欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • UC2843ADR2图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • UC2843ADR2 现货库存
  • 数量28600 
  • 厂家04+ 
  • 封装1089 
  • 批号21+ 
  • 原装现货库存,价格优势
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • UC2843ADR2图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • UC2843ADR2
  • 数量65000 
  • 厂家ON 
  • 封装SOP14 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • UC2843ADR2图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • UC2843ADR2
  • 数量6000 
  • 厂家ON 
  • 封装SOP-14 
  • 批号24+ 
  • ★★专业IC现货,诚信经营,市场最优价★★
  • QQ:1950791264QQ:1950791264 复制
    QQ:2216987084QQ:2216987084 复制
  • 0755-83222787 QQ:1950791264QQ:2216987084
  • UC2843ADR2图
  • 北京耐芯威科技有限公司

     该会员已使用本站12年以上
  • UC2843ADR2
  • 数量4000 
  • 厂家ON 
  • 封装SOP-14 
  • 批号21+ 
  • 原装正品,公司现货
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • UC2843ADR2图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • UC2843ADR2
  • 数量8735 
  • 厂家ON(安森美) 
  • 封装NA/ 
  • 批号23+ 
  • 原厂直销,现货供应,账期支持!
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • UC2843ADR2图
  • 集好芯城

     该会员已使用本站13年以上
  • UC2843ADR2
  • 数量12940 
  • 厂家ON/安森美 
  • 封装SOP-14 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • UC2843ADR2G图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • UC2843ADR2G
  • 数量13510 
  • 厂家ON/安森美 
  • 封装SOP14 
  • 批号23+ 
  • 只做全新原装正品现货
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • UC2843ADR2图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • UC2843ADR2
  • 数量9500 
  • 厂家ON(安森美) 
  • 封装14-SOIC(0.154,3.90mm 宽) 
  • 批号23+/24+ 
  • 绝对原装正品,可开13%专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • UC2843ADR2G图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • UC2843ADR2G
  • 数量51469 
  • 厂家ON 
  • 封装SOP-14 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • UC2843ADR2图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • UC2843ADR2
  • 数量12000 
  • 厂家ON 
  • 封装SOIC-14 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • UC2843ADR2图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • UC2843ADR2
  • 数量6000 
  • 厂家ON 
  • 封装02 03+ 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • UC2843ADR2图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • UC2843ADR2
  • 数量18530 
  • 厂家ON 
  • 封装SOP-14 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • UC2843ADR2G图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • UC2843ADR2G
  • 数量5600 
  • 厂家ON Semiconductor 
  • 封装14-SOIC(0.154",3.90mm 宽) 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • UC2843ADR2图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • UC2843ADR2
  • 数量3750 
  • 厂家on 
  • 封装14-SOIC(0.154,3.90mm 宽) 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • UC2843ADR2图
  • 深圳市宇集芯电子有限公司

     该会员已使用本站6年以上
  • UC2843ADR2
  • 数量90000 
  • 厂家ON 
  • 封装SOP/14 
  • 批号23+ 
  • 一级代理进口原装现货、假一罚十价格合理
  • QQ:1157099927QQ:1157099927 复制
    QQ:2039672975QQ:2039672975 复制
  • 0755-2870-8773手机微信同号13430772257 QQ:1157099927QQ:2039672975
  • UC2843ADR2图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • UC2843ADR2
  • 数量1089 
  • 厂家ON/安森美 
  • 封装SOP-14 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • UC2843ADR2图
  • 深圳市励创源科技有限公司

     该会员已使用本站2年以上
  • UC2843ADR2
  • 数量35600 
  • 厂家ON 
  • 封装SOP14 
  • 批号21+ 
  • 诚信经营,原装现货,假一赔十,欢迎咨询15323859243
  • QQ:815442201QQ:815442201 复制
    QQ:483601579QQ:483601579 复制
  • -0755-82711370 QQ:815442201QQ:483601579
  • UC2843ADR2图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • UC2843ADR2
  • 数量6500000 
  • 厂家安森美 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • UC2843ADR2G图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • UC2843ADR2G
  • 数量8500 
  • 厂家ON/安森美 
  • 封装SOP-14 
  • 批号20+ 
  • 全新原装挺实单欢迎来撩/可开票
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • UC2843ADR2 ONSEMI图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • UC2843ADR2 ONSEMI
  • 数量21000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • UC2843ADR2  G图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • UC2843ADR2 G
  • 数量21000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • UC2843ADR2图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • UC2843ADR2
  • 数量21000 
  • 厂家ON Semiconductor 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • UC2843ADR2图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • UC2843ADR2
  • 数量1001 
  • 厂家ON 
  • 封装SOP-14 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:97877805QQ:97877805 复制
  • 171-4729-0036(微信同号) QQ:97877805

产品型号UC2843ADR2的概述

UC2843ADR2芯片概述 UC2843ADR2是一款由德州仪器(Texas Instruments, TI)推出的高性能电流模式PWM(脉宽调制)控制器,广泛应用于开关电源设计以及其他电源管理应用。该芯片能够实现高效的电源转换,具有出色的稳定性和可靠性,适用于多种电源架构,包括直流-直流转换器(DC-DC converter)、隔离型和非隔离型电源等。 该芯片的出现,标志着开关电源设计进入了一个新的阶段,其集成的多种功能和高效的控制策略使得设计工程师能够更轻松地实现电源设计目标。UC2843ADR2的主要特点是具有精确的电流反馈控制,提高了系统的动态响应性能。 UC2843ADR2详细参数 UC2843ADR2的主要技术参数如下: - 工作电压范围:8V至30V - 工作频率:可调,最高达500kHz - 电流限制:集成电流感应,内部电流限制可调 - 引脚数量:8引脚 - 输出类型...

产品型号UC2843ADR2的Datasheet PDF文件预览

UC3842A, UC3843A,  
UC2842A, UC2843A  
High Performance  
Current Mode Controllers  
The UC3842A, UC3843A series of high performance fixed  
frequency current mode controllers are specifically designed for  
off–line and dc–to–dc converter applications offering the designer a  
cost effective solution with minimal external components. These  
integrated circuits feature a trimmed oscillator for precise duty cycle  
control, a temperature compensated reference, high gain error  
amplifier, current sensing comparator, and a high current totem pole  
output ideally suited for driving a power MOSFET.  
http://onsemi.com  
PDIP–8  
N SUFFIX  
CASE 626  
8
1
Also included are protective features consisting of input and  
reference undervoltage lockouts each with hysteresis, cycle–by–cycle  
current limiting, programmable output deadtime, and a latch for single  
pulse metering.  
SO–14  
D SUFFIX  
CASE 751A  
14  
These devices are available in an 8–pin dual–in–line plastic package  
as well as the 14–pin plastic surface mount (SO–14). The SO–14  
package has separate power and ground pins for the totem pole output  
stage.  
The UCX842A has UYLO thresholds of 16 V (on) and 10 V (off),  
ideally suited for off–line converters. The UCX843A is tailored for  
lower voltage applications having UVLO thresholds of 8.5 V (on) and  
7.6 V (off).  
1
SO–8  
D1 SUFFIX  
CASE 751  
8
1
Trimmed Oscillator Discharge Current for Precise Duty Cycle  
Control  
PIN CONNECTIONS  
Current Mode Operation to 500 kHz  
Automatic Feed Forward Compensation  
Latching PWM for Cycle–By–Cycle Current Limiting  
Internally Trimmed Reference with Undervoltage Lockout  
High Current Totem Pole Output  
Compensation  
Voltage Feedback  
Current Sense  
1
2
8
7
V
ref  
V
CC  
3
4
6
5
Output  
Gnd  
R /C  
T
T
(Top View)  
Undervoltage Lockout with Hysteresis  
Low Startup and Operating Current  
Direct Interface with ON Semiconductor SENSEFET Products  
1
14  
13  
Compensation  
NC  
V
ref  
2
NC  
3
4
12  
11  
Voltage Feedback  
NC  
V
V
CC  
C
5
6
7
10  
9
Current Sense  
NC  
Output  
Gnd  
R /C  
T
8
Power Ground  
T
(Top View)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 15 of this data sheet.  
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page 16 of this data sheet.  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
October, 2001 – Rev. 3  
UC3842A/D  
UC3842A, UC3843A, UC2842A, UC2843A  
V
CC  
7(12)  
V
V
CC  
ref  
5.0V  
Reference  
Undervoltage  
Lockout  
8(14)  
R
R
V
ref  
V
C
Undervoltage  
Lockout  
7(11)  
R C  
T
Output  
T
Oscillator  
6(10)  
4(7)  
Latching  
PWM  
Power  
Ground  
5(8)  
Voltage  
Feedback  
Input  
+
-
2(3)  
Error  
Amplifier  
Current  
Sense  
Input  
Output  
Compensation  
1(1)  
3(5)  
Gnd 5(9)  
Pin numbers in parenthesis are for the D suffix SO-14 package.  
Figure 1. Simplified Block Diagram  
MAXIMUM RATINGS  
Rating  
Symbol  
, V  
Value  
Unit  
V
Bias and Driver Voltages (Zero Series Impedance, see also Total Device spec)  
Total Power Supply and Zener Current  
V
CC  
30  
C
(I + I )  
30  
mA  
A
CC  
Z
Output Current, Source or Sink (Note 1)  
I
O
1.0  
5.0  
Output Energy (Capacitive Load per Cycle)  
Current Sense and Voltage Feedback Inputs  
Error Amp Output Sink Current  
W
µJ  
V
V
in  
– 0.3 to + 5.5  
10  
I
O
mA  
Power Dissipation and Thermal Characteristics  
D Suffix, Plastic Package  
Maximum Power Dissipation @ T = 25°C  
Thermal Resistance, Junction–to–Air  
N Suffix, Plastic Package  
P
862  
145  
mW  
°C/W  
A
D
R
θ
JA  
Maximum Power Dissipation @ T = 25°C  
Thermal Resistance, Junction–to–Air  
P
1.25  
100  
W
°C/W  
A
D
R
θ
JA  
J
Operating Junction Temperature  
T
+ 150  
°C  
°C  
Operating Ambient Temperature  
UC3842A, UC3843A  
T
A
0 to + 70  
UC2842A, UC2843A  
– 25 to + 85  
Storage Temperature Range  
T
stg  
– 65 to + 150  
°C  
1. Maximum Package power dissipation limits must be observed.  
http://onsemi.com  
2
UC3842A, UC3843A, UC2842A, UC2843A  
ELECTRICAL CHARACTERISTICS (V = 15 V, [Note 2], R = 10 k, C = 3.3 nF, T = T to T  
[Note 3],  
CC  
T
T
A
low  
high  
unless otherwise noted.)  
UC284XA  
Typ  
UC384XA  
Typ  
Characteristics  
REFERENCE SECTION  
Reference Output Voltage (I = 1.0 mA, T = 25°C)  
Symbol  
Min  
Max  
Min  
Max  
Unit  
V
ref  
4.95  
5.0  
2.0  
3.0  
0.2  
5.05  
20  
25  
4.9  
5.0  
2.0  
3.0  
0.2  
5.1  
20  
25  
V
mV  
mV  
mV/°C  
V
O
J
Line Regulation (V = 12 V to 25 V)  
Reg  
CC  
line  
load  
S
Load Regulation (I = 1.0 mA to 20 mA)  
Reg  
O
Temperature Stability  
T
Total Output Variation over Line, Load, Temperature  
Output Noise Voltage (f = 10 Hz to 10 kHz,  
V
ref  
4.9  
5.1  
4.82  
5.18  
V
n
50  
50  
µV  
T = 25°C)  
J
Long Term Stability (T = 125°C for 1000 Hours)  
S
5.0  
5.0  
mV  
mA  
A
Output Short Circuit Current  
I
– 30  
– 85  
– 180  
– 30  
– 85  
– 180  
SC  
OSCILLATOR SECTION  
Frequency  
f
kHz  
osc  
T = 25°C  
47  
46  
52  
57  
60  
47  
46  
52  
57  
60  
J
T = T  
to T  
high  
A
low  
Frequency Change with Voltage (V = 12 V to 25 V)  
f  
f  
V
0.2  
5.0  
1.0  
0.2  
5.0  
1.0  
%
%
CC  
osc/  
Frequency Change with Temperature  
T
osc/  
T = T  
to T  
high  
A
low  
Oscillator Voltage Swing (Peak–to–Peak)  
Discharge Current (V = 2.0 V)  
V
1.6  
1.6  
V
osc  
I
mA  
osc  
dischg  
T = 25°C  
7.5  
7.2  
8.4  
9.3  
9.5  
7.5  
7.2  
8.4  
9.3  
9.5  
J
T = T  
to T  
high  
A
low  
ERROR AMPLIFIER SECTION  
Voltage Feedback Input (V = 2.5 V)  
V
2.45  
2.5  
–0.1  
90  
2.55  
–1.0  
2.42  
2.5  
–0.1  
90  
2.58  
–2.0  
V
µA  
O
FB  
Input Bias Current (V = 2.7 V)  
I
IB  
FB  
Open Loop Voltage Gain (V = 2.0 V to 4.0 V)  
A
VOL  
65  
0.7  
60  
65  
0.7  
60  
dB  
O
Unity Gain Bandwidth (T = 25°C)  
BW  
1.0  
70  
1.0  
70  
MHz  
dB  
J
Power Supply Rejection Ratio (V = 12 V to 25 V)  
PSRR  
CC  
Output Current  
mA  
Sink (V = 1.1 V, V = 2.7 V)  
I
Sink  
I
Source  
2.0  
–0.5  
12  
–1.0  
2.0  
–0.5  
12  
–1.0  
O
FB  
Source (V = 5.0 V, V = 2.3 V)  
O
FB  
Output Voltage Swing  
V
High State (R = 15 k to ground, V = 2.3 V)  
V
OH  
V
OL  
5.0  
6.2  
0.8  
1.1  
5.0  
6.2  
0.8  
1.1  
L
FB  
Low State (R = 15 k to V , V = 2.7 V)  
L
ref  
FB  
2. Adjust V above the Startup threshold before setting to 15 V.  
CC  
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
low  
= 0°C for UC3842A, UC3843A  
T
= +70°C for UC3842A, UC3843A  
high  
–25°C for UC2842A, UC2843A  
+85°C for UC2842A, UC2843A  
http://onsemi.com  
3
UC3842A, UC3843A, UC2842A, UC2843A  
ELECTRICAL CHARACTERISTICS (V = 15 V, [Note 4], R = 10 k, C = 3.3 nF, T = T to T  
[Note 5],  
CC  
T
T
A
low  
high  
unless otherwise noted.)  
UC284XA  
Typ  
UC384XA  
Typ  
Characteristics  
CURRENT SENSE SECTION  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Current Sense Input Voltage Gain (Notes 6 & 7)  
Maximum Current Sense Input Threshold (Note 6)  
Power Supply Rejection Ratio  
A
2.85  
0.9  
3.0  
1.0  
3.15  
1.1  
2.85  
0.9  
3.0  
1.0  
3.15  
1.1  
V/V  
V
V
V
th  
PSRR  
dB  
V
= 12 to 25 V (Note 6)  
70  
70  
CC  
Input Bias Current  
I
–2.0  
150  
–10  
300  
–2.0  
150  
–10  
300  
µA  
IB  
Propagation Delay (Current Sense Input to Output)  
t
ns  
PLH(in/out)  
OUTPUT SECTION  
Output Voltage  
V
Low State (I  
Low State (I  
High State (I  
High State (I  
= 20 mA)  
= 200 mA)  
= 20 mA)  
= 200 mA)  
V
13  
12  
0.1  
1.6  
13.5  
13.4  
0.4  
2.2  
13  
12  
0.1  
1.6  
13.5  
13.4  
0.4  
2.2  
Sink  
Sink  
Sink  
Sink  
OL  
V
OH  
Output Voltage with UVLO Activated  
= 6.0 V, I = 1.0 mA  
V
V
OL(UVLO)  
V
CC  
0.1  
50  
50  
1.1  
150  
150  
0.1  
50  
50  
1.1  
150  
150  
Sink  
Output Voltage Rise Time (C = 1.0 nF, T = 25°C)  
t
r
ns  
ns  
L
J
Output Voltage Fall Time (C = 1.0 nF, T = 25°C)  
t
f
L
J
UNDERVOLTAGE LOCKOUT SECTION  
Startup Threshold  
UCX842A  
UCX843A  
V
V
V
th  
15  
7.8  
16  
8.4  
17  
9.0  
14.5  
7.8  
16  
8.4  
17.5  
9.0  
Minimum Operating Voltage After Turn–On  
V
CC(min)  
UCX842A  
UCX843A  
9.0  
7.0  
10  
7.6  
11  
8.2  
8.5  
7.0  
10  
7.6  
11.5  
8.2  
PWM SECTION  
Duty Cycle  
Maximum  
Minimum  
%
DC  
DC  
94  
96  
0
94  
96  
0
max  
min  
TOTAL DEVICE  
Power Supply Current (Note 4)  
Startup:  
I
mA  
V
CC  
(V = 6.5 V for UCX843A,  
0.5  
12  
1.0  
17  
0.5  
12  
1.0  
17  
CC  
(V = 14 V for UCX842A) Operating  
CC  
Power Supply Zener Voltage (I = 25 mA)  
V
30  
36  
30  
36  
CC  
Z
4. Adjust V above the Startup threshold before setting to 15 V.  
CC  
5. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
low  
= 0°C for UC3842A, UC3843A  
–25°C for UC2842A, UC2843A  
T
= +70°C for UC3842A, UC3843A  
+85°C for UC2842A, UC2843A  
high  
6. This parameter is measured at the latch trip point with V = 0 V.  
FB  
V Output Compensation  
7. Comparator gain is defined as: A  
V
V Current Sense Input  
http://onsemi.com  
4
UC3842A, UC3843A, UC2842A, UC2843A  
80  
50  
100  
V
= 15 V  
CC  
50  
20  
T = 25°C  
A
20  
8.0  
5.0  
10  
5.0  
V
= 15 V  
2.0  
0.8  
CC  
2.0  
1.0  
T = 25°C  
A
10 k  
20 k  
50 k  
100 k  
200 k  
500 k  
1.0 M  
10 k  
20 k  
50 k  
100 k  
200 k  
500 k  
1.0 M  
f
, OSCILLATOR FREQUENCY (Hz)  
f
OSC  
, OSCILLATOR FREQUENCY (Hz)  
OSC  
Figure 2. Timing Resistor versus  
Oscillator Frequency  
Figure 3. Output Deadtime versus  
Oscillator Frequency  
9.0  
8.5  
8.0  
7.5  
7.0  
100  
90  
80  
70  
60  
V
= 15 V  
C = 3.3 nF  
CC  
V
V
= 15 V  
= 2.0 V  
CC  
T
OSC  
T = 25°C  
A
I
= 7.2 mA  
dischg  
50  
40  
I
= 9.5 mA  
dischg  
800 1.0 k  
2.0 k  
3.0 k 4.0 k  
6.0 k 8.0 k  
-55  
-25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE (°C)  
A
R , TIMING RESISTOR ()  
T
Figure 4. Oscillator Discharge Current  
versus Temperature  
Figure 5. Maximum Output Duty Cycle  
versus Timing Resistor  
V
CC  
A = -1.0  
T = 25°C  
A
= 15 V  
V
CC  
A = -1.0  
T = 25°C  
A
= 15 V  
3.0 V  
2.5 V  
2.0 V  
V
V
2.55 V  
2.5 V  
2.45 V  
0.5 µs/DIV  
0.1 µs/DIV  
Figure 6. Error Amp Small Signal  
Transient Response  
Figure 7. Error Amp Large Signal  
Transient Response  
http://onsemi.com  
5
UC3842A, UC3843A, UC2842A, UC2843A  
100  
80  
60  
40  
20  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
V
= 15 V  
V = 2.0 V to 4.0 V  
CC  
V
CC  
= 15 V  
O
R = 100 K  
T = 25°C  
A
30  
60  
90  
120  
L
Gain  
T = 25°C  
A
T = 125°C  
A
Phase  
T = -55°C  
A
0
150  
180  
-Ă20  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
0
2.0  
4.0  
6.0  
8.0  
f, FREQUENCY (Hz)  
V , ERROR AMP OUTPUT VOLTAGE (V)  
O
Figure 8. Error Amp Open Loop Gain and  
Phase versus Frequency  
Figure 9. Current Sense Input Threshold  
versus Error Amp Output Voltage  
110  
90  
0
-4.0  
-8.0  
-12  
-16  
-20  
-24  
V
= 15 V  
CC  
V
= 15 V  
CC  
R 0.1 Ω  
L
70  
T = 125°C  
A
T = 55°C  
A
T = 25°C  
A
50  
0
20  
I
40  
60  
80  
100  
120  
-55  
-25  
0
25  
50  
75  
100  
125  
, REFERENCE SOURCE CURRENT (mA)  
T , AMBIENT TEMPERATURE (°C)  
A
ref  
Figure 10. Reference Voltage Change  
versus Source Current  
Figure 11. Reference Short Circuit Current  
versus Temperature  
V
= 15 V  
I = 1.0 mA to 20 mA  
CC  
V
= 12 V to 25 V  
CC  
O
T = 25°C  
A
T = 25°C  
A
2.0 ms/DIV  
2.0 ms/DIV  
Figure 13. Reference Line Regulation  
Figure 12. Reference Load Regulation  
http://onsemi.com  
6
UC3842A, UC3843A, UC2842A, UC2843A  
0
-1.0  
-2.0  
Source Saturation  
(Load to Ground)  
V
= 15 V  
V
CC  
CC  
V
= 15 V  
C = 1.0 nF  
80 µs Pulsed Load  
120 Hz Rate  
CC  
T
= 25°C  
90%  
L
A
T = 25°C  
A
T
= -55°C  
A
3.0  
2.0  
1.0  
0
T
A
= -55°C  
T
A
= 25°C  
10%  
Sink Saturation  
(Load to V  
Gnd  
)
CC  
50 ns/DIV  
0
200  
400  
600  
800  
I , OUTPUT LOAD CURRENT (mA)  
O
Figure 14. Output Saturation Voltage  
versus Load Current  
Figure 15. Output Waveform  
25  
20  
V
= 30 V  
C = 15 pF  
CC  
L
T = 25°C  
A
15  
10  
R = 10 k  
T
C = 3.3 nF  
T
V
FB  
= 0 V  
5
0
I
= 0 V  
Sense  
T = 25°C  
A
0
10  
20  
30  
40  
100 ns/DIV  
V
CC  
, SUPPLY VOLTAGE  
Figure 16. Output Cross Conduction  
Figure 17. Supply Current versus  
Supply Voltage  
http://onsemi.com  
7
UC3842A, UC3843A, UC2842A, UC2843A  
V
in  
V
CC  
V
CC  
7(12)  
36V  
V
+
-
ref  
Reference  
Regulator  
8(14)  
V
CC  
UVLO  
+
R
R
Internal  
Bias  
-
2.5V  
+
V
C
-
+
R
T
7(11)  
V
ref  
UVLO  
3.6V  
-
Q1  
Output  
6(10)  
Oscillator  
4(7)  
2(3)  
T Q  
+
C
T
1.0mA  
Power Ground  
5(8)  
S
R
+
-
Q
-
+
Voltage Feedback  
Input  
PWM  
Latch  
2R  
Error  
Amplifier  
R
Current Sense Input  
3(5)  
1.0V  
Output  
Compensation  
1(1)  
Current Sense  
Comparator  
R
S
Gnd 5(9)  
+
-
Sink Only  
Positive True Logic  
=
Pin numbers in parenthesis are for the D suffix SO-14 package.  
Figure 18. Representative Block Diagram  
Capacitor C  
T
Latch  
``Set'' Input  
Output/  
Compensation  
Current Sense  
Input  
Latch  
``Reset'' Input  
Output  
Large R /Small C  
T
Small R /Large C  
T T  
T
Figure 19. Timing Diagram  
http://onsemi.com  
8
UC3842A, UC3843A, UC2842A, UC2843A  
OPERATING DESCRIPTION  
The UC3842A, UC3843A series are high performance,  
is removed, or at the beginning of a soft–start interval  
(Figures 24, 25). The Error Amp minimum feedback  
resistance is limited by the amplifier’s source current  
fixed frequency, current mode controllers. They are  
specifically designed for Off–Line and dc–to–dc converter  
applications offering the designer a cost effective solution  
with minimal external components. A representative block  
diagram is shown in Figure 18.  
(0.5 mA) and the required output voltage (V ) to reach the  
OH  
comparator’s 1.0 V clamp level:  
3.0 (1.0 V) + 1.4 V  
Rf(min)  
= 8800 Ω  
0.5 mA  
Oscillator  
The oscillator frequency is programmed by the values  
Current Sense Comparator and PWM Latch  
selected for the timing components R and C . Capacitor C  
T
T
T
The UC3842A, UC3843A operate as a current mode  
controller, whereby output switch conduction is initiated by  
the oscillator and terminated when the peak inductor current  
reaches the threshold level established by the Error  
Amplifier Output/Compensation (Pin1). Thus the error  
is charged from the 5.0 V reference through resistor R to  
T
approximately 2.8 V and discharged to 1.2 V by an internal  
current sink. During the discharge of C , the oscillator  
T
generates and internal blanking pulse that holds the center  
input of the NOR gate high. This causes the Output to be in  
a low state, thus producing a controlled amount of output  
signal controls the peak inductor current on  
a
cycle–by–cycle basis. The current Sense Comparator PWM  
Latch configuration used ensures that only a single pulse  
appears at the Output during any given oscillator cycle. The  
inductor current is converted to a voltage by inserting the  
deadtime. Figure 2 shows R versus Oscillator Frequency  
T
and Figure 3, Output Deadtime versus Frequency, both for  
given values of C . Note that many values of R and C will  
T
T
T
give the same oscillator frequency but only one combination  
will yield a specific output deadtime at a given frequency.  
The oscillator thresholds are temperature compensated, and  
the discharge current is trimmed and guaranteed to within  
ground referenced sense resistor R in series with the source  
S
of output switch Q1. This voltage is monitored by the  
Current Sense Input (Pin 3) and compared a level derived  
from the Error Amp Output. The peak inductor current under  
normal operating conditions is controlled by the voltage at  
pin 1 where:  
±10% at T = 25°C. These internal circuit refinements  
J
minimize variations of oscillator frequency and maximum  
output duty cycle. The results are shown in Figures 4 and 5.  
In many noise sensitive applications it may be desirable to  
frequency–lock the converter to an external system clock.  
This can be accomplished by applying a clock signal to the  
circuit shown in Figure 21. For reliable locking, the  
free–running oscillator frequency should be set about 10%  
less than the clock frequency. A method for multi unit  
synchronization is shown in Figure 22. By tailoring the  
clock waveform, accurate Output duty cycle clamping can  
be achieved.  
V(Pin 1) – 1.4 V  
Ipk  
=
3 RS  
Abnormal operating conditions occur when the power  
supply output is overloaded or if output voltage sensing is  
lost. Under these conditions, the Current Sense Comparator  
threshold will be internally clamped to 1.0 V. Therefore the  
maximum peak switch current is:  
1.0 V  
RS  
Ipk(max)  
=
When designing a high power switching regulator it  
becomes desirable to reduce the internal clamp voltage in  
Error Amplifier  
A fully compensated Error Amplifier with access to the  
inverting input and output is provided. It features a typical  
dc voltage gain of 90 dB, and a unity gain bandwidth of  
1.0 MHz with 57 degrees of phase margin (Figure 8). The  
noninverting input is internally biased at 2.5 V and is not  
pinned out. The converter output voltage is typically divided  
down and monitored by the inverting input. The maximum  
input bias current is –2.0 µA which can cause an output  
voltage error that is equal to the product of the input bias  
current and the equivalent input divider source resistance.  
The Error Amp Output (Pin 1) is provide for external loop  
compensation (Figure 31). The output voltage is offset by  
two diode drops (1.4 V) and divided by three before it  
connects to the inverting input of the Current Sense  
Comparator. This guarantees that no drive pulses appear at  
order to keep the power dissipation of R to a reasonable  
S
level. A simple method to adjust this voltage is shown in  
Figure 23. The two external diodes are used to compensate  
the internal diodes yielding a constant clamp voltage over  
temperature. Erratic operation due to noise pickup can result  
if there is an excessive reduction of the I  
voltage.  
clamp  
pk(max)  
A narrow spike on the leading edge of the current  
waveform can usually be observed and may cause the power  
supply to exhibit an instability when the output is lightly  
loaded. This spike is due to the power transformer  
interwinding capacitance and output rectifier recovery time.  
The addition of an RC filter on the Current Sense Input with  
a time constant that approximates the spike duration will  
usually eliminate the instability; refer to Figure 27.  
the Output (Pin 6) when Pin 1 is at its lowest state (V ).  
OL  
This occurs when the power supply is operating and the load  
http://onsemi.com  
9
UC3842A, UC3843A, UC2842A, UC2843A  
PIN FUNCTION DESCRIPTION  
Description  
Pin  
8–Pin  
14–Pin  
Function  
1
2
1
3
Compensation  
This pin is Error Amplifier output and is made available for loop compensation.  
Voltage  
Feedback  
This is the inverting input of the Error Amplifier. It is normally connected to the switching  
power supply output through a resistor divider.  
3
4
5
7
Current Sense  
A voltage proportional to inductor current is connected to this input. The PWM uses this  
information to terminate the output switch conduction.  
R /C  
The Oscillator frequency and maximum Output duty cycle are programmed by connecting  
T
T
resistor R to V and capacitor C to ground. Operation to 500 kHz is possible.  
T
ref  
T
5
6
Gnd  
This pin is the combined control circuitry and power ground (8–pin package only).  
10  
Output  
This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are  
sourced and sunk by this pin.  
7
8
12  
14  
V
This pin is the positive supply of the control IC.  
CC  
V
This is the reference output. It provides charging current for capacitor C through  
T
ref  
resistor R .  
T
8
Power Ground  
This pin is a separate power ground return (14–pin package only) that is connected back  
to the power source. It is used to reduce the effects of switching transient noise on the  
control circuitry.  
11  
V
C
The Output high state (V ) is set by the voltage applied to this pin (14–pin package only).  
OH  
With a separate power source connection, it can reduce the effects of switching transient  
noise on the control circuitry.  
9
Gnd  
NC  
This pin is the control circuitry ground return (14–pin package only) and is connected back to  
the power source ground.  
2,4,6,13  
No connection (14–pin package only). These pins are not internally connected.  
Undervoltage Lockout  
and has a typical rise and fall time of 50 ns with a 1.0 nF load.  
Two undervoltage lockout comparators have been  
incorporated to guarantee that the IC is fully functional  
before the output stage is enabled. The positive power  
supply terminal (V ) and the reference output (V ) are  
Additional internal circuitry has been added to keep the  
Output in a sinking mode whenever an undervoltage lockout  
is active. This characteristic eliminates the need for an  
external pull–down resistor.  
CC  
ref  
each monitored by separate comparators. Each has built–in  
hysteresis to prevent erratic output behavior as their  
The SO–14 surface mount package provides separate pins  
for V (output supply) and Power Ground. Proper  
C
respective thresholds are crossed. The V  
upper and lower thresholds are 16 V/10 V for the UCX842A,  
comparator  
implementation will significantly reduce the level of  
switching transient noise imposed on the control circuitry.  
CC  
and 8.4 V/7.6 V for the UCX843A. The V comparator  
This becomes particularly useful when reducing the I  
ref  
pk(max)  
upper and lower thresholds are 3.6V/3.4 V. The large  
hysteresis and low startup current of the UCX842A makes  
it ideally suited in off–line converter applications where  
efficient bootstrap startup techniques are required  
(Figure 34). The UCX843A is intended for lower voltage dc  
to dc converter applications. A 36 V zener is connected as  
clamp level. The separate V supply input allows the  
designer added flexibility in tailoring the drive voltage  
C
independent of V . A zener clamp is typically connected  
CC  
to this input when driving power MOSFETs in systems  
where V is greater than 20 V. Figure 26 shows proper  
CC  
power and control ground connections in a current sensing  
power MOSFET application.  
a shunt regulator form V to ground. Its purpose is to  
CC  
protect the IC from excessive voltage that can occur during  
system startup. The minimum operating voltage for the  
UCX842A is 11 V and 8.2 V for the UCX843A.  
Reference  
The 5.0 V bandgap reference is trimmed to ±1.0%  
tolerance at T = 25°C on the UC284XA, and ± 2.0% on the  
J
Output  
UC384XA. Its primary purpose is to supply charging current  
to the oscillator timing capacitor. The reference has short  
circuit protection and is capable of providing in excess of  
20 mA for powering additional control system circuitry.  
These devices contain a single totem pole output stage that  
was specifically designed for direct drive of power  
MOSFETs. It is capable of up to ±1.0 A peak drive current  
http://onsemi.com  
10  
UC3842A, UC3843A, UC2842A, UC2843A  
DESIGN CONSIDERATIONS  
Do not attempt to construct the converter on  
wire–wrap or plug–in prototype boards. High Frequency  
circuit layout techniques are imperative to prevent  
pulsewidth jitter. This is usually caused by excessive noise  
pick–up imposed on the Current Sense or Voltage Feedback  
inputs. Noise immunity can be improved by lowering circuit  
impedances at these points. The printed circuit layout should  
contain a ground plane with low–current signal and  
high–current switch and output grounds returning on  
separate paths back to the input filter capacitor. Ceramic  
(t ) decreases to (I + I m /m ) (m /m ). This pertubation  
3 2 1 2 1  
is multiplied by m .m on each succeeding cycle, alternately  
2
1
increasing and decreasing the inductor current at switch  
turn–on. Several oscillator cycles may be required before  
the inductor current reaches zero causing the process to  
commence again. If m /m is greater than 1, the converter  
2
1
will be unstable. Figure 20B shows that by adding an  
artificial ramp that is synchronized with the PWM clock to  
the control voltage, the I pertubation will decrease to zero  
on succeeding cycles. This compensation ramp (m ) must  
3
bypass capacitors (0.1 µF) connected directly to V , V ,  
have a slope equal to or slightly greater than m /2 for  
CC  
C
2
and V may be required depending upon circuit layout.  
stability. With m /2 slope compensation, the average  
ref  
2
This provides a low impedance path for filtering the high  
frequency noise. All high current loops should be kept as  
short as possible using heavy copper runs to minimize  
radiated EMI. The Error Amp compensation circuitry and  
the converter output voltage divider should be located close  
to the IC and as far as possible from the power switch and  
other noise generating components.  
inductor current follows the control voltage yielding true  
current mode operation. The compensating ramp can be  
derived from the oscillator and added to either the Voltage  
Feedback or Current Sense inputs (Figure 33).  
(A)  
I  
Control Voltage  
Current mode converters can exhibit subharmonic  
oscillations when operating at a duty cycle greater than 50%  
with continuous inductor current. This instability is  
independent of the regulators closed–loop characteristics  
and is caused by the simultaneous operating conditions of  
fixed frequency and peak current detecting. Figure 20A  
m2  
m1  
m
2
m
1
I + I  
Inductor  
Current  
m
m
m
2
m
1
2
I + I  
1
Oscillator Period  
t
3
t
1
t
2
t
0
shows the phenomenon graphically. At t , switch  
conduction begins, causing the inductor current to rise at a  
0
(B)  
Control Voltage  
m3  
slope of m . This slope is a function of the input voltage  
1
divided by the inductance. At t , the Current Sense Input  
reaches the threshold established by the control voltage.  
This causes the switch to turn off and the current to decay at  
1
I  
m1  
m2  
Inductor  
Current  
a slope of m until the next oscillator cycle. The unstable  
2
Oscillator Period  
condition can be shown if a pertubation is added to the  
control voltage, resulting in a small I (dashed line). With  
a fixed oscillator period, the current decay time is reduced,  
t
t
t
6
4
5
Figure 20. Continuous Current Waveforms  
and the minimum current at switch turn–on (t ) is increased  
2
by I + I m2/m1. The minimum current at the next cycle  
http://onsemi.com  
11  
UC3842A, UC3843A, UC2842A, UC2843A  
V
ref  
8(14)  
R
8(14)  
4(7)  
R
R
Bias  
R
A
R
T
R
Bias  
4
8
R
B
5.0k  
6
Osc  
+
-
External  
Sync  
Input  
Osc  
+
4(7)  
R
S
C
T
3
0.01  
+
5
2
Q
+
+
-
-
+
2R  
7
EA  
47  
-
2(3)  
1(1)  
2R  
R
5.0k  
1
EA  
2(3)  
1(1)  
C
MC1455  
R
5(9)  
5(9)  
To  
Additional  
UCX84XA's  
R
B
1.44  
(R + 2R )C  
The diode clamp is required if the Sync amplitude is large enough to  
cause the bottom side of CT to go more than 300 mV below ground.  
f =  
D
max  
=
R
A
+ 2R  
B
A
B
Figure 22. External Duty Cycle Clamp and  
Multi Unit Synchronization  
Figure 21. External Clock Synchronization  
V
CC  
V
in  
7(12)  
+
5.0V  
ref  
-
+
8(14)  
4(7)  
R
R
-
Bias  
+
-
+
7(11)  
6(10)  
5(8)  
5.0V  
ref  
-
Q1  
8(14)  
R
R
Osc  
Bias  
+
-
+
V
Clamp  
+
1.0mA  
2R  
S
R
+
-
Q
-
-
R2  
+
Osc  
EA  
2(3)  
1(1)  
Comp/Latch  
R
+
4(7)  
2(3)  
1.0V  
3(5)  
S
R
1.0mA  
2R  
+
Q
-
+
R
S
-
R1  
EA  
5(9)  
R
1.0M  
1.0V  
1.67  
2
R
R
2
1(1)  
t
1
VClamp  
RS  
C
V
=
+ 0.33 x 10 -  
3
I
=
Clamp  
pk(max)  
R
+ R  
2
1
R
R
5(9)  
+ 1  
3600C in µF  
Soft-Start  
Where: 0 V  
1.0 V  
Clamp  
1
Figure 23. Adjustable Reduction of Clamp Level  
Figure 24. Soft–Start Circuit  
V
CC  
R
I
r
pk DS(on)  
S
V
in  
V
CC  
V
Pin  
5 =  
V
in  
(12)  
r
+ R  
S
DM(on)  
7(12)  
If: SENSEFET = MTP10N10M  
= 200  
+
R
S
5.0V  
-
+
ref  
+
5.0V  
ref  
-
Then: V 5 = 0.075 I  
pin  
+
pk  
8(14)  
4(7)  
R
R
-
+
D
SENSEFET  
-
Bias  
-
+
+
-
(11)  
(10)  
(8)  
+
S
7(11)  
6(10)  
5(8)  
-
-
Q1  
Osc  
G
K
M
+
V
Clamp  
S
R
S
R
Q
1.0mA  
2R  
-
+
Q
+
-
-
Power Ground  
To Input Source  
Return  
+
Comp/Latch  
EA  
2(3)  
1(1)  
Comp/Latch  
R
R2  
(5)  
R
1.0V  
S
3(5)  
1/4 W  
R
S
Control CIrcuitry  
Ground:  
To Pin (9)  
5(9)  
=
MPSA63  
C
R1  
1.67  
2
VClamp  
RS  
V
Clamp  
=
I
Where: 0 V  
1.0 V  
pk(max)  
Clamp  
R
R
Virtually lossless current sensing can be achieved with the implementation of a  
SENSEFET power switch. For proper operation during over current conditions, a  
+ 1  
V
C
R R  
1 2  
1
t
= - In  
1 -  
C
Softstart  
3V  
R + R  
1 2  
reduction of the I  
clamp level must be implemented. Refer to Figures 23 and 25.  
Clamp  
pk(max)  
Figure 25. Adjustable Buffered Reduction of  
Clamp Level with Soft–Start  
Figure 26. Current Sensing Power MOSFET  
http://onsemi.com  
12  
UC3842A, UC3843A, UC2842A, UC2843A  
V
CC  
V
CC  
V
in  
V
in  
7(12)  
7(12)  
+
5.0V  
+
ref  
-
5.0V  
+
ref  
-
+
-
+
-
+
-
+
-
+
7(11)  
6(10)  
5(8)  
7(11)  
6(10)  
5(8)  
R
g
-
Q1  
-
Q1  
S
R
S
R
Q
-
Q
-
+
+
Comp/Latch  
R
Comp/Latch  
3(5)  
3(5)  
R
S
C
R
S
Series gate resistor R will damp any high frequency parasitic oscillations  
g
caused by the MOSFET input capacitance and any series wiring inductance  
in the gate-source circuit.  
The addition of the RC filter will eliminate instability caused by the leading  
edge spike on the current waveform.  
Figure 27. Current Waveform Spike Suppression  
Figure 28. MOSFET Parasitic Oscillations  
I
B
V
in  
+
0
-
V
CC  
V
in  
7(12)  
Base  
Charge  
Removal  
+
Isolation  
Boundary  
5.0V  
ref  
-
+
C
1
-
+
V
GS  
Waveforms  
-
Q1  
+
7(11)  
6(1)  
5(8)  
Q1  
+
0
-
+
0
-
-
6(1)  
5(8)  
50% DC  
25% DC  
S
R
V
(pin 1)  
- 1.4  
N
N
P
Q
-
I
=
pk  
+
S
3 R  
S
R
Comp/Latch  
3(5)  
R
S
3(5)  
C
N
S
R
S
N
p
The totem-pole output can furnish negative base current for enhanced  
transistor turn-off, with the addition of capacitor C .  
1
Figure 29. Bipolar Transistor Drive  
Figure 30. Isolated MOSFET Drive  
From V  
O
2.5V  
+
R
1.0mA  
2R  
i
2(3)  
+
-
8(14)  
4(7)  
R
R
EA  
R
d
C
I
Bias  
R
f
R
1(1)  
Osc  
5(9)  
+
1.0mA  
2R  
Error Amp compensation circuit for stabilizing any current-mode topology except  
for boost and flyback converters operating with continuous inductor current.  
+
-
EA  
2(3)  
1(1)  
R
From V  
O
2.5V  
+
1.0mA  
2R  
R
p
2N  
3905  
2(3)  
5(9)  
MCR  
101  
R
i
+
-
EA  
2N  
3903  
C
I
R
R
f
d
R
C
p
1(1)  
5(9)  
The MCR101 SCR must be selected for a holding of less than 0.5 mA at T  
The simple two transistor circuit can be used in place of the SCR as shown. All  
resistors are 10 k.  
.
A(min)  
Error Amp compensation circuit for stabilizing current-mode boost and flyback  
topologies operating with continuous inductor current.  
Figure 31. Latched Shutdown  
Figure 32. Error Amplifier Compensation  
http://onsemi.com  
13  
UC3842A, UC3843A, UC2842A, UC2843A  
V
CC  
V
in  
7(12)  
8(14)  
+
-
5.0V  
ref  
+
R
R
R
T
Bias  
-
+
-
MPS3904  
+
-
7(11)  
6(10)  
5(8)  
4(7)  
R
O
Slope  
Osc  
From V  
C
T
+
-m  
1.0mA  
S
R
R
i
2(3)  
+
-
Q
-
+
2R  
R
EA  
Comp/Latch  
C
f
1.0V  
R
f
R
d
m
3(5)  
R
S
1(1)  
-3.0 m  
5(9)  
The buffered oscillator ramp can be resistively summed with either the voltage feedback or current sense inputs to provide slope compensation.  
Figure 33. Slope Compensation  
L1  
MBR1635  
+
4.7Ω  
3300pF  
1N4935  
MDA  
202  
4.7k  
250  
5.0V/4.0A  
T1  
+
+
+
+
2200  
1000  
56k  
115Va  
c
5.0V RTN  
12V/0.3A  
MUR110  
1000  
1N4935  
68  
L2  
10  
7(12)  
+
+
±12V RTN  
47  
100  
1000  
10  
L3  
8(14)  
+
-
+
+
5.0V  
ref  
-12V/0.3A  
+
0.01  
MUR110  
680pF  
1N4937  
Bias  
+
-
+
10k  
7(11)  
1N4937  
2.7k  
4(7)  
2(3)  
22Ω  
Osc  
6(10)  
4700pF  
+
MTP  
4N50  
L1 - 15 µH at 5.0 A, Coilcraft Z7156.  
L2, L3 - 25 µH at 1.0 A, Coilcraft Z7157.  
18k  
S
+
-
Q
-
+
5(8)  
3(5)  
R
EA  
Comp/Latch  
4.7k  
1.0k  
T1 - Primary: 45 Turns # 26 AWG  
T1 - Secondary ± 12 V: 9 Turns # 30 AWG  
ąT1 - (2 strands) Bifiliar Wound  
470pF  
1(1)  
0.5Ω  
T1 - Secondary 5.0 V: 4 Turns (six strands)  
ąT1 - #26 Hexfiliar Wound  
5(9)  
T1 - Secondary Feedback: 10 Turns #30 AWG  
ąT1 - (2 strands) Bifiliar Wound  
T1 - Core: Ferroxcube EC35-3C8  
T1 - Bobbin: Ferroxcube EC35PCB1  
T1 - Gap 0.01" for a primary inductance of 1.0 mH  
Figure 34. 27 Watt Off–Line Flyback Regulator  
Test  
Conditions  
= 95 Vac to 130 Vac  
Results  
Line Regulation: 5.0 V  
V
in  
= 50 mV or ± 0.5%  
= 24 mV or ± 0.1%  
± 12 V  
Load Regulation: 5.0 V  
V
in  
V
in  
= 115 Vac, I = 1.0 A to 4.0 A  
= 115 Vac, I = 100 mA to 300 mA = 60 mV or ± 0.25%  
out  
= 300 mV or ± 3.0%  
out  
± 12 V  
Output Ripple:  
Efficiency  
5.0 V  
± 12 V  
V
= 115 Vac  
40 mV  
80 mV  
in  
pp  
pp  
V
in  
= 115 Vac  
70%  
All outputs are at nominal load currents, unless otherwise noted.  
http://onsemi.com  
14  
UC3842A, UC3843A, UC2842A, UC2843A  
ORDERING INFORMATION  
Operating  
Temperature Range  
Device  
Package  
PDIP–8  
SO–14  
SO–14  
PDIP–8  
SO–14  
SO–14  
SO–8  
Shipping  
50 Units/Rail  
UC3842AN  
UC3842AD  
55 Units/Rail  
UC3842ADR2  
UC3843AN  
2500 Tape & Reel  
50 Units/Rail  
T = 0° to +70°C  
A
UC3843AD  
55 Units/Rail  
UC3843ADR2  
UC3843AD1  
UC3843AD1R2  
UC2842AN  
2500 Tape & Reel  
98 Units/Rail  
SO–8  
2500 Tape & Reel  
50 Units/Rail  
PDIP–8  
SO–14  
SO–14  
PDIP–8  
SO–14  
SO–14  
SO–8  
UC2842AD  
55 Units/Rail  
UC2842ADR2  
UC2843AN  
2500 Tape & Reel  
50 Units/Rail  
T = –25° to +85°C  
A
UC2843AD  
55 Units/Rail  
UC2843ADR2  
UC2843AD1  
UC2843AD1R2  
2500 Tape & Reel  
98 Units/Rail  
SO–8  
2500 Tape & Reel  
http://onsemi.com  
15  
UC3842A, UC3843A, UC2842A, UC2843A  
MARKING DIAGRAMS  
PDIP–8  
N SUFFIX  
CASE 626  
8
8
UC384xAN  
UC284xAN  
FAWL  
AWL  
YYWW  
YYWW  
1
1
SO–14  
SO–8  
D SUFFIX  
CASE 751A  
D1 SUFFIX  
CASE 751  
14  
1
8
x843A  
ALYW  
UCx84xAD  
AWLYWW  
1
x
A
= 2 or 3  
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
http://onsemi.com  
16  
UC3842A, UC3843A, UC2842A, UC2843A  
PACKAGE DIMENSIONS  
PDIP–8  
N SUFFIX  
CASE 626–05  
ISSUE L  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
8
5
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–B–  
MILLIMETERS  
INCHES  
1
4
DIM MIN  
MAX  
10.16  
6.60 0.240  
4.45 0.155  
0.51 0.015  
1.78 0.040  
MIN  
0.370  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
F
–A–  
NOTE 2  
L
G
H
J
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27 0.030  
0.30 0.008  
3.43  
0.050  
0.012  
0.135  
K
L
0.115  
C
7.62 BSC  
0.300 BSC  
M
N
---  
0.76  
10  
---  
1.01 0.030  
10  
0.040  
_
_
J
–T–  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
B
0.13 (0.005)  
T A  
SO–14  
D SUFFIX  
CASE 751A–03  
ISSUE F  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
–A–  
14  
1
8
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
–B–  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
P 7 PL  
M
M
B
0.25 (0.010)  
7
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
_
C
A
B
C
D
F
8.55  
3.80  
1.35  
0.35  
0.40  
8.75 0.337  
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
–T–  
SEATING  
PLANE  
J
M
G
J
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
0.244  
0.019  
M
S
S
0.25 (0.010)  
T B  
A
K
M
P
R
7
0
_
_
_
_
5.80  
0.25  
6.20 0.228  
0.50 0.010  
http://onsemi.com  
17  
UC3842A, UC3843A, UC2842A, UC2843A  
PACKAGE DIMENSIONS  
SO–8  
D1 SUFFIX  
CASE 751–07  
ISSUE W  
–X–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN  
EXCESS OF THE D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
8
5
4
S
M
M
B
0.25 (0.010)  
Y
1
K
–Y–  
G
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
5.00  
4.00  
1.75  
0.51  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
4.80  
3.80  
1.35  
0.33  
0.189  
0.150  
0.053  
0.013  
0.050 BSC  
0.004  
C
N X 45  
_
SEATING  
PLANE  
–Z–  
1.27 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25  
0.25  
1.27  
8
0.010  
0.010  
0.050  
8
0.007  
0.016  
0
M
J
H
D
K
M
N
S
_
_
_
_
0.25  
5.80  
0.50  
6.20  
0.010  
0.228  
0.020  
0.244  
M
S
S
X
0.25 (0.010)  
Z
Y
http://onsemi.com  
18  
UC3842A, UC3843A, UC2842A, UC2843A  
Notes  
http://onsemi.com  
19  
UC3842A, UC3843A, UC2842A, UC2843A  
SENSEFET is a trademark of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
UC3842A/D  
配单直通车
UC2843ADR2产品参数
型号:UC2843ADR2
是否Rohs认证: 不符合
生命周期:Transferred
包装说明:SOP, SOP14,.25
Reach Compliance Code:unknown
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:5.72
Is Samacsys:N
模拟集成电路 - 其他类型:SWITCHING CONTROLLER
控制模式:CURRENT-MODE
控制技术:PULSE WIDTH MODULATION
最大输入电压:30 V
最小输入电压:8.2 V
标称输入电压:15 V
JESD-30 代码:R-PDSO-G14
JESD-609代码:e0
长度:8.65 mm
功能数量:1
端子数量:14
最高工作温度:85 °C
最低工作温度:-25 °C
最大输出电流:1 A
标称输出电压:2.5 V
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装等效代码:SOP14,.25
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
认证状态:Not Qualified
座面最大高度:1.75 mm
子类别:Switching Regulator or Controllers
最大供电电流 (Isup):17 mA
表面贴装:YES
切换器配置:SINGLE
最大切换频率:500 kHz
技术:BIPOLAR
温度等级:OTHER
端子面层:Tin/Lead (Sn/Pb)
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
宽度:3.9 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!