欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • TPS62410DRCT
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • TPS62410DRCT图
  • 深圳市高捷芯城科技有限公司

     该会员已使用本站11年以上
  • TPS62410DRCT 现货库存
  • 数量5239 
  • 厂家TI(德州仪器) 
  • 封装DFN-10(3x3) 
  • 批号23+ 
  • 百分百原装正品,可原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83062789 QQ:3007977934QQ:3007947087
  • TPS62410DRCT图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • TPS62410DRCT 现货库存
  • 数量8641 
  • 厂家TI 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • TPS62410DRCT图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • TPS62410DRCT 现货库存
  • 数量17500 
  • 厂家TI 
  • 封装 
  • 批号24+ 
  • 假一罚百,TI专营!深圳有库存,北美、新加坡可发货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • TPS62410DRCT图
  • 深圳市亿智腾科技有限公司

     该会员已使用本站8年以上
  • TPS62410DRCT 现货库存
  • 数量8860 
  • 厂家TEXASINSTRUMENTS 
  • 封装N/A 
  • 批号16+ 
  • 全新原装现货★★特价供应★★。★★特价★★假一赔十,工厂客户可放款
  • QQ:799387964QQ:799387964 复制
    QQ:2777237833QQ:2777237833 复制
  • 0755-82566711 QQ:799387964QQ:2777237833
  • TPS62410DRCT图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TPS62410DRCT 现货库存
  • 数量250 
  • 厂家TI 
  • 封装VSON (DRC) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TPS62410DRCT图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • TPS62410DRCT 现货库存
  • 数量8903 
  • 厂家TI 
  • 封装QFN 
  • 批号24+ 
  • 只做原装,假一赔十,支持实单
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • TPS62410DRCT图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • TPS62410DRCT 现货库存
  • 数量9000 
  • 厂家TI/BB 
  • 封装 
  • 批号2024+ 
  • 全新原装现货,全网最低价
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • TPS62410DRCT图
  • 深圳市旺能芯科技有限公司

     该会员已使用本站4年以上
  • TPS62410DRCT
  • 数量15000 
  • 厂家TI/德州仪器 
  • 封装QFN 
  • 批号22+ 
  • 深圳全新原装库存现货
  • QQ:2881495751QQ:2881495751 复制
  • 13602549709 QQ:2881495751
  • TPS62410DRCT图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • TPS62410DRCT
  • 数量5600 
  • 厂家TI 
  • 封装QFN 
  • 批号23+ 
  • 只做原装正品,深圳现货
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • TPS62410DRCT图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • TPS62410DRCT
  • 数量12500 
  • 厂家TI/德州仪器 
  • 封装
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • TPS62410DRCT图
  • 北京元坤伟业(国际)科技有限公司

     该会员已使用本站12年以上
  • TPS62410DRCT
  • 数量5000 
  • 厂家Maxim Integrated Products 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104578 QQ:857273081QQ:1594462451
  • TPS62410DRCT图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • TPS62410DRCT
  • 数量865000 
  • 厂家TI/德州仪器 
  • 封装QFN-10 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • TPS62410DRCT图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • TPS62410DRCT
  • 数量9328 
  • 厂家TI-德州仪器 
  • 封装DFN-10 
  • 批号▉▉:2年内 
  • ▉▉¥17.6元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • TPS62410DRCT图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • TPS62410DRCT
  • 数量19 
  • 厂家TI 
  • 封装QFN 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • TPS62410DRCT图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • TPS62410DRCT
  • 数量3577 
  • 厂家TI 
  • 封装DFN10 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • TPS62410DRCT图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • TPS62410DRCT
  • 数量3577 
  • 厂家TI 
  • 封装10-VFDFN 裸露焊盘 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • TPS62410DRCT图
  • 深圳市鹏睿康科技有限公司

     该会员已使用本站16年以上
  • TPS62410DRCT
  • 数量1200 
  • 厂家TI 
  • 封装只做原装 
  • 批号23+ 
  • 原装现货假一赔万,原包原标,支持实单
  • QQ:2885392746QQ:2885392746 复制
    QQ:2885392744QQ:2885392744 复制
  • 0755-83192793 QQ:2885392746QQ:2885392744
  • TPS62410DRCTG4图
  • 长荣电子

     该会员已使用本站14年以上
  • TPS62410DRCTG4
  • 数量408 
  • 厂家 
  • 封装QFN 
  • 批号07+ 
  • 现货
  • QQ:172370262QQ:172370262 复制
  • 754-4457500 QQ:172370262
  • TPS62410DRCT图
  • 深圳市芯柏然科技有限公司

     该会员已使用本站7年以上
  • TPS62410DRCT
  • 数量23480 
  • 厂家TI 
  • 封装QFN 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、价格低于市场
  • QQ:287673858QQ:287673858 复制
  • 0755-82533534 QQ:287673858
  • TPS62410DRCT图
  • 深圳市鹏和科技有限公司

     该会员已使用本站16年以上
  • TPS62410DRCT
  • 数量49735 
  • 厂家TI 
  • 封装VSON 
  • 批号23+ 
  • 原装正品 代理渠道
  • QQ:3004290789QQ:3004290789 复制
    QQ:3004290786QQ:3004290786 复制
  • 755-83990319 QQ:3004290789QQ:3004290786
  • TPS62410DRCT图
  • 深圳市珩瑞科技有限公司

     该会员已使用本站2年以上
  • TPS62410DRCT
  • 数量
  • 厂家21+ 
  • 封装12000 
  • 批号 
  • ███全新原装正品,可配单
  • QQ:2938238007QQ:2938238007 复制
    QQ:1840507767QQ:1840507767 复制
  • -0755-82578309 QQ:2938238007QQ:1840507767
  • TPS62410DRCT图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TPS62410DRCT
  • 数量11530 
  • 厂家Texas Instruments 
  • 封装10-SON 
  • 批号23+ 
  • 全新原装现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • TPS62410DRCT图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • TPS62410DRCT
  • 数量660000 
  • 厂家Texas Instruments(德州仪器) 
  • 封装10-VFDFN Exposed Pad 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • TPS62410DRCT图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • TPS62410DRCT
  • 数量5300 
  • 厂家TI 
  • 封装QFN 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • TPS62410DRCT图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TPS62410DRCT
  • 数量18530 
  • 厂家TI/BB 
  • 封装SON10 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • TPS62410DRCT图
  • 北京力通科信电子有限公司

     该会员已使用本站10年以上
  • TPS62410DRCT
  • 数量890 
  • 厂家TI 
  • 封装 10-QFN  
  • 批号12+ 
  • 正品,刚到货
  • QQ:2355365902QQ:2355365902 复制
    QQ:2355365899QQ:2355365899 复制
  • 010-82625766 QQ:2355365902QQ:2355365899
  • TPS62410DRCT图
  • 深圳市驰天熠电子有限公司

     该会员已使用本站1年以上
  • TPS62410DRCT
  • 数量33560 
  • 厂家TI 
  • 封装 
  • 批号23+ 
  • 全新原装,优势价格,支持配单
  • QQ:3003795629QQ:3003795629 复制
    QQ:534325024QQ:534325024 复制
  • 86-15802056765 QQ:3003795629QQ:534325024
  • TPS62410DRCTG4图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • TPS62410DRCTG4
  • 数量6500000 
  • 厂家N/A 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • TPS62410DRCT图
  • 北京云中青城科技有限公司

     该会员已使用本站8年以上
  • TPS62410DRCT
  • 数量6000 
  • 厂家Texas Instruments 
  • 封装SON-10 
  • 批号20+ 
  • 只做原装.诚信经营
  • QQ:1290208342QQ:1290208342 复制
    QQ:260779663QQ:260779663 复制
  • 010-62669145 QQ:1290208342QQ:260779663
  • TPS62410DRCTG4图
  • 深圳市华兴微电子有限公司

     该会员已使用本站16年以上
  • TPS62410DRCTG4
  • 数量5000 
  • 厂家TI 
  • 封装N/A 
  • 批号23+ 
  • 只做进口原装QQ询价,专营射频微波十五年。
  • QQ:604502381QQ:604502381 复制
  • 0755-83002105 QQ:604502381
  • TPS62410DRCT图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TPS62410DRCT
  • 数量250 
  • 厂家TI 
  • 封装VSON (DRC) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TPS62410DRCT图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • TPS62410DRCT
  • 数量96200 
  • 厂家TI/德州仪器 
  • 封装VSON 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • TPS62410DRCT图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • TPS62410DRCT
  • 数量45 
  • 厂家TI 
  • 封装QFN 
  • 批号24+ 
  • 原装现货
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • TPS62410DRCT图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • TPS62410DRCT
  • 数量9500 
  • 厂家TI(德州仪器) 
  • 封装10-VFDFN 裸露焊盘 
  • 批号23+/24+ 
  • 绝对原装正品,可开13%专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • TPS62410DRCT图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • TPS62410DRCT
  • 数量12000 
  • 厂家TI 
  • 封装VSON-10 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • TPS62410DRCT图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • TPS62410DRCT
  • 数量5623 
  • 厂家TI 
  • 封装VSON (DRC)10 
  • 批号21+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • TPS62410DRCT图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • TPS62410DRCT
  • 数量85000 
  • 厂家TI/德州仪器 
  • 封装QFN 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • TPS62410DRCT图
  • 深圳市一线半导体有限公司

     该会员已使用本站15年以上
  • TPS62410DRCT
  • 数量14500 
  • 厂家Texas Instruments 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号TPS62410DRCT的概述

TPS62410DRCT概述 TPS62410DRCT是一款高效的数字降压转换器,专为便携设备和移动应用而设计。这款芯片采用了先进的开关调节技术,在提升电源管理性能的同时确保了功率效率。凭借其低静态电流、快速瞬态响应和高功率密度,TPS62410DRCT非常适合用于需要精确电压调节的嵌入式系统,如便携式电子产品、消费电子、工业控制以及网络设备。 TPS62410DRCT详细参数 TPS62410DRCT的输入电压范围通常在2.5V至5.5V之间,能够满足不同电源供电的需求。其输出电压范围可调,通用型的电压调节器,输出电流可达2A,支持低电压操作,简化了设计的复杂性。该芯片的工作频率可通过外部元件进行设置,通常工作在2MHz或4MHz,从而实现高效的电源转换。 - 输入电压范围:2.5V-5.5V - 输出电压范围:0.8V-5V(可调) - 输出电流:最大2A - 开关频率:2MHz ...

产品型号TPS62410DRCT的Datasheet PDF文件预览

TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
2.25MHz 2x800mA Dual Step Down Converter In Small 3x3mm QFN Package  
FEATURES  
DESCRIPTION  
High Efficiency—up to 95%  
The TPS62410 device is  
a synchronous dual  
step-down DC-DC converter optimized for battery  
powered portable applications. It provides two  
independent output voltage rails powered by 1-cell  
Li-Ion or 3-cell NiMH/NiCD batteries. The device is  
also suitable to operate from a standard 3.3V or 5V  
voltage rail.  
VIN Range From 2.5 V to 6 V  
2.25 MHz Fixed Frequency Operation  
Output Current 2 x 800mA  
Adjustable Output Voltage From 0.6 V to VIN  
EasyScale™ Optional One Pin Serial Interface  
for Dynamic Output Voltage Adjustment  
With an input voltage range of 2.5V to 6V, the  
TPS62410 is ideal to power portable applications like  
smart phones, PDAs, and other portable equipment.  
Power Save Mode at Light Load Currents  
180° Out of Phase Operation  
With the EasyScale™ serial interface the output  
voltages can be modified during operation. It  
therefore supports Dynamic Voltage Scaling for low  
power DSP and processors.  
Output Voltage Accuracy in PWM Mode ±1%  
Typical 32 µA Quiescent Current for both  
Converters  
100% Duty Cycle for Lowest Dropout  
The TPS62410 operates at 2.25MHz fixed switching  
frequency and enter the Power Save Mode operation  
at light load currents to maintain high efficiency over  
the entire load current range. For low noise  
applications the devices can be forced into fixed  
frequency PWM mode by pulling the MODE/DATA  
pin high. In the shutdown mode, the current  
consumption is reduced to 1.2µA. The device allows  
the use of small inductors and capacitors to achieve  
a small solution size.  
Available in a 10-Pin QFN (3×3mm)  
APPLICATIONS  
Cell Phones, Smart-phones  
PDAs, Pocket PCs  
OMAP™ and Low Power DSP Supply  
Portable Media Players  
Digital Radio  
Digital Cameras  
The TPS62410 is available in a 10-pin leadless  
package (3×3mm QFN)  
TPS62410  
VIN 2.5V 6V  
VIN  
FB 1  
SW1  
L1  
100  
VOUT1 = 1.5V  
up to 800mA  
V
V
= 3.3 V  
CIN  
OUT  
2.2 μH  
90  
R11  
270kΩ  
10 μF  
= 3.6 V  
COUT1 = 22 µF  
IN  
DEF_1  
80  
70  
V
= 3.6 V  
IN  
R12  
180kΩ  
EN_1  
L2  
VOUT2 = 1.8V  
Up to 800mA  
COUT2 = 22 µF  
60  
50  
40  
30  
20  
EN_2  
SW2  
V
= 5 V  
IN  
V
= 5 V  
IN  
2.2 μH  
Cff2  
33pF  
R21  
360kΩ  
MODE/  
DATA  
ADJ2  
GND  
Forced PWM Mode  
MODE/DATA = 1  
Power Save Mode  
MODE/DATA = 0  
R22  
180kΩ  
10  
0
0.01  
0.1  
1
10  
- mA  
100  
1000  
I
OUT  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
EasyScale, OMAP, PowerPAD are trademarks of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007, Texas Instruments Incorporated  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
ORDERING INFORMATION(1)  
TA  
PART  
NUMBER  
(1)  
DEFAULT OUTPUT  
VOLTAGE (2)  
OUTPUT  
CURRENT  
QFN (1)  
PACKAGE  
ORDERING  
PACKAGE  
MARKING  
OUT1  
OUT2  
800mA  
800mA  
–40°C to 85°C  
TPS62410  
Adjustable  
DRC  
TPS62410DRC  
CAT  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
Web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
UNIT  
V
(2)  
Input voltage range on VIN  
–0.3 to 7  
Voltage range on EN, MODE/DATA, DEF_1  
Maximum Current into MODE/DATA  
Voltage on SW1, SW2  
–0.3 to VIN +0.3, 7  
V
500  
µA  
V
–0.3 to 7  
Voltage on ADJ2, FB1  
–0.3 to VIN +0.3, 7  
V
ESD rating(3)  
HBM Human body nodel  
2
1
kV  
kV  
V
Charge device model  
Machine model  
200  
TJ(max) Maximum junction temperature  
150  
°C  
°C  
°C  
TA  
Operating ambient temperature range  
Storage temperature range  
–40 to 85  
–65 to 150  
Tstg  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) The human body model is a 100pF capacitor discharged through a 1.5kresistor into each pin. The machine model is a 200pF  
capacitor discharged directly into each pin.  
DISSIPATION RATINGS  
PACKAGE  
RθJA  
POWER RATING FOR TA25°C  
DERATING FACTOR ABOVE TA = 25°C  
21mW/°C  
DRC  
49°C/W  
2050mW  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX UNIT  
VIN  
Supply voltage  
2.5  
0.6  
-40  
-40  
6
VIN  
85  
V
V
Output voltage range for adjustable voltage  
Operating ambient temperature  
Operating junction temperature  
TA  
TJ  
°C  
°C  
125  
2
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS  
VIN = 3.6V, VOUT = 1.8V, EN = VIN, MODE = GND, L = 2.2µH, COUT = 20µF, TA = –40°C to 85°C typical values are at TA =  
25°C (unless otherwise noted)  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Input voltage range  
2.5  
6.0  
29  
V
One converter, IOUT = 0mA. PFM mode enabled  
(Mode = 0) device not switching,  
EN1 = 1 OR EN2 = 1  
19  
32  
µA  
Two converter, IOUT = 0mA. PFM mode enabled  
(Mode = 0) device not switching,  
EN1 = 1 AND EN2 = 1  
48  
µA  
IQ  
Operating quiescent current  
IOUT = 0mA, MODE/DATA = GND, for one  
converter, VOUT 1.575V(1)  
23  
µA  
IOUT = 0mA, MODE/DATA = VIN, for one  
converter, VOUT 1.575V  
3.6  
mA  
(1)  
EN1, EN2 = GND, VIN = 3.6V(2)  
EN1, EN2 = GND, VIN ramped from 0V to 3.6V(3)  
1.2  
0.1  
1.5  
3
1
ISD  
Shutdown current  
µA  
Falling  
Rising  
2.35  
2.4  
VUVLO  
Undervoltage lockout threshold  
V
ENABLE EN1, EN2  
VIH  
High-level input voltage, EN1, EN2  
1.2  
0
VIN  
0.4  
1.0  
V
V
VIL  
Low-level input voltage, EN1, EN2  
Input bias current, EN1, EN2  
IIN  
EN1, EN2 = GND or VIN  
DEF_1 = GND or VIN  
0.05  
0.01  
µA  
DEF_1 INPUT  
IIN  
Input biasd current DEF_1  
1.0  
µA  
MODE/DATA  
VIH  
High-level input voltage,  
MODE/DATA  
1.2  
0
VIN  
0.4  
V
V
VIL  
Low-level input voltage,  
MODE/DATA  
IIN  
Input bias current, MODE/DATA  
Acknowledge output voltage high  
Acknowledge output voltage low  
MODE/DATA = GND or VIN  
0.01  
1.0  
VIN  
0.4  
µA  
V
VOH  
VOL  
Open drain, via external pullup resistor  
Open drain, sink current 500µA  
0
V
INTERFACE TIMING  
tStart  
tH_LB  
tL_LB  
Start time  
2
2
µs  
µs  
µs  
High time low bit, logic 0 detection  
Low time low bit, logic 0 detection  
Signal level on MODE/DATA pin is > 1.2V  
Signal level on MODE/DATA pin < 0.4V  
200  
400  
2x  
tH_LB  
tL_HB  
tH_LB  
Low time high bit, logic 1 detection  
Signal level on MODE/DATA pin < 0.4V  
2
200  
400  
µs  
µs  
High time high bit, logic 1 detection Signal level on MODE/DATA pin is > 1.2V  
2x  
tL_HS  
TEOS  
tACKN  
End of Stream  
TEOS  
2
µs  
µs  
Duration of acknowledge condition  
(MODE/DATE line pulled low by the  
device)  
VIN 2.5V to 6V  
400  
520  
tvalACK  
ttimeout  
Acknowledge valid time  
2
µs  
µs  
Timeout for entering power save  
mode  
MODE/DATA Pin changes from high to low  
520  
(1) Device is switching with no load on the output, L = 3.3µH, value includes losses of the coil  
(2) These values are valid after the device has been already enabled one time (EN1 or EN2 = high) and supply voltage VIN has not  
powered down.  
(3) These values are valid when the device is disabled (EN1 and EN2 low) and supply voltage VIN is powered up. The values remain valid  
until the device has been enabled first time (EN1 or EN2 = high). After first enable, Note 3 becomes valid.  
3
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS (continued)  
VIN = 3.6V, VOUT = 1.8V, EN = VIN, MODE = GND, L = 2.2µH, COUT = 20µF, TA = –40°C to 85°C typical values are at TA =  
25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SWITCH  
RDS(ON)  
P-Channel MOSFET On-resistance, VIN = VGS = 3.6V  
Converter 1,2  
280  
620  
mΩ  
ILK_PMOS  
RDS(ON)  
P-Channel leakage current  
VDS = 6.0V  
1
µA  
N-Channel MOSFET On-resistance VIN = VGS = 3.6V  
Converter 1,2  
200  
6
450  
mΩ  
ILK_SW1/SW2 Leakage Current into SW1/SW2 Pin Includes N-Chanel leakage currnet,  
VIN = open, VSW = 6.0V, EN = GND(4)  
7.5  
µA  
ILIMF  
Forward Current OUT 1/2 800mA 2.5V VIN6.0V  
1.0  
1.2  
1.38  
A
Limit PMOS and  
NMOS  
TSD  
Thermal shutdown  
Increasing junction temperature  
150  
20  
°C  
°C  
Thermal shudown hysteresis  
Decreasing junction temperature  
OSCILLATOR  
fSW  
Oscillator frequency  
2.5V VIN 6.0V  
2.0  
0.6  
2.25  
2.5  
VIN  
MHz  
OUTPUT  
VOUT  
Adjustable output votage range  
Reference voltage  
V
Vref  
600  
mV  
Voltage positioning active, MODE/DATA = GND,  
device operating in PFM mode, VIN = 2.5V to  
5.0V  
1.01x  
VOUT  
VOUT (PFM)  
–1.5%  
2.5%  
1%  
(6)(7)  
DC output voltage accuracy PFM  
mode, adjustable and fixed output  
voltage(5)  
MODE/DATA = GND; device operating in PWM  
Mode VIN = 2.5V to 6.0V(7)  
–1%  
–1%  
0%  
0%  
VOUT  
VIN = 2.5V to 6.0V, Mode/Data = VIN , Fixed PWM  
1%  
0.5  
(8)  
operation, 0mA < IOUT < IOUTMAX  
DC output voltage load regulation  
Start-up time  
PWM operation mode  
Activation time to start switching(9)  
%/A  
µs  
tStart up  
tRamp  
170  
750  
VOUT Ramp UP time  
Time to ramp from 5% to 95% of VOUT  
µs  
(4) At pins SW1 and SW2 an internal resistor of 1Mis connected to GND  
(5) Output voltage specification does not include tolerance of external voltage programming resistors  
(6) Configuration L typ 2.2µH, COUT typ 20µF, see parameter measurement information, the output voltage ripple depends on the effective  
capacitance of the output capacitor, larger output capacitors lead to tighter output voltage tolerance  
(7) In Power Save Mode, PWM operation is typically entered at IPSM = VIN/32.  
(8) For VOUT > 2.2V, VIN min = VOUT +0.3V  
(9) This time is valid if one converter turns from shutdown mode (EN2 = 0) to active mode (EN2 =1) AND the other converter is already  
enabled (e.g., EN1 = 1). In case both converters are turned from shutdown mode (EN1 and EN2 = low) to active mode (EN1 and/or  
EN2=1) a value of typ 80 µs for ramp up of internal circuits needs to be added. After tStart the converter starts switching and ramps  
VOUT  
.
4
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
DEVICE INFORMATION  
PIN ASSIGNMENTS  
SW2  
EN2  
GND  
EN1  
SW1  
1
2
3
4
5
10  
9
ADJ2  
MODE/DATA  
VIN  
8
7
FB1  
6
DEF_1  
Top view DRC package  
TERMINAL FUNCTIONS  
TERMINAL  
I/O  
DESCRIPTION  
NO.  
NAME  
(QFN)  
ADJ2  
1
I
Input to adjust output voltage of converter 2. In adjustable version (TPS62410) connect a external  
resistor divider between VOUT2, this pin and GND to set output voltage between 0.6V and VIN. If  
EasyScale™ Interface is used for converter 2, this pin must be directly connected to the output.  
MODE/DATA  
2
I
This Pin has 2 functions:  
1. Operation Mode selection: With low level, Power Save Mode is enabled where the device  
operates in PFM mode at light loads and enters automatically PWM mode at heavy loads.  
Pulling this PIN to high forces the device to operate in PWM mode over the whole load range.  
2. EasyScale™ Interface function: One wire serial interface to change the output voltage of both  
converters. The pin has an open drain output to provide an acknowledge condition if requested.  
The current into the open drain output stage may not exceed 500µA. The interface is active if  
either EN1 or EN2 is high.  
VIN  
3
4
I
I
Supply voltage, connect to VBAT, 2.5V to 6V  
FB1  
Direct feedback voltage sense input of converter 1, connect directly to Vout 1. An internal feed forward  
capacitor is connected between this pin and the error amplifier. In case of fixed output voltage versions  
or when the Interface is used, this pin is connected to an internal resistor divider network.  
DEF_1  
5
I/O  
This pin defines the output voltage of converter 1. The pin acts in TPS62410 as an analog input for  
output voltage setting via external resistors. In fixed default output voltage versions this pin is a digital  
input to select between two fixed default output voltages.  
In TPS62410 an external resistor network needs to be connected to this pin to adjust the default output  
voltage.  
SW1  
6
7
Switch Pin of Converter1. Connected to Inductor 1  
Enable Input for Converter1, active high  
EN1  
I
I
GND  
8
GND for both converters, this pin should be connected with the PowerPAD  
Enable Input for Converter 2, active high  
EN2  
9
I/O  
SW2  
10  
Switch Pin of Converter 2. Connected to Inductor 2  
Connect to GND  
PowerPAD™  
5
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
FUNCTIONAL BLOCK DIAGRAM  
VIN  
PMOS Current  
Limit Comparator  
Converter 1  
VIN  
FB_VOUT  
Thermal  
Shutdown  
Softstart  
VREF +1%  
Skip Comp.  
FB_VOUT  
VREF- 1%  
EN1  
Skip Comp. Low  
VREF  
Gate Driver  
Control  
Stage  
Ext. res. network  
Error Amp.  
Internal  
compensated  
FB  
VOUT1  
DEF1  
Int. Resistor  
Network  
PWM  
Comp.  
SW1  
Cff 25pF  
MODE  
Register  
RI 1  
Sawtooth  
Generator  
DEF1_High  
GND  
RI..N  
DEF1_Low  
FB1  
Average  
Current Detector  
Skip Mode Entry  
NMOS Current  
Limit Comparator  
Note A  
CLK 0°  
Reference  
Load Comparator  
2.25MHz  
Oscillator  
Easy Scale  
Interface  
ACK  
Mode/  
DATA  
Undervoltage  
Lockout  
PMOS Current  
Limit Comparator  
CLK 180°  
MOSFET  
Open drain  
VIN  
FB_VOUT  
Converter 2  
Int. Resistor  
Network  
VREF +1%  
Skip Comp.  
Register  
FB_VOUT  
VREF- 1%  
DEF2  
Note B  
Skip Comp. Low  
VREF  
Gate Driver  
Control  
Stage  
Cff 25pF  
Error Amp.  
RI 1  
Internal  
compensated  
PWM  
Comp.  
RI..N  
SW2  
MODE  
FB_VOUT2  
ADJ2  
EN2  
Sawtooth  
Generator  
GND  
Thermal  
Shutdown  
Average  
Current Detector  
Skip Mode Entry  
NMOS Current  
Limit Comparator  
CLK 180°  
Softstart  
Load Comparator  
GND  
A. In fixed output voltage version, the PIN DEF_1 is connected to an internal digital input and disconnected from the  
error amplifier  
B. To set the output voltage of Converter 2 via EasyScale Interface, ADJ2 pin must be directly connected to VOUT2  
6
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
PARAMETER MEASUREMENT INFORMATION  
TPS62410  
VIN 2.5 V - 6 V  
FB 1  
VIN  
L1  
V
OUT1  
C
SW1  
C
IN  
2.2 mH  
LPS4018  
R11  
10 mF  
2x10 mF  
OUT1  
GRM21BR61A106K  
DEF_1  
R12  
EN_1  
L2  
V
SW2  
OUT2  
EN_2  
2.2 mH  
LPS4018  
C
ff2  
33 pF  
R21  
R22  
C
2x10 mF  
OUT2  
GRM21BR61A106K  
MODE/  
DATA  
ADJ2  
GND  
TYPICAL CHARACTERISTICS  
TABLE OF GRAPHS  
FIGURE NO.  
Efficiency VOUT1 = 1.2V  
Efficiency VOUT1 = 1.5V  
Efficiency VOUT2 = 1.8V  
Efficiency VOUT2 = 3.3V  
Efficiency  
1
2
3
4
vs VIN  
vs VIN  
5, 6  
7
DC Output Accuracy VOUT1 = 1.5V  
DC Output Accuracy VOUT2 = 3.3V  
FOSC  
8
9
Iq for one converter  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
Iq for both converters, not switching  
RDSON PMOS  
vs VIN  
vs VIN  
RDSON NMOS  
Light Load Output Voltage Ripple in Power Save Mode  
Output Voltage Ripple in Forced PWM Mode  
Output Voltage Ripple in PWM Mode  
Forced PWM/ PFM ModeTransition  
Load Transient Response PFM/PWM  
Load Transient Response PWM Operation  
Line Rransient Response  
Startup Timing One Converter  
Typical Operation VIN = 3.6V, VOUT1 = 1.575V, VOUT2 = 1.8V  
Typical Operation VIN = 3.6V, VOUT1 = 1.8V, VOUT2 = 3.0V  
Typical Operation VIN = 3.6V, VOUT1 = 1.2V, VOUT2 = 1.2V  
Dynamic Voltage Positioning  
7
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
TYPICAL CHARACTERISTICS (continued)  
FIGURE NO.  
Soft Start  
26  
27  
EasyScale Protocol Overview  
EasyScale Protocol Without Acknowledge  
EasyScale Protocol Including Acknowledge  
EasyScale – Bit Coding  
28  
29  
30  
MODE/DATA PIN: Mode Selection  
MODE/DATA Pin: Power Save Mode / Interface Communication  
Typical Application Circuit 1.5V / 2.85V Adjustable Outputs  
Layout Diagram  
31  
32  
33,34  
35  
PCB Layout  
36  
EFFICIENCY VOUT = 1.2V  
EFFICIENCY VOUT = 1.5V  
100  
100  
90  
V
= 1.2 V  
V
= 1.5 V  
OUT  
OUT  
90  
80  
70  
80  
70  
MODE/DATA = Low  
VIN = 5 V  
MODE/DATA = Low  
VIN = 5 V  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
VIN = 3.7 V  
VIN = 3.3 V  
VIN = 2.7 V  
MODE/DATA = High  
VIN = 5 V  
VIN = 3.7 V  
VIN = 3.3 V  
VIN = 2.7 V  
MODE/DATA = High  
VIN = 5 V  
VIN = 3.7 V  
VIN = 3.3 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 3.3 V  
VIN = 2.7 V  
10  
0
10  
0
0.01  
0.1  
1
10  
- mA  
100  
1000  
0.01  
0.1  
1
10  
- mA  
100  
1000  
I
I
OUT  
OUT  
Figure 1.  
EFFICIENCY VOUT2 = 1.8V  
Figure 2.  
EFFICIENCY VOUT2 = 3.3V  
100  
90  
100  
90  
V
= 1.8 V  
V
V
= 3.3 V  
OUT  
OUT  
= 3.6 V  
IN  
80  
70  
80  
70  
V
= 3.6 V  
IN  
V
= 2.7 V  
IN  
V
= 2.7 V  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
IN  
V
= 5 V  
V
= 3.6 V  
IN  
IN  
V
= 5 V  
IN  
V
= 3.6 V  
IN  
= 5 V  
V
= 5 V  
IN  
Forced PWM Mode  
MODE/DATA = 1  
Power Save Mode  
MODE/DATA = 0  
V
IN  
Forced PWM Mode  
MODE/DATA = 1  
Power Save Mode  
MODE/DATA = 0  
10  
0
10  
0
0.01  
0.1  
1
10  
- mA  
100  
1000  
0.01  
0.1  
1
10  
- mA  
100  
1000  
I
I
OUT  
OUT  
Figure 3.  
Figure 4.  
8
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
EFFICIENCY vs VIN , VOUT = 1.575V  
EFFICIENCY vs VIN, VOUT = 3.3V  
100  
100  
90  
I
= 100 mA  
MODE/DATA = 0  
= 3.3 V  
OUT  
MODE/DATA = 0  
= 1.575 V  
V
OUT  
I
= 10 mA  
V
95  
90  
85  
80  
75  
70  
65  
60  
OUT  
OUT  
I
= 200 mA  
OUT  
I
= 10 mA  
OUT  
I
OUT  
= 1 mA  
80  
I
= 1 mA  
OUT  
70  
60  
50  
55  
50  
2
3
4
5
6
3
4
5
6
V
- V  
IN  
V
- V  
IN  
Figure 5.  
Figure 6.  
DC OUTPUT ACCURACY VOUT1 = 1.5V  
DC OUTPUT ACCURACY VOUT2 = 3.3V  
1.575  
1.550  
3.400  
3.350  
3.300  
V
OUT  
= 3.3 V  
V
= 1.5 V  
OUT  
MODE/DATA = low, PFM Mode, Voltage Positioning Active  
V
= 5 V  
IN  
MODE/DATA = low, PFM Mode, Voltage Positioning Active  
PWM Mode  
Operation  
V
= 5 V  
1.525  
1.500  
1.475  
IN  
V
= 3.7 V  
IN  
V
= 4.2 V  
= 5 V  
IN  
V
= 3.3 V  
V
= 2.7 V  
= 2.7 V  
IN  
IN  
V
IN  
= 3.7 V  
V
= 4.2 V  
V
IN  
IN  
V
V
= 3.7 V  
IN  
IN  
MODE/DATA = high, forced PWM Mode  
V
= 3.3 V  
IN  
V
= 3.7 V  
IN  
V
= 5 V  
3.250  
3.200  
IN  
1.450  
1.425  
MODE/DATA = high, forced PWM Mode  
0.01  
0.1  
1
10  
- mA  
100  
1000  
0.01  
0.1  
1
10  
- mA  
100  
1000  
I
I
OUT  
OUT  
Figure 7.  
Figure 8.  
9
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
FOSC vs VIN  
Iq FOR ONE CONVERTER, NOT SWITCHING  
24  
23  
22  
21  
20  
19  
2.5  
2.45  
2.4  
85°C  
25°C  
2.35  
2.3  
-40°C  
2.25  
2.2  
2.15  
2.1  
25°C  
-40°C  
85°C  
18  
17  
2.05  
2
2.5  
6
3
3.5  
4
5.5  
4.5  
- V  
5
2.5  
3
3.5  
4
4.5  
- V  
5
5.5  
6
V
IN  
V
IN  
Figure 9.  
Figure 10.  
Iq FOR BOTH CONVERTERS, NOT SWITCHING  
RDSON PMOS vs VIN  
0.55  
0.5  
42  
40  
38  
36  
34  
32  
0.45  
0.4  
85°C  
25°C  
85°C  
0.35  
0.3  
25°C  
0.25  
-40°C  
-40°C  
0.2  
30  
28  
0.15  
2.5  
3
3.5  
4
4.5  
- V  
5
5.5  
6
2.5  
3
3.5  
4
4.5  
- V  
5
5.5  
6
V
IN  
V
IN  
Figure 11.  
Figure 12.  
10  
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
LIGHT LOAD OUTPUT VOLTAGE RIPPLE  
IN POWER SAVE MODE  
RDSON NMOS vs VIN  
0.3  
0.25  
0.2  
Power Save Mode  
Mode/Data = low  
IOUT = 10mA  
85°C  
VOUT = 1.8V 20mV/Div  
25°C  
-40°C  
Inductor current 100mA/Div  
0.15  
0.1  
0.05  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V
- V  
IN  
Time base - 10 ms/Div  
Figure 14.  
Figure 13.  
OUTPUT VOLTAGE RIPPLE  
IN FORCED PWM MODE  
OUTPUT VOLTAGE RIPPLE  
IN PWM MODE  
Mode/Data = high,  
forced PWM MODE operation  
PWM MODE OPERATION  
VOUT ripple 20mV/Div  
VOUT = 1.8V  
IOUT = 400mA  
IOUT = 10mA  
VOUT = 1.8V 20mV/Div  
Inductor current 100mA/Div  
Inductor current 200mA/Div  
Time base - 400 ns/Div  
Figure 15.  
Time base - 200 ns/Div  
Figure 16.  
11  
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
FORCED PWM/PFM MODE TRANSITION  
LOAD TRANSIENT RESPONSE PFM/PWM  
MODE/DATA 1V/Div  
VOUT = 1.575V  
50mV/Div  
MODE/DATA = low  
Forced PWM  
Mode  
Enable Power Save Mode  
Entering PFM Mode  
Voltage positioning active  
Voltage positioning in PFM  
Mode reduces voltage drop  
during load step  
PWM Mode operation  
IOUT1 = 540mA  
VOUT 20mV/Div  
IOUT 200mA/Div  
VOUT = 1.8V  
IOUT = 20mA  
IOUT= 60mA  
Time base - 20 ms/Div  
Figure 17.  
LOAD TRANSIENT RESPONSE PWM OPERATION  
Time base - 100 ms/Div  
Figure 18.  
LINE TRANSIENT RESPONSE  
VIN 3.6V to 4.6V  
VIN 1V/Div  
MODE/DATA = high  
MODE/DATA = high  
VOUT = 1.575V  
50mV/Div  
PWM Mode operation  
IOUT 200mA/Div  
IOUT1 = 540mA  
VOUT 1.575  
IOUT 200mA  
VOUT 50mV/Div  
IOUT= 60mA  
Time base - 400 ms/Div  
Figure 20.  
Time base - 100 ms/Div  
Figure 19.  
12  
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
TYPICAL OPERATION VIN = 3.6V,  
VOUT1 = 1.575V, VOUT2 = 1.8V  
STARTUP TIMING ONE CONVERTER  
EN1 / EN2 5V/Div  
VIN = 3.8V  
SW1 5V/Div  
IOUT1 max = 400mA  
I
coil1 200mA/Div  
VOUT1  
500mV/Div  
SW2 5V/Div  
SW1 1V/Div  
Icoil2 200mA/Div  
Icoil 500mA/Div  
VIN 3.6V,  
VOUT1: 1.575V  
OUT2: 1.8V  
IOUT1 = IOUT2 = 200mA  
V
Time base - 100 ns/Div  
Time base - 200 ms/Div  
Figure 21.  
Figure 22.  
TYPICAL OPERATION VIN = 3.6V,  
VOUT1 = 1.8V, VOUT2 = 3.0V  
TYPICAL OPERATION VIN = 3.6V,  
VOUT1 = 1.2V, VOUT2 = 1.2V  
SW1 5V/Div  
SW1 5V/Div  
Icoil1 200mA/Div  
Icoil1 200mA/Div  
SW2 5V/Div  
SW2 5V/Div  
Icoil2 200mA/Div  
VIN 3.6V,  
VOUT1: 1.2V  
VIN 3.6V,  
Icoil2 200mA/Div  
VOUT1: 1.8V  
VOUT2: 3.0V  
IOUT1 = IOUT2 = 200mA  
VOUT2: 1.2V  
IOUT1 = IOUT2 = 200mA  
Time base - 100 ns/Div  
Time base - 100 ns/Div  
Figure 23.  
Figure 24.  
VOUT1 CHANGE WITH EASYSCALE  
DETAILED DESCRIPTION  
OPERATION  
The TPS62410 includes two synchronous step-down converters. The converters operate with typically 2.25MHz  
fixed frequency pulse width modulation (PWM) at moderate to heavy load currents. If Power Save Mode is  
enabled, the converters automatically enter Power Save Mode at light load currents and operate in PFM (Pulse  
13  
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
DETAILED DESCRIPTION (continued)  
Frequency Modulation). During PWM operation the converters use a unique fast response voltage mode  
controller scheme with input voltage feed-forward to achieve good line and load regulation allowing the use of  
small ceramic input and output capacitors. At the beginning of each clock cycle initiated by the clock signal, the  
P-channel MOSFET switch is turned on and the inductor current ramps up until the comparator trips and the  
control logic turns off the switch.  
Each converter integrates two current limits, one in the P-channel MOSFET and another one in the N-channel  
MOSFET. When the current in the P-channel MOSFET reaches its current limit, the P-channel MOSFET is  
turned off and the N-channel MOSFET is turned on. If the current in the N-channel MOSFET is above the  
N-MOS current limit threshold, the N-channel MOSFET remains on until the current drops below its current limit.  
The two DC-DC converters operate synchronized to each other. A 180° phase shift between converter 1 and  
converter 2 decreases the input RMS current.  
Converter 1  
In the adjustable output voltage version TPS62410 the converter 1 output voltage can be set via an external  
resistor network on PIN DEF_1, which operates as an analog input. In this case, the output voltage can be set in  
the range of 0.6V to VIN V. The FB1 Pin must be directly connected to the converter 1 output voltage VOUT1. It  
feeds back the output voltage directly to the regulation loop.  
The output voltage of converter 1 can also be changed by the EasyScale serial Interface. This makes the device  
very flexible for output voltage adjustment. In this case, the device uses an internal resistor network.  
Converter 2  
In the adjustable output voltage version TPS62410, the converter 2 output voltage is set by an external resistor  
divider connected to ADJ2 Pin and uses an external feed forward capacitor of 33pF.  
It is also possible to change the output voltage of converter 2 via the EasyScale Interface. In this case, the ADJ2  
Pin must be directly connected to converter 2 output voltage VOUT2. At TPS62410 no external resistor network  
may be connected.  
POWER SAVE MODE  
The Power Save Mode is enabled with Mode/Data Pin set to 0 for both converters. If the load current of a  
converter decreases, this converter will enter Power Save Mode operation automatically. The transition to Power  
Save Mode of a converter is independent from the operating condition of the other converter. During Power  
Save Mode the converter operates with reduced switching frequency in PFM mode and with a minimum  
quiescent current to maintain high efficiency. The converter will position the output voltage in PFM mode to  
typically 1.01xVOUT. This voltage positioning feature minimizes voltage drops caused by a sudden load step.  
In order to optimize the converter efficiency at light load the average inductor current is monitored. The device  
changes from PWM Mode to Power Save Mode, if in PWM mode the inductor current falls below a certain  
threshold. The typical output current threshold depends on VIN and can be calculated according to Equation 1  
for each converter.  
Equation 1: Average output current threshold to enter PFM Mode  
VIN  
+
DCDC  
I
OUT_PFM_enter  
32 W  
(1)  
Equation 2: Average output current threshold to leave PFM Mode  
VIN  
+
DCDC  
I
OUT_PFM_leave  
24 W  
(2)  
In order to keep the output voltage ripple in Power Save Mode low, the output voltage is monitored with a single  
threshold comparator (skip comparator). As the output voltage falls below the skip comparator threshold (skip  
comp) of 1.01 x VOUTnominal, the corresponding converter starts switching for a minimum time period of  
typically 1µs and provides current to the load and the output capacitor. Therefore the output voltage increases  
and the device maintains switching until the output voltage trips the skip comparator threshold (skip comp)  
again. At this moment all switching activity is stopped and the quiescent current is reduced to minimum. The  
load is supplied by the output capacitor until the output voltage has dropped below the threshold again.  
14  
Submit Documentation Feedback  
 
 
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
DETAILED DESCRIPTION (continued)  
Hereupon the device starts switching again. The Power Save Mode is exited and PWM Mode entered in case  
the output current exceeds the current IOUT_PFM_leave, or if the output voltage falls below a second  
comparator threshold, called skip comparator low (Skip Comp Low) threshold. This skip comparator low  
threshold is set to –2% below nominal Vout, and enables a fast transition from Power Save Mode to PWM Mode  
during a load step. In Power Save Mode the quiescent current is reduced typically to 19µA for one converter and  
32µA for both converters active. This single skip comparator threshold method in Power Save Mode results in a  
very low output voltage ripple. The ripple depends on the comparator delay and the size of the output capacitor.  
Increasing output capacitor values minimizes the output ripple. The Power Save Mode can be disabled through  
the MODE/DATA pin set to high. Both converters then operate in fixed PWM mode. Power Save Mode  
Enable/Disable applies to both converters.  
Dynamic Voltage Positioning  
This feature reduces the voltage under/overshoots at load steps from light to heavy load and vice versa. It is  
activated in Power Save Mode operation. It provides more headroom for both the voltage drop at a load step,  
and the voltage increase at a load throw-off. This improves load transient behavior.  
At light loads, in which the converter operate in PFM Mode, the output voltage is regulated typically 1% higher  
than the nominal value. In case of a load transient from light load to heavy load, the output voltage drops until it  
reaches the skip comparator low threshold set to –2% below the nominal value and enters PWM mode. During a  
load throw off from heavy load to light load, the voltage overshoot is also minimized due to active regulation  
turning on the N-channel switch.  
Smooth  
Fast load transient  
increased load  
+1%  
PFM Mode  
light load  
PFM Mode  
light load  
VOUT_NOM  
PWM Mode  
medium/heavy load  
PWM Mode  
medium/heavy load  
PWM Mode  
medium/heavy load  
COMP_LOW threshold –1%  
Figure 25. Dynamic Voltage Positioning  
Soft Start  
The two converters have an internal soft start circuit that limits the inrush current during start-up. During soft  
start, the output voltage ramp up is controlled as shown in Figure 26.  
EN  
95%  
5%  
VOUT  
tStartup  
tRAMP  
Figure 26. Soft Start  
15  
Submit Documentation Feedback  
 
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
DETAILED DESCRIPTION (continued)  
100% Duty Cycle Low Dropout Operation  
The converters offer a low input to output voltage difference while still maintaining operation with the use of the  
100% duty cycle mode. In this mode the P-channel switch is constantly turned on. This is particularly useful in  
battery-powered applications to achieve longest operation time by taking full advantage of the whole battery  
voltage range; i.e., the minimum input voltage to maintain regulation depends on the load current and output  
voltage, and can be calculated as:  
  ǒRDSon  
LǓ  
Vin  
+ Vout  
) Iout  
) R  
max  
max  
max  
min  
(3)  
With:  
Ioutmax = maximum output current plus inductor ripple current  
RDSonmax = maximum P-channel switch RDSon  
RL = DC resistance of the inductor  
Voutmax = nominal output voltage plus maximum output voltage tolerance  
With decreasing load current, the device automatically switches into pulse skipping operation in which the power  
stage operates intermittently based on load demand. By running cycles periodically the switching losses are  
minimized and the device runs with a minimum quiescent current maintaining high efficiency.  
Under-Voltage Lockout  
The under voltage lockout circuit prevents the device from malfunctioning at low input voltages and from  
excessive discharge of the battery and disables the converters. The under-voltage lockout threshold is typically  
1.5V, max 2.35V. In case the default register values are overwritten by the Interface, the new values in the  
registers REG_DEF_1_Low and REG_DEF_2 remain valid as long the supply voltage does not fall under the  
under-voltage lockout threshold, independent of whether the converters are disabled.  
MODE SELECTION  
The MODE/DATA pin allows mode selection between forced PWM Mode and Power Save Mode for both  
converters. Furthermore, this pin is a multipurpose pin and provides (besides Mode selection) a one-pin  
interface to receive serial data from a host to set the output voltage. This is described in the section EasyScale  
Interface.  
Connecting this pin to GND enables the automatic PWM and power save mode operation. The converters  
operate in fixed-frequency PWM mode at moderate to heavy loads and in the PFM mode during light loads,  
maintaining high efficiency over a wide load current range.  
Pulling the MODE/DATA pin high forces both converters to operate constantly in the PWM mode even at light  
load currents. The advantage is the converters operate with a fixed frequency that allows simple filtering of the  
switching frequency for noise sensitive applications. In this mode, the efficiency is lower compared to the power  
save mode during light loads. For additional flexibility it is possible to switch from Power Save Mode to forced  
PWM mode during operation. This allows efficient power management by adjusting the operation of the  
converter to the specific system requirements.  
In case the operation mode will be changed from forced PWM mode (MODE/DATA = high) to Power Save Mode  
Enable (MODE/DATA = 0) the Power Save Mode will be enabled after a delay time of typically ttimeout, which is a  
maximum of 520µs.  
The forced PWM Mode operation is enabled immediately with Pin MODE/DATA set to 1.  
ENABLE  
The device has for each converter a separate EN pin to start up each converter independently. If EN1, EN2 are  
set to high, the corresponding converter starts up with soft start as previously described.  
Pulling EN1 and EN2 pin low forces the device into shutdown, with a shutdown quiescent current of typically  
1.2µA. In this mode, the P and N-Channel MOSFETs are turned-off and the entire internal control circuitry is  
switched-off. For proper operation the EN1 and EN2 pins must be terminated and must not be left floating.  
16  
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
DETAILED DESCRIPTION (continued)  
DEF_1 PIN FUNCTION  
The DEF_1 pin is dedicated to converter 1 and works as an analog input for adjustable output voltage setting.  
Connecting an external resistor network to this pin adjusts the default output voltage to any value starting from  
0.6V to VIN.  
180° OUT OF PHASE OPERATION  
In PWM Mode the converters operate with a 180° turn-on phase shift of the PMOS (high side) transistors. It  
prevents the high side switches of both converters to be turned on simultaneously, and therefore smooths the  
input current. This feature reduces the surge current drawn from the supply.  
SHORT-CIRCUIT PROTECTION  
Both outputs are short-circuit protected with maximum output current = ILIMF(P-MOS and N-MOS). Once the  
PMOS switch reaches its current limit, it will be turned off and the NMOS turned on. The PMOS only turns on  
again, once the current in the NMOS decreases below the NMOS current limit.  
THERMAL SHUTDOWN  
As soon as the junction temperature, TJ, exceeds typically 150°C the device goes into thermal shutdown. In this  
mode, the P and N-Channel MOSFETs are turned-off. The device continues its operation when the junction  
temperature falls below the thermal shutdown hysteresis again.  
EasyScale™: One Pin Serial Interface for Dynamic Output Voltage Adjustment  
General  
EasyScale is a simple but very flexible one pin interface to configure the output voltage of both DC/DC  
converters. The interface is based on a master – slave structure, where the master is typically a µController or  
Application processor. Figure 27 and Table 2 give an overview of the protocol. The protocol consists of a device  
specific address byte and a data byte. The device specific address byte is fixed to 4E hex. The data byte  
consists of five bit for information, two address bits and the RFA bit. RFA bit set to high indicates the Request  
For Acknowledge condition. The Acknowledge condition is only applied if the protocol was received correctly.  
The advantage of EasyScale compared to other one-pin interfaces is that its bit detection is, to a large extent,  
independent from the bit transmission rate. It can automatically detect bit rates between 1.7kBit/sec and up to  
160kBit/sec. Furthermore, the interface is shared with the Mode/Data Pin and requires therefore no additional  
pin.  
Protocol  
All bits are transmitted MSB first and LSB last. Figure 28 shows the protocol without acknowledge request (bit  
RFA = 0), Figure 29 with acknowledge (bit RFA = 1) request.  
Prior to both bytes, device address byte and data byte, a start condition needs to be applied. For this, the  
Mode/Data pin needs to be pulled high for at least tStart before the bit transmission starts with the falling edge. In  
case the Mode/Data line was already at high level (forced PWM Mode selection) no start condition need be  
applied prior the device address byte.  
The transmission of each byte needs to be closed with an End Of Stream condition for at least TEOS  
.
Addressable Registers  
In TPS62410 two registers with a data content of 5 bits can be addressed to change the output voltage of both  
converters. With 5 bit data content, 32 different values for each register are available. Table 1 shows the  
addressable registers if DEF_1 pin acts as analog input with external resistors connected.  
The available output voltages for converter 1 are shown in Table 3, for converter 2 in Table 4. To generate these  
output voltages, a precise internal resistor divider network is used, which makes external resistors unnecessary  
and results therefore in an higher output voltage accuracy and less board space.  
17  
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
DETAILED DESCRIPTION (continued)  
The Interface is activated if at least one of the converters is enabled (EN1 or EN2 is high). After the Startup-time  
tStart (170µs) the interface is ready for data reception.  
Table 1. Addressable Registers for Adjustable Output Voltage Devices  
REGISTER  
REG_DEF_1_High  
REG_DEF_1_Low  
REG_DEF_2  
DESCRIPTION  
Not available in TPS62410 adjustable version  
Converter 1 output voltage setting  
Converter 2 output voltage  
A1  
0
A0  
1
D4  
D3  
D2  
D1  
D0  
0
0
TPS62410 see Table 3  
1
0
TPS62410 see Table 4, connect ADJ2  
pin directly to VOUT2  
Don’t use  
1
1
Bit Decoding  
The bit detection is based on a PWM scheme, where the criterion is the relation between tLOW and tHIGH. It can  
be simplified to:  
High Bit: tHigh > tLow, but with tHigh at least 2x tLow, see Figure 30  
Low Bit: tLow> tHigh, but with tLow at least 2x tHigh, see Figure 30  
The bit detection starts with a falling edge on the MODED/DATA pin and ends with the next falling edge.  
Depending on the relation between tLow and tHigh a 0 or 1 is detected.  
Acknowledge  
The Acknowledge condition is only applied if:  
Acknowledge is requested by a set RFA bit  
The transmitted device address matches with the device address of the device  
16 bits were received correctly  
In this case, the device turns on the internal ACKN-MOSFET and pulls the MODE/DATA pin low for the time  
tACKN, which is max. 520µs. The Acknowledge condition is valid after an internal delay time tvalACK. This means  
the internal ACKN-MOSFET is turned on after tvalACK, when the last falling edge of the protocol was detected.  
The master controller keeps the line low during this time.  
The master device can detect the acknowledge condition with it’s input by releasing the MODE/DATA pin after  
tvalACK and read back a 0.  
In case of an invalid device address or not correctly received protocol, no acknowledge condition will be applied,  
thus the internal MOSFET will not be turned on and the external pullup resistor pulls MODE/DATA pin high after  
tvalACK. The MODE/DATA pin can be used again after the acknowledge condition ends.  
NOTE:  
The acknowledge condition may only be requested in case the master device has an  
open drain output.  
In case of a push pull output stage it is recommended to use a series resistor in the MODE/DATA line to limit the  
current to 500µA in case of an accidentally requested acknowledge to protect the internal ACKN-MOSFET.  
MODE Selection  
Because of the MODE/DATA pin is used for two functions, interface and a MODE selection, the device needs to  
determine when it has to decode the bit stream or to change the operation mode.  
The device enters forced PWM mode operation immediately whenever the MODE/DATA pin turns to high level.  
The device stays also in forced PWM mode during the whole time of a protocol reception.  
With a falling edge on the MODE/DATA pin the device starts bit decoding. If the MODE/DATA pin stays low for  
at least ttimeout, the device get’s an internal timeout and Power Save Mode operation is enabled.  
18  
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
A protocol which is sent within this time will be ignored, because the falling edge for the Mode change will be  
first interpreted as start of the first bit. In this case it is recommended to send first the protocol and change at the  
end of the protocol to Power Save Mode.  
DATA IN  
Device Address  
DATABYTE  
D4 D3 D2  
Start DA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0  
RFA A1  
A0  
D1 D0  
EOS Start  
EOS  
0
1
0
0
1
1
1
0
DATA OUT ACK  
Figure 27. Easy Scale Protocol Overview  
Table 2. Easy Scale Bit Description  
BYTE  
BIT  
NUMBER  
NAME  
TRANSMISSION  
DIRECTION  
DESCRIPTION  
Device  
Address  
Byte  
7
DA7  
DA6  
DA5  
DA4  
DA3  
DA2  
DA1  
DA0  
RFA  
A1  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0 MSB device address  
6
1
5
0
4
0
4Ehex  
3
1
2
1
1
1
0
0 LSB device address  
Databyte  
7(MSB)  
Request For Acknowledge, if high, Acknowledge condition will applied by the device  
6
Address Bit 1  
Address Bit 0  
Data Bit 4  
5
A0  
4
D4  
3
D3  
Data Bit 3  
2
1
D2  
Data Bit 2  
D1  
Data Bit 1  
0(LSB)  
D0  
Data Bit 0  
ACK  
OUT  
Acknowledge condition active 0, this condition will only be applied in case RFA bit is  
set. Open drain output, Line needs to be pulled high by the host with a pullup  
resistor.  
This feature can only be used if the master has an open drain output stage. In case  
of a push pull output stage Acknowledge condition may not be requested!  
tStart  
tStart  
Address Byte  
DATA Byte  
DATA IN  
Mode, Static  
High or Low  
Mode, Static  
High or Low  
DA7  
0
DA0  
0
RFA  
D0  
1
TEOS  
TEOS  
0
Figure 28. Easy Scale Protocol Without Acknowledge  
19  
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
tStart  
tStart  
Address Byte  
DATA Byte  
Mode, Static  
High or Low  
Mode, Static  
High or Low  
DATA IN  
DA7  
DA0  
0
D0  
1
RFA  
1
0
TEOS  
tvalACK  
Acknowledge  
true, Data Line  
pulled down by  
device  
ACKN  
tACKN  
Controller needs to  
Pullup Data Line via a  
resistor to detect ACKN  
DATA OUT  
Acknowledge  
false, no pull  
down  
Figure 29. Easy Scale Protocol Including Acknowledge  
tLow  
Low Bit  
(Logic 0)  
tHigh tLOW  
tHigh  
High Bit  
(Logic 1)  
Figure 30. EasyScale – Bit Coding  
MODE/DATA  
t
timeout  
Power Save Mode  
Figure 31. MODE/DATA PIN: Mode Selection  
tStart Address Byte tStart  
Forced PWM MODE  
Power Save Mode  
DATA Byte  
MODE/DATA  
TEOS  
ttimeout  
TEOS  
Power Save Mode  
Forced PWM MODE  
Power Save Mode  
Figure 32. MODE/DATA Pin: Power Save Mode/Interface Communication  
20  
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
Table 3. Selectable Output Voltages for Converter 1,  
With DEF1 Pin as Analog Input (TPS62410)  
TPS62410 OUTPUT VOLTAGE [V]  
REGISTER REG_DEF_1_LOW  
D4  
D3  
D2  
0
D1  
0
D0  
0
0
VOUT1 Adjustable Output With Resistor Network on DEF_1 Pin  
0
0
0.6V with DEF_1 Pin connected to VOUT1  
1
0.825  
0.85  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
3
0.875  
0.9  
4
5
0.925  
0.95  
6
7
0.975  
1.0  
8
9
1.025  
1.050  
1.075  
1.1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
1.125  
1.150  
1.175  
1.2  
1.225  
1.25  
1.275  
1.3  
1.325  
1.350  
1.375  
1.4  
1.425  
1.450  
1.475  
1.5  
1.525  
1.55  
1.575  
21  
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
Table 4. Selectable Output Voltages for Converter 2,  
(ADJ2 Connected to VOUT  
)
OUTPUT VOLTAGE [V]  
D4 D3 D2 D1 D0  
FOR REGISTER REG_DEF_2  
0
VOUT2 Adjustable Output With Resistor Network on ADJ2  
0
0
0
0
0
0.6V with ADJ2 Pin connected to VOUT2  
1
0.85  
0.9  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
3
0.95  
1.0  
4
5
1.05  
1.1  
6
7
1.15  
1.2  
8
9
1.25  
1.3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
1.35  
1.4  
1.45  
1.5  
1.55  
1.6  
1.7  
1.8  
1.85  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.85  
3.0  
3.3  
22  
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
APPLICATION INFORMATION  
OUTPUT VOLTAGE SETTING  
Converter1 Adjustable Default Output Voltage Setting  
The output voltage can be calculated to:  
R
11  
ǒ1 ) Ǔwith an internal reference voltage V  
V
+ V  
 
typical 0.6V  
OUT  
REF  
REF  
R
12  
(4)  
To keep the operating current to a minimum, it is recommended to select R12 within a range of 180kto 360k.  
The sum of R12 and R11 should not exceed ~1M. For higher output voltages than 3.3V, it is recommended to  
choose lower values than 180kfor R12. Route the DEF_1 line away from noise sources, such as the inductor  
or the SW1 line. The FB1 line needs to be directly connected to the output capacitor. An internal feed forward  
capacitor is connected to this pin, therefore there is no need for an external feed forward capacitor for converter  
1.  
Converter 2  
The default output voltage of converter 2 can be set by an external resistor network. For converter 2 the same  
recommendations apply as for converter 1. In addition to that, a 33pF external feed forward capacitor Cff2 for  
good load transient response must be used.  
The output voltage can be calculated to:  
R
21  
ǒ1 ) Ǔwith an internal reference voltage V  
V
+ V  
 
typical 0.6V  
OUT  
REF  
REF  
R
22  
(5)  
Route the ADJ2 line away from noise sources, such as the inductor or the SW2 line. In case the interface is  
used for converter 2, connect ADJ2 pin directly to VOUT2  
TPS62410  
VIN 3.3 V – 6 V  
FB 1  
VIN  
L1  
V
= 1.5 V  
OUT1  
up to 800 mA  
SW1  
C
IN  
10 mF  
2.2 mH  
R11  
270 kW  
C
= 22 mF  
OUT1  
DEF_1  
R12  
180 kW  
EN_1  
EN_2  
L2  
V
= 2.85 V  
OUT2  
up to 800 mA  
SW2  
3.3 mH  
R21  
825 kW  
C
ff2  
33 pF  
MODE/  
DATA  
C
= 22 mF  
OUT2  
ADJ2  
GND  
R22  
220 kW  
Figure 33. Typical Application Circuit 1.5V/2.85V Adjustable Outputs, low PFM Voltage ripple Optimized  
23  
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
APPLICATION INFORMATION (continued)  
TPS62410  
VIN 3.3 V – 6 V  
FB 1  
VIN  
L1  
V
= 1.5 V  
OUT1  
up to 800 mA  
SW1  
C
IN  
10 mF  
2.2 mH  
R11  
270 kW  
C
= 10 mF  
OUT1  
DEF_1  
R12  
EN_1  
180 kW  
EN_2  
L2  
V
= 2.85 V  
OUT2  
up to 800 mA  
SW2  
3.3 mH  
R21  
825 kW  
C
ff2  
33 pF  
MODE/  
DATA  
C
= 10 mF  
OUT2  
ADJ2  
GND  
R22  
220 kW  
Figure 34. Typical Application Circuit 1.5V/2.85V Adjustable Outputs  
OUTPUT FILTER DESIGN (INDUCTOR AND OUTPUT CAPACITOR)  
The device is optimized to operate with inductors of 2.2µH to 4.7µH and output capacitors of 10µF to 22µF.  
For operation with a 2.2µH inductor, a 22µF capacitor is suggested.  
Inductor Selection  
The selected inductor has to be rated for its DC resistance and saturation current. The DC resistance of the  
inductance will influence directly the efficiency of the converter. Therefore an inductor with lowest DC resistance  
should be selected for highest efficiency.  
Equation 6 calculates the maximum inductor current under static load conditions. The saturation current of the  
inductor should be rated higher than the maximum inductor current as calculated with Equation 7. This is  
recommended because during heavy load transient the inductor current will rise above the calculated value.  
Vout  
Vin  
1 *  
DI + Vout   
L
L   ƒ  
(6)  
DI  
L
I
+ I  
)
outmax  
Lmax  
2
(7)  
With:  
f = Switching Frequency (2.25MHz typical)  
L = Inductor Value  
IL= Peak to Peak inductor ripple current  
ILmax = Maximum Inductor current  
The highest inductor current will occur at maximum Vin.  
Open core inductors have a soft saturation characteristic and they can usually handle higher inductor currents  
versus a comparable shielded inductor.  
A more conservative approach is to select the inductor current rating just for the maximum switch current of the  
corresponding converter. It must be considered, that the core material from inductor to inductor differs and will  
have an impact on the efficiency especially at high switching frequencies.  
24  
Submit Documentation Feedback  
 
 
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
APPLICATION INFORMATION (continued)  
Refer to Table 5 and the typical applications for possible inductors.  
Table 5. List of Inductors  
DIMENSIONS [mm3]  
2.8x2.6×1.4  
INDUCTOR TYPE  
VLF3014  
SUPPLIER  
TDK  
3×3×1.4  
LPS3015  
Coilcraft  
Coilcraft  
3.9×3.9×1.7  
LPS4018  
Output Capacitor Selection  
The advanced fast response voltage mode control scheme of the two converters allows the use of small ceramic  
capacitors with a typical value of 10µF, without having large output voltage under and overshoots during heavy  
load transients. Ceramic X7R/X5R capacitors having low ESR values result in lowest output voltage ripple and  
are therefore recommended.  
If ceramic output capacitors are used, the capacitor RMS ripple current rating will always meet the application  
requirements. The RMS ripple current is calculated as:  
Vout  
Vin  
L   ƒ  
1 *  
1
I
+ Vout   
 
RMSCout  
Ǹ
2
 
 
3  
(8)  
At nominal load current the inductive converters operate in PWM mode and the overall output voltage ripple is  
the sum of the voltage spike caused by the output capacitor ESR plus the voltage ripple caused by charging and  
discharging the output capacitor:  
Vout  
Vin  
L   ƒ  
1 *  
1
ǒ
) ESRǓ  
DVout + Vout   
 
8   Cout   ƒ  
(9)  
Where the highest output voltage ripple occurs at the highest input voltage Vin.  
At light load currents the converters operate in Power Save Mode and the output voltage ripple is dependent on  
the output capacitor value. The output voltage ripple is set by the internal comparator delay and the external  
capacitor. Higher output capacitors like 22µF values minimize the voltage ripple in PFM Mode and tighten DC  
output accuracy in PFM Mode.  
Input Capacitor Selection  
Because of the nature of the buck converter having a pulsating input current, a low ESR input capacitor is  
required for best input voltage filtering and minimizing the interference with other circuits caused by high input  
voltage spikes. The converters need a ceramic input capacitor of 10µF. The input capacitor can be increased  
without any limit for better input voltage filtering.  
LAYOUT CONSIDERATIONS  
As for all switching power supplies, the layout is an important step in the design. Proper function of the device  
demands careful attention to PCB layout. Care must be taken in board layout to get the specified performance. If  
the layout is not carefully done, the regulator could show poor line and/or load regulation, stability issues as well  
as EMI problems. It is critical to provide a low inductance, impedance ground path. Therefore, use wide and  
short traces for the main current paths as indicated in bold in Figure 35.  
The input capacitor should be placed as close as possible to the IC pins as well as the inductor and output  
capacitor.  
25  
Submit Documentation Feedback  
 
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
Connect the GND Pin of the device to the PowerPAD of the PCB and use this Pad as a star point. For each  
converter use a common Power GND node and a different node for the Signal GND to minimize the effects of  
ground noise. Connect these ground nodes together to the PowerPAD (star point) underneath the IC. Keep the  
common path to the GND PIN, which returns the small signal components and the high current of the output  
capacitors as short as possible to avoid ground noise. The output voltage sense lines (FB 1, ADJ2, DEF_1)  
should be connected right to the output capacitor and routed away from noisy components and traces (e.g., SW  
line). If the EasyScale interface is operated with high transmission rates, the MODE/DATA trace must be routed  
away from the ADJ2 line to avoid capacitive coupling into the ADJ2 pin. A GND guard ring between the  
MODE/DATA pin and ADJ2 pin avoids potential noise coupling.  
TPS62410  
VIN 2.5 V – 6 V  
VIN  
EN_1  
C
IN  
EN_2  
10 mF  
MODE/  
DATA  
FB 1  
L2  
L1  
SW1  
SW2  
3.3 mH  
C
3.3 mH  
ff2  
33 pF  
R11  
R12  
R21  
R22  
C
OUT2  
C
OUT2  
DEF_1  
ADJ2  
PowerPAD  
GND  
Figure 35. Layout Diagram  
26  
Submit Documentation Feedback  
TPS62410  
www.ti.com  
SLVS737FEBRUARY 2007  
C
OUT1  
CIN  
GND Pin  
connected  
with Power  
Pad  
COUT2  
Figure 36. PCB Layout  
27  
Submit Documentation Feedback  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
TAPE AND REEL INFORMATION  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
Device  
Package Pins  
Site  
MLA  
MLA  
Reel  
Diameter Width  
(mm)  
Reel  
A0 (mm)  
3.3  
B0 (mm)  
3.3  
K0 (mm)  
1.1  
P1  
W
Pin1  
(mm) (mm) Quadrant  
(mm)  
TPS62410DRCR  
TPS62410DRCT  
DRC  
DRC  
10  
10  
330  
12  
8
8
12 PKGORN  
T2TR-MS  
P
180  
12  
3.3  
3.3  
1.1  
12 PKGORN  
T2TR-MS  
P
TAPE AND REEL BOX INFORMATION  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
TPS62410DRCR  
TPS62410DRCT  
DRC  
DRC  
10  
10  
MLA  
MLA  
346.0  
190.0  
346.0  
212.7  
29.0  
31.75  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
Pack Materials-Page 3  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  
配单直通车
TPS62410DRCT产品参数
型号:TPS62410DRCT
Brand Name:Texas Instruments
是否无铅:不含铅
是否Rohs认证:符合
生命周期:Active
IHS 制造商:TEXAS INSTRUMENTS INC
零件包装代码:DFN
包装说明:HVSON,
针数:10
制造商包装代码:MLF
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
Factory Lead Time:1 week
风险等级:0.72
Samacsys Confidence:3
Samacsys Status:Released
Samacsys PartID:417908
Samacsys Pin Count:11
Samacsys Part Category:Integrated Circuit
Samacsys Package Category:Small Outline No-lead
Samacsys Footprint Name:DRC
Samacsys Released Date:2017-01-12 12:59:53
Is Samacsys:N
模拟集成电路 - 其他类型:DUAL SWITCHING CONTROLLER
控制模式:VOLTAGE-MODE
控制技术:PULSE WIDTH MODULATION
最大输入电压:6 V
最小输入电压:2.5 V
标称输入电压:3.6 V
JESD-30 代码:S-PDSO-N10
JESD-609代码:e4
长度:3 mm
湿度敏感等级:2
功能数量:1
端子数量:10
最高工作温度:85 °C
最低工作温度:-40 °C
最大输出电流:1.6 A
最大输出电压:6 V
最小输出电压:0.6 V
标称输出电压:1.8 V
封装主体材料:PLASTIC/EPOXY
封装代码:HVSON
封装形状:SQUARE
封装形式:SMALL OUTLINE, HEAT SINK/SLUG, VERY THIN PROFILE
峰值回流温度(摄氏度):260
认证状态:Not Qualified
座面最大高度:1 mm
表面贴装:YES
切换器配置:PHASE-SHIFT
最大切换频率:2500 kHz
温度等级:INDUSTRIAL
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:NO LEAD
端子节距:0.5 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:3 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!