欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • UCC27322DGNR图
  • 深圳市芯鹏泰科技有限公司

     该会员已使用本站8年以上
  • UCC27322DGNR 现货库存
  • 数量2195 
  • 厂家TI/德州仪器 
  • 封装MSOP-8 
  • 批号23+ 
  • 进口原装现货假一赔十.原盘原标,支持白马检测
  • QQ:892152356QQ:892152356 复制
  • 0755-82777852 QQ:892152356
  • UCC27322DR图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • UCC27322DR 现货库存
  • 数量5000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装,欢迎查询
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • UCC27322DGN图
  • 集好芯城

     该会员已使用本站13年以上
  • UCC27322DGN 现货库存
  • 数量17595 
  • 厂家TI(德州仪器) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • UCC27322DR图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • UCC27322DR 现货库存
  • 数量6851 
  • 厂家TI 
  • 封装SOP8 
  • 批号24+ 
  • 全新原装现货,可开增值税发票,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • UCC27322D图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • UCC27322D 现货库存
  • 数量28600 
  • 厂家14+ 
  • 封装75 
  • 批号21+ 
  • 原装现货库存,价格优势
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • UCC27322D图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • UCC27322D 现货库存
  • 数量75 
  • 厂家TI 
  • 封装SOIC (D) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • UCC27322DGNR图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • UCC27322DGNR 现货库存
  • 数量18500 
  • 厂家TI(德州仪器) 
  • 封装MSOP-8EP 
  • 批号23+ 
  • ★★全网低价,原装原包★★
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • UCC27322DGNR图
  • 深圳市鹏和科技有限公司

     该会员已使用本站16年以上
  • UCC27322DGNR 现货热卖
  • 数量2195 
  • 厂家TI 
  • 封装HVSSOP8 
  • 批号23+ 
  • 公司原装现货 假一罚十
  • QQ:604309946QQ:604309946 复制
    QQ:1261585635QQ:1261585635 复制
  • 755-83990319 QQ:604309946QQ:1261585635
  • UCC27322DGNR图
  • 深圳市婷轩实业有限公司

     该会员已使用本站6年以上
  • UCC27322DGNR 热卖库存
  • 数量5000 
  • 厂家TI 
  • 封装MSOP8 
  • 批号23+ 
  • 进口原装现货热卖
  • QQ:2881943288QQ:2881943288 复制
    QQ:3026548067QQ:3026548067 复制
  • 0755-89608519 QQ:2881943288QQ:3026548067
  • UCC27322DGN图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • UCC27322DGN
  • 数量5300 
  • 厂家TI(德州仪器) 
  • 封装MSOP-8 
  • 批号21+ 
  • 全新原装正品,现货库存欢迎咨询
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • UCC27322DGN图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • UCC27322DGN
  • 数量85000 
  • 厂家TI/德州仪器 
  • 封装MSOP8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • UCC27322D图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • UCC27322D
  • 数量98500 
  • 厂家N/A 
  • 封装SOP8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • UCC27322DGN图
  • 深圳市旺能芯科技有限公司

     该会员已使用本站4年以上
  • UCC27322DGN
  • 数量15000 
  • 厂家TI/德州仪器 
  • 封装MSOP8 
  • 批号22+ 
  • 深圳全新原装库存现货
  • QQ:2881495751QQ:2881495751 复制
  • 13602549709 QQ:2881495751
  • UCC27322D图
  • 深圳市芯鹏泰科技有限公司

     该会员已使用本站8年以上
  • UCC27322D
  • 数量7536 
  • 厂家Texas Instruments 
  • 封装8-SOIC 
  • 批号23+ 
  • 栅极驱动器原装现货
  • QQ:892152356QQ:892152356 复制
  • 0755-82777852 QQ:892152356
  • UCC27322D图
  • 深圳市隆亿诚科技有限公司

     该会员已使用本站3年以上
  • UCC27322D
  • 数量3253 
  • 厂家TI/德州仪器 
  • 封装MSOP8 
  • 批号22+ 
  • 支持检测.现货价优!
  • QQ:778039761QQ:778039761 复制
  • -0755-82710221 QQ:778039761
  • UCC27322DRG4图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • UCC27322DRG4
  • 数量3000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装公司现货销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • UCC27322DR图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • UCC27322DR
  • 数量5000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 原装正品长期供货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • UCC27322DRG4图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • UCC27322DRG4
  • 数量3000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装公司现货销售
  • QQ:1245773710QQ:1245773710 复制
    QQ:867789136QQ:867789136 复制
  • 0755-82772189 QQ:1245773710QQ:867789136
  • UCC27322DR图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • UCC27322DR
  • 数量12245 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • UCC27322DGNR图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • UCC27322DGNR
  • 数量8500 
  • 厂家TI(德州仪器) 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • UCC27322DGN图
  • 深圳市和诚半导体有限公司

     该会员已使用本站11年以上
  • UCC27322DGN
  • 数量5600 
  • 厂家TI 
  • 封装MSOP-8 
  • 批号23+ 
  • 只做原装正品,深圳现货
  • QQ:2276916927QQ:2276916927 复制
    QQ:1977615742QQ:1977615742 复制
  • 18929336553 QQ:2276916927QQ:1977615742
  • UCC27322D图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • UCC27322D
  • 数量3275 
  • 厂家TI/德州仪器 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • UCC27322D图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • UCC27322D
  • 数量69800 
  • 厂家TI/德州仪器 
  • 封装SOP-8 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • UCC27322DGN图
  • 北京耐芯威科技有限公司

     该会员已使用本站13年以上
  • UCC27322DGN
  • 数量5000 
  • 厂家Texas Instruments 
  • 封装8-MSOP-PowerPad 
  • 批号21+ 
  • 全新原装、现货库存,欢迎询价
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 86-010-010-62104931 QQ:2880824479QQ:1344056792
  • UCC27322DGN图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • UCC27322DGN
  • 数量85450 
  • 厂家TI 
  • 封装SMD 
  • 批号2018+ 
  • TI一级代理商原装进口现货
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • UCC27322D图
  • 集好芯城

     该会员已使用本站13年以上
  • UCC27322D
  • 数量18013 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • UCC27322D图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • UCC27322D
  • 数量11530 
  • 厂家Texas Instruments 
  • 封装8-SOIC(3.9mm寬) 
  • 批号23+ 
  • 全新原装现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • UCC27322D图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • UCC27322D
  • 数量18530 
  • 厂家TI 
  • 封装8-Pin .. 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • UCC27322DGNR图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • UCC27322DGNR
  • 数量30000 
  • 厂家TI/德州仪器 
  • 封装MSOP-8 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • UCC27322DGNR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • UCC27322DGNR
  • 数量7686 
  • 厂家TI(德州仪器) 
  • 封装MSOP8 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • UCC27322D图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • UCC27322D
  • 数量72282 
  • 厂家TI/德州仪器 
  • 封装N/A 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • UCC27322DR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • UCC27322DR
  • 数量66956 
  • 厂家TI 
  • 封装SOP8 
  • 批号2023+ 
  • 绝对原装正品现货,全新深圳原装进口现货
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • UCC27322D图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • UCC27322D
  • 数量12500 
  • 厂家TI/德州仪器 
  • 封装SOIC-8 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • UCC27322D图
  • 深圳市西源信息科技有限公司

     该会员已使用本站9年以上
  • UCC27322D
  • 数量8800 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号最新批号 
  • 原装现货零成本有接受价格就出
  • QQ:3533288158QQ:3533288158 复制
    QQ:408391813QQ:408391813 复制
  • 0755-84876394 QQ:3533288158QQ:408391813
  • UCC27322D图
  • 深圳市昌和盛利电子有限公司

     该会员已使用本站11年以上
  • UCC27322D
  • 数量12568 
  • 厂家TI 
  • 封装MSOP8 
  • 批号▊ NEW ▊ 
  • ▊▊【100%全新原装正品】★长期供应,量大可订!价格优惠!
  • QQ:1551106297QQ:1551106297 复制
    QQ:3059638860QQ:3059638860 复制
  • 0755-23125986 QQ:1551106297QQ:3059638860
  • UCC27322DR图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • UCC27322DR
  • 数量12500 
  • 厂家TI/德州仪器 
  • 封装SOIC-8 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • UCC27322DRBT图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • UCC27322DRBT
  • 数量8320 
  • 厂家TI 
  • 封装SON 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189

产品型号UCC27322D的概述

UCC27322D芯片概述 UCC27322D是一款高性能驱动芯片,广泛应用于电源管理、开关电源、以及电机控制等各种电力电子装置中。作为一款单通道高侧和低侧栅极驱动器,UCC27322D 的设计目标是为开关功率器件(如MOSFET和IGBT)提供快速、低延迟的栅极驱动信号。该设备通过一系列优化的设计参数和电气特性,确保实现良好的开关效率和高频操作能力。 UCC27322D的详细参数 UCC27322D的核心参数包括: 1. 输入电压范围:该芯片的输入电压范围通常为4.5V到15V,适应多种电源电压环境。 2. 输出电流能力:UCC27322D提供高达2A的输出电流,隔离通道可以保护驱动器与负载之间的连接。 3. 工作温度范围:该芯片适用的工作温度范围为-40°C到125°C,确保在极端条件下仍能稳定工作。 4. 传播延迟:传播延迟在典型情况下小于20ns,适合高频开关应用。 5. 输出...

产品型号UCC27322D的Datasheet PDF文件预览

ꢀꢁꢁ ꢂ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢂ ꢃꢄ ꢂꢂ  
ꢀꢁꢁ ꢄ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢄ ꢃꢄ ꢂꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
FEATURES  
APPLICATIONS  
D
D
D
D
D
D
Industry-Standard Pin-Out With Addition of  
Enable Funtion  
D
D
D
D
D
D
Switch Mode Power Supplies  
DC/DC Converters  
High-Peak Current Drive Capability of 9 A at  
the Miller Plateau Region Using TrueDrive  
Motor Controllers  
Class-D Switching Amplifiers  
Line Drivers  
Efficient Constant Current Sourcing Using a  
Unique BiPolar & CMOS Output Stage  
Pulse Transformer Driver  
TTL/CMOS Compatible Inputs Independent  
of Supply Voltage  
DESCRIPTION  
20-ns Typical Rise and Fall Times with 10-nF  
Load  
The UCC37321/2 family of high-speed drivers  
deliver 9 A of peak drive current in an industry  
standard pinout. These drivers can drive the  
largest of MOSFETs for systems requiring  
extreme Miller current due to high dV/dt  
transitions. This eliminates additional external  
circuits and can replace multiple components to  
reduce space, design complexity and assembly  
cost. Two standard logic options are offered,  
Typical Propagation Delay Times of 25 ns  
With Input Falling and 35 ns with Input  
Rising  
D
D
4-V to 15-V Supply Voltage  
Available in Thermally Enhanced MSOP  
TM  
PowerPAD  
Package With 4.7°C/W θjc  
D
Rated From –40°C to 105°C  
Pb-Free Finish (NiPdAu) on SOIC-8 and  
PDIP-8 Packages  
D
inverting  
(UCC37321)  
and  
noninverting  
(UCC37322).  
INPUT/OUTPUT TABLE  
VDD  
1
8
VDD  
ENBL  
IN  
OUT  
INVERTING  
0
0
0
1
0
0
INVERTING  
UCC37321  
7
6
OUT  
OUT  
1
1
0
0
1
1
0
1
0
1
0
1
1
0
0
0
0
1
VDD  
NON−  
INVERTING  
IN  
2
NON−  
INVERTING  
UCC37322  
R
ENBL  
100 k  
ENBL  
AGND  
3
4
5
PGND  
UDG−01112  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPADt is trademarks of Texas Instruments Incorporated.  
ꢑꢙ ꢓ ꢒꢀ ꢁ ꢘꢈ ꢓ ꢉ ꢒ ꢏꢘꢏ ꢜꢝ ꢞ ꢟꢠ ꢡ ꢢꢣ ꢜꢟꢝ ꢜꢤ ꢥꢦ ꢠ ꢠ ꢧꢝꢣ ꢢꢤ ꢟꢞ ꢨꢦꢩ ꢪꢜꢥ ꢢꢣ ꢜꢟꢝ ꢫꢢ ꢣꢧ ꢬ  
ꢑꢠ ꢟ ꢫꢦꢥ ꢣ ꢤ ꢥ ꢟꢝ ꢞꢟ ꢠ ꢡ ꢣ ꢟ ꢤ ꢨꢧ ꢥ ꢜꢞ ꢜꢥꢢ ꢣꢜ ꢟꢝꢤ ꢨꢧ ꢠ ꢣꢭ ꢧ ꢣꢧ ꢠ ꢡꢤ ꢟꢞ ꢘꢧꢮ ꢢꢤ ꢈꢝꢤ ꢣꢠ ꢦꢡ ꢧꢝꢣ ꢤ  
ꢤ ꢣ ꢢ ꢝꢫ ꢢ ꢠꢫ ꢯ ꢢ ꢠꢠ ꢢ ꢝ ꢣꢰꢬ ꢑꢠ ꢟ ꢫꢦꢥ ꢣꢜꢟꢝ ꢨꢠ ꢟꢥ ꢧꢤ ꢤꢜ ꢝꢱ ꢫꢟꢧ ꢤ ꢝꢟꢣ ꢝꢧ ꢥꢧ ꢤꢤ ꢢꢠ ꢜꢪ ꢰ ꢜꢝꢥ ꢪꢦꢫ ꢧ  
ꢣ ꢧ ꢤ ꢣꢜ ꢝꢱ ꢟꢞ ꢢ ꢪꢪ ꢨꢢ ꢠ ꢢ ꢡ ꢧ ꢣ ꢧ ꢠ ꢤ ꢬ  
Copyright 2004, Texas Instruments Incorporated  
1
www.ti.com  
ꢀ ꢁꢁꢂ ꢃ ꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢂ ꢃ ꢄ ꢂ ꢂ  
ꢀꢁ ꢁ ꢄ ꢃꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢄ ꢃ ꢄ ꢂ ꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
description (continued)  
Using a design that inherently minimizes shoot-through current, the outputs of these can provide high gate drive  
current where it is most needed at the Miller plateau region during the MOSFET switching transition. A unique  
hybrid output stage paralleling bipolar and MOSFET transistors (TrueDrive) allows efficient current delivery at  
low supply voltages. With this drive architecture, UCC37321/2/3 can be used in industry standard 6-A, 9-A and  
many 12-A driver applications. Latch up and ESD protection circuitries are also included. Finally, the  
UCC37321/2 provides an enable (ENBL) function to have better control of the operation of the driver  
applications. ENBL is implemented on pin 3 which was previously left unused in the industry standard pin−out.  
It is internally pulled up to Vdd for active high logic and can be left open for standard operation.  
In addition to SOIC-8 (D) and PDIP-8 (P) package offerings, the UCC37321/2 also comes in the thermally  
enhanced but tiny 8-pin MSOP PowerPADt (DGN) package. The PowerPADt package drastically lowers the  
thermal resistance to extend the temperature operation range and improve the long-term reliability.  
}  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
UCCx732x  
−0.3 to 16  
0.6  
UNIT  
V
Supply voltage, V  
DD  
Output current (OUT) DC, I  
OUT_DC  
A
−5 V to 6 V or V +0.3  
DD  
(whichever is larger)  
Input voltage (IN), V  
IN  
V
−0.3 V to 6 V or V +0.3  
DD  
(whichever is larger)  
Enable voltage (ENBL)  
Power dissipation at T = 25°C  
A
650  
3
mW  
W
D package  
DGN package  
350  
mW  
°C  
P package  
Junction operating temperature, T  
−55 to 150  
−65 to 150  
300  
J
Storage temperature, T  
stg  
°C  
Lead temperature (soldering, 10 sec.)  
°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
All voltages are with respect to GND. Currents are positive into, negative out of the specified terminal.  
ordering information  
PACKAGED DEVICES  
OUTPUT  
CONFIGURATION  
TEMPERATURE  
RANGE T = T  
MSOP-8 PowerPAD  
(DGN)  
A
J
SOIC-8 (D)  
PDIP-8 (P)  
−40°C to +105°C  
0°C to +70°C  
UCC27321D  
UCC37321D  
UCC27322D  
UCC37322D  
UCC27321DGN  
UCC37321DGN  
UCC27322DGN  
UCC37322DGN  
UCC27321P  
UCC37321P  
UCC27322P  
UCC37322P  
Inverting  
−40°C to +105°C  
0°C to +70°C  
NonInverting  
D (SOIC−8) and DGN (PowerPAD−MSOP) packages are available taped and reeled. Add R suffix to device type (e.g.  
UCC37321DR, UCC37322DGNR) to order quantities of 2,500 devices per reel.  
2
www.ti.com  
ꢀꢁꢁ ꢂ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢂ ꢃꢄ ꢂꢂ  
ꢀꢁꢁ ꢄ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢄ ꢃꢄ ꢂꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
electrical characteristics, V  
= 4.5 V to 15 V, T = −40°C to 105°C for UCC2732x, T = 0°C to 70°C  
A A  
DD  
for UCC3732x, T = T , (unless otherwise noted)  
A
J
input (IN)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNITS  
VIN_H, logic 1 input threshold  
VIN_L, logic 0 input threshold  
Input current  
2
V
V
1
0 V VIN VDD  
−10  
0
10  
µA  
output (OUT)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
9
MAX  
UNITS  
A
(1)(2)  
Peak output current  
V
DD  
= 14 V,  
VOH, output high level  
VOL, output high level  
Output resistance high  
VOH = VDD – VOUT, IOUT = −10 mA  
IOUT = 10 mA  
150  
11  
300  
25  
mV  
mV  
(3)  
(3)  
IOUT = −10 mA,  
IOUT = 10 mA,  
VDD = 14 V  
VDD = 14 V  
15  
25  
Output resistance low  
1.1  
2.5  
(1)  
latch−up protection  
500  
mA  
overall  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
150  
440  
370  
370  
150  
450  
75  
MAX  
225  
650  
550  
550  
225  
650  
125  
1000  
UNITS  
IN = LO, EN = LO,  
IN = HI, EN = LO,  
IN = LO, EN = HI,  
IN = HI, EN = HI,  
IN = LO, EN = LO,  
IN = HI, EN = LO,  
IN = LO, EN = HI,  
IN = HI, EN = HI,  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 15 V  
= 15 V  
= 15 V  
= 15 V  
= 15 V  
= 15 V  
= 15 V  
= 15 V  
UCC37321  
UCC27321  
I
, static operating current  
DD  
µA  
UCC37322  
UCC27322  
675  
enable (ENBL)  
PARAMETER  
, high-level input voltage  
TEST CONDITION  
MIN  
1.7  
TYP  
2.2  
1.6  
0.55  
100  
60  
MAX  
2.7  
UNITS  
V
V
LO to HI transition  
HI to LO transition  
V
IN_H  
, low-level input voltage  
1.1  
2.0  
IN_L  
V
Hysteresis  
, enable impedance  
0.25  
75  
0.90  
135  
90  
R
V
DD  
= 14 V,  
ENBL = GND  
kΩ  
ENBL  
(5)  
(5)  
t
t
, propagation delay time  
, propagation delay time  
CLOAD = 10 nF  
CLOAD = 10 nF  
D3  
ns  
60  
90  
D4  
NOTES: 1. Ensured by design. Not tested in production.  
2. The pullup / pulldown circuits of the driver are bipolar and MOSFET transistors in parallel. The peak output current rating is the  
combined current from the bipolar and MOSFET transistors.  
3. The pullup / pulldown circuits of the driver are bipolar and MOSFET transistors in parallel. The output resistance is the RDS(ON) of  
the MOSFET transistor when the voltage on the driver output is less than the saturation voltage of the bipolar transistor.  
5. See Figure 2.  
3
www.ti.com  
ꢀ ꢁꢁꢂ ꢃ ꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢂ ꢃ ꢄ ꢂ ꢂ  
ꢀꢁ ꢁ ꢄ ꢃꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢄ ꢃ ꢄ ꢂ ꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
electrical characteristics, V  
= 4.5 V to 15 V, T = −40°C to 105°C for UCC2732x, T = 0°C to 70°C  
A A  
DD  
for UCC3732x, T = T , (unless otherwise noted) (continued)  
A
J
(4)  
switching time  
PARAMETER  
tR, rise time (OUT)  
tF, fall time (OUT)  
TEST CONDITION  
MIN  
TYP  
MAX  
70  
UNITS  
CLOAD = 10 nF  
CLOAD = 10 nF  
CLOAD = 10 nF  
CLOAD = 10 nF  
20  
20  
25  
35  
30  
ns  
tD1, propagation delay, IN rising (IN to OUT)  
tD2, propagation delay, IN falling (IN to OUT)  
70  
70  
NOTES: 4. See Figure 1 for switching waveforms.  
(a)  
(b)  
5V  
IN  
IN  
V
TH  
V
V
t
V
TH  
TH  
TH  
0V  
t
t
t
D1  
D2  
D1  
D2  
t
F
V
DD  
80%  
80%  
80%  
80%  
t
R
t
F
t
OUT  
R
OUT  
20%  
20%  
0V  
(6)  
Figure 1. Switching Waveforms for (a) Inverting Input to (b) Output Times  
5V  
ENBL  
V
IN_L  
V
IN_H  
0V  
t
t
D3  
D4  
V
DD  
80%  
80%  
t
t
F
OUT  
R
20%  
0V  
(6)  
Figure 2. Switching Waveform for Enable to Output  
NOTES: 6. The 20% and 80% thresholds depict the dynamics of the BiPolar output devices that dominate the power MOSFET transition through  
the Miller regions of operation.  
4
www.ti.com  
ꢀꢁꢁ ꢂ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢂ ꢃꢄ ꢂꢂ  
ꢀꢁꢁ ꢄ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢄ ꢃꢄ ꢂꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
pin configurations  
PDIP (P) PACKAGE  
(TOP VIEW)  
SOIC (D) OR MSOP (DGN) PACKAGE  
(TOP VIEW)  
VDD  
IN  
VDD  
OUT  
OUT  
PGND  
1
2
3
4
8
7
6
5
VDD  
IN  
VDD  
OUT  
OUT  
PGND  
8
7
6
5
1
2
3
4
ENBL  
AGND  
ENBL  
AGND  
power dissipation rating table  
Power Rating  
(mW)  
Derating Factor  
Above  
PACKAGE  
SUFFIX  
θjc (5C/W)  
θja (5C/W)  
T
= 705C †  
705C (mW/5C) †  
A
SOIC-8  
PDIP-8  
D
P
42  
49  
84 – 160 }  
110  
344−655 }  
500  
6.25 − 11.9 }  
9
MSOP PowerPAD-8  
DGN  
4.7  
50−59  
1370  
17.1  
125°C operating junction temperature is used for power rating calculations  
The range of values indicates the effect of pc−board. These values are intended to give the system designer an indication  
of the best and worst case conditions. In general, the system designer should attempt to use larger traces on the pc−board  
where possible in order to spread the heat away form the device more effectively. For additional information on device  
temperature management, please refer to Packaging Information section of the Power Supply Control Products Data  
Book, (Ti Literature Number SLUD003).  
terminal functions  
TERMINAL  
FUNCTION  
NO.  
NAME  
I/O  
Common ground for input stage. This ground should be connected very closely to the  
source of the power MOSFET which the driver is driving. Grounds are separated to mini-  
mize ringing affects due to output switching di/dt which can affect the input threshold.  
4
AGND  
Enable input for the driver with logic compatible threshold and hysteresis. The driver output  
can be enabled and disabled with this pin. It is internally pulled up to V  
resistor for active high operation. The output state when the device is disabled will be low  
regardless of the input state.  
with 100-kΩ  
DD  
3
ENBL  
I
2
IN  
I
Input signal of the driver which has logic compatible threshold and hysteresis.  
Driver outputs that must be connected together externally. The output stage is capable of  
providing 9-A peak drive current to the gate of a power MOSFET.  
6, 7  
OUT  
O
Common ground for output stage. This ground should be connected very closely to the  
source of the power MOSFET which the driver is driving. Grounds are separated to mini-  
mize ringing affects due to output switching di/dt which can affect the input threshold.  
5
PGND  
VDD  
I
Supply voltage and the power input connections for this device. Three pins must be con-  
nected together externally.  
1, 8  
5
www.ti.com  
ꢀ ꢁꢁꢂ ꢃ ꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢂ ꢃ ꢄ ꢂ ꢂ  
ꢀꢁ ꢁ ꢄ ꢃꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢄ ꢃ ꢄ ꢂ ꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
general information  
The UCC37321 and UCC37322 drivers serve as an interface between low-power controllers and power  
MOSFETs. They can also be used as an interface between DSPs and power MOSFETs. High-frequency power  
supplies often require high-speed, high-current drivers such as the UCC37321/2 family. A leading application  
is the need to provide a high power buffer stage between the PWM output of the control device and the gates  
of the primary power MOSFET or IGBT switching devices. In other cases, the device drives the power device  
gates through a drive transformer. Synchronous rectification supplies also have the need to simultaneously  
drive multiple devices which can present an extremely large load to the control circuitry.  
The inverting driver (UCC37321) is useful for generating inverted gate drive signals from controllers that have  
only outputs of the opposite polarity. For example, this driver can provide a gate signal for ground referenced,  
N-channel synchronous rectifier MOSFETs in buck derived converters. This driver can also be used for  
generating a gate drive signal for a P-channel MOSFET from a controller that is designed for N-channel  
applications.  
MOSFET gate drivers are generally used when it is not feasible to have the primary PWM regulator device  
directly drive the switching devices for one or more reasons. The PWM device may not have the brute drive  
capability required for the intended switching MOSFET, limiting the switching performance in the application.  
In other cases there may be a desire to minimize the effect of high frequency switching noise by placing the high  
current driver physically close to the load. Also, newer devices that target the highest operating frequencies may  
not incorporate onboard gate drivers at all. Their PWM outputs are only intended to drive the high impedance  
input to a driver such as the UCC37321/2. Finally, the control device may be under thermal stress due to power  
dissipation, and an external driver can help by moving the heat from the controller to an external package.  
input stage  
The IN threshold has a 3.3-V logic sensitivity over the full range of V  
voltages; yet, it is equally compatible  
DD  
with 0 V to V  
signals. The inputs of UCC37321/2 family of drivers are designed to withstand 500-mA reverse  
DD  
current without either damage to the device or logic upset. In addition, the input threshold turn-off of the  
UCC37321/2 has been slightly raised for improved noise immunity. The input stage of each driver should be  
driven by a signal with a short rise or fall time. This condition is satisfied in typical power supply applications,  
where the input signals are provided by a PWM controller or logic gates with fast transition times (<200 ns). The  
IN input of the driver functions as a digital gate, and it is not intended for applications where a slow changing  
input voltage is used to generate a switching output when the logic threshold of the input section is reached.  
While this may not be harmful to the driver, the output of the driver may switch repeatedly at a high frequency.  
Users should not attempt to shape the input signals to the driver in an attempt to slow down (or delay) the signal  
at the output. If limiting the rise or fall times to the power device is desired, then an external resistance can be  
added between the output of the driver and the load device, which is generally a power MOSFET gate. The  
external resistor may also help remove power dissipation from the device package, as discussed in the section  
on Thermal Considerations.  
6
www.ti.com  
ꢀꢁꢁ ꢂ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢂ ꢃꢄ ꢂꢂ  
ꢀꢁꢁ ꢄ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢄ ꢃꢄ ꢂꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
output stage  
The TrueDrive output stage is capable of supplying 9-A peak current pulses and swings to both VDD and GND  
and can encourage even the most stubborn MOSFETs to switch. The pull-up/pull-down circuits of the driver are  
constructed of bipolar and MOSFET transistors in parallel. The peak output current rating is the combined  
current from the bipolar and MOSFET transistors. The output resistance is the R  
of the MOSFET  
DS(ON)  
transistor when the voltage on the driver output is less than the saturation voltage of the bipolar transistor. Each  
output stage also provides a very low impedance to overshoot and undershoot due to the body diode of the  
external MOSFET. This means that in many cases, external-schottky-clamp diodes are not required.  
This unique BiPolar and MOSFET hybrid output architecture (TrueDrive) allows efficient current sourcing at low  
supply voltages. The UCC37321/2 family delivers 9 A of gate drive where it is most needed during the MOSFET  
switching transition – at the Miller plateau region – providing improved efficiency gains.  
source/sink capabilities during miller plateau  
Large power MOSFETs present a significant load to the control circuitry. Proper drive is required for efficient,  
reliable operation. The UCC37321/2 drivers have been optimized to provide maximum drive to a power  
MOSFET during the Miller Plateau Region of the switching transition. This interval occurs while the drain voltage  
is swinging between the voltage levels dictated by the power topology, requiring the charging/discharging of the  
[1]  
drain-gate capacitance with current supplied or removed by the driver device.  
Two circuits are used to test the current capabilities of the UCC37321/2 driver. In each case external circuitry  
is added to clamp the output near 5 V while the device is sinking or sourcing current. An input pulse of 250 ns  
is applied at a frequency of 1 kHz in the proper polarity for the respective test. In each test there is a transient  
period where the current peaked up and then settled down to a steady-state value. The noted current  
measurements are made at a time of 200 ns after the input pulse is applied, after the initial transient.  
The circuit in Figure 3 is used to verify the current sink capability when the output of the driver is clamped around  
5 V, a typical value of gate-source voltage during the Miller Plateau Region. The UCC37321 is found to sink 9 A  
at V  
= 15 V.  
DD  
VDD  
UCC37321  
VDD  
1
2
3
4
VDD  
OUT  
8
7
6
5
INPUT  
D
SCHOTTKY  
10  
IN  
C2  
1 µF  
C3  
100µF  
V
+
SUPPLY  
5.5 V  
OUT  
ENBL  
PGND  
AGND  
V
SNS  
R
SNS  
0.1Ω  
1 µF  
CER  
100µF  
AL EL  
UDG−01113  
Figure 3. Sink Current Test Circuit  
7
www.ti.com  
ꢀ ꢁꢁꢂ ꢃ ꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢂ ꢃ ꢄ ꢂ ꢂ  
ꢀꢁ ꢁ ꢄ ꢃꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢄ ꢃ ꢄ ꢂ ꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
The circuit in Figure 4 is utilized to test the current source capability with the output clamped to around 5 V with  
a string of Zener diodes. The UCC37321 is found to source 9 A at V  
= 15 V.  
DD  
VDD  
UCC37321  
1
2
3
4
VDD  
IN  
VDD  
OUT  
8
7
6
5
INPUT  
D
SCHOTTKY  
C2  
1 µF  
C3  
100 µF  
4.5 V  
OUT  
D
ENBL  
ADJ  
PGND  
AGND  
V
SNS  
R
SNS  
0.1 Ω  
1 µF  
CER  
100 µF  
AL EL  
UDG−01114  
Figure 4. Source Current Test Circuit  
It should be noted that the current sink capability is slightly stronger than the current source capability at lower  
VDD. This is due to the differences in the structure of the bipolar-MOSFET power output section, where the  
current source is a P-channel MOSFET and the current sink has an N-channel MOSFET.  
In a large majority of applications it is advantageous that the turn-off capability of a driver is stronger than the  
turn-on capability. This helps to ensure that the MOSFET is held OFF during common power supply transients  
which may turn the device back ON.  
operational circuit layout  
It can be a significant challenge to avoid the overshoot/undershoot and ringing issues that can arise from circuit  
layout. The low impedance of these drivers and their high di/dt can induce ringing between parasitic inductances  
and capacitances in the circuit. Utmost care must be used in the circuit layout.  
In general, position the driver physically as close to its load as possible. Place a 1-µF bypass capacitor as close  
to the output side of the driver as possible, connecting it to pins 1 and 8. Connect a single trace between the  
two VDD pins (pin 1 and pin 8); connect a single trace between PGND and AGND (pin 5 and pin 4). If a ground  
plane is used, it may be connected to AGND; do not extend the plane beneath the output side of the package  
(pins 5 − 8). Connect the load to both OUT pins (pins 7 and 6) with a single trace on the adjacent layer to the  
component layer; route the return current path for the output on the component side, directly over the output  
path.  
Extreme conditions may require decoupling the input power and ground connections from the output power and  
ground connections. The UCCx7321/2 has a feature that allows the user to take these extreme measures, if  
necessary. There is a small amount of internal impedance of about 15 between the AGND and PGND pins;  
there is also a small amount of impedance (30 ) between the two VDD pins. In order to take advantage of  
this feature, connect a 1-µF bypass capacitor between VDD and PGND (pins 5 and 8) and connect a 0.1-µF  
bypass capacitor between VDD and AGND (pins 1 and 4). Further decoupling can be achieved by connecting  
between the two VDD pins with a jumper that passes through a 40-MHz ferrite bead and connect bias power  
only to pin 8. Even more decoupling can be achieved by connecting between AGND and PGND with a pair of  
anti-parallel diodes (anode connected to cathode and cathode connected to anode).  
8
www.ti.com  
ꢀꢁꢁ ꢂ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢂ ꢃꢄ ꢂꢂ  
ꢀꢁꢁ ꢄ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢄ ꢃꢄ ꢂꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
VDD  
Although quiescent VDD current is very low, total supply current will be higher, depending on OUTA and OUTB  
current and the operating frequency. Total VDD current is the sum of quiescent VDD current and the average  
OUT current. Knowing the operating frequency and the MOSFET gate charge (Qg), average OUT current can  
be calculated from:  
I
= Qg x f, where f is frequency  
OUT  
For the best high-speed circuit performance, two V  
bypass capacitors are recommended tp prevent noise  
DD  
problems. The use of surface mount components is highly recommended. A 0.1-µF ceramic capacitor should  
be located closest to the VDD to ground connection. In addition, a larger capacitor (such as 1-µF) with relatively  
low ESR should be connected in parallel, to help deliver the high current peaks to the load. The parallel  
combination of capacitors should present a low impedance characteristic for the expected current levels in the  
driver application.  
drive current and power requirements  
The UCC37321/2 family of drivers are capable of delivering 9-A of current to a MOSFET gate for a period of  
several hundred nanoseconds. High peak current is required to turn an N-channel device ON quickly. Then, to  
turn the device OFF, the driver is required to sink a similar amount of current to ground. This repeats at the  
operating frequency of the power device. An N-channel MOSFET is used in this discussion because it is the  
most common type of switching device used in high frequency power conversion equipment.  
References 1 and 2 contain detailed discussions of the drive current required to drive a power MOSFET and  
other capacitive−input switching devices. Much information is provided in tabular form to give a range of the  
current required for various devices at various frequencies. The information pertinent to calculating gate drive  
current requirements will be summarized here; the original document is available from the TI website.  
When a driver device is tested with a discrete, capacitive load it is a fairly simple matter to calculate the power  
that is required from the bias supply. The energy that must be transferred from the bias supply to charge the  
capacitor is given by:  
1
2
2
E + CV , where C is the load capacitor and V is the bias voltage feeding the driver.  
There is an equal amount of energy transferred to ground when the capacitor is discharged. This leads to a  
power loss given by the following:  
1
2
2
P + 2   CV f, where f is the switching frequency.  
This power is dissipated in the resistive elements of the circuit. Thus, with no external resistor between the driver  
and gate, this power is dissipated inside the driver. Half of the total power is dissipated when the capacitor is  
charged, and the other half is dissipated when the capacitor is discharged. An actual example using the  
conditions of the previous gate drive waveform should help clarify this.  
With V  
= 12 V, C  
= 10 nF, and f = 300 kHz, the power loss can be calculated as:  
DD  
LOAD  
2
P = 10 nF x (12) x (300 kHz) = 0.432 W  
With a 12-V supply, this would equate to a current of:  
0.432 W  
12 V  
P
V
I +  
+
+ 0.036 A  
9
www.ti.com  
ꢀ ꢁꢁꢂ ꢃ ꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢂ ꢃ ꢄ ꢂ ꢂ  
ꢀꢁ ꢁ ꢄ ꢃꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢄ ꢃ ꢄ ꢂ ꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
drive current and power requirements (continued)  
The switching load presented by a power MOSFET can be converted to an equivalent capacitance by examining  
the gate charge required to switch the device. This gate charge includes the effects of the input capacitance  
plus the added charge needed to swing the drain of the device between the ON and OFF states. Most  
manufacturers provide specifications that provide the typical and maximum gate charge, in nC, to switch the  
device under specified conditions. Using the gate charge Qg, one can determine the power that must be  
dissipated when charging a capacitor. This is done by using the equivalence Qg = CeffV to provide the following  
equation for power:  
2
P + C   V   f + Q   V   f  
g
This equation allows a power designer to calculate the bias power required to drive a specific MOSFET gate  
at a specific bias voltage.  
enable  
UCC37321/2 provides an Enable input for improved control of the driver operation. This input also incorporates  
logic compatible thresholds with hysteresis. It is internally pulled up to V  
with 100-kresistor for active high  
DD  
operation. When ENBL is high, the device is enabled and when ENBL is low, the device is disabled. The default  
state of the ENBL pin is to enable the device and therefore can be left open for standard operation. The output  
state when the device is disabled is low regardless of the input state. See the truth table below for the operation  
using enable logic.  
ENBL input is compatible with both logic signals and slow changing analog signals. It can be directly driven or  
a power−up delay can be programmed with a capacitor between ENBL and AGND.  
Table 1. Input/Ouput Table  
ENBL  
IN  
OUT  
0
0
0
1
0
0
INVERTING  
UCC37321  
1
1
0
0
1
1
0
1
0
1
0
1
1
0
0
0
0
1
NON−  
INVERTING  
UCC37322  
10  
www.ti.com  
ꢀꢁꢁ ꢂ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢂ ꢃꢄ ꢂꢂ  
ꢀꢁꢁ ꢄ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢄ ꢃꢄ ꢂꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
THERMAL INFORMATION  
The useful range of a driver is greatly affected by the drive power requirements of the load and the thermal  
characteristics of the device package. In order for a power driver to be useful over a particular temperature range  
the package must allow for the efficient removal of the heat produced while keeping the junction temperature  
within rated limits. The UCC37321/2 family of drivers is available in three different packages to cover a range  
of application requirements.  
As shown in the power dissipation rating table, the SOIC-8 (D) and PDIP-8 (P) packages each have a power  
rating of around 0.5 W with T = 70°C. This limit is imposed in conjunction with the power derating factor also  
A
given in the table. Note that the power dissipation in our earlier example is 0.432 W with a 10-nF load, 12 VDD,  
switched at 300 kHz. Thus, only one load of this size could be driven using the D or P packag. The difficulties  
with heat removal limit the drive available in the D or P packages.  
The MSOP PowerPAD-8 (DGN) package significantly relieves this concern by offering an effective means of  
removing the heat from the semiconductor junction. As illustrated in Reference 3, the PowerPAD packages offer  
a leadframe die pad that is exposed at the base of the package. This pad is soldered to the copper on the PC  
board directly underneath the device package, reducing the θjc down to 4.7°C/W. Data is presented in  
Reference 3 to show that the power dissipation can be quadrupled in the PowerPAD configuration when  
compared to the standard packages. The PC board must be designed with thermal lands and thermal vias to  
complete the heat removal subsystem, as summarized in Reference 4. This allows a significant improvement  
in heatsinking over that available in the D or P packages, and is shown to more than double the power capability  
of the D and P packages.  
Note that the PowerPADt is not directly connected to any leads of the package. However, it is electrically and  
thermally connected to the substrate which is the ground of the device.  
references  
1. SEM-1400, Topic 2, A Design and Application Guide for High Speed Power MOSFET Gate Drive Circuits,  
TI Literature No. SLUP133  
2. U−137, Practical Considerations in High Performance MOSFET, IGBT and MCT Gate Drive Circuits, by Bill  
Andreycak, TI Literature No. SLUA105  
3. Technical Brief, PowerPad Thermally Enhanced Package, TI Literature No. SLMA002  
4. Application Brief, PowerPAD Made Easy, TI Literature No. SLMA004  
related products  
PRODUCT  
DESCRIPTION  
Dual 4-A Low-Side Drivers  
PACKAGES  
MSOP−8 PowerPAD, SOIC−8, PDIP−8  
MSOP−8 PowerPAD, SOIC−8, PDIP−8  
TSSOP−8, SOIC−8, PDIP−8  
TSSOP−8, SOIC−8, PDIP−8  
5-Pin SOT−23  
UCC37323/4/5  
UCC27423/4/5  
TPS2811/12/13  
TPS2814/15  
Dual 4-A Low-Side Drivers with Enable  
Dual 2-A Low-Side Drivers with Internal Regulator  
Dual 2-A Low-Side Drivers with Two Inputs per Channel  
Single 2-A Low-Side Driver with Internal Regulator  
Single 2-A Low-Side Driver  
TPS2816/17/18/19  
TPS2828/29  
5-Pin SOT−23  
11  
www.ti.com  
ꢀ ꢁꢁꢂ ꢃ ꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢂ ꢃ ꢄ ꢂ ꢂ  
ꢀꢁ ꢁ ꢄ ꢃꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢄ ꢃ ꢄ ꢂ ꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
INPUT CURRENT IDLE  
vs  
SUPPLY VOLTAGE (UCCx7321)  
INPUT CURRENT IDLE  
vs  
SUPPLY VOLTAGE (UCCx7322)  
700  
600  
700  
600  
ENBL = 0 V  
IN = 5 V  
ENBL = 0 V  
IN = 5 V  
500  
400  
500  
400  
ENBL = V  
DD  
IN = 5 V  
ENBL = 0 V  
IN = 0 V  
300  
200  
300  
200  
ENBL = 0 V  
IN = 0 V  
ENBL =V  
DD  
IN = 5 V  
ENBL = V , IN = 0 V  
DD  
100  
0
100  
0
ENBL = V , IN = 0 V  
DD  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
V
DD  
− Supply Voltage − V  
V
DD  
− Supply Voltage − V  
Figure 5  
Figure 6  
INPUT CURRENT IDLE  
vs  
TEMPERATURE (UCCx7322)  
INPUT CURRENT IDLE  
vs  
TEMPERATURE (UCCx7321)  
800  
800  
ENBL = HI  
IN = HI  
700  
600  
700  
600  
ENBL = HI  
IN = LO  
ENBL = LO  
IN = HI  
ENBL = HI  
IN = HI  
ENBL = LO  
IN = HI  
500  
500  
400  
300  
400  
300  
ENBL = LO  
IN = LO  
ENBL = LO  
IN = LO  
ENBL = HI  
IN = LO  
200  
100  
200  
100  
0
0
−50  
−25  
0
25  
50  
75  
100  
125  
−50  
−25  
0
T
25  
50  
75  
100  
125  
T
J
−Temperature − °C  
−Temperature − °C  
J
Figure 7  
Figure 8  
12  
www.ti.com  
ꢀꢁꢁ ꢂ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢂ ꢃꢄ ꢂꢂ  
ꢀꢁꢁ ꢄ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢄ ꢃꢄ ꢂꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
RISE TIME  
vs  
SUPPLY VOLTAGE  
FALL TIME  
vs  
SUPPLY VOLTAGE  
70  
60  
70  
60  
C
= 10 nF  
LOAD  
t
= −40°C  
A
50  
40  
50  
40  
t
= 105°C  
A
t
= 25°C  
A
30  
20  
30  
20  
t
= 105°C  
A
t
= 25°C  
A
t
= 0°C  
10  
0
A
10  
0
t
= 0°C  
A
t
= −40°C  
A
4
6
8
10  
12  
14  
16  
4
6
8
10  
12  
14  
16  
V
DD  
− Supply Voltage − V  
V
DD  
− Supply Voltage − V  
Figure 9  
Figure 10  
FALL TIME  
vs  
OUTPUT CAPACITANCE  
RISE TIME  
vs  
LOAD CAPACITANCE  
200  
160  
40  
30  
20  
10  
0
V
DD  
= 5 V  
V
DD  
= 5 V  
V
= 10 V  
= 15 V  
DD  
V
DD  
V
DD  
= 10 V  
120  
V
= 15 V  
DD  
80  
40  
0
1
10  
100  
1
10  
− Load Capacitance − nF  
100  
C
− Load Capacitance − nF  
LOAD  
C
LOAD  
Figure 12  
Figure 11  
13  
www.ti.com  
ꢀ ꢁꢁꢂ ꢃ ꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢂ ꢃ ꢄ ꢂ ꢂ  
ꢀꢁ ꢁ ꢄ ꢃꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢄ ꢃ ꢄ ꢂ ꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
t
DELAY TIME  
vs  
t
DELAY TIME  
vs  
D1  
D2  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
70  
60  
70  
C
= 10 nF  
C
= 10 nF  
LOAD  
LOAD  
t
= 105°C  
A
60  
50  
40  
t
= 105°C  
A
t
= 25°C  
A
50  
40  
t
= 25°C  
A
30  
20  
30  
20  
t
= 0°C  
A
t
= −40°C  
A
t
= −40°C  
A
10  
0
10  
0
t
= 0°C  
A
4
6
8
10  
12  
14  
16  
4
6
8
10  
12  
14  
16  
V
DD  
− Supply Voltage − V  
V
DD  
− Supply Voltage − V  
Figure 13  
Figure 14  
t
DELAY TIME  
t
DELAY TIME  
D1  
D2  
vs  
LOAD CAPACITANCE  
vs  
LOAD CAPACITANCE  
70  
70  
V
DD  
= 5 V  
60  
60  
50  
40  
30  
50  
40  
30  
V
DD  
= 10 V  
V
DD  
= 5 V  
V
DD  
= 15 V  
V
DD  
= 10 V  
20  
10  
20  
10  
V
DD  
= 15 V  
0
0
1
10  
− Load Capacitance − nF  
100  
1
10  
100  
C
C
− Load Capacitance − nF  
LOAD  
LOAD  
Figure 15  
Figure 16  
14  
www.ti.com  
ꢀꢁꢁ ꢂ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢂ ꢃꢄ ꢂꢂ  
ꢀꢁꢁ ꢄ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢄ ꢃꢄ ꢂꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
INPUT THRESHOLD  
vs  
TEMPERATURE  
PROPAGATION TIMES  
vs  
PEAK INPUT VOLTAGE  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
50  
45  
40  
V
= 15 V  
= 10 nF  
= 25°C  
DD  
C
LOAD  
t
D2  
V
= 15 V  
T
DD  
A
t
RISE  
35  
30  
25  
20  
V
DD  
= 10 V  
15  
10  
V
DD  
= 4.5 V  
t
FALL  
t
D1  
5
0
−50  
−25  
0
25  
50  
75  
100  
125  
0
5
10  
− Peak Input Voltage − V  
15  
V
T
− Temperature − °C  
IN(peak)  
J
Figure 17  
Figure 18  
ENABLE RESISTANCE  
vs  
ENABLE THRESHOLD AND HYSTERESIS  
vs  
TEMPERATURE  
TEMPERATURE  
150  
140  
130  
3.0  
ENBL − ON  
2.5  
120  
110  
2.0  
1.5  
1.0  
100  
90  
80  
70  
60  
50  
ENBL − OFF  
0.5  
0
ENBL − HYSTERESIS  
−50  
−25  
0
T
25  
50  
75  
100  
125  
−50  
−25  
0
25  
50  
75  
100  
125  
− Temperature − °C  
T
− Temperature − °C  
J
J
Figure 19  
Figure 20  
15  
www.ti.com  
ꢀ ꢁꢁꢂ ꢃ ꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢂ ꢃ ꢄ ꢂ ꢂ  
ꢀꢁ ꢁ ꢄ ꢃꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢄ ꢃ ꢄ ꢂ ꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
OUTPUT BEHAVIOR  
vs  
OUTPUT BEHAVIOR  
vs  
V
(UCC37321)  
V
(UCC37321)  
DD  
DD  
IN = GND  
ENBL = V  
IN = GND  
ENBL = V  
DD  
DD  
OUT  
V
DD  
OUT  
0 V  
0 V  
V
DD  
10 nF Between Output and GND  
10 nF Between Output and GND  
50 µs/div  
50 µs/div  
Figure 21  
Figure 22  
OUTPUT BEHAVIOR  
vs  
VDD (INVERTING)  
OUTPUT BEHAVIOR  
vs  
VDD (INVERTING)  
IN = V  
ENBL = V  
IN = V  
ENBL = V  
DD  
DD  
DD  
DD  
V
DD  
V
DD  
OUT  
OUT  
0 V  
0 V  
10 nF Between Output and GND  
10 nF Between Output and GND  
50 µs/div  
50 µs/div  
Figure 23  
Figure 24  
16  
www.ti.com  
ꢀꢁꢁ ꢂ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢂ ꢃꢄ ꢂꢂ  
ꢀꢁꢁ ꢄ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢄ ꢃꢄ ꢂꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
OUTPUT BEHAVIOR  
vs  
VDD (UCC37322)  
OUTPUT BEHAVIOR  
vs  
VDD (UCC37322)  
IN = V  
ENBL = V  
IN = GND  
IN = V  
ENBL = V  
IN = GND  
DD  
DD  
DD  
DD  
-
-
V
DD  
V
DD  
OUT  
OUT  
0 V  
0 V  
10 nF Between Output and GND  
10 nF Between Output and GND  
50 µs/div  
50 µs/div  
Figure 25  
Figure 26  
OUTPUT BEHAVIOR  
vs  
OUTPUT BEHAVIOR  
vs  
VDD (NON-INVERTING)  
VDD (NON-INVERTING)  
IN = GND  
ENBL = VDD  
IN = GND  
ENBL = VDD  
VDD  
VDD  
OUT  
OUT  
0 V  
0 V  
10 nF Between Output and GND  
10 nF Between Output and GND  
50 µs/div  
50 µs/div  
Figure 27  
Figure 28  
17  
www.ti.com  
ꢀ ꢁꢁꢂ ꢃ ꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢂ ꢃ ꢄ ꢂ ꢂ  
ꢀꢁ ꢁ ꢄ ꢃꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢄ ꢃ ꢄ ꢂ ꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
8 PINS SHOWN  
0.020 (0,51)  
0.014 (0,35)  
0.050 (1,27)  
0.010 (0,25)  
8
5
0.244 (6,20)  
0.228 (5,80)  
0.008 (0,20) NOM  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
1
4
0.010 (0,25)  
0°− 8°  
A
0.044 (1,12)  
0.016 (0,40)  
Seating Plane  
0.010 (0,25)  
0.069 (1,75) MAX  
0.004 (0,10)  
0.004 (0,10)  
PINS **  
8
14  
16  
DIM  
A MAX  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/E 09/01  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
18  
www.ti.com  
ꢀꢁꢁ ꢂ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢂ ꢃꢄ ꢂꢂ  
ꢀꢁꢁ ꢄ ꢃꢄ ꢂ ꢅ ꢆ ꢀꢁ ꢁꢄ ꢃꢄ ꢂꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
MECHANICAL DATA  
DGN (MSOP)  
PowerPADPLASTIC SMALL-OUTLINE PACKAGE  
0,38  
0,25  
0,65  
M
0,25  
8
5
Thermal Pad  
(See Note F)  
0,15 NOM  
3,05  
2,95  
4,98  
4,78  
Gage Plane  
0,25  
0°ā6°  
1
4
0,69  
0,41  
3,05  
2,95  
Seating Plane  
0,10  
0,15  
0,05  
1,07 MAX  
4073271/A 04/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions include mold flash or protrusions.  
D. The package thermal performance may be enhanced by attaching an external heat sink to the thermal pad.  
This pad is electrically and thermally connected to the backside of the die.  
E. Falls within JEDEC MO-187  
F. The PowerPADis not directly connected to any leads of the package. However, it is electrically and thermally connected to the  
substrate which is the ground of the device. The exposed pad dimension is 1.3 mm x 1.7 mm. However, the tolerances can be  
+1.05/−0.05 mm (+ 41 / −2 mils) due to position and mold flow variation.  
G. For additional information on the PowerPADt package and how to take advantage of its heat dissipating abilities, refer to Technical  
Brief, PowerPad Thermally Enhanced Package, Texas Instrument s Literature No. SLMA002 and Application Brief, PowerPad Made  
Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.  
PowerPAD is a trademark of Texas Instruments Incorporated.  
19  
www.ti.com  
ꢀ ꢁꢁꢂ ꢃ ꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢂ ꢃ ꢄ ꢂ ꢂ  
ꢀꢁ ꢁ ꢄ ꢃꢄ ꢂ ꢅꢆ ꢀ ꢁ ꢁꢄ ꢃ ꢄ ꢂ ꢂ  
SLUS504C − SEPTEMBER 2002 − REVISED NOVEMBER 2004  
MECHANICAL DATA  
P (PDIP)  
PLASTIC DUAL-IN-LINE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.325 (8,26)  
0.300 (7,62)  
0.020 (0,51) MIN  
0.015 (0,38)  
Gage Plane  
0.200 (5,08) MAX  
Seating Plane  
0.010 (0,25) NOM  
0.125 (3,18) MIN  
0.100 (2,54)  
0.021 (0,53)  
0.430 (10,92)  
MAX  
0.010 (0,25)  
M
0.015 (0,38)  
4040082/D 05/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm  
20  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  
配单直通车
UCC27322D产品参数
型号:UCC27322D
Brand Name:Texas Instruments
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
IHS 制造商:TEXAS INSTRUMENTS INC
零件包装代码:SOIC
包装说明:SOP, SOP8,.25
针数:8
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
Factory Lead Time:6 weeks
风险等级:0.94
高边驱动器:NO
接口集成电路类型:BUFFER OR INVERTER BASED MOSFET DRIVER
JESD-30 代码:R-PDSO-G8
JESD-609代码:e4
长度:4.9 mm
湿度敏感等级:1
功能数量:1
端子数量:8
最高工作温度:105 °C
最低工作温度:-40 °C
输出特性:TOTEM-POLE
最大输出电流:9 A
标称输出峰值电流:9 A
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装等效代码:SOP8,.25
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):260
电源:4.5/15 V
认证状态:Not Qualified
座面最大高度:1.75 mm
子类别:MOSFET Drivers
最大压摆率:0.65 mA
最大供电电压:15 V
最小供电电压:4.5 V
标称供电电压:14 V
表面贴装:YES
技术:BICMOS
温度等级:INDUSTRIAL
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
断开时间:0.07 µs
接通时间:0.07 µs
宽度:3.9 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!