欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • UC2914DWTR图
  • 深圳市高捷芯城科技有限公司

     该会员已使用本站11年以上
  • UC2914DWTR 现货库存
  • 数量6473 
  • 厂家TI(德州仪器) 
  • 封装SOP-18-300mil 
  • 批号23+ 
  • 百分百原装正品,可原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83062789 QQ:3007977934QQ:3007947087
  • UC2914DWTR图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • UC2914DWTR 现货库存
  • 数量28600 
  • 厂家12+ 
  • 封装1000 
  • 批号21+ 
  • 原装现货库存,价格优势
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • UC2914DWTR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • UC2914DWTR 现货库存
  • 数量2000 
  • 厂家TI 
  • 封装SOIC (DW) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • UC2914DWTR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • UC2914DWTR
  • 数量85000 
  • 厂家TI/德州仪器 
  • 封装SOP28 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • UC2914DWTR图
  • 深圳市旺能芯科技有限公司

     该会员已使用本站4年以上
  • UC2914DWTR
  • 数量15000 
  • 厂家TI/德州仪器 
  • 封装SOP28 
  • 批号22+ 
  • 深圳全新原装库存现货
  • QQ:2881495751QQ:2881495751 复制
  • 13602549709 QQ:2881495751
  • UC2914DWTR图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • UC2914DWTR
  • 数量2000 
  • 厂家TI 
  • 封装SOP 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507165QQ:2355507165 复制
    QQ:2355507162QQ:2355507162 复制
  • 86-0755-83210909 QQ:2355507165QQ:2355507162
  • UC2914DWTR图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • UC2914DWTR
  • 数量3750 
  • 厂家TI 
  • 封装18-SOIC(0.295,7.50mm 宽) 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • UC2914DWTR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • UC2914DWTR
  • 数量5240 
  • 厂家TI/德州仪器 
  • 封装NA/ 
  • 批号23+ 
  • 原厂直销,现货供应,账期支持!
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • UC2914DWTR图
  • 深圳市西源信息科技有限公司

     该会员已使用本站9年以上
  • UC2914DWTR
  • 数量8800 
  • 厂家TI/德州仪器 
  • 封装SOP18 
  • 批号最新批号 
  • 原装现货零成本有接受价格就出
  • QQ:3533288158QQ:3533288158 复制
    QQ:408391813QQ:408391813 复制
  • 0755-84876394 QQ:3533288158QQ:408391813
  • UC2914DWTR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • UC2914DWTR
  • 数量12500 
  • 厂家TI/德州仪器 
  • 封装SOIC-18 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • UC2914DWTR图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • UC2914DWTR
  • 数量9500 
  • 厂家TI/德州仪器 
  • 封装SOIC-18 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • UC2914DWTR图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • UC2914DWTR
  • 数量12000 
  • 厂家TI 
  • 封装SOIC-18 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • UC2914DWTR图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • UC2914DWTR
  • 数量16851 
  • 厂家TI/德州仪器 
  • 封装TI-2019 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • UC2914DWTR图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • UC2914DWTR
  • 数量9500 
  • 厂家TI(德州仪器) 
  • 封装18-SOIC(0.295,7.50mm 宽) 
  • 批号23+/24+ 
  • 绝对原装正品,可开13%专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • UC2914DWTR图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • UC2914DWTR
  • 数量6000 
  • 厂家TI 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • UC2914DWTR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • UC2914DWTR
  • 数量33979 
  • 厂家收购IC 
  • 封装IC 
  • 批号2023+ 
  • 绝对原装正品全新进口深圳现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • UC2914DWTR图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • UC2914DWTR
  • 数量6328 
  • 厂家TI-德州仪器 
  • 封装SOP-18 
  • 批号▉▉:2年内 
  • ▉▉¥44.4元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • UC2914DWTR图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • UC2914DWTR
  • 数量72282 
  • 厂家TI/德州仪器 
  • 封装N/A 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • UC2914DWTR图
  • 深圳市誉兴微科技有限公司

     该会员已使用本站4年以上
  • UC2914DWTR
  • 数量12600 
  • 厂家TI/德州仪器 
  • 封装SOP18 
  • 批号22+ 
  • 深圳原装现货,支持实单
  • QQ:2252757071QQ:2252757071 复制
  • 0755-82579431 QQ:2252757071
  • UC2914DWTR图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • UC2914DWTR
  • 数量1000 
  • 厂家TI 
  • 封装SOP 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • UC2914DWTR图
  • 深圳市聚利源实业有限公司

     该会员已使用本站1年以上
  • UC2914DWTR
  • 数量220 
  • 厂家TI/德州仪器 
  • 封装SOP18 
  • 批号1523+ 
  • 正常交货,只做原装,市场周边可送上门
  • QQ:2881504303QQ:2881504303 复制
  • 0755-33037976 QQ:2881504303
  • UC2914DWTR图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • UC2914DWTR
  • 数量4090 
  • 厂家TI 
  • 封装SOP28 
  • 批号24+ 
  • 原装现货
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • UC2914DWTR图
  • 深圳市芯柏然科技有限公司

     该会员已使用本站7年以上
  • UC2914DWTR
  • 数量23480 
  • 厂家TI 
  • 封装SOP 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、价格低于市场
  • QQ:287673858QQ:287673858 复制
  • 0755-82533534 QQ:287673858
  • UC2914DWTR图
  • 深圳市珩瑞科技有限公司

     该会员已使用本站2年以上
  • UC2914DWTR
  • 数量
  • 厂家21+ 
  • 封装12000 
  • 批号 
  • ███全新原装正品,可配单
  • QQ:2938238007QQ:2938238007 复制
    QQ:1840507767QQ:1840507767 复制
  • -0755-82578309 QQ:2938238007QQ:1840507767
  • UC2914DWTR图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • UC2914DWTR
  • 数量660000 
  • 厂家Texas Instruments(德州仪器) 
  • 封装18-SOIC (0.295 
  • 批号7.50mm Width) 
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • UC2914DWTR图
  • 深圳市中利达电子科技有限公司

     该会员已使用本站11年以上
  • UC2914DWTR
  • 数量10000 
  • 厂家TI/德州仪器 
  • 封装SOP18 
  • 批号24+ 
  • 原装进口现货 假一罚十
  • QQ:1902134819QQ:1902134819 复制
    QQ:2881689472QQ:2881689472 复制
  • 0755-83200645 QQ:1902134819QQ:2881689472
  • UC2914DWTR图
  • 深圳市隆鑫创展电子有限公司

     该会员已使用本站15年以上
  • UC2914DWTR
  • 数量30000 
  • 厂家INFINEON 
  • 封装TO-263 
  • 批号2022+ 
  • 电子元器件一站式配套服务QQ:122350038
  • QQ:2355878626QQ:2355878626 复制
    QQ:2850299242QQ:2850299242 复制
  • 0755-82812278 QQ:2355878626QQ:2850299242
  • UC2914DWTR图
  • 深圳市宇川湘科技有限公司

     该会员已使用本站6年以上
  • UC2914DWTR
  • 数量23000 
  • 厂家TI 
  • 封装18-SOIC 
  • 批号23+ 
  • 原装正品现货,郑重承诺只做原装!
  • QQ:2885348305QQ:2885348305 复制
    QQ:2885348305QQ:2885348305 复制
  • 0755-84534256 QQ:2885348305QQ:2885348305
  • UC2914DWTR图
  • 深圳市驰天熠电子有限公司

     该会员已使用本站1年以上
  • UC2914DWTR
  • 数量33560 
  • 厂家TI(德州仪器) 
  • 封装SOIC-18-300mil 
  • 批号23+ 
  • 全新原装,优势价格,支持配单
  • QQ:3003795629QQ:3003795629 复制
    QQ:534325024QQ:534325024 复制
  • 86-15802056765 QQ:3003795629QQ:534325024
  • UC2914DWTR图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • UC2914DWTR
  • 数量6500000 
  • 厂家N/A 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • UC2914DWTR图
  • 深圳市华兴微电子有限公司

     该会员已使用本站16年以上
  • UC2914DWTR
  • 数量5000 
  • 厂家TI 
  • 封装N/A 
  • 批号23+ 
  • 只做进口原装QQ询价,专营射频微波十五年。
  • QQ:604502381QQ:604502381 复制
  • 0755-83002105 QQ:604502381
  • UC2914DWTR图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • UC2914DWTR
  • 数量21000 
  • 厂家Texas Instruments 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • UC2914DWTRG4图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • UC2914DWTRG4
  • 数量21000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • UC2914DWTR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • UC2914DWTR
  • 数量2000 
  • 厂家TI 
  • 封装SOIC (DW) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • UC2914DWTR图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • UC2914DWTR
  • 数量315 
  • 厂家TI/德州仪器 
  • 封装SOP18 
  • 批号15+ 
  • 全新原装挺实单欢迎来撩/可开票
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • UC2914DWTR图
  • 深圳市恒意创鑫电子有限公司

     该会员已使用本站10年以上
  • UC2914DWTR
  • 数量9000 
  • 厂家TI/德州仪器 
  • 封装SOP18 
  • 批号22+ 
  • 全新原装公司现货,支持实单
  • QQ:1493457560QQ:1493457560 复制
  • 0755-83235429 QQ:1493457560
  • UC2914DWTR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • UC2914DWTR
  • 数量98500 
  • 厂家TI/德州仪器 
  • 封装SOP18 
  • 批号23+ 
  • 真实库存全新原装正品!专业配单
  • QQ:308365177QQ:308365177 复制
  • 0755-13418564337 QQ:308365177
  • UC2914DWTR图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • UC2914DWTR
  • 数量9800 
  • 厂家Texas 
  • 封装na 
  • 批号21+ 
  • 原厂渠道,全新原装现货,欢迎查询!
  • QQ:97877805QQ:97877805 复制
  • 171-4929-0036(微信同号) QQ:97877805
  • UC2914DWTR图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • UC2914DWTR
  • 数量932 
  • 厂家TI 
  • 封装SOP-18 
  • 批号21+ 
  • ★体验愉快问购元件!!就找我吧!单价:116元
  • QQ:1415691092QQ:1415691092 复制
  • 133-5299-5145(微信同号) QQ:1415691092

产品型号UC2914DWTR的概述

UC2914DWTR芯片概述 UC2914DWTR是一款高性能的电源管理芯片,广泛应用于各种电源管理系统中,尤其是在电池充电、电压监测和保护电路方面。作为集成电路的一部分,UC2914DWTR具有较高的集成度和可靠性,能够满足现代电子设备中对电源管理的严格要求。该芯片具备多种功能,包括电池电压检测、单元平衡和电池保护,特别适合在工作电流流动较大的应用场合,如电动工具、无人机和其他高功率电子设备。 UC2914DWTR的详细参数 UC2914DWTR的主要参数包括工作电压、工作温度范围、引脚配置和功能特性等。具体参数如下: - 工作电压范围: 3V至30V,这使得UC2914DWTR可以广泛应用于各种不同电压要求的电源系统。 - 工作温度范围: -40℃至+85℃,适宜在多种环境条件下使用,保证了芯片的稳定性和可靠性。 - 封装形式: 该芯片采用TSSOP-20(Thin Shrink ...

产品型号UC2914DWTR的Datasheet PDF文件预览

ꢀ ꢁꢂ ꢃꢄ ꢅ  
ꢀ ꢁꢆ ꢃꢄ ꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
ꢎ ꢑ ꢔꢕ ꢖ ꢒꢗꢒꢘ ꢔ  
FEATURES  
DESCRIPTION  
D
D
D
D
D
D
D
D
D
D
D
5-V to 35-V Operation  
The UC3914 family of hot swap power managers  
Precision Maximum Current Control  
Precision Fault Threshold  
provides complete power management, hot swap  
and fault handling capability. Integrating this part  
and a few external components, allows a board to  
be swapped in or out upon failure or system  
modification without removing power to the  
hardware, while maintaining the integrity of the  
powered system. Complementary output drivers  
and diodes have been integrated for use with  
external capacitors as a charge pump to ensure  
sufficient gate drive to the external N-channel  
Programmable Average Power Limiting  
Programmable Overcurrent Limit  
Shutdown Control  
Charge Pump for Low R  
Drive  
High-Side  
DS(on)  
Latch Reset Function Available  
Output Drive V Clamping  
GS  
MOSFET transistor for low R  
. All control and  
DS(on)  
Fault Output Indication  
housekeeping functions are integrated and  
externally programmable and include the fault  
current level, maximum output sourcing current,  
maximum fault time and average power limiting of  
the external FET. The UC3914 features a duty  
ratio current limiting technique, which provides  
peak load capability while limiting the average  
power dissipation of the external pass transistor  
during fault conditions. The fault level is fixed at  
50 mV with respect to VCC to minimize total  
dropout.  
18-Pin DIL and SOIC Packages  
SIMPLIFIED APPLICATION DIAGRAM  
6
9
18  
16  
IMAX  
VCC  
V
CC  
OSC PMP REF  
PMPB  
1
2
The fault current level is set with an external  
current sense resistor. The maximum allowable  
sourcing current is programmed by using a  
resistor divider from VCC to REF to set the voltage  
on IMAX. The maximum current level, when the  
UC2914/UC3914  
5
7
OSCB  
SENSE 17  
output appears as a current source is (V  
VCC  
VPUMP  
V
)/R  
.
IMAX SENSE  
OUT 11  
This part is offered in both 18-pin DW wide-body  
(SOIC) and dual-in-line (DIL) packages.  
SD  
4
VOUTS 12  
V
OUT  
FAULT  
10  
PLIM 14  
GND  
1
LR  
13  
CT  
15  
V
OUT  
V
CC  
UDG−03114  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2003, Texas Instruments Incorporated  
1
www.ti.com  
ꢀ ꢁꢂꢃ ꢄꢅ  
ꢀ ꢁꢆꢃ ꢄꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
DESCRIPTION (continued)  
When the output current is less than the fault level, the external output transistor remains switched on. When  
the output current exceeds the fault level, but is less than the maximum sourcing level programmed by IMAX,  
the output remains switched on, and the fault timer starts to charge C , a timing capacitor. Once C charges  
T
T
to 2.5 V, the output device is turned off and C is slowly discharged. Once C is discharged to 0.5 V, the device  
T
T
performs a retry and the output transistor is switched on again. The UC3914 offers two distinct reset modes.  
In one mode with LR left floating or held low, the device tries to reset itself repeatedly if a fault occurs as  
described above. In the second mode with LR held high, once a fault occurs, the output is latched off until either  
LR is toggled low, the part is shutdown then re−enabled using SD, or the power to the part is turned off and then  
on again.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted.  
(1)(2)  
UC2914  
UC3914  
UNIT  
V
Input supply voltage  
VCC  
40  
SD, LR  
IMAX  
12  
Maximum forced voltage  
VCC  
FAULT  
PLIM  
20  
10  
Maximum current  
mA  
Maximum voltage  
FAULT  
40  
V
A
Reference output current  
internally limited  
−65 to 150  
−55 to 150  
300  
Storage temperature range, T  
stg  
Junction temperature range, T  
°C  
J
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
(1)  
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is  
not implied. Exposure to Absolute Maximum Rated conditions for extended periods may affect device reliability  
Currents are positive into and negative out of the specifief terminal unless otherwise noted. All voltage values are with respect to the network  
ground terminal.  
(2)  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM MAX UNIT  
Supply voltage, V  
CC  
5
−40  
0
35  
85  
70  
V
UC2914  
UC3914  
Operating free-air temperature range, T  
°C  
A
2
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ  
ꢀ ꢁꢆ ꢃꢄ ꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
ELECTRICAL CHARACTERISTICS  
T
= 0°C to 70°C for the UC3914, −40°C to 85°C for the UC2914, V  
= 12V, V  
PUMP  
= V  
PUMP(max)  
, SD = 5 V, C = C = C  
= 0.01 µF.  
A
CC  
P1  
P2  
PUMP  
T
A
= T . (Unless otherwise specified)  
J
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENTS  
8
12  
15  
20  
(2)  
Supply current  
I
I
mA  
CC  
V
= 35 V  
CC  
SD = 0 V,  
Shutdown supply current  
UVLO turn−on threshold voltage  
UVLO hysteresis  
500  
4.0  
120  
900  
4.4  
250  
µA  
V
CCSD  
55  
mV  
FAULT TIMING  
T = 25°C, wrt V  
CC  
−55  
−57  
−50  
−50  
1
−45  
−42  
3
J
Overcurrent threshold  
mV  
Over operating temperature wrt V  
CC  
IMAX input bias  
µA  
V
CT  
V
CT  
V
CT  
= 1 V  
= 1 V,  
= 1 V  
−140  
−6.0  
2.0  
−100  
−3.0  
3.0  
−60  
−1.5  
4.5  
I
CT charge current  
CT_CHG  
overload condition  
mA  
I
CT discharge current  
CT fault threshold voltage  
CT reset threshold voltage  
Output duty cycle  
µA  
CT_DSCH  
V
2.25  
0.45  
1.5%  
2.50  
0.50  
3.0%  
2.75  
0.55  
4.5%  
CT_FLT  
V
V
CT_RST  
Fault condition,  
I
= 0 A  
PL  
OUTPUT  
V
= V  
,
,
V
V
= V  
,
,
VOUTS  
wrt V  
CC  
PUMP  
PUMP(max)  
= V  
PUMP(max)  
−1.5  
−2.0  
−1.0  
−1.5  
PUMP  
= V  
= −2 mA, wrt V  
V
OH  
High-level output voltage  
V
VOUTS  
CC  
PUMP  
PUMP  
I
I
I
I
OUT  
OUT  
OUT  
OUT  
= 0 A  
0.8  
1
1.3  
2
V
= 5 mA  
V
V
Low-level output voltage  
Output clamp voltage  
OL  
= 25 mA,  
V
= 0 V  
VOUTS  
1.2  
1.8  
overload condition  
V
= 0 V  
= 1 nF  
= 1 nF  
11.5  
13.0  
750  
250  
14.5  
1250  
500  
OUT(cl)  
RISE  
OUTS  
(1)  
Rise time  
t
t
C
C
OUT  
OUT  
ns  
(1)  
Fall time  
FALL  
LINEAR CURRENT AMPLIFIER  
V
Input offset voltage  
Voltage gain  
−15  
60  
0
80  
0
15  
mV  
dB  
IO  
V
V
= V  
= V  
,
V
V
= V  
= V  
wrt VCC  
−20  
−20  
20  
20  
IMAX  
OUT  
SENSE  
VCC,  
, wrt REF  
V
IMAX  
IMAX control voltage  
SENSE input bias  
mV  
,
0
IMAX  
OUT  
SENSE  
REF  
1.5  
3.5  
µA  
SHUTDOWN  
Shutdown threshold voltage  
0.6  
1.5  
150  
0.5  
2.0  
300  
2.0  
V
input current  
SD = 5 V  
µA  
µs  
(1)  
Delay to output time  
(1)  
(2)  
Ensured by design. Not production tested.  
A mathematical averaging is used to determine this value. See Application Section for more information.  
3
www.ti.com  
ꢀ ꢁꢂꢃ ꢄꢅ  
ꢀ ꢁꢆꢃ ꢄꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
ELECTRICAL CHARACTERISTICS  
T
= 0°C to 70°C for the UC3914, −40°C to 85°C for the UC2914, V  
= 12V, V  
PUMP  
= V  
PUMP(max)  
, SD = 5 V, C = C = C  
= 0.01 µF.  
A
CC  
P1  
P2  
PUMP  
T
A
= T . (Unless otherwise specified)  
J
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CHARGE PUMP  
f
f
OSC,  
OSCB  
Oscillator frequency  
OSC, OSCB  
60  
150  
250  
kHz  
V
V
High-level output voltage  
Low-level output voltage  
Output clamp voltage  
Output current limit  
I
I
= −5 mA  
= 5 mA  
= 25 V  
10.0  
11.0  
0.2  
11.6  
0.5  
OH  
OL  
OSC  
V
OSC  
V
18.5  
−20  
20.5  
−10  
22.5  
−3  
V
CC  
I
High side only  
= 10 mA, measured from PMP to  
mA  
LIM  
I
DIODE  
PMPB, PMPB to VPUMP  
Pump diode voltage drop  
PMP clamp voltage  
0.5  
18.5  
20  
0.9  
20.5  
22  
1.3  
22.5  
24  
V
CC  
= 25 V  
V
V
= V  
= V  
= V  
= V  
charge pump disable threshold,  
charge pump disable threshold,  
charge pump re-enable  
VOUTS  
CC  
CC  
CC  
CC  
CC  
= 12 V  
VPUMP maximum voltage  
VPUMP hysteresis  
V
V
V
VOUTS  
CC  
42  
0.3  
45  
0.7  
48  
1.4  
= 35 V  
V
VOUTS  
threshold,  
V
= 12 V  
CC  
charge pump re-enable  
V
VOUTS  
0.25  
0.70  
1.40  
threshold,  
V
CC  
= 35 V  
REFERENCE  
REF output voltage  
wrt VCC  
−2.25 −2.00  
−1.75  
50.0  
60  
V
REF current limit  
Load regulation  
Line regulation  
12.5  
20.0  
25  
mA  
1 mA I  
5 mA  
VREF  
mV  
5 V V  
35 V  
25  
100  
VCC  
FAULT  
LATCH  
Low-level output voltage  
Output leakage  
I
= 1 mA  
100  
10  
200  
500  
mV  
nA  
FAULT  
V
= 35 V  
FAULT  
Latch release threshold voltage  
Input current  
High-to-low  
= 5 V  
0.6  
1.4  
2.0  
V
V
500  
750  
µA  
LR  
POWER LIMITING  
I
I
= 200 µA  
In fault mode  
In fault mode  
0.6%  
1.3%  
2.0%  
PLIM  
Duty cycle control  
= 3 mA  
0.05% 0.12% 0.20%  
PLIM  
OVERLOAD  
Delay-to-output time  
Threshold voltage  
Ensured by design. Not production tested.  
(1)  
500  
1250  
−150  
ns  
wrt IMAX  
−250  
−200  
mV  
(1)  
(2)  
A mathematical averaging is used to determine this value. See Application Section for more information.  
4
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ  
ꢀ ꢁꢆ ꢃꢄ ꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
PLASTIC DIL−18  
(N)  
PLASTIC SOIC  
(1)  
(DW)  
−40°C to 85°C  
0°C to 70°C  
UC2914N  
UC3914N  
UC2914DW  
UC3914DW  
(1)  
The DW package is available taped and reeled. Add an TR suffix  
to the device type (e.g. UC2914DWTR) to order quantities of  
2,000 devices per reel.  
DIL−18  
N PACKAGE  
SOIC−18  
DW PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
REF  
GND  
VCC  
N/C  
SD  
OSCB  
OSC  
VPUMP  
PMPB  
PMP  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
GND  
VCC  
REF  
SENSE  
IMAX  
CT  
PLIM  
LR  
VOUTS  
OUT  
FAULT  
SENSE  
IMAX  
CT  
N/C  
SD  
OSCB  
OSC  
PLIM  
LR  
VPUMP  
PMPB  
PMP  
VOUTS  
OUT  
FAULT  
BLOCK DIAGRAM  
UDG−95134−2  
5
www.ti.com  
ꢀ ꢁꢂꢃ ꢄꢅ  
ꢀ ꢁꢆꢃ ꢄꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
TERMINAL FUNCTIONS  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
A capacitor is connected to this pin in order to set the maximum fault time. The minimum fault time must be  
more than the time to charge external load capacitance. The fault time is defined as shown in equation (1)  
CT  
15  
I/O  
where I  
= 100 µA + I , where I is the current into the power limit pin. Once the fault time is reached the  
CH  
PL PL  
output shuts down for a time given by equation (2) where I  
DIS  
is nominally 3 µA..  
Open collector output which pulls low upon any of the following conditions: timer fault, shutdown, UVLO. This  
pin MUST be pulled up to V or another supply through a suitable impedance.  
FAULT  
GND  
10  
1
O
VCC  
Ground reference for the device.  
This pin programs the maximum allowable sourcing current. Since REF is a −2-V reference (with respect to  
VCC), a voltage divider can be derived from VCC to REF in order to generate the program level for the IMAX  
pin. The current level at which the output appears as a current source is equal to the voltage on the IMAX pin,  
with respect to VCC, divided by the current sense resistor. If desired, a controlled current startup can be pro-  
grammed with a capacitor on IMAX to VCC.  
IMAX  
LR  
16  
13  
I
I
If this pin is held high and a fault occurs, the timer is prevented from resetting the fault latch when CT is dis-  
charged below the reset comparator threshold. The part does not retry until this pin is brought to a logic low or a  
power-on-reset occurs. Pulling this pin low before the reset time is reached does not clear the fault until the  
reset time is reached. Floating or holding this pin low results in the part repeatedly trying to reset itself if a fault  
occurs.  
OUT  
11  
6
O
O
O
Output drive to the MOSFET pass element. Internal clamping ensures that the maximum V drive is 15 V.  
GS  
OSC  
OSCB  
Complementary output drivers for intermediate charge pump stages. A 0.01-µF capacitor should be placed  
between OSC and PMP, and OSCB and PMPB.  
5
This feature ensures that the average MOSFET power dissipation is controlled. A resistor is connected from this  
pin to VCC. Current flows into PLIM, adding to the fault timer charge current, reducing the duty cycle from the  
PLIM  
14  
I
typical 3% level. When I >> 100 µA then the average MOSFET power dissipation is given by equation (3).  
PL  
PMP  
9
8
I
I
Complementary pins which couple charge pump capacitors to internal diodes and are used to provide charge  
to the reservoir capacitor tied to VPUMP. Typical capacitor values used are 0.01-µF.  
PMPB  
−2-V reference with respect to VCC used to program the IMAX pin voltage. A 0.1-µF ceramic or tantalum ca-  
pacitor MUST be tied between this pin and VCC to ensure proper operation of the device.  
REF  
18  
O
When this TTL-compatible input is brought to a logic low, the output of the linear amplifier is driven low, FAULT  
is pulled low and the device is put into a low power mode. The ABSOLUTE maximum voltage that can be  
placed on this pin is 12 V.  
SD  
4
I
Input voltage from the current sense resistor. When there is greater than 50 mV on this pin with respect to  
VCC, a fault is sensed and CT begins to charge.  
SENSE  
17  
I
Input voltage to the device. The voltage range is from 4.5 V to 35 V. The minimum input voltage required for  
operation is 4.5 V.  
VCC  
2
12  
7
I
VOUTS  
VPUMP  
O
O
Source connection of external N-channel MOSFET and sensed output voltage of load.  
Charge pump output voltage. A capacitor should be tied between this pin and VOUTS with a typical value be-  
ing 0.01-µF.  
2   C  
T
T
+
FAULT  
I
CH  
(1)  
2   C  
T
T
P
+
SD  
I
DIS  
(2)  
*6  
+ I  
  3   10  
  R  
FET(avg)  
MAX  
PL  
(3)  
6
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ  
ꢀ ꢁꢆ ꢃꢄ ꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
APPLICATION INFORMATION  
The UC3914 is to be used in conjunction with external passive components and an N-channel MOSFET to  
facilitate hot swap capability of application modules. A typical application setup is given in Figure 1.  
C1  
C
P1  
R1  
R2  
V
CC  
PMP  
OSC  
REF  
IMAX  
9
6
18  
16  
V
V
− 2 V  
CC  
CC  
Reference  
Toggle  
Overload  
Comparator  
PMPB  
250 kHz  
Oscillator  
Q
T
Q
200 mV  
50 mV  
8
+
C
P2  
V
+ 10 V  
OUT  
(45 V  
+
OSCB  
)
MAX  
Overcurrent  
Comparator  
5
7
V
FAULT  
VCC  
= 50 mV  
VPUMP  
To Linear  
Amplifier  
+
2
V
V
CC  
CC  
C2  
Undervoltage  
Lockout  
4.0 V/ 3.8 V  
C
PUMP  
3 mA  
103 µA  
To V  
OUT  
SD  
VPUMP  
4
R
SENSE  
SENSE  
17  
11  
H = Close  
H = Close  
OUT  
+
FAULT  
To  
Linear  
Amplifier  
2.5 V  
Fault  
Latch  
+
10  
15 V  
Q
S
R
FAULT  
VOUTS  
PLIM  
+
Q
R
12  
14  
0.5 V  
To V  
Fault  
Timing  
Circuitry  
CC  
R
PL  
3 µA  
1.4 V  
+
GND  
1
13  
15  
LR  
CT  
C
T
To V  
OUT  
UDG−98194  
Figure 1. Typical Application  
The term hot swap refers to the system requirement that submodules be swapped in or out upon failure or  
system modification without removing power to the operating hardware. The integrity of the power bus must not  
be compromised due to the addition of an unpowered module. Significant power bus glitches can occur due to  
the substantial initial charging current of on-board module bypass capacitance and other load conditions (for  
more information on hot swapping and power management applications, see SLUA157). The UC3914 provides  
protection by monitoring and controlling the output current of an external N-channel MOSFET to charge this  
capacitance and provide load current. The addition of the N-channel MOSFET, a sense resistor, R  
, and  
SENSE  
two other resistors, R1 and R2, sets the programmed maximum current level the N-channel MOSFET can  
source to charge the load in a controlled manner. The equation for this current, I , is:  
MAX  
V
* V  
VCC  
R
IMAX  
I
+
MAX  
SENSE  
(4)  
where  
D
V
is the voltage generated at the IMAX pin  
IMAX  
7
www.ti.com  
ꢀ ꢁꢂꢃ ꢄꢅ  
ꢀ ꢁꢆꢃ ꢄꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
APPLICATION INFORMATION  
Analysis of the application circuit shows that V  
(with respect to GND) can be defined as:  
IMAX  
ǒV  
Ǔ
* V  
  R1  
CC  
REF  
2V   R1  
V
+ V  
)
+
) V  
IMAX  
REF  
REF  
(5)  
R1 ) R2  
R1 ) R2  
where  
D
V
is the voltage on the REF pin, an internally generated potential 2-V below VCC  
REF  
The UC3914 also has an internal overcurrent comparator which monitors the voltage between SENSE and  
VCC. If this voltage exceeds 50 mV, the comparator determines that a fault has occurred, and a timing capacitor,  
CT, begins to charge. This can be rewritten as a current which causes a fault, I  
:
FAULT  
50 mV  
I
+
FAULT  
R
SENSE  
(6)  
FAULT TIMING  
Figure 2 shows the circuitry associated with the fault timing function of the UC3914. A typical fault mode, where  
the overload comparator and current source I3 do not factor into operation (switch S2 is open), is first  
considered. Once the voltage across R  
exceeds 50 mV, a fault has occurred. This causes the timing  
SENSE  
capacitor, C , to charge with a combination of 100 µA (I1) plus the current from the power limiting circuitry (I ).  
T
PL  
To V  
CC  
Overload  
Comparator  
PLIM  
SENSE  
IMAX  
R
PL  
14  
+
V
CC  
V
CC  
0.2 V  
I
I3  
PL  
I1  
3 mA  
103 µA  
50 mV  
VCC  
Fault  
Comparator  
FAULT  
LATCH  
2
S1  
S2  
+
2.5 V  
+
+
R
SENSE  
S
Q
To  
H=CLOSE  
H=CLOSE  
0.5 V  
Output  
Drive  
H=OFF  
SENSE  
17  
R
Q
I2  
3 µA  
Reset  
Comparator  
VOUTS  
12  
To  
Output  
15  
CT  
To LOAD  
C
T
UDG−03158  
Figure 2. Fault Timing Circuitry Including Power Limit and Overcurrent  
8
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ  
ꢀ ꢁꢆ ꢃꢄ ꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
APPLICATION INFORMATION  
Figure 3 shows typical fault timing waveforms for the external N-channel MOSFET output current, the voltage  
on the CT pin, and the output load voltage, V , with LR left floating or grounded.  
OUT  
UDG−97054  
Figure 3. Typical Timing Diagram  
Table 1. Fault Timing Conditions  
TIME  
t0  
CONDITION  
Normal conditions. Output current is nominal, output voltage is at positive rail, VCC  
t1  
Fault control reached. Output current rises above the programmed fault value, C begins to charge at 100-µA + I .  
PL  
T
Maximum current reached. Output current reaches the programmed maximum level and becomes a constant cur-  
rent with value IMAX.  
t2  
t3  
t4  
Fault occurs. C has charged to 2.5 V, fault output goes low, the FET turns off allowing no output current to flow,  
T
V
discharges to GND.  
VOUTS  
Retry. C has discharged to 0.5 V, but fault current is still exceeded, C begins charging again, FET is on, V  
OUT  
T
T
increases.  
t5 = t3 Illustrates < 3% duty cycle depending upon R selected.  
PL  
t6=t4  
t7=t0  
Fault released, normal condition. Return to normal operation of the load.  
9
www.ti.com  
ꢀ ꢁꢂꢃ ꢄꢅ  
ꢀ ꢁꢆꢃ ꢄꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
APPLICATION INFORMATION  
The output voltage waveforms have assumed an R-C characteristic load and time constants vary depending  
upon the component values. Prior to time t0, the load is fully charged to almost V and the N-channel  
VCC  
MOSFET is supplying the current, I  
load conditions until, at t1, the fault current level, I  
, to the load. At t0, the current begins to ramp up due to a change in the  
OUT  
, has been reached to cause switch S1 to close. This  
FAULT  
results in C being charged with the current sources I1 and I . During this time, V remains almost equal  
T
PL  
OUT  
to V  
except for small losses from voltage drops across the sense resistor and the N-channel MOSFET. The  
VCC  
output current reaches the programmed maximum level, I  
, at t2. The CT voltage continues to rise since I  
. The load output voltage drops because the current load requirements have become  
MAX  
MAX  
is still greater than I  
FAULT  
greater than the controlled maximum sourcing current. The CT voltage reaches the upper comparator threshold  
(Figure 2) of 2.5 V at t3, which promptly shuts off the gate drive to the N-channel MOSFET (not shown but can  
be inferred from the fact that no output current is provided to the load), latches in the fault and opens switch S1  
disconnecting the charging currents I1 and I from CT.  
PL  
Since no output current is supplied, the load voltage decays at a rate determined by the load characteristics and  
the capacitance. The 3-µA current source, I2, discharges C to the 0.5-V reset comparator threshold. This time  
T
is significantly longer than the charging time and is the basis for the duty cycle current limiting technique. When  
the CT voltage reaches 0.5 V at t4, the part performs a retry, allowing the N-channel MOSFET to again source  
current to the load and cause VOUT to rise. In this particular example, IMAX is still sourced by the N-channel  
MOSFET at each attempted retry and the fault timing sequence is repeated until time t7 when the load  
requirements change to I  
. Since I  
rises almost to the level of VCC.  
is less than the fault current level at this time, switch S1 is opened,  
OUT  
OUT  
I2 discharges C and V  
T
OUT  
Figure 4 shows fault timing waveforms similar to those depicted in Figure 3 except that the latch reset (LR)  
function is utilized. Operation is the same as described above until t4 when the voltage on CT reaches the reset  
threshold. Holding LR high prevents the latch from being reset, preventing the device from performing a retry  
(sourcing current to the load). The UC3914 is latched off until either LR is pulled to a logic low, or the chip is  
forced into an under voltage lockout (UVLO) condition and back out of UVLO causing the latch to automatically  
perform a power on reset. Figure 4 illustrates LR being toggled low at t5, causing the part to perform a retry.  
Time t6 again illustrates what happens when a fault is detected. The LR pin is toggled low and back high at time  
t7, prior to the voltage on the CT pin hitting the reset threshold. This information tells the UC3914 to allow the  
part to perform a retry when the lower reset threshold is reached, which occurs at t8. Time t9 corresponds to  
when load conditions change to where a fault is not present as described for Figure 3.  
10  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ  
ꢀ ꢁꢆ ꢃꢄ ꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
APPLICATION INFORMATION  
UDG−97055  
Figure 4. Typical Timing Diagram Using Latch Reset (LR) Function  
Table 2. Fault Timing Conditions with Latch Reset Function  
TIME  
t0  
CONDITION  
Normal conditions. Output current is nominal, output voltage is at positive rail, VCC  
t1  
Fault control reached. Output current rises above the programmed fault value, C begins to charge at 100-µA + I .  
PL  
T
Maximum current reached. Output current reaches the programmed maximum level and becomes a constant cur-  
rent with value IMAX.  
t2  
t3  
Fault occurs. C has charged to 2.5 V, fault output goes low, the FET turns off allowing no output current to flow,  
T
V
discharges to GND.  
VOUTS  
t4  
t5  
Reset comparator threshold reached but no retry since LR pin held high.  
LR toggled low, N-channel MOSFET turned on and sources current to load.  
t6=t3  
t7  
LR toggled low before V  
CT  
reaches reset comparator threshold, causing retry.  
t8  
Since LR toggled low during present cycle, N-channel MOSFET turned on and sources current to load.  
Fault released, normal condition. Return to normal operation of the load.  
t9=t0  
11  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄꢅ  
ꢀ ꢁꢆꢃ ꢄꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
APPLICATION INFORMATION  
Power Limiting  
The power limiting circuitry is designed to only source current into the CT pin. To implement this feature, a  
resistor, R , should be placed between VCC and PLIM. The current, I (show in Figure 2) is given by the  
PL  
PL  
following expression:  
V
* V  
VCC  
VOUTS  
I
+
, for V  
u 1 V ) V  
PL  
VOUTS  
CT  
R
PL  
(7)  
where  
D
V
is the voltage on the CT pin  
CT  
For V  
< 1 V + V the common mode range of the power limiting circuitry causes I = 0 A leaving only  
CT PL  
VOUTS  
the 100-µA current source to charge C . V  
pass device.  
− V represents the voltage across the N-channel MOSFET  
T
VCC  
VOUTS  
This feature limits average power dissipation in the pass device. Note that under a fault condition where the  
output current is just above the fault level, but less than the maximum level, V ~ V , I = 0 A and the  
VOUTS  
VCC PL  
C charging current is 100 µA.  
T
During a fault, the CT pin charges at a rate determined by the internal charging current and the external timing  
capacitor, C . Once C charges to 2.5 V, the fault comparator trips and sets the fault latch. When this occurs,  
T
T
OUT is pulled down to VOUTS, causing the external N-channel MOSFET to shut off and the charging switch,  
S1, to open. C is discharged with I2 until the V potential reaches 0.5 V. Once this occurs, the fault latch resets  
T
CT  
(unless LR is being held high, whereby a fault can only be cleared by pulling this pin low or going through a  
power-on-reset cycle), which re-enables the output of the linear amplifier and allows the fault circuitry to regain  
control of the charging switch. If a fault is still present, the overcurrent comparator closes the charging switch  
causing the cycle to repeat. Under a constant fault the duty cycle is given by:  
3 mA  
) 100 mA  
Duty Cycle +  
I
PL  
(8)  
Average power dissipation can be limited using the PLIM pin. Average power dissipation in the pass element  
is given by:  
+ ǒV  
Ǔ
P
* V  
  I  
  Duty Cycle  
FET(avg)  
VCC  
VOUTS  
MAX  
(9)  
3 mA  
) 100 mA  
+ ǒV  
Ǔ
* V  
  I  
 
VCC  
VOUTS  
MAX  
I
PL  
V
− V  
is the drain to source voltage across the MOSFET. When I >> 100 µA, the duty cycle equation  
VCC  
VOUTS PL  
given above can be rewritten as:  
R
  3 mA  
PL  
Duty Cycle + ǒV  
Ǔ
* V  
VCC  
VOUTS  
(10)  
(11)  
and the average power dissipation of the MOSFET is given by:  
R
  3 mA  
PL  
+ ǒV  
Ǔ
ǒV  
Ǔ + I  
P
* V  
  I  
 
  R   3 mA  
FET(avg)  
VCC  
VOUTS  
MAX  
MAX  
PL  
* V  
VCC  
VOUTS  
The average power is limited by the programmed I  
current and the appropriate value for R  
.
MAX  
PL  
12  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ  
ꢀ ꢁꢆ ꢃꢄ ꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
APPLICATION INFORMATION  
OVERLOAD COMPARATOR  
The linear amplifier in the UC3914 ensures that the external N-channel MOSFET does not source more than  
the current I  
, defined in equation (4):  
MAX  
V
* V  
VCC  
R
IMAX  
I
+
MAX  
SENSE  
In the event that output current exceeds the programmed IMAX current by more than 200-mV/R  
, the  
SENSE  
output of the linear amplifier is immediately pulled low (with respect to VOUTS) providing no gate drive to the  
N-channel MOSFET, and preventing current from being delivered to the load. This situation could occur if the  
external N-channel MOSFET is not responding to a command from the UC3914 or output load conditions  
change quickly to cause an overload condition before the linear amplifier can respond. For example, if the  
N-channel MOSFET is sourcing current into a load and the load suddenly becomes short circuited, an overload  
condition may occur. The short circuit causes the V  
resulting in increased load current and voltage drop across R  
of the N-channel MOSFET to immediately increase,  
GS  
. If this drop exceeds the overload  
SENSE  
comparator threshold, the amplifier output is quickly pulled low. It also causes the CT pin to begin charging with  
I3, a 3-mA current source (refer to Figure 2) and continue to charge until approximately 1-V below V , where  
VCC  
it is clamped. This allows a constant fault to show up on FAULT and since the voltage on CT charges past 2.5 V  
only in an overload fault condition, it can be used for detection of output N-channel MOSFET failure or to build  
redundancy into the system.  
ESTIMATING MINIMUM TIMING CAPACITANCE  
The startup time of the device may not exceed the fault time for the application. Since the timing capacitor, C ,  
T
determines the fault time, its minimum value can be determined by calculating the startup time of the device.  
The startup time is dependent upon several external components. A load capacitor, C  
, should be tied  
LOAD  
between VOUTS and GND. Its value should be greater than that of C  
, the reservoir capacitor tied from  
PUMP  
VPUMP to VOUTS (see Figure 4). Given values of C  
, R  
, R  
, V  
and the resistors determining  
LOAD LOAD SENSE VCC  
the voltage on IMAX, the user can calculate the approximate startup time of the node V  
. This time must be  
OUT  
less than the time it takes for CT to charge to 2.5 V. Assuming the user has determined the fault current, R  
can be calculated by:  
SENSE  
50 mV  
R
+
SENSE  
I
FAULT  
(12)  
I
is the maximum current the UC3914 allows through the transistor, M1. During startup with an output  
MAX  
capacitor, M1 can be modeled as a constant current source of value I  
using equation (4).  
MAX  
Given this information, calculation of startup time is now possible via the following:  
Using a constantǒ-Ccurrent load model, use this equation:  
Ǔ
  V  
LOAD  
VCC  
T
+
START  
ǒI  
Ǔ
* I  
MAX  
LOAD  
(13)  
(14)  
Using a resistive load model, use this equation:  
V
VCC  
  ȏn ǒ1 *  
Ǔ
T
+ * R  
  C  
START  
LOAD  
LOAD  
I
  R  
MAX  
LOAD  
13  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄꢅ  
ꢀ ꢁꢆꢃ ꢄꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
APPLICATION INFORMATION  
The only remaining external component which may affect the minimum timing capacitor is the optional power  
limiting resistor, R . If the addition of R is desirable, its value can be determined from the Power Limiting  
PL  
PL  
section of this datasheet. The minimum timing capacitor values are now given by the following equations.  
Using a constant-current load model, use this equation:  
V
ȡ
ȣ
VCC  
2
*4  
) ǒ Ǔ  
10  
  R  
PL  
ȧ
ȧ
CT  
+ T  
 
ȧ
ȧ
ȧ
min  
START  
2   R  
ȧ
PL  
Ȣ
Ȥ
(15)  
(16)  
Using a resistive load model, use this equation:  
*4  
* ǒI  
Ǔ
ǒ10  
Ǔ
  R ) V  
  R  
  T  
V
PL  
VCC  
MAX  
LOAD  
START  
VCC  
CT  
+
)
  R  
  C  
(min)  
LOAD  
LOAD  
2   R  
2   R  
PL  
PL  
OUTPUT CURRENT SOFTSTART  
The external MOSFET output current can be increased at a user-defined rate to ensure that the output voltage  
comes up in a controlled fashion by adding capacitor C , as shown in Figure 5. The one constraint that the  
SS  
UC3914 places on the soft-start time is that the charge pump time constant must be much less than the soft-start  
time constant to ensure proper soft-start operation. The time constant determining the startup time of the charge  
pump is given by:  
t
+ R  
  C  
CP  
OUT  
PUMP  
(17)  
R
is the output impedance of the charge pump given by:  
OUT  
1
R
+
OUT  
f
  C  
PUMP  
P
(18)  
where f  
is the charge pump frequency (125 kHz) and C = C = C are the charge pump flying capacitors.  
PUMP  
P P1 P2  
For typical values of C , C  
and C  
(0.01-µF) and a switching frequency of 125 kHz, the output  
P1  
P2  
PUMP  
impedance is 800 and the charge pump time constant is 8 µs. The charge pump should be close to being fully  
charged in 3 time constants or 24 µs. By placing a capacitor from VCC to IMAX, the voltage at IMAX, which sets  
the maximum output current of the MOSFET, exponentially decays from VCC to the desired value set by R1  
and R2. The output current of the MOSFET is controlled via soft-start as long as the soft-start time constant (τ  
)
SS  
is much greater than the charge pump time constant τ , given by:  
CP  
ǒ
Ǔ
t
+ R1 ø R2   C  
SS  
SS  
(19)  
14  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ  
ꢀ ꢁꢆ ꢃꢄ ꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
APPLICATION INFORMATION  
MINIMIZING TOTAL DROPOUT UNDER LOW VOLTAGE OPERATION  
In a typical application, the UC3914 is used to control the output current of an external N-channel MOSFET  
during hot swapping situations. Once the load has been fully charged, the desired output voltage on the load,  
V
, needs to be as close to VCC as possible to minimize total dropout. For a resistive load, R  
, the output  
OUT  
LOAD  
voltage is given by:  
R
LOAD  
V
+
  V  
OUT  
VCC  
R
) R  
) R  
LOAD  
SENSE  
DS(on)  
(20)  
R
sets the fault current, I  
. R , the on-resistance of the N-channel MOSFET, should be made  
SENSE  
FAULT DS(on)  
as small as possible to ensure V  
manufacturer specifies the R  
N-channel MOSFET is V  
which is the output of the linear amplifier, to be many volts higher than V  
is as close to VCC as possible. For a given N-channel MOSFET, the  
OUT  
for a certain V  
(i. e., between 7 V to 10 V). The source potential of the  
DS(on)  
GS  
. In order to ensure sufficient V , this requires the gate of the N-channel MOSFET,  
OUT  
GS  
. The UC3914 provides the capability  
VCC  
to generate this voltage through the addition of three capacitors, C , C and C  
as shown in Figure 6.  
P1 P2  
PUMP  
These capacitors should be used in conjunction with the complementary output drivers and internal diodes  
included on-chip to create a charge pump or voltage tripler. The circuit boosts V by utilizing capacitors C  
,
P1  
VCC  
C
and C  
in such a way that the voltage at VPUMP approximately equals three times the voltage at VCC  
P2  
PUMP  
minus five times the voltage drop of the diodes, almost tripling the input supply voltage to the device.  
ǒ
Ǔ * ǒ5   V  
Ǔ
V
+ 3   V  
VPUMP  
VCC  
DIODE  
(21)  
On each complete cycle, C is charged to approximately (V  
− V (unless VCC is greater than 15 V  
DIODE)  
P1  
VCC  
causing internal clamping to limit this charging voltage to about 13 V) when the output Q of the toggle flip-flop  
is low. When Q is transitioned low (and Q correspondingly is brought high), the negative side of C is pulled  
P2  
to ground, and C charges C up to approximately:  
P1  
ǒ
Ǔ * ǒ3P2  V  
Ǔ
V
+ 2   V  
CP2  
VCC  
DIODE  
(22)  
C
+
P1  
C1  
To V  
CC  
PMP  
VCC  
2
OSC  
C
SS  
9
6
D1  
R1  
R2  
PMPB  
D3  
D3  
18  
16  
2
TOGGLE  
FLIP FLOP  
8
5
REF  
IMAX  
VCC  
+
C
P2  
OSCB  
M1  
Q
6
9
8
5
OSC  
OUT 11  
UC2914  
V
OUT  
Q
T
C
C
P1  
PMP  
VOUTS 12  
L
O
A
D
250 kHz  
OSC  
OSCB  
PMPB  
7
C
PUMP  
P2  
VPUMP  
+
VPUMP  
7
C
LOAD  
C
VPUMP  
UDG−03178  
To V  
OUT  
Figure 5. MOSFET Softstart Diagram  
Figure 6. Charge Pump Block Diagram  
15  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄꢅ  
ꢀ ꢁꢆꢃ ꢄꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
APPLICATION INFORMATION  
When Q is toggled high, the negative side of CP2 is brought to (V  
capacitor cannot change instantaneously with time, the positive side of the capacitor swings up to:  
− V  
). Since the voltage across a  
CC  
DIODE  
V
+ 3   V * 4   V  
PMPB  
CC  
DIODE  
(23)  
(24)  
This charges C  
up to:  
PUMP  
V
+ 3   V * 5   V  
CPUMP  
CC  
DIODE  
The maximum output voltage of the linear amplifier is actually less than this because of the ability of the amplifier  
to swing to within approximately 1 V of V . Due to inefficiencies of the charge pump, the UC3914 may not  
PUMP  
have sufficient gate drive to fully enhance a standard power MOSFET when operating at input voltages below  
7 V. Logic level MOSFETs could be used depending on the application but are limited by their lower current  
capability. For applications requiring operation below 7 V, there are two ways to increase the charge pump  
output voltage. Figure 7 shows the typical tripler of Figure 6 enhanced with three external schottky diodes.  
Placing the schottky diodes in parallel with the internal charge pump diodes decreases the voltage drop across  
each diode thereby increasing the overall efficiency and output voltage of the charge pump.  
Figure 8 shows a way to use the existing drivers with external diodes (or Schottky diodes for even higher pump  
voltages but with additional cost) and capacitors to make a voltage quadrupler. The additional charge pump  
stage provides a sufficient pump voltage to generate the maximum V  
:
GS  
V
+ 4   V * 7   V  
VPUMP  
CC  
DIODE  
(25)  
C
P2  
C
P1  
C
P1  
D2  
PMP  
VCC  
OSC  
9
2
6
D3  
D1  
D1  
D2  
C
P3  
OSCB  
VCC  
OSC PMPB  
6 8  
PMPB  
5
2
Toggle  
Flip−Flop  
8
5
D3  
C
P2  
Q
Toggle  
Flip−Flop  
OSCB  
Q
T
Q
D4  
250 kHz  
Oscillator  
Q
T
VPUMP  
9
7
PMP  
7
250 kHz  
Oscillator  
VPUMP  
C
PUMP  
C
PUMP  
To V  
OUT  
To V  
OUT  
Figure 8. Low Voltage Operation to Produce  
Higher Pump Voltage  
Figure 7. Enhanced Charge Pump  
16  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ  
ꢀ ꢁꢆ ꢃꢄ ꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
APPLICATION INFORMATION  
Operation is similar to the case described above. This additional circuitry is not necessary for higher input  
voltages because the UC3914 has internal clamping which only allows V to be 10 V greater than V  
.
VOUTS  
PUMP  
Table 3 characterizes the UCx914 charge pump in its standard configuration, with external schottky diodes, and  
configured as a voltage quadrupler.  
NOTE: The voltage quadrupler is unnecessary for input voltages above 7.0 V due to the internal  
clamping action.  
Table 3. Charge Pump Characteristics  
EXTERNAL  
INPUT  
INTERNAL  
DIODES  
QUADRUPLER  
(V  
SCHOTTKY  
DIODES  
VOLTAGE  
)
GS  
(V  
CC  
)
(V )  
GS  
(V  
GS  
)
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
9.0  
10.0  
4.57  
5.80  
6.60  
7.60  
8.70  
8.80  
9.20  
9.30  
6.8  
7.9  
8.6  
8.8  
8.8  
9.0  
9.4  
9.4  
8.7  
8.8  
8.9  
9.0  
9.0  
9.0  
9.1  
9.3  
I
SPECIFICATIONS  
CC  
The I  
operating measurement is actually a mathematical calculation. The charge pump voltage is constantly  
CC  
being monitored with respect to both V  
and V  
to determine whether the pump requires servicing. If there  
CC  
OUTS  
is insufficient voltage on this pin, the charge pump drivers are alternately switched to raise the voltage of the  
pump (see Figure 9). Once the voltage on the pump is high enough, the drivers and other charge pump related  
circuitry are shutdown to conserve current. The pump voltage decays due to internal loading until it reaches a  
low enough level to turn the drivers back on. The chip requires significantly different amounts of current during  
these two modes of operation and the following mathematical calculation is used to calculate the average  
current:  
I
  T ) I  
  T  
CCdrivers(on)  
ON  
CCdrivers(off)  
OFF  
I
+
CC  
T
) T  
ON  
OFF  
(26)  
Since the charge pump does not always require servicing, the user may think that the charge pump frequency  
is much less than the datasheet specification. This is not the case as the free-running frequency is guaranteed  
to be within the datasheet limits. The charge pump servicing frequency can make it appear as though the drivers  
are operating at a much lower frequency  
17  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄꢅ  
ꢀ ꢁꢆꢃ ꢄꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
APPLICATION INFORMATION  
Pump Upper Level  
PUMP  
Pump Lower Level  
Oscillator  
Frequency  
Pump Servicing  
Frequency  
OSC  
OSCB  
TIME  
T
OFF  
T
ON  
UDG−98144  
Figure 9. Charge Pump Waveforms  
18  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅ  
ꢀ ꢁꢆ ꢃꢄ ꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
TYPICAL CHARACTERISTICS  
LINEAR AMPLIFIER OFFSET VOLTAGE  
FAULT THRESHOLD VOLTAGE  
vs  
JUNCTION TEMPERATURE  
vs  
JUNCTION TEMPERATURE  
3.5  
−48.0  
−48.5  
3.0  
2.5  
−49.0  
−49.5  
−50.0  
2.0  
1.5  
−50.5  
−51.0  
1.0  
0.5  
−51.5  
−52.0  
0
−55  
−25  
T
5
35  
65  
95  
125  
−55  
−25  
5
35  
65  
95  
125  
T
J
− Junction Temperature − °C  
− Junction Temperature − °C  
J
Figure 10  
Figure 11  
REFERENCE VOLTAGE  
vs  
JUNCTION TEMPERATURE  
TIMING CAPACITOR CHARGE CURRENT  
vs  
JUNCTION TEMPERATURE  
2.040  
−92  
−96  
−100  
−104  
−108  
112  
2.035  
2.030  
2.025  
2.020  
2.015  
−55  
−25  
T
5
35  
65  
95  
125  
−55  
−25  
T
5
35  
65  
95  
125  
− Junction Temperature − °C  
− Junction Temperature − °C  
J
J
Figure 12  
Figure 13  
19  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄꢅ  
ꢀ ꢁꢆꢃ ꢄꢅ  
SLUS425C − DECEMBER 2003 − REVISED JULY 2004  
TYPICAL CHARACTERISTICS  
INPUT BIAS CURRENT  
vs  
JUNCTION TEMPERATURE  
TIMING CAPACITOR DISCHARGE CURRENT  
vs  
JUNCTION TEMPERATURE  
2.0  
1.5  
1.0  
0.5  
0
3.7  
3.6  
3.5  
3.4  
3.3  
SENSE Input Bias  
IMAX Input Bias  
−55  
−25  
5
35  
65  
95  
125  
−55  
−25  
5
35  
65  
95  
125  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 14  
Figure 15  
SAFETY RECOMMENDATIONS  
Although the UC3914 is designed to provide system protection for all fault conditions, all integrated circuits can  
ultimately fail short. For this reason, if the UC3914 is intended for use in safety critical applications where UL  
or some other safety rating is required, a redundant safety device such as a fuse should be placed in series with  
the device. The UC3914 prevents the fuse from blowing in virtually all fault conditions, increasing system  
reliability and reducing maintainence cost, in addition to providing the hot swap benefits of the device.  
20  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-May-2008  
PACKAGING INFORMATION  
Orderable Device  
UC2914DW  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
DW  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
18  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
UC2914DWG4  
UC2914DWTR  
UC2914DWTRG4  
UC2914N  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
DW  
DW  
DW  
N
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
20 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
UC2914NG4  
UC3914DW  
N
20 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
DW  
DW  
DW  
DW  
N
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
UC3914DWG4  
UC3914DWTR  
UC3914DWTRG4  
UC3914N  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
20 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
UC3914NG4  
N
20 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-May-2008  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  
配单直通车
UC2914DWTR产品参数
型号:UC2914DWTR
Brand Name:Texas Instruments
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
零件包装代码:SOIC
包装说明:SOP, SOP18,.4
针数:18
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:0.7
可调阈值:YES
模拟集成电路 - 其他类型:POWER SUPPLY SUPPORT CIRCUIT
JESD-30 代码:R-PDSO-G18
JESD-609代码:e4
长度:11.5 mm
湿度敏感等级:2
信道数量:1
功能数量:1
端子数量:18
最高工作温度:85 °C
最低工作温度:-40 °C
最大输出电流:500 A
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装等效代码:SOP18,.4
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):260
电源:5/35 V
认证状态:Not Qualified
座面最大高度:2.35 mm
子类别:Power Management Circuits
最大供电电流 (Isup):20 mA
最大供电电压 (Vsup):35 V
最小供电电压 (Vsup):5 V
标称供电电压 (Vsup):12 V
表面贴装:YES
技术:BIPOLAR
温度等级:INDUSTRIAL
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:7.5 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!