: TA= 25°C,  
VOUT = 1.8V, IOUT = 0mA no load,  
EN = VIN  
0
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Input Voltage (V)  
Input Voltage - VIN [V]  
Figure 25. Shutdown Current vs. Input Voltage  
Figure 26. Quiescent Current vs. Input Voltage  
1000  
25  
20  
15  
10  
5
VIN = 6V TA = 85°C  
100  
10  
1
VIN = 12V TA = 85°C  
VIN = 6V TA = 25°C  
VIN = 12V TA = 25°C  
VIN = 6V TA = 25°C  
VIN = 6V TA = 85°C  
VIN = 6V TA = -40°C  
VIN = 12V TA = 25°C  
VIN = 12V TA = 85°C  
VIN = 12V TA = −40°C  
VIN = 6V TA = -40°C  
VIN = 12V TA = −40°C  
0.1  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
0
200  
400  
600  
800  
1000  
1200  
1400  
Voltage VEN (mV)  
Voltage VEN (mV)  
Figure 27. Quiescent Current vs. EN Voltage, rising VEN  
Figure 28. Quiescent Current vs. VEN Voltage, falling VEN  
14  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s) :TPS62125  
 
TPS62125  
www.ti.com  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
3
2.8  
2.6  
2.4  
2.2  
2
1.25  
1.245  
1.24  
1.235  
1.23  
VTH EN ON TA = 25°C  
1.225  
1.22  
TA = 85°C  
TA = 60°C  
VTH EN ON TA = -40°C  
VTH EN ON TA = 85°C  
1.215  
1.21  
1.8  
1.6  
1.4  
1.2  
1
1.205  
1.2  
1.195  
1.19  
1.185  
1.18  
TA = 25°C  
TA = 0°C  
VTH EN OFF TA = 25°C  
VTH EN OFF TA = -40°C  
TA = -40°C  
0.8  
0.6  
0.4  
0.2  
0
1.175  
1.17  
VTH EN OFF TA = 85°C  
1.165  
1.16  
1.155  
1.15  
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Input Voltage VIN [V]  
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Input Voltage VIN (V)  
Figure 29. EN Comparator Thresholds vs. Input Voltage  
Figure 30. RDSON High Side Switch  
1.25  
1.245  
1.24  
VIN = 12V  
VOUT = 3.3 V  
3.3V offset, 50mV/Div  
ILoad = 1mA  
L = 15 mH  
COUT = 10 mF  
1.235  
1.23  
VTH EN ON TA = 25°C  
1.225  
1.22  
VTH EN ON TA = -40°C  
VTH EN ON TA = 85°C  
1.215  
1.21  
1.205  
1.2  
SW pin 10V/Div  
1.195  
1.19  
1.185  
1.18  
VTH EN OFF TA = 25°C  
Inductor current 200mA/Div  
1.175  
1.17  
VTH EN OFF TA = -40°C  
VTH EN OFF TA = 85°C  
1.165  
1.16  
1.155  
1.15  
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Input Voltage VIN (V)  
Figure 31. RDSON Low Side Switch (Rectifier)  
Figure 32. Power Save Mode VOUT=3.3V, IOUT = 1mA  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s) :TPS62125  
TPS62125  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
www.ti.com  
VIN = 12V  
VOUT = 3.3 V  
3.3V offset, 50mV/Div  
ILoad = 100mA  
L = 15 mH  
COUT = 10 mF  
VIN = 12V  
VOUT = 3.3 V  
3.3V offset, 50mV/Div  
L = 15 mH  
COUT = 10 mF  
SW pin 10V/Div  
IOUT  
SW pin 10V/Div  
5mA to 200mA  
200mA/Div  
Inductor current  
200mA/Div  
Inductor current 200mA/Div  
Figure 33. PWM Mode VOUT= 3.3V, IOUT = 100mA  
Figure 34. Load Transient 5mA to 200mA, VOUT = 3.3V  
VIN = 12V  
VOUT = 3.3 V  
3.3V offset, 50mV/Div  
L = 15 mH  
COUT = 10 mF  
VIN = 12V  
L = 10 mH  
VOUT = 5.0 V  
COUT = 2x 10 mF  
5V offset, 50mV/Div  
SW pin 10V/Div  
IOUT  
AC 10kHz  
Inductor current 200mA/Div  
5mA to 200mA  
200mA/Div  
Inductor current  
200mA/Div  
ILoad = 1mA to 50mA  
50mA / Div  
Figure 35. AC Load Regulation, VOUT = 3.3V  
Figure 36. Load Transient 1mA to 50mA, VOUT = 5V  
VIN = 12V  
VIN = 12V  
L = 10 mH  
L = 10 mH  
VOUT = 5.0 V  
VOUT = 5.0 V  
COUT = 2x 10 mF  
COUT = 2x 10 mF  
5V offset, 50mV/Div  
5V offset, 50mV/Div  
Inductor current 200mA/Div  
Inductor current 200mA/Div  
ILoad = 10mA to 200mA  
200mA / Div  
ILoad = AC 5kHz 1mA to 250mA  
200mA / Div  
Figure 37. Load Transient 10mA to 200mA, VOUT = 5V  
Figure 38. AC Load Regulation VOUT = 5V  
16  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s) :TPS62125  
TPS62125  
www.ti.com  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
VIN = 12V, Hotplug  
VIN overshoot 25V  
VIN = 9V to 12V  
IOUT = 100mA  
L = 15 mH  
CIN = 10mF ceramic capacitor  
COUT = 10 mF  
VOUT  
= 3.3 V, 50mV/Div  
Current into  
input capacitor 20A/div  
IIN  
Figure 39. Line transient response VIN = 9V to 12V  
Figure 40. VIN Hotplug overshoot  
VOUT = 5.0 V  
2V/Div  
VIN = 12V, Hotplug  
VIN = 12V  
CIN = 10uF ceramic  
+ 22uF Poscap  
CIN = 10mF  
VIN overshoot reduction  
to 15V  
additional 22mF  
tantalum-polymer input capacitor  
type Poscap 20TQC22MYFB  
VOUT  
Startup  
L = 10 mH  
COUT = 2x 10 mF  
IIN  
200mA/Div  
Current into CIN  
IL  
1A/Div  
Current into  
input capacitors 20A/div  
IIN  
Short  
Short  
IOUT = 10mA  
IOUT  
1A/Div  
Figure 41. VIN Hotplug overshoot reduction with Poscap  
Figure 42. Short circuit and overcurrent protection  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s) :TPS62125  
 
 
TPS62125  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
www.ti.com  
VIN : ramped up/down  
0V to 12V, 175mV/ms  
2.5V/Div  
VIN : ramped up/down  
0V to 12V, 175mV/ms  
2.5V/Div  
VOUT = 5.0 V  
L = 10 mH  
VOUT = 5.0 V  
L = 10 mH  
COUT = 2x10 mF  
Load = 100W  
VIN_Start = 10V  
COUT = 2x10 mF  
Load = 100W  
EN = VIN  
REN1 = 820kW  
REN2 = 110kW  
REN2 = 82kW  
VIN_Stop = 6V  
VIN tracks VOUT  
UVLO  
UVLO  
VOUT  
2.5V/Div  
VOUT  
2.5V/Div  
PG  
5V/Div  
PG  
5V/Div  
IIN  
200mA/Div  
IIN  
200mA/Div  
Figure 43. Input supply voltage supervisor (SVS), VOUT  
5.0V  
=
Figure 44. Operation with EN = VIN, VIN tracks VOUT  
VIN: 0.5mA current source  
2.5V/Div  
REN1 = 680kW  
CIN = 10mF ceramic + 22mF Poscap  
VIN =12V  
VOUT = 1.8 V  
L = 15 mH  
REN2 = 110kW  
REN2 = 120kW  
VIN_startup = 6.82V  
VIN_stop = 4.55V  
COUT = 10 mF  
Load = 180W  
VOUT = 3.3 V  
L = 15 mH, COUT = 10 mF  
7ms/20mA Pulse Load  
VOUT  
2.0V/Div  
Startup in 20mA Load  
IOUT  
20mA/Div  
0.5mA Source Current  
IIN: 0.5mA/Div  
Figure 45. 0.5mA current source, 20mA pulse load  
Figure 46. Startup 1.8V VOUT  
18  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s) :TPS62125  
 
TPS62125  
www.ti.com  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
VIN =12V  
VIN =12V  
VOUT = 3.3 V  
L = 15 mH  
VOUT = 5.0 V  
L = 10 mH  
COUT = 10 mF  
Load = 330W  
COUT = 2x10 mF  
Load = 500W  
Figure 47. Startup 3.3V VOUT  
Figure 48. Startup 5.0V VOUT  
VIN = 12V  
VOUT = 3.3 V  
COUT = 10uF  
VIN =12V  
VOUT = 8.0 V  
L = 10 mH  
L = 15mH  
RLoad = 100 W  
RPullup PG = 100kW to VOUT  
COUT = 2x10 mF  
Load = 800W  
1V/Div  
2V/Div  
1V/Div  
Figure 49. Startup 8V VOUT  
Figure 50. VOUT Ramp up/down with EN on/off  
VIN = 12V to 0V  
VOUT = 3.3 V  
COUT = 10uF  
VIN = 12V to 0V  
VOUT = 3.3 V  
COUT = 10uF  
VIN_stop = 4.55V  
REN1 = 680kW  
REN2 = 110kW  
REN_hys = 120kW  
VIN_stop = 4.55V  
REN1 = 680kW  
REN2 = 110kW  
REN_hys = 120kW  
VIN  
2V/Div  
VIN  
1V/Div  
L = 15mH  
IOUT = 0mA  
L = 15mH  
IOUT = 0mA  
RPullup PG = 0W to VOUT  
RPullup PG = 100kW to VOUT  
VOUT  
1V/Div  
VOUT  
1V/Div  
PG  
1V/Div  
Figure 51. Output discharge using PG pin, triggered by EN  
Comparator  
Figure 52. VOUT ramp down with falling VIN, schematic  
Figure Figure 60  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s) :TPS62125  
TPS62125  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
www.ti.com  
DETAILED DESCRIPTION  
DCS - ControlTM  
The TPS62125 high efficiency synchronous switch mode buck converter includes TI's DCS - Control™ (Direct  
Control with Seamless Transition into Power Save Mode), an advanced regulation topology, which combines the  
advantages of hysteretic and voltage mode control. Characteristics of DCS - ControlTM are excellent AC load  
regulation and transient response, low output ripple voltage and a seamless transition between PFM and PWM  
mode operation.  
DCS - ControlTM includes an AC loop which senses the output voltage (VOS pin) and directly feeds the  
information to a fast comparator stage. This comparator sets the switching frequency, which is constant for  
steady state operating conditions, and provides immediate response to dynamic load changes. In order to  
achieve accurate DC load regulation, a voltage feedback loop is used. The internally compensated regulation  
network achieves fast and stable operation with small external components and low ESR capacitors. The DCS -  
ControlTM topology supports PWM (Pulse Width Modulation) mode for medium and high load conditions and a  
Power Save Mode at light loads. During PWM mode, it operates in continuous conduction. The switch frequency  
is up to 1MHz with a controlled frequency variation depending on the input voltage. If the load current decreases,  
the converter seamless enters Power Save Mode to maintain high efficiency down to very light loads. In Power  
Save Mode the switching frequency varies linearly with the load current. Since DCS - ControlTM supports both  
operation modes within one single building block, the transition from PWM to Power Save Mode is seamless  
without effects on the output voltage. The TPS62125 offers both excellent DC voltage and superior load transient  
regulation, combined with very low output voltage ripple, minimizing interference with RF circuits.  
At high load currents the converter operates in quasi fixed frequency PWM mode operation and at light loads in  
PFM (Pulse Frequency Modulation) mode to maintain highest efficiency over the full load current range. In PFM  
Mode, the device generates a single switching pulse to ramp up the inductor current and recharge the output  
capacitor, followed by a sleep period where most of the internal circuits are shutdown to achieve a quiescent  
current of typically 13µA. During this time, the load current is supported by the output capacitor. The duration of  
the sleep period depends on the load current and the inductor peak current.  
Pulse Width Modulation (PWM) Operation  
The TPS62125 operates with pulse width modulation in continuous conduction mode (CCM) with a nominal  
switching frequency of about 1MHz. The frequency variation in PWM mode is controlled and depends on VIN,  
VOUT and the inductance. The device operates in PWM mode as long the output current is higher than half the  
inductor's ripple current. To maintain high efficiency at light loads, the device enters Power Save Mode at the  
boundary to discontinuous conduction mode (DCM). This happens if the output current becomes smaller than  
half the inductor's ripple current.  
Power Save Mode  
With decreasing load current, the TPS62125 transitions seamlessly from PWM Mode to Power Save Mode once  
the inductor current becomes discontinuous. This ensures a high efficiency at light loads. In Power Save Mode  
the converter operates in Pulse Frequency Modulation (PFM Mode) and the switching frequency decreases  
linearly with the load current. DCS - ControlTM features a small and predictable output voltage ripple in Power  
Save Mode. The transition between PWM Mode and Power Save Mode occurs seamlessly in both directions.  
The minimum On Time TONmin for a single pulse can be estimated by:  
VOUT  
TON  
=
´1ms  
VIN  
(1)  
(2)  
Therefore the peak inductor current in PFM mode is approximately:  
V
- VOUT  
(
)
IN  
ILPFMpeak  
=
´ TON  
L
The transition from PFM mode to PWM mode operation and back occurs at a load current of approximately ½  
ILPFMpeak  
.
With:  
20  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s) :TPS62125  
TPS62125  
www.ti.com  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
TON: high-side MOSFET switch on time [µs]  
VIN: Input voltage [V]  
VOUT: Output voltage [V]  
L : Inductance [µH]  
ILPFMpeak : PFM inductor peak current [mA]  
The maximum switching frequency can be estimated by:  
1
fSW max  
»
= 1MHz  
1ms  
(3)  
100% DUTY CYCLE LOW DROPOUT OPERATION  
The device increases the On Time of the high-side MOSFET switch as the input voltage comes close to the  
output voltage in order to keep the output voltage in regulation. This reduces the switching frequency.  
With further decreasing input voltage VIN, the high-side MOSFET switch is turned on completely. In this case,  
the converter provides a low input-to-output voltage difference. This is particularly useful in applications with a  
widely variable supply voltage to achieve longest operation time by taking full advantage of the whole supply  
voltage span.  
The minimum input voltage to maintain output voltage regulation depends on the load current and output voltage,  
and can be calculated as:  
VImin = VOUT min + IOUT ´ (RDSON max + RL )  
(4)  
With:  
IOUT = output current  
RDS(ON)max = maximum high side switch RDS(ON)  
RL = DC resistance of the inductor  
.
VOUTmin = minimum output voltage the load can accept  
UNDER-VOLTAGE LOCKOUT  
In addition to the EN Comparator, the device includes an under-voltage lockout circuit which prevents the device  
from misoperation at low input voltages. Both circuits are fed to an AND gate and prevents the converter from  
turning on the high-side MOSFET switch or low-side MOSFET under undefined conditions. The UVLO threshold  
is set to 2.9V typical for rising VIN and 2.8V typical for falling VIN. The hysteresis between rising and falling UVLO  
threshold ensures proper start up. Fully functional operation is permitted for an input voltage down to the falling  
UVLO threshold level. The converter starts operation again once the input voltage trips the rising UVLO threshold  
level and the voltage at the EN pin trips VTH_EN_ON  
.
SOFT START  
The TPS62125 has an internal soft-start circuit which controls the ramp up of the output voltage and limits the  
inrush current during start-up. This limits input voltage drop.  
The soft-start system generates a monotonic ramp up of the output voltage and reaches an output voltage of  
1.8V typ. within 240µs after the EN pin was pulled high. For higher output voltages, the ramp up time of the  
output voltage can be estimated with a ramp up slew rate of about 12mV/us. TPS62125 is able to start into a pre  
biased output capacitor. The converter starts with the applied bias voltage and ramps the output voltage to its  
nominal value. In case the output voltage is higher than the nominal value, the device starts switching once the  
output has been discharged by an external load or leakage current to its nominal output voltage value.  
During start up the device can provide an output current of half of the high-side MOSFET switch current limit  
ILIMF. Large output capacitors and high load currents may exceed the current capability of the device during start  
up. In this case the start up ramp of the output voltage will be slower.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s) :TPS62125  
TPS62125  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
www.ti.com  
ENABLE COMPARATOR (EN / EN_hys)  
The EN pin is connected to an On/Shutdown detector (ON/SD) and an input of the Enable Comparator. With a  
voltage level of 0.4V or less at the EN pin, the ON/SD detector turns the device into Shutdown mode and the  
quiescent current is reduced to typically 350nA. In this mode the EN comparator as well the entire internal-control  
circuitry are switched off. A voltage level of typ. 900mV (rising) at the EN pin triggers the ON/Shutdown detector  
and activates the internal reference VREF (Typ.1.2V), the EN comparator and the UVLO comparator. In  
applications with slow rising voltage levels at the EN pin, the quiescent current profile before this trip point needs  
to be considered, see Figure 27. Once the ON/SD detector has tripped, the quiescent current consumption of the  
device is typ. 6µA. The TPS62125 starts regulation once the voltage at the EN pin trips the threshold VEN_TH ON  
(typ. 1.2V) and the input voltage is above the UVLO threshold. It enters softstart and ramps up the output  
voltage. For proper operation, the EN pin must be terminated and must not be left floating. The quiescent current  
consumption of the TPS62125 is typ. 13µA under no load condition (not switching). See Figure 25. The DC/DC  
regulator stops operation once the voltage on the EN pin falls below the threshold VEN_TH OFF (typ. 1.15V) or the  
input voltage falls below UVLO threshold. The enable comparator features a built in hysteresis of typ. 50mV. This  
hysteresis can be increased with an external resistor connected to pin EN_hys. See more details in application  
information section.  
POWER GOOD OUTPUT / OUTPUT DISCHARGE (PG)  
The Power Good Output (PG pin) is an open drain output. The circuit is active once the device is enabled. It is  
driven by an internal comparator connected to the FB pin voltage and an internal reference. The PG output  
provides a high level (open drain high impedance) once the feedback voltage exceeds typical 95% of its nominal  
value. The PG output is driven to low level once the FB pin voltage falls below typ. 90% of its nominal value  
VREF_FB. The PG output goes high (high impedance) with a delay of typically 2µs. A pull up resistor is needed to  
generate a high level. The PG pin can be connected via a pull up resistors to a voltage up to 10V. This pin can  
also be used to discharge the output capacitor. See section Application Information for more details.  
The PG output is pulled low if the voltage on the EN pin falls below the threshold VEN_TH OFF or the input voltage  
is below the undervoltage lockout threshold UVLO.  
SHORT-CIRCUIT PROTECTION  
The TPS62125 integrates a high-side MOSFET switch current limit, ILIMF, to protect the device against a short  
circuit. The current in the high-side MOSFET switch is monitored by a current limit comparator and once the  
current reaches the limit of ILIMF , the high-side MOSFET switch is turned off and the low-side MOSFET switch is  
turned on to ramp down the inductor current. The high-side MOSFET switch is turned on again once the zero  
current comparator trips and the inductor current has become zero. In this case, the output current is limited to  
half of the high-side MOSFET switch current limit, ½ ILIMF, typ. 300mA.  
THERMAL SHUTDOWN  
As soon as the junction temperature, TJ, exceeds 150°C (typical) the device goes into thermal shutdown. In this  
mode, the high-side and low-side MOSFETs are turned-off. The device continues its operation when the junction  
temperature falls below the thermal shutdown hysteresis.  
22  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s) :TPS62125  
TPS62125  
www.ti.com  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
APPLICATION INFORMATION  
OUTPUT VOLTAGE SETTING  
The output voltage can be calculated by:  
æ
ö
÷
÷
R1  
R2  
ç
VOUT = VREF _ FB ´ 1+  
ç
è
ø
æ
ö
÷
÷
R1  
R2  
ç
VOUT = 0.8V ´ 1+  
ç
è
ø
V
æ
ç
ö
÷
OUT  
R = R ´  
-1  
1
2
0.8V  
è
ø
(5)  
The internal reference voltage for the error amplifier,VREF_FB, is nominal 0.808V. However for the feedback  
resistor divider selection, it is recommended to use the value 0.800V as the reference. Using this value, the  
output voltage sets 1% higher and provides more headroom for load transients as well for line and load  
regulation. The current through the feedback resistors R1 and R2 should be higher than 1µA. In applications  
operating over full temperature range or in noisy environments, this current may be increased for robust  
operation. However, higher currents through the feedback resistors impact the light load efficiency of the  
converter.  
Table 2 shows a selection of suggested values for the feedback divider network for most common output  
voltages.  
Table 2. Suggested Values for Feedback Divider Network  
Output Voltage  
R1 [k]  
1.2V  
180  
360  
1.8V  
300  
240  
3.3V  
1800  
576  
5V  
1100  
210  
6.7V  
1475  
200  
8V  
1800  
200  
R2 [k]  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s) :TPS62125  
 
TPS62125  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
www.ti.com  
ENABLE THRESHOLD AND HYSTERESIS SETTING  
ON/SD  
VREF  
1.2V  
VIN  
VIN  
REN1  
EN  
EN  
Comparator  
VTH_EN  
REN2  
EN_hys  
REN HYS  
GND  
Figure 53. Using the Enable Comparator Threshold and Hysteresis for an input SVS (supply voltage  
supervisor)  
The enable comparator can be used as an adjustable input supply voltage supervisor (SVS) to start and stop the  
DC/DC converter depending on the input voltage level. The input voltage level, VIN_startup, at which the device  
starts up is set by the resistors REN1 and REN2 and can be calculated by :  
æ
ö
÷
÷
æ
ö
÷
÷
REN1  
REN 2  
REN1  
REN 2  
ç
ç
VIN _ startup = VEN _TH _ ON ´ 1+  
= 1.2V ´ 1+  
ç
è
ç
è
ø
ø
(6)  
(7)  
(8)  
The resistor values REN1 and REN2 can be calculated by:  
æ
ç
ç
è
ö
VIN _ startup  
V
IN _ startup  
æ
ö
÷
ç
÷
REN 1 = REN 2  
´
- 1 = REN 2  
´
- 1  
ç
÷
÷
ø
VEN _ TH _ ON  
1.2V  
è
ø
REN 1  
REN 1  
REN 2  
=
=
V
æ
ç
ç
è
ö
÷
÷
ø
æ
ö
VIN _ startup  
IN _ startup  
ç
ç
÷
-1  
-1  
÷
1.2V  
VEN _ TH _ ON  
è
ø
The input voltage level VIN_stop at which the device will stop operation is set by REN1, REN2 and REN HYS and can  
be calculated by:  
æ
ö
÷
÷
ø
æ
ö
÷
÷
ø
REN 1  
REN 1  
ç
ç
VIN _ stop = VEN _ TH _ OFF ´ 1 +  
= 1.15V ´ 1 +  
ç
è
ç
è
REN 2 + REN _ hys  
REN 2 + REN _ hys  
(9)  
The resistor value REN_hyscan be calculated according to:  
REN1  
VIN _ stop  
REN1  
REN _ hys  
=
- REN 2  
=
- REN 2  
V
æ
ç
ç
è
ö
÷
÷
ø
æ
ö
IN _ stop  
ç
ç
÷
÷
-1  
-1  
1.15V  
VEN _ TH _ OFF  
è
ø
(10)  
The current through the resistors REN1, REN2 and REN HYS should be higher than 1µA. In applications operating  
over the full temperature range and in noisy environments, the resistor values can be reduced to smaller values.  
24  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s) :TPS62125  
TPS62125  
www.ti.com  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
VIN  
DC/DC start  
VIN_startup  
Hysteresis  
VIN_stop  
DC/DC stop  
VOUT  
Proper VOUT ramp up  
Figure 54. Using the EN comparator as input SVS for proper VOUT ramp up  
POWER GOOD (PG) PULL UP / OUTPUT DISCHARGE RESISTOR  
The Power Good open collector output needs an external pull up resistor to indicate a high level. The pull up  
resistor can be connected to a voltage level up to 10V. The output can sink current up to 0.4mA with specifed  
output low level of less than 0.3V. The lowest value for the pull up resistor can be calculated by:  
VOUT - 0.3V  
RPullup min  
=
0.0004A  
(11)  
VOUT  
TPS62125  
COUT  
RPullup  
RIPG  
PG Comparator  
PG  
VPG  
max 10V  
VTH_PG  
Power Good  
FB  
Figure 55. PG open collector output  
The PG pin can be used to discharge the output capacitor. The PG output has an internal resistance RIPGof  
typical 600Ω and minimum 400Ω. The maximum sink current into the PG pin is 10mA. In order to limit the  
discharge current to the maximum allowable sink current into the PG pin, the external pull up resistor RPull up can  
be calculated to:  
VOUT  
VOUT  
RPullup min  
=
- RIPG _ min  
=
- 400W  
IPG _ max  
0.01A  
(12)  
In case a negative value is calculated, the external pull up resistor can be removed and the PG pin can be  
directly connected to the output.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s) :TPS62125  
TPS62125  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
www.ti.com  
OUTPUT FILTER DESIGN (INDUCTOR AND OUTPUT CAPACITOR)  
The external components have to fulfill the needs of the application, but also the stability criteria of the devices  
control loop. The TPS62125 is optimized to work within a range of L and C combinations. The LC output filter  
inductance and capacitance have to be considered together, creating a double pole, responsible for the corner  
frequency of the converter. Table 3 can be used to simplify the output filter component selection.  
Table 3. Recommended LC Output Filter Combinations  
Output Capacitor Value [µF](2)  
Inductor Value  
[µH](1)  
10µF  
2 x 10µF  
22µF  
47µF  
VOUT 1.2V - 1.8V  
15  
22  
(3)  
VOUT 1.8V - 3.3V  
(3)  
15  
22  
(3)  
VOUT 3.3V - 5V  
10  
15  
22  
(3)  
(3)  
VOUT 5V - 10V  
(3)  
(3)  
10  
15  
22  
(1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by 20% and -30%.  
(2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by 20% and -50%.  
(3) This LC combination is the standard value and recommended for most applications.  
More detailed information on further LC combinations can be found in application note SLVA515.  
INDUCTOR SELECTION  
The inductor value affects its peak-to-peak ripple current, the PWM-to-PFM transition point, the output voltage  
ripple and the efficiency. The selected inductor has to be rated for its DC resistance and saturation current. The  
inductor ripple current (ΔIL) decreases with higher inductance and increases with higher VIN or VOUT and can be  
estimated according to Equation 13.  
Equation 14 calculates the maximum inductor current under static load conditions. The saturation current of the  
inductor should be rated higher than the maximum inductor current as calculated with Equation 14. This is  
recommended because during heavy load transient the inductor current will rise above the calculated value. A  
more conservative way is to select the inductor saturation current according to the high-side MOSFET switch  
current limit ILIMF  
.
V
- VOUT  
(
)
IN  
DIL =  
´ TON  
L
(13)  
(14)  
ΔI  
L
I
= I  
+
outmax  
Lmax  
2
With:  
TON = see equation (3)  
L = Inductance  
ΔIL = Peak to Peak inductor ripple current  
ILmax = Maximum Inductor current  
26  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s) :TPS62125  
 
 
 
TPS62125  
www.ti.com  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
In DC/DC converter applications, the efficiency is essentially affected by the inductor AC resistance (i.e. quality  
factor) and by the inductor DCR value. To achieve high efficiency operation, care should be taken in selecting  
inductors featuring a quality factor above 25 at the switching frequency. Increasing the inductor value produces  
lower RMS currents, but degrades transient response. For a given physical inductor size, increased inductance  
usually results in an inductor with lower saturation current.  
The total losses of the coil consist of both the losses in the DC resistance (RDC) and the following frequency-  
dependent components:  
The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)  
Additional losses in the conductor from the skin effect (current displacement at high frequencies)  
Magnetic field losses of the neighboring windings (proximity effect)  
Radiation losses  
The following inductor series from different suppliers have been used with the TPS62125.  
Table 4. List of Inductors  
INDUCTANCE  
[µH]  
DIMENSIONS  
[mm3]  
INDUCTOR  
TYPE  
DCR []  
SUPPLIER  
10 / 15  
22  
0.33 max / 0.44 max  
0.36 max  
3.3 x 3.3 x 1.4  
3.9 x 3.9 x 1.8  
3.0 x 2.5 x 1.5  
3.0 x 3.0 x 1.5  
3.2 × 2.5 × 1.7  
LPS3314  
LPS4018  
VLF302515  
LPS3015  
LQH32PN  
Coilcraft  
Coilcraft  
TDK  
15  
0.33 max  
10/15  
10  
0.44 max / 0.7 max  
0.38 typ.  
Coilcraft  
Murata  
OUTPUT CAPACITOR SELECTION  
Ceramic capacitors with low ESR values provide the lowest output voltage ripple and are recommended. The  
output capacitor requires either an X7R or X5R dielectric. Y5V and Z5U dielectric capacitors, aside from their  
wide variation in capacitance over temperature, become resistive at high frequencies.  
At light load currents the converter operates in Power Save Mode and the output voltage ripple is dependent on  
the output capacitor value and the PFM peak inductor current. Higher output capacitor values minimize the  
voltage ripple in PFM Mode and tighten DC output accuracy in PFM Mode. In order to achieve specified  
regulation performance and low output voltage ripple, the DC-bias characteristic of ceramic capacitors must be  
considered. The effective capacitance of ceramic capacitors drops with increasing DC - bias Voltage. Due to this  
effect, it is recommended for output voltages above 3.3V to use at least 1 x 22µF or 2 x 10µF ceramic capacitors  
on the output.  
INPUT CAPACITOR SELECTION  
Because of the nature of the buck converter having a pulsating input current, a low ESR input capacitor is  
required for best input voltage filtering and minimizing the interference with other circuits caused by high input  
voltage spikes. For most applications, a 10µF ceramic capacitor is recommended. The voltage rating and DC  
bias characteristic of ceramic capacitors need to be considered. The input capacitor can be increased without  
any limit for better input voltage filtering.  
For applications powered from high impedance sources, a tantalum polymer capacitor should be used to buffer  
the input voltage for the TPS62125. Tantalum polymer capacitors provide a constant capacitance vs. DC bias  
characteristic compared to ceramic capacitors. In this case, a 10µF ceramic capacitor should be used in parallel  
to the tantalum polymer capacitor to provide low ESR.  
Take care when using only small ceramic input capacitors. When a ceramic capacitor is used at the input and the  
power is being supplied through long wires, such as from a wall adapter, a load step at the output or VIN step on  
the input can induce large ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop  
instability or could even damage the part by exceeding the maximum ratings. In case the power is supplied via a  
connector e.g. from a wall adapter, a hot-plug event can cause voltage overshoots on the VIN pin exceeding the  
absolute maximum ratings and can damage the device, too. In this case a tantalum polymer capacitor or  
overvoltage protection circuit reduces the voltage overshoot, see Figure 41.  
Table 5 shows a list of input/output capacitors.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s) :TPS62125  
TPS62125  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
www.ti.com  
Table 5. List of Capacitor  
CAPACITANCE  
[µF]  
SIZE  
CAPACITOR TYPE  
USAGE  
SUPPLIER  
10  
10  
22  
0805  
0805  
1206  
GRM21B 25V X5R  
GRM21B 16V X5R  
CIN /COUT  
COUT  
Murata  
Murata  
Murata  
Sanyo  
GRM31CR61 16V X5R  
COUT  
22  
B2 (3.5x2.8x1.9)  
20TQC22MYFB  
CIN / input  
protection  
LAYOUT CONSIDERATIONS  
As for all switching power supplies, the layout is an important step in the design. Proper function of the device  
demands careful attention to PCB layout. Care must be taken in board layout to get the specified performance. If  
the layout is not carefully done, the regulator could show frequency variations, poor line and/or load regulation,  
stability issues as well as EMI problems. It is critical to provide a low inductance, low impedance ground path.  
Therefore, use wide and short traces for the paths conducting AC current of the DC/DC converter. The area of  
the AC current loop (input capacitor - TPS62125 - inductor - output capacitor) should be routed as small as  
possible to avoid magnetic field radiation. Therefore the input capacitor should be placed as close as possible to  
the IC pins as well as the inductor and output capacitor. Use a common Power GND node and a different node  
for the signal GND to minimize the effects of ground noise. Keep the common path to the GND pin, which returns  
both the small signal components and the high current of the output capacitors as short as possible to avoid  
ground noise. A well proven practice is to merge small signal GND and power GND path at the exposed thermal  
pad. The FB divider network and the FB line should be routed away from the inductor and the SW node to avoid  
noise coupling. The VOS line should be connected as short as possible to the output, ideally to the VOUT  
terminal of the inductor. Keep the area of the loop VOS node - inductor - SW node small. The Exposed Thermal  
Pad must be soldered to the circuit board for mechanical reliability and to achieve appropriate power dissipation.  
L
Approximate circuit area  
= 51mm2(0.079in2)  
PG  
VOUT  
GND  
VIN  
U1  
GND  
R1  
R2  
CIN  
REN1  
REN2  
REN_hys  
Figure 56. EVM board Layout  
28  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s) :TPS62125  
TPS62125  
www.ti.com  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
TYPACAL APPLICATIONS  
VOUT = 3.3V  
up to 300mA  
TPS62125  
L 15µH  
VIN = 4V to 17V  
SW  
VIN  
R1  
1.8M  
COUT  
10µF  
VOS  
FB  
EN  
CIN  
10µF  
R2  
576k  
EN_hys  
GND  
Rpullup  
PG  
PWR GOOD  
Figure 57. TPS62125 3.3V Output Voltage Configuration  
VOUT = 5V  
TPS62125  
VIN = 6V to 17V  
L 10µH  
up to 300mA  
SW  
VIN  
EN  
R1  
1.1M  
COUT  
2 x 10µF  
or 1 x 22µF  
VOS  
FB  
CIN  
10µF  
R2  
210k  
EN_hys  
GND  
Rpullup  
PG  
PWR GOOD  
Figure 58. TPS62125 5.0V Output Voltage Configuration  
VIN_Start = 10V  
VIN_Stop = 6V  
VOUT = 5V  
TPS62125  
L 10µH  
up to 300mA  
SW  
VIN  
REN1  
820k  
R1  
1.1M  
COUT  
2 x 10µF  
or 1 x 22µF  
VOS  
FB  
CIN  
10µF  
EN  
R2  
R2  
REN2  
110k  
210k  
EN_hys  
REN_hys  
82k  
Rpullup  
GND  
PG  
PWR GOOD  
Figure 59. TPS62125 5V VOUT, Start up voltage VIN_Start = 10V, Stop voltage VIN_Stop = 6V, see Figure 43  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s) :TPS62125  
TPS62125  
SLVSAQ5A MARCH 2012REVISED APRIL 2012  
www.ti.com  
VIN_Start = 6.82V  
VIN_Stop = 4.55V  
VOUT = 3.3V  
up to 300mA  
TPS62125  
L 15µH  
SW  
VIN  
REN1  
610k  
R1  
1.8M  
COUT  
10µF  
VOS  
FB  
Current  
Source  
0.5mA  
CIN  
10µF  
EN  
CIN  
22µF  
Poscap  
R2  
R2  
REN2  
110k  
10V max  
576k  
EN_hys  
REN_hys  
120k  
Rpullup  
100k  
GND  
PG  
PWR Good  
Figure 60. TPS62125 operation from a storage capacitor charged from a 0.5mA current source, VOUT  
3.3V, see Figure 45  
=
CIN  
10µF  
TPS62125  
VIN = 5V  
L 10µH  
SW  
GND  
COUT  
2 x 10µF  
VIN  
R1  
1.1M  
VOS  
FB  
EN  
Cbypass  
10µF  
or 1 x 22µF  
R2  
210k  
EN_hys  
GND  
VOUT = -5V  
up to 150mA  
PG  
Figure 61. 5V to -5V inverter configuration, see SLVA514  
30  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Product Folder Link(s) :TPS62125  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-May-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TPS62125DSGR  
TPS62125DSGT  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSG  
DSG  
8
8
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-May-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62125DSGR  
TPS62125DSGT  
WSON  
WSON  
DSG  
DSG  
8
8
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
4.0  
4.0  
8.0  
8.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-May-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS62125DSGR  
TPS62125DSGT  
WSON  
WSON  
DSG  
DSG  
8
8
3000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  
配单直通车
TPS62125DSGR产品参数
型号:TPS62125DSGR
Brand Name:Texas Instruments
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
IHS 制造商:TEXAS INSTRUMENTS INC
包装说明:WSON-8
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
Factory Lead Time:8 weeks
风险等级:1.69
Samacsys Confidence:3
Samacsys Status:Released
Samacsys PartID:342642
Samacsys Pin Count:9
Samacsys Part Category:Integrated Circuit
Samacsys Package Category:Small Outline No-lead
Samacsys Footprint Name:DSG0008A
Samacsys Released Date:2019-02-22 12:46:37
Is Samacsys:N
其他特性:ALSO HAS PFM CONTROL TECHNIQUE; ALSO AVAILABLE IN ADJUSTABLE MODE FROM 1.2V TO 10V
模拟集成电路 - 其他类型:SWITCHING REGULATOR
控制模式:VOLTAGE-MODE
控制技术:PULSE WIDTH MODULATION
最大输入电压:17 V
最小输入电压:3 V
标称输入电压:12 V
JESD-30 代码:S-PDSO-N8
JESD-609代码:e4
长度:2 mm
湿度敏感等级:2
功能数量:1
端子数量:8
最高工作温度:85 °C
最低工作温度:-40 °C
最大输出电流:0.9 A
最大输出电压:10 V
最小输出电压:1.2 V
封装主体材料:PLASTIC/EPOXY
封装代码:HVSON
封装等效代码:SOLCC8,.08,20
封装形状:SQUARE
封装形式:SMALL OUTLINE, HEAT SINK/SLUG, VERY THIN PROFILE
峰值回流温度(摄氏度):260
认证状态:Not Qualified
座面最大高度:0.8 mm
子类别:Switching Regulator or Controllers
标称供电电压 (Vsup):12 V
表面贴装:YES
切换器配置:BUCK
最大切换频率:1000 kHz
温度等级:INDUSTRIAL
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:NO LEAD
端子节距:0.5 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:2 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!