欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • TS81102G0VTP
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • TS81102G0VTP图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TS81102G0VTP 现货库存
  • 数量23480 
  • 厂家ATMEL 
  • 封装22+ 
  • 批号BGA 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • TS81102G0VTP图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TS81102G0VTP 现货库存
  • 数量6980 
  • 厂家ATMEL 
  • 封装240TBGA 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TS81102G0VTP图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • TS81102G0VTP
  • 数量18530 
  • 厂家ATMEL 
  • 封装BGA 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • TS81102G0VTP图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • TS81102G0VTP
  • 数量3000 
  • 厂家ATMEL 
  • 封装QFN 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507168QQ:2355507168 复制
    QQ:2355507169QQ:2355507169 复制
  • 86-755-83219286 QQ:2355507168QQ:2355507169
  • TS81102G0VTP图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • TS81102G0VTP
  • 数量101 
  • 厂家ATMEL/爱特梅尔 
  • 封装BGA 
  • 批号22+ 
  • ★正品现货★原盒原标★
  • QQ:2355507162QQ:2355507162 复制
    QQ:2355507165QQ:2355507165 复制
  • 86-755-83616256 QQ:2355507162QQ:2355507165
  • TS81102G0VTP图
  • 深圳市隆鑫创展电子有限公司

     该会员已使用本站15年以上
  • TS81102G0VTP
  • 数量30000 
  • 厂家BROADCOM 
  • 封装BGA 
  • 批号2022+ 
  • 电子元器件一站式配套服务QQ:122350038
  • QQ:2355878626QQ:2355878626 复制
    QQ:2850299242QQ:2850299242 复制
  • 0755-82812278 QQ:2355878626QQ:2850299242
  • TS81102G0VTP图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • TS81102G0VTP
  • 数量6980 
  • 厂家ATMEL 
  • 封装240TBGA 
  • 批号22+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • TS81102G0VTP图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • TS81102G0VTP
  • 数量20000 
  • 厂家ATMEL 
  • 封装BGA 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • TS81102G0VTP图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • TS81102G0VTP
  • 数量21000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号TS81102G0VTP的Datasheet PDF文件预览

Features  
Programmable DMUX Ratio:  
– 1:4: Data Rate Max = 1 Gsps  
– PD (8b/10b) < 4.3/4.7 W (ECL 50output)  
– 1:8: Data Rate Max = 2 Gsps  
– PD (8b/10b) < 6/6.9 W (ECL 50output)  
– 1:16 with 1 TS8388B or 1 TS83102G0B and 2 DMUX  
Parallel Output Mode  
8-/10-bit  
ECL Differential Input Data  
DataReady or DataReady/2 Input Clock  
Input Clock Sampling Delay Adjust  
Single-ended Output Data:  
DMUX 8-/10-bit  
2 GHz 1:4/8  
– Adjustable Common Mode and Swing  
– Logic Threshold Reference Output  
– (ECL, PECL, TTL)  
Asynchronous Reset  
Synchronous Reset  
ADC + DMUX Multi-channel Applications:  
– Stand-alone Delay Adjust Cell for ADCs Sampling Instant Alignment  
Differential Data Ready Output  
Built-in Self Test (BIST)  
TS81102G0  
Dual Power Supply VEE = -5V, VCC = +5V  
Radiation Tolerance Oriented Design (More than 100 Krad (Si) Expected)  
TBGA 240 (Cavity Down) Package  
Description  
The TS81102G0 is a monolithic 10-bit high-speed (up to 2 GHz) demultiplexor,  
designed to run with all kinds of ADCs and more specifically with Atmel’s high-speed  
ADC 8-bit 1 Gsps TS8388B and ADC 10-bit 2 Gsps TS83102G0B.  
The TS81102G0 uses an innovative architecture, including a sampling delay adjust  
and tunable output levels. It allows users to process the high-speed output data  
stream down to processor speed and uses the very high-speed bipolar technology (25  
GHz NPN cut-off frequency).  
Rev. 2105C–BDC–11/03  
Block Diagram  
Figure 1. Block Diagram  
Data Path  
Clock Path  
t(bconimfred)  
delay  
delay  
mux  
FS/8  
NAP  
B 2  
BIST  
8/10  
mux  
8/10  
Phase  
control  
RstGen  
ClkPar  
Reset  
even  
master  
latch  
odd  
master  
latch  
odd  
slave  
latch  
even  
slave  
latch  
Counter  
(8 stage  
shift register)  
8
Counter  
Status  
FS/8  
Port Selection Clock  
8
Data  
Output  
Clock  
8
1
8/10  
DataReady  
generation  
DR/DR  
Even Ports  
Odd Ports  
2
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
Internal Timing  
Diagram  
This diagram corresponds to an established operation of the DMUX with Synchronous Reset.  
Figure 2. Internal Timing Diagram  
500 ps min  
N
N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 N+12 N+13 N+14 N+15 N+16 N+17 N+18 N+19 N+20 N+21 N+22 N+23 N+24 N+25 N+26 N+27 N+28 N+29 N+30 N+31  
Data In  
DR In = Fs  
DR/2 In = Fs/2 = ClkPar  
Master Even Latch  
Master Odd Latch  
Slave Even Latch  
N
N+2  
N+4  
N+6  
N+8  
N+10  
N+12  
N+14  
N+16  
N+18  
N+20  
N+22  
N+24  
N+26  
N+28  
N+30  
N+1  
N
N+3  
N+5  
N+7  
N+9  
N+8  
N+11  
N+13  
N+12  
N+15  
N+17  
N+16  
N+19  
N+18  
N+21  
N+23  
N+22  
N+25  
N+27  
N+26  
N+29  
N+28  
N+31  
N+30  
N+2  
N+4  
N+6  
N+10  
N+14  
N+20  
N+24  
N+1  
N+3  
N+5  
N+7  
N+9  
N+11  
N+13  
N+15  
N+17  
N+19  
N+21  
N+23  
N+25  
N+27  
N+29  
Slave Odd Latch  
Synchronous reset = Fs/8  
Internal reset pulse  
Port Select A  
Port Select B  
Port Select C  
Port Select D  
Port Select E  
Port Select F  
Port Select G  
Port Select H  
Latch Select A  
Latch Select B  
Latch Select C  
Latch Select D  
Latch Select E  
Latch Select F  
N
N+8  
N+16  
N+24  
N+1  
N+9  
N+17  
N+25  
N+2  
N+10  
N+18  
N+26  
N+3  
N+11  
N+19  
N+27  
N+4  
N+12  
N+20  
N+5  
N+13  
N+21  
N+6  
N+14  
N+22  
Latch Select G  
Latch Select H  
A to H Port Out  
N+7  
N+15  
N+23  
N to N+7  
N+8 to N+15  
N+16 to N+23  
A to H LatchOut  
DROut  
3
2105C–BDC–11/03  
Functional  
Description  
The TS81102G0 is a demultiplexer based on an advanced high-speed bipolar technology fea-  
turing a cutoff frequency of 25 GHz. Its role is to reduce the data rate so that the data can be  
processed at the DMUX output.  
The TS81102G0 provides 2 programmable ratios: 1:4 and 1:8. The maximum data rate is 1  
Gsps for the 1:4 ratio and 2 Gsps for the 1:8 ratio.  
The TS81102G0 is able to process 8 or 10-bit data flows.  
The input clock can be an ECL differential signal or single-ended DC coupled signal. Moreover  
it can be a DataReady or DataReady/2 clock.  
The input digital data must be an ECL differential signal.  
The output signals (Data Ready, digital data and reference voltage) are adjustable with  
VplusD independent power supply. Typical output modes are ECL, PECL or TTL.  
The Data Ready output is a differential signal. The digital output data and reference voltages  
are single-ended signals.  
The TS81102G0 is started by an Asynchronous Reset. A Synchronous Reset enables the  
user to re-synchronize the output port selection and to minimize loss of data that could occur  
within the DMUX.  
A delay adjust cell is available to ensure a good phase between the DMUX’ input clock and  
input data.  
Another delay adjust cell is available to control the ADCss sampling instant alignment, in case  
of the ADCs interleaving.  
A 10-bit generator is implemented in the TS81102G0, the Built-In Self Test (BIST). This test  
sequence is very useful for testing the DMUX at first use.  
A fine tuning of the output swing is also available.  
The TS81102G0 can be used with the following Atmel ADCs:  
TS8388B(F/FS/GL), 8-bit 1 Gsps ADC  
TS83102G0B, 10-bit 2 Gsps ADC  
4
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
Main Function  
Description  
Programmable  
DMUX Ratio  
The conversion ratio is programmable: 1:4 or 1:8.  
Figure 3. Programmable DMUX Ratio  
Input Words:  
Output Words:  
1,2,3,4,5,6,7,8,...  
5
6
7
8
PortA  
PortB  
PortC  
...  
1
2
3
1:4  
PortD  
PortE  
PortF  
PortG  
PortH  
4
not used  
not used  
not used  
not used  
Input Words:  
Output Words:  
PortA  
PortB  
PortC  
1
2
9
...  
1,2,3,4,5,6,7,8,...  
10  
11  
3
4
5
6
7
8
1:8  
PortD  
PortE  
PortF  
PortG  
PortH  
12  
13  
14  
15  
16  
Parallel Output  
Mode  
Figure 4. Parallel Mode  
ClkIn  
DR  
PortA  
PortB  
PortC  
PortD  
PortE  
PortF  
PortG  
PortH  
N
N+1  
N+2  
N+3  
N+4  
N+5  
N+6  
N+7  
Input Clock Sampling Delay Adjust (DEMUXDELADJCTRL)  
The input clock phase can be adjusted with an adjustable delay (from 250 to 750 ps). This is to  
ensure a proper phase between the clock and input data of the DMUX.  
5
2105C–BDC–11/03  
Asynchronous  
Reset  
Figure 5. Asynchronous Reset  
CLKIN  
(ASYNCRESET)  
AsyncReset  
Port A selected  
Port B selected  
Port C selected  
Port D selected  
Port E selected  
Port F selected  
Port G selected  
Port H selected  
The Asynchronous Reset is a master reset of the port selection, which works on TTL levels. It  
is active on the high level. During an asynchronous reset, the clock must be in a known state.  
It is used to start the DMUX.  
When it is active, it paralyzes the outputs (the output clock and output data remain at the same  
level as before the asynchronous reset). When it comes back to its low level, the DMUX starts:  
the outputs are active and the first processed data is on port A.  
Synchronous  
Reset  
Figure 6. Synchronous Reset  
FS  
(SYNCRESET)  
DR/2  
SyncReset = FS/8  
Internal reset  
pulse  
Port A selected  
Port B selected  
Port C selected  
Port D selected  
Port E selected  
Port F selected  
Port G selected  
Port H selected  
The DMUX can be synchronously reset to a programmable state depending on the conversion  
ratio. The clock must not be stopped during reset. The synchronization signal is a clock  
(SyncRest) whose frequency is FS/8*n where n is an integer (n = 1,2,3,…) in 1:8 mode and  
FS/4*n in 1:4 mode. The front edge of this clock is synchronized with Clkln inside the DMUX,  
and generates a 200 ps reset pulse. This reset pulse occurs during a fixed level of Clkln.  
If the DMUX was synchronized with Syncreset previous to a possible loss of synchronization,  
then the output data is immediately correct, no modification can be seen at the output of the  
DMUX, and no data is lost (“Internal Timing Diagram” on page 3).  
If the DMUX was not synchronized with SyncReset previous to a possible loss of synchroniza-  
tion, then the output data and data ready of the DMUX are changed. The output data is correct  
after a number of input clocks corresponding to the pipeline delay (“Timing Diagrams with Syn-  
chronous Reset” on page 19).  
6
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
Counter  
When the counter is reset, its initial states depends on the conversion ratio:  
Programmable  
State  
1:8: counting on 8 bits,  
1:4: counting on 4 bits.  
Pipeline Delay  
The maximum pipeline delay depends on the conversion ratio:  
1:8: pipeline delay = 7  
1:4: pipeline delay = 3  
8-/10-bit, with NAP  
Mode for the 2  
Unused Bit  
The DMUX is a 10-bit parallel device. The last two bits (bits 8 and 9) may not be used, and the  
corresponding functions are set to nap mode to reduce power consumption.  
ECL Differential  
Input Data  
Input data are ECL compatible (Voh = -0.8V, Vol = -1.8V).  
The minimum swing required is 100 mV differential.  
All inputs have a 100differential termination resistor. The middle point of these resistors is  
connected to ground through a 10 pF capacitor.  
Figure 7. ECL Differential Input Data  
Gnd  
ClkIn  
ClkInb  
50Ω  
50Ω  
10 pF  
50Differential  
Output Data  
The output clock for the ADC is generated through a 50loaded long tailed. The 50resistor  
is connected to the ground pad via a diode. The levels are (on the 100differential termina-  
tion resistor): Vol = -1.4V, Voh = -1.0V.  
Figure 8. 50Differential Output Data  
Gnd  
ADCDelAdjOut  
ADCDelAdjOutb  
7
2105C–BDC–11/03  
Single-ended  
Output Data  
To reduce the pin number and power consumption of the DMUX, the eight output ports are  
single-ended.  
To reach the high frequency output (up to 250 MHz) with a reasonable power consumption,  
the swing must be limited to a maximum of ±500 mV. The common mode is adjustable from  
-1.3V to +2V, with Vplus DOut pins. To ensure better noise immunity, a reference level (com-  
mon mode) is available (one level by output port).  
The output buffers are of ECL type (open emitters – not resistive adapted impedances). They  
are designed for a 15 mA average output current, and may be used with a 50termination  
impedance.  
Figure 9. Single-ended Output Data  
VPlusDOut  
PadOut  
Vee  
Following are three application examples for these buffers: ECL/PECL/TTL. Please note that it  
is possible to have any other odd output format as far as current (36 mA max) and voltage  
(Vplus Dout – VEE 8.3V) limits are not overridden. The maximum frequency in TTL output  
mode depends on the load to be driven.  
Table 1. Examples of Application of Buffers  
Parameter  
ECL  
0
PECL  
3.3  
1.3  
±0.5  
2
TTL  
3.3  
0
Unit  
V
VplusDout  
Vtt  
-2  
V
Swing  
±0.5  
-1.3  
-0.8  
-1.8  
50  
±1  
V
Reference  
1.5  
2.5  
0.5  
75  
15  
V
Voh  
2.5  
1.5  
50  
V
Vol  
V
Load  
Average Output Current  
Output Data rate max.  
14  
14  
mA  
Msps  
250  
250  
250  
This corresponds to the “Adjustable Logic Single” in the pinout description.  
The “Adjustable Single” buffers for reference voltage are the same buffers, but the information  
available at the output of these buffers is more like analog than logic.  
Note:  
The Max Output Data Rate is given for a typical 50/2 pF load.  
8
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
Differential Data  
Ready Output  
The front edge of the DataReady output occurs when data is available on the corresponding  
port. The frequency of this clock depends on the conversion ratio (1:8 or 1:4), with a duty cycle  
of 50%.  
The definition is the same as for single-ended output data, but the buffers are differential.  
This corresponds to the “Adjustable Logic Differential” in the pinout description.  
Built-in Self Test  
(BIST)  
A pseudo-random 10-bit generator is implemented in the DMUX. It generates a 10-bit signal in  
the output of the DMUX, with a period of 512 input clocks. The probability of occurrence of  
codes is uniformly spread over the 1024 possible codes: 0 or 1/1024.  
Note that the 256 codes of bits 1 to 8 occur at least once. They start with a BIST command, in  
phase with the FS/8 clock on Port A. The logic output obtained on the A to H ports depends on  
the conversion ratio. The driving clock of BIST is Clkln. The ClklnType must be set to ‘1’  
(DataReady ADC clock) to have a different 10-bit code on each output.  
The complete BIST sequence is available on request.  
Specifications  
Absolute  
Maximum Ratings  
Table 2. Absolute Maximum Ratings  
Parameter  
Symbol  
VCC  
Comments  
Value  
Unit  
V
Positive supply voltage  
GND to 6  
GND to 4  
GND to -6  
-1 to +1  
Positive output buffer supply voltage  
Negative supply voltage  
Analog input voltages  
VPLUSD  
VEE  
V
V
ADCDelAdjCtrl,  
ADCDelAdjCtrlb or  
DMUXDelAdjCtrl,  
DMUXDelAdjCtrlb or  
SwiAdj  
Voltage range for each  
pad  
V
Differential voltage  
range  
-1 to +1  
ECL 50input voltage  
Clkln or Clklnb or  
I[0…9] or I[0…9]b or  
SyncReset or  
Voltage range for each  
pad  
-2.2 to +0.6  
V
V
SyncResetb or  
ADCDelAdjln or  
ADCDelAdjlnb  
Maximum difference between ECL 50Ω  
input voltages  
Clkln – Clklnb or  
I[0…9] - I[0…9]b or  
SyncReset –  
Minimum differential  
swing  
0.1  
2
Maximum differential  
swing  
Syncresetb or  
ADCDelAdjln -  
ADCDelAdjlnb  
9
2105C–BDC–11/03  
Table 2. Absolute Maximum Ratings (Continued)  
Parameter  
Symbol  
Comments  
Value  
Unit  
Data output current  
A[0…9] to H[0…9] or  
RefA to RefH or  
DR or DRb  
Maximum current  
36  
mA  
TTL input voltage  
Clkln Type  
RatioSel  
NbBit  
GND to VCC  
V
AsyncReset  
BIST  
Maximum input voltage on diode for  
temperature measurement  
DIODE  
700  
mV  
Maximum input current on diode  
Maximum junction temperature  
Storage temperature  
DIODE  
Tj  
8
mA  
°C  
135  
Tstg  
-65 to 150  
°C  
Note:  
Absolute maximum ratings are limiting values, to be applied individually, while other parameters are within specified operating  
conditions. Long exposure to maximum rating may affect device reliability. The use of a thermal heat sink is mandatory. See  
“Thermal and Moisture Characteristics” on page 26.  
Recommended  
Operating  
Conditions  
Table 3. Recommended Operating Conditions  
Recommended Value  
Parameter  
Symbol  
VCC  
Comments  
Min  
Typ  
5
Max  
Unit  
V
Positive supply voltage  
4.45  
5.25  
Positive output buffer supply  
voltage  
VPLUSD  
ECL output compatibility  
PECL output compatibility  
TTL output compatibility  
0
V
Positive output buffer supply  
voltage  
VPLUSD  
VPLUSD  
3.3  
3.3  
-5  
V
V
Positive output buffer supply  
voltage  
Negative supply voltage  
VEE  
TJ  
-5.25  
-4.75  
V
Operating temperature range  
Commercial grade: “C”  
Industrial grade: “V”  
0 < Tc; Tj < 90  
°C  
-40 < Tc; Tj < 110  
10  
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
Electrical  
Tj (typical) = 70°C. Full Temperature Range: -40°C < Tc; Tj < 110°C.  
Operating  
Characteristics  
(Guaranteed temperature range are depending on part number)  
Table 4. Electrical Specifications  
Value  
Typ  
Test  
Level  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Power Requirements  
Positive supply voltage  
VCC  
VPLUSDOUT  
ECL  
VCC  
4.75  
5
5.25  
V
VPLUSD  
VPLUSD  
VPLUSD  
1
1
-0.25  
3.135  
3.135  
0
0.25  
3.465  
3.465  
V
V
V
PECL  
3.3  
3.3  
TTL  
Negative supply voltage  
VEE  
VEE  
-5.25  
-5  
-4.75  
V
(1)  
Supply Currents  
ECL (50) and PECL (50)  
V
CC (for every configuration)  
ICC  
IPLUSD  
IEE  
540  
31  
1180  
719  
1140  
790  
590  
592  
720  
634  
1820  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1:8, 8 bits  
1:8, 10 bits  
1:4, 8 bits  
1:4, 10 bits  
IPLUSD  
IEE  
IPLUSD  
IEE  
IPLUSD  
IEE  
640  
2240  
1
270  
910  
320  
1120  
TTL (75)  
VCC (for every configuration)  
ICC  
IPLUSD  
IEE  
760  
31  
1610  
872  
1770  
980  
810  
670  
880  
729  
2440  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1:8, 8 bits  
1:8, 10 bits  
1:4, 8 bits  
1:4, 10 bits  
IPLUSD  
IEE  
IPLUSD  
IEE  
IPLUSD  
IEE  
900  
3010  
1
380  
1220  
450  
1510  
(1)  
Nominal power dissipation  
ECL (50)  
1:8, 8 bits  
1:8, 10 bits  
1:4, 8 bits  
1:4, 10 bits  
PD  
PD  
PD  
PD  
5.2  
5.9  
3.9  
4.2  
5.6  
6.4  
4.1  
4.5  
6
W
W
W
W
6.9  
4.3  
4.7  
1
11  
2105C–BDC–11/03  
Table 4. Electrical Specifications (Continued)  
Value  
Typ  
Test  
Level  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
PECL (50)  
1:8, 8 bits  
PD  
PD  
PD  
PD  
5.8  
6.6  
4.2  
4.6  
6.2  
7.1  
4.4  
4.8  
6.6  
7.6  
4.6  
5.1  
W
W
W
W
1:8, 10 bits  
1:4, 8 bits  
1
1
1:4, 10 bits  
TTL (75)  
1:8, 8 bits  
1:8, 10 bits  
1:4, 8 bits  
1:4, 10 bits  
PD  
PD  
PD  
PD  
6.8  
7.8  
4.7  
5.2  
7.3  
8.4  
4.9  
5.5  
7.7  
9
W
W
W
W
5.1  
5.8  
Delay Adjust Control  
DMUXDelAdjCtrl differential voltage  
DDAC  
-0.5  
0
250 ps  
V
V
500 ps  
750 ps  
0.5  
V
Input current  
IDDAC  
ADAC  
mA  
ADCDelAdjCtrl differential voltage  
-0.5  
0
250 ps  
V
V
500 ps  
750 ps  
0.5  
V
Input current  
IADAC  
mA  
Digital Outputs  
ECL Output  
(assuming VPLUSD = 0V, SWIADJ = 0V, 50Ω  
termination resistor on board)  
Logic “0” voltage  
Logic “1” voltage  
Reference voltage  
VOL  
VOH  
VREF  
1
1
-2.12  
-1.16  
-1.40  
V
V
V
PECL Output  
(assuming VPLUSD = 3.3V, SWIADJ = 0V, 50Ω  
termination resistor on board)  
Logic “0” voltage  
Logic “1” voltage  
Reference voltage  
VOL  
VOH  
VREF  
1.27  
2.44  
1.83  
V
V
V
TTL Output  
(assuming VPLUSD = 3.3V, SWIADJ = 0V, 75Ω  
termination resistor on board)  
Logic “0” voltage  
Logic “1” voltage  
Reference voltage  
VOL  
VOH  
VREF  
1
0.9  
2.31  
1.2  
V
V
V
Output level drift with temperature (data and DR  
outputs)  
-1.3  
mV/°C  
12  
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
Table 4. Electrical Specifications (Continued)  
Value  
Typ  
Test  
Level  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Output level drift with temperature (reference  
outputs)  
1
-0.9  
mV/°C  
Digital Inputs  
ECL Input Voltages  
Logic “0” voltage  
Logic “1” voltage  
VIL  
VIH  
-1.4  
V
V
1
1
-1.1  
TTL Input Voltages  
Logic “0” voltage  
Logic “1” voltage  
VIL  
VIH  
0.8  
V
V
2.0  
Note:  
1. The supply current IPLUSD and the power dissipation depend on the state of the output buffers:  
- the minimum values correspond to all the output buffers at low level,  
- the maximum values correspond to all the output buffers at high level,  
- the typical values correspond to an equal sharing-out of the output buffers between high and low levels.  
Switching  
Performance and  
Characteristics  
50% clock duty cycle (CLKIN, CLKINB). Tj (typical) = 70°C.  
Full temperature range: -40°C < Tc; Tj < 110°C.  
(Guaranteed temperature ranges depend on the part number)  
See Timing Diagrams Figure 10 on page 16 to Figure 19 on page 21.  
Table 5. Switching Performances  
Value  
Typ  
Test  
Level  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input Clock  
Maximum clock frequency  
1:8 ratio  
FMAX  
2
1
2.2  
1.1  
GHz  
1:4 ratio  
Clock pulse width (high)  
Clock pulse width (low)  
TC1  
TC2  
100  
100  
ps  
ps  
Clock Path pipeline delay  
DR input clock  
(1)  
(2)  
TCPD  
TCPD  
981  
ps  
ps  
DR/2 input clock  
1084  
Clock rise/fall time  
TRCKIN  
TFCKIN  
100  
ps  
Asynchronous Reset  
Asynchronous Reset pulse width  
Setup time from Asynchronous to Clkln  
Rise/fall time for (10% – 90%)  
PWAR  
TSAR  
1000  
ps  
ps  
1500  
TRAR  
TFAR  
1000  
ps  
13  
2105C–BDC–11/03  
Table 5. Switching Performances (Continued)  
Value  
Typ  
Test  
Level  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Synchronous Reset  
Setup time from SyncReset to Clkln  
DR input clock  
(3)  
(4)  
TSSR  
-580  
-477  
ps  
ps  
DR/2 input clock  
Hold time from Clkln to SyncReset  
DR input clock  
(5)  
(6)  
THSR  
780  
677  
ps  
ps  
DR/2 input clock  
Rise/fall for (10% – 90%)  
TSRR/TFSR  
100  
ps  
Input Data  
Setup time from I[0…9] to Clkln  
DR input clock  
(7)  
(8)  
TSCKIN  
-794  
-691  
ps  
ps  
DR/2 input clock  
Hold time from Clkln to I[0…9]  
DR input clock  
(9)  
THCKIN  
994  
891  
ps  
ps  
(10)  
DR/2 input clock  
Rise/fall for (10% – 90%)  
TRDI/TFDI  
100  
ps  
Output Data  
Data output delay  
DR input clock  
(11)  
(12)  
TOD  
1820  
1717  
ps  
ps  
DR/2 input clock  
Data pipeline delay  
DR input clock, 1:4 ratio  
DR input clock, 1:8 ratio  
DR/2 input clock, 1:4 ratio  
DR/2 input clock, 1:8 ratio  
3
Number  
of input  
clock  
(13)  
(14)  
TPD  
7
3/2  
7/2  
Rise/fall for (10% – 90%)  
TROD/tfod  
497/484  
ps  
Data Ready  
Data ready Falling edge  
DR input clock  
(15)  
(16)  
TDRF  
TDRR  
1856  
1753  
ps  
ps  
DR/2 input clock  
Data ready Rising edge  
DR input clock  
(17)  
(18)  
1828  
1725  
ps  
ps  
DR/2 input clock  
(19)  
(20)  
(21)  
Asynchr; Reset to DataReady delay  
Synchr. Reset to DataReady delay  
Rise/fall for (10% – 90%)  
TARDR  
TSRDR  
1918  
1037  
450  
62  
ps  
ps  
ps  
ps  
TRDR/TFDR  
JITTER  
Rising edge uncertainty  
Built-In Self Test  
(22)  
Hold time from Clkln to BIST  
THBIST  
ps  
14  
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
Table 5. Switching Performances (Continued)  
Value  
Typ  
Test  
Level  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Setup time from Bist to Clkln  
Rise/fall time for (10% – 90%)  
TSBIST  
1000  
ps  
TRBIST/  
TFBIST  
1000  
ps  
ADC Delay Adjust  
Input frequency  
FMADA  
TC1ADA  
TC2ADA  
2
2.2  
GHz  
ps  
Input pulse width (high)  
Input pulse width (low)  
Input rise/fall time  
90  
90  
ps  
TRIADA/  
TFIADA  
100  
100  
150  
150  
ps  
ps  
ps  
Output rise/fall time  
TROADA/  
TFOADA  
145  
104  
(23)  
(24)  
(25)  
Data output delay (typical delay adjust setting)  
784  
896  
TADA  
Output delay drift with temperature  
Output delay uncertainly  
TADAT  
JITADA  
2.5  
30  
ps/°C  
ps  
Notes: 1. TCPD is tuned with DMUXDelAdjCtrl: TCPD = 981 ± 250 ps.  
2. TCPD is tuned with DMUXDelAdjCtrl: TCPD = 1084 ± 250 ps.  
3. TSSR depends on DMUXDelAdjCtrl: TSSR = -580 ± 250 ps. TSSR < 0 because of Clock Path internal delay.  
4. TSSR depends on DMUXDelAdjCtrl: TSSR = -477 ± 250 ps. TSSR < 0 because of Clock Path internal delay.  
5. THSR depends on DMUXDelAdjCtrl: THSR = 780 ± 250 ps.  
6. THSR depends on DMUXDelAdjCtrl: THSR = 677 ± 250 ps.  
7. TSCKIN depends on DMUXDelAdjCtrl: TSCKIN = -794 ± 250 ps. TSCKIN < 0 because of Clock Path internal delay.  
8. TSCKIN depends on DMUXDelAdjCtrl: TSCKIN = -691 ± 250 ps. TSCKIN < 0 because of Clock Path internal delay.  
9. THCKIN depends on DMUXDelAdjCtrl: THCKIN = 994 ± 250 ps.  
10. THCKIN depends on DMUXDelAdjCtrl: THCKIN = 891 ± 250 ps.  
11. TOD depends on DMUXDelAdjCtrl: TOD = 1820 ± 250 ps. TOD is given for ECL 50/2 pFoutput load.  
12. TOD depends on DMUXDelAdjCtrl: TOD = 1717 ± 250 ps. TOD is given for ECL 50/2 pFoutput load.  
13. TPD is the number of Clkln clock cycle from selection of Port A to selection of Port H in 1:8 conversion mode, and from  
selection of Port A to selection of Port D in 1:4 conversion mode. It is the maximum number of Clkln clock cycle, or pipeline  
delay, that a data has to stay in the DMUX before being sorted out. This maximum delay occurs for the data sent to Port A.  
For instance, the data sent to Port H goes directly from the input to the Port H, and its pipeline is 0. But even for this data,  
there is an additional delay due to physical propagation time in the DMUX.  
14. TROD and TFOD are given for ECL 50/2 pF output load. In TTL mode, the TROD and TFOD are twice the ones for ECL.  
(For other termination topology, apply proper derating value 50 ps/pF in ECL, 100 ps/pF in TTL mode.)  
15. TDRF depends on DMUXDelAdjCtrl: TDRF = 1856 ± 250 ps. It is given for ECL 50/2 pF output load.  
16. TDRF depends on DMUXDelAdjCtrl: TDRF = 1753 ± 250 ps. It is given for ECL 50/2 pF output load.  
17. TDRR depends on DMUXDelAdjCtrl: TDRR = 1858 ± 250 ps. It is given for ECL 50/2 pF output load.  
18. TDRR depends on DMUXDelAdjCtrl: TDRR = 1725 ± 250 ps. It is given for ECL 50/2 pF output load.  
19. TARDR is given for ECL 50/2 pF output load.  
20. TSRDR is given for ECL 50/2 pF output load. It is minimum value since RstSync clock is synchronized with Clkln clock.  
21. TRDR and TFDR are given for ECL 50/2 pF output load.  
22. THBIST depends on the configuration of the DMUX. There must be enough Clkln clock cycles to have all the 512 codes,  
(see different Timing Diagrams).  
23. With transmission line (ZO = 50) and output load R = 50; C = 2 pF.  
24. Without output load.  
25. With transmission line (ZO = 50) and output load R = 50; C = 2 pF.  
15  
2105C–BDC–11/03  
Input Clock Timings  
Figure 10. Input Clock  
TC2  
TFCKIN  
TC1  
TC2  
TFCKIN  
TC1  
TRCKIN  
TRCKIN  
Clkln  
TSCKIN THCKIN  
TSCKIN THCKIN  
Data [0..9]  
d1  
d2  
d3  
d4  
d5  
d1  
d2  
d3  
d4  
d5  
Clkln Type = 1  
DataReady Mode (DR)  
Clkln Type = 0  
DataReady/2 Mode (DR/2)  
ADC Delay Adjust  
Timing Diagram  
Figure 11. ADC Delay Adjust Timing Diagram  
TC2ADA  
TFIADA  
TC1ADA  
TRIADA  
ADCDelAdjIn  
TADA  
TROADA  
TFOADA  
ADCDelAdjOut  
16  
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
Timing Diagrams with  
Asynchronous Reset  
With a nominal tuning of DMUXDelAdj at a frequency of 2 GHz, d1 and d2 data is lost because  
of the internal clock’s path propagation delay TCPD. TCPD is tuned with DMUXDelAdjCtrl pins  
to obtain good setup and hold times between Clkln and the data.  
Figure 12. Start with Asynchronous Rest, 1:8 Ratio, DR Mode  
TRAR  
TFAR  
PWAR  
ASyncReset  
Clkn  
TPD  
TCPD  
d2  
Internal Port Selection  
(not available out of the DEMUX)  
A
B
C
D
E
F
G
H
A
B
C
D
E
F
G
H
d1  
d3  
d4  
d5  
d6  
d7  
d8  
d9  
d10  
d11  
d12 d13  
d14 d15 d16  
TOD  
d17  
I[0..9]  
TOD  
d10  
d11  
A[0..9]  
B[0..9]  
d3  
C[0..9]  
D[0..9]  
d4  
d5  
d12  
d13  
d6  
d7  
d14  
d15  
E[0..9]  
F[0..9]  
d8  
d16  
G[0..9]  
H[0..9]  
DR  
TROD/TFOD  
d9  
d17  
TRDR  
TFDR  
TARDR  
TDRF  
TDRR  
With a nominal tuning of DMUXDelAdj at 2 GHz, d1 and d2 data is lost because of the internal  
clock’s path propagation delay TCPD. TCPD is tuned with DMUXDelAdjCtrl pins to obtain  
good setup and hold times between Clkln and the input data. This timing diagram does not  
change with the opposite phase of Clkln.  
Figure 13. Start with Asynchronous Rest, 1:8 Ratio, DR/2 Mode  
TRAR  
TFAR  
PWAR  
ASyncReset  
Clkn  
TPD  
TCPD  
d2  
TCPD  
H
Internal Port Selection  
(not available out of the DEMUX)  
A
B
C
D
E
F
G
A
B
C
D
E
F
G
H
d1  
d3  
d4  
d5  
d6  
d7  
d8  
d9  
d10  
d11  
d12 d13  
d14 d15 d16  
TOD  
d17  
I[0..9]  
TOD  
d10  
d11  
A[0..9]  
B[0..9]  
d3  
C[0..9]  
D[0..9]  
E[0..9]  
F[0..9]  
d4  
d5  
d6  
d12  
d13  
d14  
d7  
d8  
d15  
d16  
d17  
G[0..9]  
TROD/TFOD  
d9  
H[0..9]  
DR  
TARDR  
TRDR  
TFDR  
TDRF  
TDRR  
17  
2105C–BDC–11/03  
With a nominal tuning of DMUXDelAdj, at 1 GHz (1:4 mode) d1 data is lost because of the  
internal clock’s path propagation delay TCPD. TCPD is tuned with DMUXDelAdjCtrl pins and  
is used to obtain good setup and hold times between Clkln and the input data.  
Figure 14. Start with Asynchronous Reset, 1:4 Ratio, DR Mode  
TRAR  
TFAR  
PWAR  
ASyncReset  
Clkn  
TPD  
TCPD  
Internal Port Selection  
(not available out of the DEMUX)  
A
B
C
D
A
B
C
D
d1  
d2  
d3  
d4  
d5  
d6  
d7  
d8  
I[0..9]  
A[0..9]  
B[0..9]  
TOD  
TOD  
d5  
d2  
d6  
d3  
d4  
C[0..9]  
D[0..9]  
d7  
d8  
TARDR  
TDRF  
TDRR  
TDRR  
TROD/TFOD  
DR  
TRDR  
TFDR  
With a nominal tuning of DMUXDelAdj, at 1 GHz (1:4 mode) d1 data is lost because of the  
internal clock’s path propagation delay TCPD. TCPD is tuned with DMUXDelAdjCtrl pins and  
is used to obtain good setup and hold times between Clkln and the input data. This timing dia-  
gram does not change with the opposite phase of Clkln.  
Figure 15. Start with Asynchronous Reset, 1:4 Ratio, DR/2 Mode  
TRAR  
TFAR  
PWAR  
ASyncReset  
Clkn  
TPD  
TCPD  
TCPD  
D
Internal Port Selection  
(not available out of the DEMUX)  
A
C
A
B
C
B
d1  
d2  
d3  
d4  
d5  
d6  
d7  
d8  
I[0..9]  
A[0..9]  
B[0..9]  
TOD  
TOD  
d5  
d2  
d6  
d3  
d4  
C[0..9]  
D[0..9]  
d7  
d8  
TARDR  
TDRF  
TDRR  
TROD/TFOD  
DR  
TRDR  
TFDR  
18  
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
Timing Diagrams with  
Synchronous Reset  
Following is an example of the Synchronous Reset’s utility in case of de-synchronization of the  
DMUX output port selection. The de-synchronization event happens after the selection of Port  
D.  
DMUXDelAdjCtrl value is nominal. TSSR < 0 because of Clkln’s internal propagation delay  
TCPD. After selection of Port C, instead of selecting Port D, the de-synchronization makes the  
port selection to restart on Port A. Since Port H was not selected, the data is not output to the  
ports but the last data (d1 to d8) is latched until the next selection of Port H. d9 to d16 are lost.  
The synchronous Reset ensures a re-synchronization of the port selection.  
Figure 16. Synchronous Reset, 1:8 Ratio, DR Mode  
THSR  
THSR  
THSR  
SyncReset  
TSSR  
TSSR  
TSSR  
Clkn  
I[0..9]  
d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23 d24 d25 d26 d27  
TCPD  
TCPD  
Internal Port Selection  
A
B
C
D
E
F
G
H
A
B
C
A
B
C
D
E
A
B
C
D
E
F
G
H
A
B
C
D
(not available out of the DEMUX)  
TOD  
TOD  
A[0..9]  
B[0..9]  
C[0..9]  
D[0..9]  
E[0..9]  
d1  
d17  
d18  
d19  
d2  
d3  
d4  
d5  
d6  
d20  
d21  
d22  
F[0..9]  
G[0..9]  
d7  
d8  
d23  
d24  
H[0..9]  
DR  
TSRDR  
TDRF  
TDRR  
TDRF  
TDRR  
Period of uncertainty due to desynchronization  
Example of the Synchronous Reset’s utility in case of de-synchronization of the DMUX output  
port selection. The de-synchronization event happens after the selection of Port D.  
DMUXDelAdjCtrl value is nominal. TSSR < 0 because of Clkln’s internal propagation delay  
TCPD. After selection of Port C, instead of selecting Port D, the de-synchronization makes the  
port selection to restart on Port A. Since Port H was not selected, the data is not output to the  
ports but the last data (d1 to d4) is latched until the next selection of Port H. d5 to d8 are lost.  
The synchronous Reset ensures a re-synchronization of the port selection.  
19  
2105C–BDC–11/03  
Figure 17. Synchronous Reset, 1:4 Ratio, DR Mode  
THSR  
SyncReset  
TSSR  
Clkn  
TCPD  
d8  
d1  
d2  
d3  
d4  
d5  
d6  
d7  
d9  
d10  
d11  
d12  
d13  
d14  
d15  
d16  
I[0..9]  
Internal Port Selection  
(not available out of the DEMUX)  
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
TOD  
d1  
d9  
A[0..9]  
B[0..9]  
C[0..9]  
d2  
d10  
d11  
d12  
d3  
d4  
D[0..9]  
DR  
TDRF  
TDRR  
Period of uncertainty due to desynchronization  
Example of Synchronous Reset’s utility in case of de-synchronization of the DMUX output port  
selection. The de-synchronization event happens after the selection of Port D.  
DMUXDelAdjCtrl value is nominal. TSSR < 0 because of Clkln’s internal propagation delay  
TCPD. After selection of Port C, instead of selecting Port D, the de-synchronization makes the  
port selection to restart on Port A. Since Port H was not selected, the data is not output to the  
ports but the last data (d1 to d8) is latched until the next selection of Port H. d9 to d16 are lost.  
The synchronous Reset ensures a re-synchronization of the port selection.  
Figure 18. Synchronous Reset, 1:8 ratio, DR/2 Mode  
THSR  
THSR  
THSR  
SyncReset  
TSRR  
TSRR  
TSSR  
Clkn  
I[0..9]  
d0 d1 d2 d3  
d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23 d24 d25 d26 d27  
TCPD  
TCPD  
Internal Port Selection  
(not available out of the DEMUX)  
A
B
C
D
E
F
G
H
A
B
C
A
B
C
D
E
A
B
C
D
E
F
G
H
A
B
C
D
TOD  
TOD  
d1  
A[0..9]  
d17  
d2  
d3  
d18  
d19  
B[0..9]  
C[0..9]  
D[0..9]  
E[0..9]  
F[0..9]  
d4  
d5  
d6  
d20  
d21  
d22  
d7  
d8  
d23  
d24  
G[0..9]  
H[0..9]  
TSDRR  
TDRF  
TDRF  
TDRR  
DR  
Period of uncertainty due to desynchronization  
Example of Synchronous Reset’s utility in case of de-synchronization of the DMUX output port  
selection. The de-synchronization event happens after the selection of Port D.  
DMUXDelAdjCtrl value is nominal. TSSR < 0 because of Clkln’s internal propagation delay  
TCPD. After selection of Port C, instead of selecting Port D, the de-synchronization makes the  
port selection to restart on Port A. Since Port H was not selected, the data is not output to the  
ports but the last data (d1 to d4) is latched until the next selection of Port H. d5 to d8 are lost.  
The synchronous Reset ensures a re-synchronization of the port selection.  
20  
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
Figure 19. Synchronous Reset, 1:4 ratio, DR/2 Mode  
THSR  
SyncReset  
TSSR  
Clkn  
I[0..9]  
d1  
d2  
d3  
d4  
d5  
d6  
d7  
d8  
d9  
d10  
d11  
d12  
d13  
d14  
d15  
d16  
TCPD  
A
Internal Port Selection  
(not available out of the DEMUX)  
B
C
D
A
B
C
A
B
C
D
A
B
C
D
TOD  
d1  
d9  
A[0..9]  
B[0..9]  
C[0..9]  
d2  
d3  
d4  
d10  
d11  
d12  
D[0..9]  
DR  
TDRF  
TDRR  
Period of uncertainty due to desynchronization  
Note:  
In case of low clock frequency and start with asynchronous reset, only the first data is lost and the first data to be processed is  
the second one. This data is output from the DMUX through port B.  
21  
2105C–BDC–11/03  
Explanation of  
Test Levels  
Table 6. Explanation of Test Levels  
Num  
Characteristics  
1
2
3
100% production tested at +25°C.(1)  
100% production tested at +25°C, and sample tested at specified temperatures.(1)  
Sample tested only at specified temperatures.  
Parameter is guaranteed by design and characterization testing (thermal steady-state  
conditions at specified temperature).  
4
5
Parameter is a typical value only.  
Notes: 1. The level 1 and 2 tests are performed at 50 MHz.  
2. Only MIN and MAX values are guaranteed (typical values are issuing from characterization  
results).  
22  
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
Package Description  
Pin Description  
Table 7. TS81102G0 Pin Description  
Type  
Name  
Levels  
Comments  
Digital Inputs  
I[0…9]  
Differential ECL  
Data input.  
On-chip 100differential termination resistor.  
Clkln  
Differential ECL  
Clock input (Data Ready ADC).  
On-chip 100differential termination resistor.  
Outputs  
A[0…9] H[0…9] Adjustable Logic  
Data ready for port A to H.  
Common mode is adjusted with VplusDOut. Swing is adjusted with  
SwiAdj. 50termination possible.  
Single  
DR  
Adjustable Logic  
Differential  
Data ready for channel A to H.  
Common mode is adjusted with VplusDOut. Swing is adjusted with  
SwiAdj. 50termination possible.  
RefA RefH  
Adjustable Single  
Reference voltage for output channels A to H.  
Common mode is adjustable with VplusDOut. 50termination  
possible.  
Control Signals  
ClklnType  
RatioSel  
Bist  
TTL  
DataReady or Dataready/2: logic 1: Data Ready.  
DMUX ratio; logic 1: 1:4  
TTL  
TTL  
Reset and Switch of built-in Self Test (BIST): logic 0: BIST active.  
Swing fine adjustment of output buffers.  
Diode for chip temperature measurement.  
Number of bit 8 or 10: logic 1: 10-bit.  
SwiAdj  
0V ± 0.5V  
Analog  
TTL  
Diode  
NbBit  
Synchronization  
AsyncReset  
SyncReset  
DMUXDelAdjCtrl  
TTL  
Asynchronous reset: logic 1: reset on.  
Differential ECL  
Synchronous reset: active on rising edge.  
Differential analog  
input of ±0.5V  
around 0V  
Control of the delay line of DataReady input:  
differential input = -0.5V: delay = 250 ps  
differential input = 0V: delay = 500 ps  
differential input = 0.5V: delay = 750 ps  
common mode  
ADCDelAdjCtrl  
Differential analog  
input of ±0.5V  
around 0V  
Control of the delay line for ADC:  
differential input = - 0.5V: delay = 250 ps  
differential input = 0V: delay = 500 ps  
differential input = 0.5V: delay = 750 ps  
common mode  
ADCDelAdjln  
Differential ECL  
Stand-alone delay adjust input for ADC.  
Differential termination of 100inside the buffer.  
ADCDelAdjOut  
50differential  
output  
Stand-alone delay adjust output for ADC.  
Power Supplies  
GND  
Ground 0V  
Power -5V  
Common ground.  
VEE  
Digital negative power supply.  
Common mode adjustment of output buffers.  
VPlusDOut  
Adjustable power  
from 0V to +3.3V  
VCC  
Power +5V  
Digital positive power supply.  
23  
2105C–BDC–11/03  
TBGA 240 Package – Pinout  
Row Col Name  
Row Col Name  
Row Col Name  
Row Col Name  
VEE  
ADCDELADJIN  
ADCDELADJINB  
F8  
F9  
VEE  
VPLUSDOUT  
VPLUSDOUT  
VPLUSDOUT  
VPLUSDOUT  
VEE  
VPLUSDOUT  
VEE  
VPLUSDOUT  
VEE  
VPLUSDOUT  
VPLUSDOUT  
VPLUSDOUT  
GND  
GND  
GND  
GND  
F7  
F6  
F4  
F2  
F0  
D9  
D7  
D5  
D3  
D1  
REFD  
B8  
B6  
B4  
B2  
B0  
BIST  
CLKINTYPE  
ADCDELADJCTRL  
NC  
F5  
F3  
F1  
REFF  
D8  
D6  
D4  
D2  
D0  
B9  
B7  
B5  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
D
D
D
1
2
3
4
5
6
7
8
9
NC  
E3  
E5  
E7  
E9  
C0  
C2  
C4  
C6  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
E
E
E
E
E
E
E
E
F
F
F
F
F
F
F
F
G
G
G
G
G
G
G
G
H
H
H
H
H
H
H
H
J
4
5
6
7
8
9
VEE  
VEE  
VPLUSDOUT  
VPLUSDOUT  
VEE  
K
K
K
K
L
L
L
L
L
16 VEE  
17 GND  
18 I5B  
19 I5  
T
T
T
17  
18  
19  
1
2
3
4
5
6
7
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
1
2
3
4
H9  
VPLUSDOUT  
RATIOSEL  
VPLUSDOUT  
VPLUSDOUT  
10 VEE  
11 VPLUSDOUT  
12 VEE  
13 VPLUSDOUT  
14 GND  
15 VCC  
16 VCC  
17 GND  
18 I0B  
19 I0  
16 VEE  
17 VEE  
18 I6B  
19 I6  
10 C8  
11 REFA  
12 A1  
13 A3  
14 A5  
15 A7  
16 A9  
17 DEMUXDELADJCTRL  
18 RSTSYNCB  
19 NC  
1
2
3
4
5
6
7
8
9
10 C7  
11 C9  
12 A0  
13 A2  
14 A4  
15 A6  
16 A8  
17 ASYNCRESET  
18 DEMUXDELADJCTRLB  
19 RSTSYNC  
L
L
L
8
9
M
M
M
M
M
M
M
M
N
N
N
N
N
N
N
N
P
P
P
P
P
P
P
P
R
R
R
R
R
R
R
R
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
1
2
3
4
H7  
H8  
GND  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1
2
3
4
5
6
7
8
9
1
2
3
4
G6  
G7  
16 GND  
17 GND  
18 I7B  
19 I7  
VPLUSDOUT  
VEE  
E1  
E2  
E4  
E6  
E8  
REFC  
C1  
C3  
C5  
16 VEE  
17 VEE  
18 I1B  
19 I1  
1
2
3
4
H5  
H6  
VPLUSDOUT  
VPLUSDOUT  
1
2
3
4
G4  
G5  
GND  
GND  
16 VEE  
17 VEE  
18 I8B  
19 I8  
16 GND  
17 GND  
18 I2B  
19 I2  
1
2
3
4
H3  
H4  
GND  
GND  
1
2
3
4
G2  
G3  
VEE  
VEE  
16 GND  
17 GND  
18 I9B  
19 I9  
16 VEE  
17 VEE  
18 I3B  
19 I3  
1
2
3
4
H1  
H2  
1
2
3
4
5
6
7
8
9
REFE  
E0  
VEE  
VPLUSDOUT  
VPLUSDOUT  
VPLUSDOUT  
VPLUSDOUT  
VEE  
VPLUSDOUT  
VPLUSDOUT  
V
V
1
2
3
4
G0  
G1  
GND  
GND  
16 VEE  
17 GND  
18 ADCDELADJOUT  
19 ADCDELADJOUTB  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
16 GND  
17 GND  
18 CLKINB  
19 CLKIN  
1
2
3
4
5
6
7
8
9
REFH  
H0  
VEE  
VEE  
VPLUSDOUT  
10 VEE  
11 VPLUSDOUT  
12 VEE  
13 VPLUSDOUT  
14 VPLUSDOUT  
15 VPLUSDOUT  
16 GND  
17 GND  
18 GND  
19 DIODE  
1
2
3
4
DR  
REFG  
VPLUSDOUT  
VCC  
VEE  
J
J
J
J
J
J
J
K
K
K
K
VPLUSDOUT  
VPLUSDOUT  
VEE  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
16 VEE  
17 VEE  
18 I4B  
19 I4  
VPLUSDOUT  
10 VEE  
11 VPLUSDOUT  
12 VEE  
13 VPLUSDOUT  
14 VPLUSDOUT  
15 GND  
B3  
B1  
REFB  
NBBIT  
ADCDELADJCTRLB  
NC  
1
2
3
4
SWIADJ  
1
2
3
G8  
G9  
VEE  
DRB  
VEE  
VEE  
16 VEE  
24  
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
Figure 20. TBGA 240 Package: Bottom View  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
A1  
A0  
REFA  
C9  
C8  
C7  
C2  
C0  
A
B
C
D
E
F
RstSyncb Demuxdeladjctrcl  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
C6  
C4  
C3  
E9  
E7  
E5  
E4  
E3  
E2  
RstSync  
DIODE  
Asyncreset  
Demuxdeladjctrclb  
A2  
C5  
C1  
REFC  
E8  
E6  
E1  
REFE  
G8  
VPLUSD  
VPLUSD  
VPLUSD  
VPLUSD  
VPLUSD  
VPLUSD  
VPLUSD  
VPLUSD  
VPLUSD  
VPLUSD  
VPLUSD  
VPLUSD  
GND  
GND  
GND  
VEE  
GND  
VCC  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
E0  
G9  
VPLUSD  
VPLUSD  
I0  
I1  
VCC  
GND  
VEE  
VEE  
VPLUSD  
GND  
VEE  
I0b  
I1b  
VEE  
VEE  
GND  
VEE  
GND  
G7  
G5  
G3  
G6  
G4  
G2  
I2b  
I3b  
GND  
VEE  
GND  
VEE  
I2  
I3  
G
H
J
GND  
VPLUSD  
CLK  
I4  
CLKb  
I4b  
GND  
VEE  
GND  
VEE  
VEE  
VEE  
GND  
VEE  
GND  
G1  
G0  
REFG  
VCC  
DR  
SWIadj  
K
L
I5  
GND  
VEE  
GND  
VEE  
GND  
DRb  
I5b  
I6b  
I7b  
I8b  
VEE  
VEE  
VPLUSD  
VPLUSD  
RATIOSEL  
I6  
H9  
H7  
H5  
M
N
P
R
T
I7  
GND  
GND  
H8  
VPLUSD  
VPLUSD  
I8  
I9  
I9b  
GND  
GND  
VPLUSD  
VEE  
VEE  
F4  
H4  
H2  
H0  
F9  
F6  
F5  
H3  
ADCdelayadjoutB ADCdelayadjout  
ADCdelayadjinB ADCdelayadjin  
VPLUSD  
GND  
VEE  
VEE  
VEE  
H1  
VPLUSD  
VPLUSD  
B4  
VPLUSD  
VPLUSD  
B6  
VPLUSD  
VPLUSD  
VPLUSD  
VPLUSD  
VPLUSD  
VPLUSD  
D9  
VPLUSD  
VPLUSD  
REFH  
GND  
VEE  
VEE  
B8  
VEE  
VEE  
D1  
VEE  
VEE  
D5  
VEE  
VEE  
VPLUSD  
VPLUSD  
VPLUSD  
GND  
GND  
GND  
BIST  
NbBIT  
F8  
F7  
U
V
W
GND  
B0  
ADCDELADJCTRL CLKINTYPE  
ADCDELADJCTRLb  
B2  
B1  
D3  
D2  
D7  
D6  
F0  
F2  
F1  
REFD  
B9  
REFF  
REFB  
B3  
B5  
B7  
D0  
D4  
D8  
F3  
25  
2105C–BDC–11/03  
Outline  
Dimensions  
Figure 21. Package Dimension – 240 Tape Ball Grid Array  
0.10  
D
11  
Corner  
10  
- A -  
19 17 15 13 11  
9 7 5 3 1  
Dimensional References  
- B -  
Ref.  
A
A1  
D
D1  
E
E1  
b
c
M
N
aaa  
ccc  
Min.  
1.30  
0.50  
24.80  
Nom.  
1.50  
0.60  
25.00  
22.86 (BSC.)  
25.00  
22.86 (BSC.)  
0.75  
Max.  
1.70  
0.70  
18 16 14 12 10  
8
6 4 2  
A
C
E
G
B
D
F
25.20  
e
H
24.80  
25.20  
J
L
N
R
U
W
E
E1  
K
M
P
T
0.60  
0.80  
0.90  
1.00  
0.90  
19.00  
240.00  
-
V
-
-
0.15  
0.25  
e
45 degree  
0.5 mm chamfer  
(4 PLCS)  
-
e
g
P
1.27 TYP.  
-
Detail B  
D1  
-
-
0.35  
0.15  
-
Top View  
Notes: 1. All dimensions are in millimeters.  
Bottom View  
2. "e" represents the basic solder ball grid pitch.  
3. "M" represents the basic solder ball matrix size,  
and symbol "N" is the maximum allowable number  
of balls after depopulating.  
g
Detail A  
4
5
6
"b" is measured at the maximum solder ball diameter  
parallel to primary datum - C -  
Dimension "aaa" is measured parallel to primary  
datum - C -  
g
Primary datum - C - and seatin plane are defined by  
the spherical crowns of the solder balls.  
0.30 M C A M B  
0.30 M C  
M
Side View  
b
7. Package surface shall be black oxide.  
8. Cavity depth various with die thickness.  
9. Substrate material base is copper.  
4
Detail B  
10 Bilateral tolerance zone is applied to each side of  
package body.  
11 45 deg. 0.5 mm chamfer corner and white dot for  
pin 1 identification.  
A1  
C
A
P
ccc  
C
- C -  
6
aaa  
C
Detail A  
5
Thermal and Moisture  
Characteristics  
Thermal Resistance  
from Junction to  
Case: RTHJC  
The Rth from junction to case for the TBGA package is estimated at 1.05°C/W that can be bro-  
ken down as follows:  
Silicon: 0.1°C/W  
Die attach epoxy: 0.5°C/W (thickness # 50 µm)  
Copper block (back side of the package): 0.1°C/W  
Black Ink: 0.251°C/W.  
26  
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
Thermal Resistance  
from Junction to  
Ambient: RTHJA  
A pin-fin type heat sink of a size 40 mm x 40 mm x 8 mm can be used to reduce thermal resis-  
tance. This heat sink should not be glued to the top of the package as Atmel cannot guarantee  
the attachment to the board in such a configuration. The heat sink could be clipped or screwed  
on the board.  
With such a heat sink, the Rthj-a is about 6°C/W (if we take 10°C/W for Rth from the junction  
to air through the package and heat sink in parallel with 15°C/W from the junction to the board  
through the package body, through balls and through board copper).  
Without the heat sink, the Rth junction to air for a package reported on-board can be estimated  
at 13 to 20°C/W (depending on the board used).  
The worst value 20°C/W is given for a 1-layer board (13°C for a 4-layer board).  
Thermal Resistance  
from Junction to  
Bottom of Balls  
The thermal resistance from the junction to the bottom of the balls of the package corresponds  
to the total thermal resistance to be considered from the silicon’s die junction to the interface  
with a board. This thermal resistance is estimated to be 4.8°C/W max.  
The following diagram points out how the previous thermal resistances were calculated for this  
packaged device.  
Figure 22. Thermal Resistance from Junction to Bottom of Balls  
DEMUX Axpproximative Model for 240 TBGA  
Assumptions:  
Square die 7.0 x 7.0 = 49 mm², 75 µm thick Epoxy/Ag glue, 0.40 mm copper thickness under die,  
Sn60Pb40 columns diameter 0.76 mm, 23 x 23 mm TBGA  
Case were all Bottom of Balls are connected to infinite heatsink  
Typical values  
(values are in °C/Watt)  
(values are in °C/Watt)  
Silicon Junction  
Silicon Junction  
Silicon Die  
0.10  
0.10  
49 mm²  
λ = 0.95Watt/°C  
Epoxy/Ag glue  
Reduction  
Reduction  
0.60  
0.05  
0.60  
0.05  
λ = 0.025Watt/°C  
Copper base  
Silicon  
Junction  
Silicon  
Junction  
(Top half of thickness)  
λ = 25Watt/°C  
1.70  
0.25  
1.70  
0.25  
1.87  
Tape + glue  
over balls  
λ = 0.02Watt/°C  
0.05  
0.25  
1.43  
0.31  
Copper base  
Black ink  
2.45  
3.55  
Balls  
PbSn  
λ = 0.40Watt/°C  
0.40  
2.47  
1.74  
2.47 1.99  
Top of  
package  
2 internal 2 external  
rows rows  
(104 balls) (136 balls)  
Infinite heatsink  
at bottom of balls  
Infinite heatsink Infinite heatsink  
at bottom of balls at bottom of balls  
Thermal Resistance Junction to case typical =  
Thermal Resistance Junction to bottom of balls = 4.8°C/W Max  
0.10 + 0.60 + 0.05 + 0.05 + 0.25 = 1.05°C/W  
Thermal Resistance Junction to case Max = 1.40°C/W  
27  
2105C–BDC–11/03  
Temperature Diode  
Characteristic  
The theoretical characteristic of the diode according to the temperature when I = 3 mA is  
depicted below.  
Figure 23. Temperature Diode Characteristic  
Vdiode  
DiodeT  
1.0  
I = 3 mA  
dV/dT = 1.32 mV/°C  
900m  
800m  
700m  
-70.0  
-20.0  
30.0  
80.0  
130.0  
Temperature (°C)  
Moisture  
This device is sensitive to moisture (MSL3 according to the JEDEC standard).  
Characteristic  
The shelf life in a sealed bag is 12 months at < 40°C and < 90% relative humidity (RH).  
After this bag is opened, devices that might be subjected to infrared reflow, vapor-phase  
reflow, or equivalent processing (peak package body temperature 220°C) must be:  
mounted within 168 hours at factory conditions of 30°C/60% RH, or  
stored at 20% RH.  
The devices require baking before mounting, if the humidity indicator is > 20% when read at  
23°C ±5°C.  
If baking is required, the devices may be baked for:  
192 hours at 40°C + 5°C/-0°C and < 5% RH for low temperature device containers, or  
24 hours at 125°C ± 5°C for high-temperature device containers.  
28  
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
Detailled Cross  
Section  
The following diagram depicts a detailed cross section of the DMUX TBGA package.  
Figure 24. TBGA 240: 1/2 Cross Section  
Block overcoat  
Adhesive  
Copper Heatspreader  
Solder Mask  
Metal 2 side  
Die Attach Epoxy/Ag  
Polyimide Tape  
Silicon Die  
Copper traces  
and  
Solder Balls Pads  
on metal 1 side  
Block Epoxy resin  
encapsulant  
Solder Mask  
Metal 1 side  
Gold  
wires  
Sn/Pb/Ag  
62/36/2 Eutectic  
Solder Balls  
In the DMUX package shown above, the die’s rear side is attached to the copper heat  
spreader, so the copper heat spreader is at -5V.  
It is necessary to use a heat sink tied to the copper heat speader.  
Moreover, there is only a little layer of painting over the copper heat spreader which does not  
isolate it.  
It is therefore recommended to either isolate the heat sink from the other components of the  
board or to electrically isolate the copper heat spreader from the heat sink. In the latter case,  
one should use adequate low Rth electrical isolation.  
29  
2105C–BDC–11/03  
Applying the  
TS81102G0  
DMUX  
The TSEV81102G0 DMUX evaluation board is designed to be connected with the  
TSEV8388G and TSEV83102G0 ADC evaluation boards.  
Figure 25. TSEV81102G0 DMUX Evaluation Boards  
VplusD = 0V 3.3V  
s-e or diff.  
Vee = -5V  
(2 GHz)  
FS  
CLOCK  
BUFFER  
Vcc = +5V  
(125 MHz)  
8x8b/10b single  
A[0..9] H[0..9]  
DEMUX  
(DC)  
8 ref  
Clkln  
(1 GHz)  
8b/10b diff.  
RefA RefH  
ADC  
(250 MHz)  
1b diff.  
Data  
Bus  
Analog  
Input  
I[0..9]  
Clkln  
(1 - 2 GHz)  
1b diff.  
DR  
Data  
delay  
Ready  
ECL + ref  
VplusD = ground  
Rload = 50Ω  
Vtt = -2V  
Voh = -0.8V  
Vol = -1.8V  
ECL  
8bits 1 GHz TS8388B  
10bits 2 GHz TS83102G0  
Rload = 50Ω  
Delay  
adjust  
control  
Vih = -1.0V  
Vil = -1.4V  
Synchronous or  
Asynchronous  
Reset  
TTL + ref  
VplusD = 3.3V  
Rload 75Ω  
Vtt = ground  
Voh = 2.5V  
Vol = 0.5V  
Number  
of bits  
(8/10)  
TS81102G0  
PECL + ref  
VplusD = 3.3V  
Rload = 50Ω  
Vtt = 1.3V  
Voh = 2.5V  
Vol = 1.5V  
Please refer to the "ADC and DMUX Application Note" for more information.  
30  
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
ADC to DMUX  
Connections  
The DMUX inputs configuration has been optimized to be connected to the TS8388B ADC.  
The die in the TBGA package is up. For the ADC, different types of packages can be used  
such as CBGA with die up or the CQFP68 down. The DMUX device being completely sym-  
metrical, both ADC packages can be connected to the TBGA package of the DMUX criss-  
crossing the lines (see Table 8).  
Table 8. ADC to DMUX Connections  
ADC Digital Outputs  
CQFP68 Package  
DMUX Data Inputs  
TBGA Package  
ADC Digital Outputs  
CBGA Package  
DMUX Data Inputs  
TBGA Package  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
I7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
I0  
I6  
I1  
I5  
I2  
I4  
I3  
I3  
I4  
I2  
I5  
I1  
I6  
I0  
I7  
18 not connected  
19 not connected  
18 not connected  
19 not connected  
Note:  
The connection between the ADC evaluation board and the DMUX evaluation board requires a  
4-pin shift to make the D0 pin match either the I7 or I0 pin of the DMUX evaluation board.  
31  
2105C–BDC–11/03  
TSEV81102G0TP: Device Evaluation Board  
General  
Description  
The TSEV81102G0TP DMUX Evaluation Board (EB) is designed to simplify the characteriza-  
tion and the evaluation of the TS81102G0 device (2 Gsps DMUX). The DMUX EB enables  
testing of all the DMUX functions: Synchronous and Asynchronous reset functions, selection  
of the DMUX ratio (1:4 or 1:8), selection of the number of bits (8 or 10), output data common  
mode and swing adjustment, die junction temperature measurements over military tempera-  
ture range, etc.  
The DMUX EB has been designed to enable easy connection to Atme’s ADC Evaluation  
Boards (such as TSEV8388BGL or TSEV83102G0BGL) for an extended functionality evalua-  
tion (ADC and DMUX multi-channel applications).  
The DMUX EB comes fully assembled and tested, with a TS81102G0 device implemented on  
the board and a heat sink assembled on the device.  
32  
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
Ordering  
Information  
Table 9. Ordering Information  
Part Number  
Package  
Temperature Range  
Screening  
Comments  
JTS81102G0-1V1A  
TS81102G0CTP  
Die  
Ambient  
Visual inspection  
Standard  
TBGA 240  
"C" grade  
0°C < Tc; Tj < 90°C  
TS81102G0VTP  
TBGA 240  
TBGA 240  
"V" grade  
-40°C < Tc; Tj < 110°C  
Standard  
Prototype  
TSEV81102G0TPZR3  
Ambient  
Evaluation board (delivered  
with heatsink)  
Datasheet  
Status  
Description  
Table 10. Datasheet Status  
Datasheet Status  
Validity  
Objective specification  
This datasheet contains target and  
goal specifications for discussion with  
customer and application validation.  
Before design phase  
Target specification  
This datasheet contains target or  
goal specifications for product  
development.  
Valid during the design phase  
Preliminary specification  
α-site  
This datasheet contains preliminary  
data. Additional data may be  
published later; could include  
simulation results.  
Valid before characterization  
phase  
Preliminary specification  
β-site  
This datasheet contains also  
characterization results.  
Valid before the  
industrialization phase  
Product specification  
This datasheet contains final product  
specification.  
Valid for production purposes  
Limiting Values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress  
above one or more of the limiting values may cause permanent damage to the device. These are  
stress ratings only and operation of the device at these or at any other conditions above those given in  
the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application Information  
Where application information is given, it is advisory and does not form part of the specification.  
Life Support  
Applications  
These products are not designed for use in life-support appliances, devices or systems where  
malfunction of these products can reasonably be expected to result in personal injury. Atmel  
customers using or selling these products for use in such applications do so at their own risk  
and agree to fully indemnify Atmel for any damages resulting from such improper use or sale.  
33  
2105C–BDC–11/03  
Addendum  
This section has been added to the description of the device for better understanding of the  
synchronous reset operation. It puts particular stress on the setup and hold times defined in  
the switching characteristics table (Table 5), linked with the device performances when used  
at full speed (2 Gsps).  
Synchronous  
Reset Operation  
It first describes the operation of the synchronous reset in case the DMUX is used in DR mode  
and then when used in the DR/2 mode.  
As a reminder, the synchronous reset has to be a signal frequency of Fs/8N in 1:8 ratio or  
Fs/4N in 1:4 ratio, where N is an integer.  
The effect of the synchronous reset is to ensure that at each new port selection cycle, the first  
port to be selected is port A. The synchronous reset ensures the internal cyclic synchroniza-  
tion of the device during operation. It is also highly recommended in the case of multichannel  
applications using 2 synchronized DMUXs.  
SETUP and HOLD  
Timings  
The setup and hold times for the reset are defined as follows:  
SETUP from SynchReset to Clkin:  
Required delay between the rising edge of the reset and the rising edge of the clock to ensure  
that the reset will be taken into account at the next clock edge. If the reset rising edge occurs  
at less than this setup time, it will be taken into account only at the second next rising edge of  
the clock.  
A margin of ± 100ps has to be added to this setup time to compensate for the delays from the  
drivers and lines.  
HOLD from Clkin and SynchReset:  
Minimum duration of the reset signal at a high level to be taken into account by the DMUX.  
This means that the reset signal has to satisfy 2 requirements: a frequency of Fs/8N or Fs/4N  
(N is an integer) depending on the ratio and a duty cycle such that it is high during at least the  
hold time.  
Operation in DR Mode  
In DR mode, the DMUX input clock can run at up to 2 GHz in 1:8 ratio or 1 GHz in 1:4 ratio.  
Both cases are described in the following timing diagrams.  
Figure 26. Synchronous Reset Operation in DR Mode, 1:4 ratio, 1GHz (Full Speed) – Principle of Operation  
Fs  
Sync_RESET  
34  
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
Figure 27. Synchronous Reset Operation in DR Mode, 1:4 ratio, 1GHz (Full Speed) – TIMINGS  
Fs  
Time Zones  
Allowed for  
the reset  
Sync_RESET  
Note:  
The clock edge to which the reset applies is the one identified by the arrow.  
If the reset rising edge had occurred in the second allowed window, the reset would have been effective on the third clock rising edge (not  
represented, on the right of the edge represented with the arrow).  
Figure 28. Synchronous Reset Operation in DR Mode, 1:8 ratio, 2 GHz (Full-speed) – Principle of Operation  
Fs  
Sync_RESET  
Figure 29. Synchronous Reset Operation in DR Mode, 1:8 ratio, 2 GHz (Full-speed) – Timings  
Fs  
Times Zones  
Allowed for  
the reset  
Sync_RESET  
Note:  
The clock edge to which the reset applies is the one identified by the arrow.  
If the reset rising edge had occurred in the second allowed window, the reset would have been effective on the fourth clock  
rising edge (last clock rising edge, on the right of the edge represented with the arrow).  
This case is the most critical one with only a 300 ps window for the reset.  
35  
2105C–BDC–11/03  
Operation in DR/2  
Mode  
In DR/2 mode, the DMUX input clock can run at up to 1 GHz in 1:8 ratio or 500 MHz in 1:4  
ratio, since the DR/2 clock from the ADC is half the sampling frequency.  
Both cases are described in the following timing diagrams.  
Figure 30. Synchronous Reset Operation in DR/2 Mode, 1:4 ratio, 500MHz (Full Speed) – Principle of Operation  
Fs/2  
Sync_RESET  
Figure 31. Synchronous Reset Operation in DR/2 Mode, 1:4 ratio, 500 MHz (Full-speed) – Timings  
Fs/2  
Times Zones  
Allowed for the  
reset  
Sync_RESET  
Note:  
The clock edge to which the reset applies is the one identified by the arrow.  
If the reset rising edge had occurred in the first allowed window (on the left), the reset would have been effective on the first  
represented clock rising edge (first clock rising edge of the schematic, on the left of the edge represented with the arrow).  
Figure 32. Synchronous Reset Operation in DR/2 Mode, 1:8 ratio, 1GHz (Full Speed) – Principle of Operation  
Fs/2  
Sync_RESET  
36  
TS81102G0  
2105C–BDC–11/03  
TS81102G0  
Figure 33. Synchronous Reset Operation in DR/2 Mode, 1:8 ratio, 1GHz (Full-speed) – Timings  
Fs/2  
Times Zones  
Allowed for the  
reset  
Sync_RESET  
Note:  
The clock edge to which the reset applies is the one identified by the arrow.  
If the reset rising edge had occurred in the second allowed window, the reset would have been effective on the fourth clock rising edge  
(not represented, on the right of the edge represented with the arrow).  
37  
2105C–BDC–11/03  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
TEL 1(408) 441-0311  
FAX 1(408) 487-2600  
Memory  
RF/Automotive  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
TEL (49) 71-31-67-0  
FAX (49) 71-31-67-2340  
Europe  
Microcontrollers  
Atmel Sarl  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
TEL 1(719) 576-3300  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
FAX 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
TEL (41) 26-426-5555  
FAX (41) 26-426-5500  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
TEL (33) 2-40-18-18-18  
FAX (33) 2-40-18-19-60  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimhatsui  
East Kowloon  
BP 123  
38521 Saint-Egreve Cedex, France  
TEL (33) 4-76-58-30-00  
FAX (33) 4-76-58-34-80  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
Hong Kong  
TEL (852) 2721-9778  
FAX (852) 2722-1369  
13106 Rousset Cedex, France  
TEL (33) 4-42-53-60-00  
FAX (33) 4-42-53-60-01  
Japan  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
TEL 1(719) 576-3300  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
FAX 1(719) 540-1759  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
TEL (44) 1355-803-000  
FAX (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
© Atmel Corporation 2002.  
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty  
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors  
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does  
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted  
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical  
components in life support devices or systems.  
ATMEL® is the registered trademark of Atmel.  
Other terms and product names may be the trademark of others.  
Printed on recycled paper.  
2105C–BDC–11/03  
0M  
配单直通车
TS81102G0VTP产品参数
型号:TS81102G0VTP
生命周期:Transferred
IHS 制造商:THOMSON-CSF SEMICONDUCTORS
零件包装代码:BGA
包装说明:,
针数:240
Reach Compliance Code:unknown
HTS代码:8542.39.00.01
风险等级:5.1
Is Samacsys:N
JESD-30 代码:S-PBGA-B240
负电源额定电压:-5 V
功能数量:1
端子数量:240
最高工作温度:85 °C
最低工作温度:-40 °C
封装主体材料:PLASTIC/EPOXY
封装形状:SQUARE
封装形式:GRID ARRAY
认证状态:Not Qualified
标称供电电压:5 V
表面贴装:YES
技术:BIPOLAR
电信集成电路类型:TELECOM CIRCUIT
温度等级:INDUSTRIAL
端子形式:BALL
端子位置:BOTTOM
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!