欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • UCC28600DR图
  • 深圳市创德丰电子有限公司

     该会员已使用本站15年以上
  • UCC28600DR 现货库存
  • 数量30000 
  • 厂家TI 
  • 封装SOP8 
  • 批号22+ 
  • 一定原装正品/香港现货
  • QQ:2851807192QQ:2851807192 复制
    QQ:2851807191QQ:2851807191 复制
  • 86-755-83226910, QQ:2851807192QQ:2851807191
  • UCC28600D图
  • 集好芯城

     该会员已使用本站13年以上
  • UCC28600D 现货库存
  • 数量29190 
  • 厂家TI(德州仪器) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • UCC28600DR图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • UCC28600DR 现货库存
  • 数量21000 
  • 厂家TI/德州仪器 
  • 封装SOP-8 
  • 批号23+ 
  • 代理原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • UCC28600DR图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • UCC28600DR 现货库存
  • 数量36000 
  • 厂家TI 
  • 封装SOIC-8 
  • 批号2021+ 
  • 一级代理销售元器件芯片原装进口现货
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • UCC28600DR图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • UCC28600DR 现货库存
  • 数量48000 
  • 厂家TI 
  • 封装SOIC-8 
  • 批号NEW 
  • █★█★假一罚十,最新到货原装现货
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • UCC28600D图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • UCC28600D 现货库存
  • 数量23200 
  • 厂家TI 
  • 封装N/A 
  • 批号21+ 
  • 全新原装有现货库存--价格有优势
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • UCC28600D图
  • 深圳市高捷芯城科技有限公司

     该会员已使用本站11年以上
  • UCC28600D 现货库存
  • 数量5115 
  • 厂家TI(德州仪器) 
  • 封装SOP-8 
  • 批号23+ 
  • 百分百原装正品,可原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83062789 QQ:3007977934QQ:3007947087
  • UCC28600DR图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • UCC28600DR 现货库存
  • 数量3678 
  • 厂家TI 
  • 封装SOIC--8 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • UCC28600DR图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • UCC28600DR 现货库存
  • 数量125000 
  • 厂家TI/德州仪器 
  • 封装SOIC-8 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • UCC28600DR图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • UCC28600DR 现货库存
  • 数量32500 
  • 厂家TI 
  • 封装SOIC8 
  • 批号新年份 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • UCC28600D图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • UCC28600D 现货库存
  • 数量18500 
  • 厂家TI(德州仪器) 
  • 封装SOIC-8 
  • 批号23+ 
  • ★★全网低价,原装原包★★
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • UCC28600DR图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • UCC28600DR 现货库存
  • 数量36000 
  • 厂家TI 
  • 封装SOP-8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • UCC28600D图
  • 香港钜辉电子有限公司

     该会员已使用本站8年以上
  • UCC28600D 现货库存
  • 数量
  • 厂家09+ 
  • 封装25 
  • 批号 
  • 原装现货
  • QQ:2293525527QQ:2293525527 复制
    QQ:78076240QQ:78076240 复制
  • 13724455578 QQ:2293525527QQ:78076240
  • UCC28600DRG4图
  • 深圳德田科技有限公司

     该会员已使用本站7年以上
  • UCC28600DRG4 现货库存
  • 数量5200 
  • 厂家TI 
  • 封装NA 
  • 批号22+ 
  • 原装现货质量保证,可出样品可开税票
  • QQ:229754250QQ:229754250 复制
  • 0755-83254070 QQ:229754250
  • UCC28600D图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • UCC28600D 现货库存
  • 数量75 
  • 厂家TI 
  • 封装SOIC (D) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • UCC28600DR图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • UCC28600DR 现货库存
  • 数量10442 
  • 厂家TI 
  • 封装SOP-8 
  • 批号24+ 
  • 全新原装,特价,假一罚十
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • UCC28600DR图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • UCC28600DR 现货库存
  • 数量32560 
  • 厂家TI 
  • 封装SOP8 
  • 批号2024+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • UCC28600DG4图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • UCC28600DG4 热卖库存
  • 数量525 
  • 厂家TI 
  • 封装SOP-8 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!单价:19元
  • QQ:97877807QQ:97877807 复制
  • 171-4755-1968(微信同号) QQ:97877807
  • UCC28600DR图
  • 深圳市创德丰电子有限公司

     该会员已使用本站15年以上
  • UCC28600DR
  • 数量30000 
  • 厂家TI 
  • 封装SOP8 
  • 批号22+ 
  • 一定原装正品/香港现货
  • QQ:2851807192QQ:2851807192 复制
    QQ:2851807191QQ:2851807191 复制
  • 86-755-83226910, QQ:2851807192QQ:2851807191
  • UCC28600DR图
  • 深圳市宇集芯电子有限公司

     该会员已使用本站6年以上
  • UCC28600DR
  • 数量90000 
  • 厂家TI 
  • 封装SOP8 
  • 批号23+ 
  • 一级代理进口原装现货、假一罚十价格合理
  • QQ:1157099927QQ:1157099927 复制
    QQ:2039672975QQ:2039672975 复制
  • 0755-2870-8773手机微信同号13430772257 QQ:1157099927QQ:2039672975
  • UCC28600DR图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • UCC28600DR
  • 数量62048 
  • 厂家TI(德州仪器) 
  • 封装SOIC8 
  • 批号23+ 
  • 原厂可订货,技术支持,直接渠道。可签保供合同
  • QQ:3007947087QQ:3007947087 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83061789 QQ:3007947087QQ:3007947087
  • UCC28600D图
  • 集好芯城

     该会员已使用本站13年以上
  • UCC28600D
  • 数量12884 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • UCC28600DR图
  • 深圳市惠诺德电子有限公司

     该会员已使用本站7年以上
  • UCC28600DR
  • 数量29500 
  • 厂家TI 
  • 封装SOP-8 
  • 批号21+ 
  • 只做原装现货代理
  • QQ:1211267741QQ:1211267741 复制
    QQ:1034782288QQ:1034782288 复制
  • 159-7688-9073 QQ:1211267741QQ:1034782288
  • UCC28600D图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • UCC28600D
  • 数量9328 
  • 厂家TI-德州仪器 
  • 封装SOP-8.贴片 
  • 批号▉▉:2年内 
  • ▉▉¥11.9元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • UCC28600DG4图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • UCC28600DG4
  • 数量9328 
  • 厂家TI-德州仪器 
  • 封装SOP-8.贴片 
  • 批号▉▉:2年内 
  • ▉▉¥6.8元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • UCC28600D图
  • 深圳市珩瑞科技有限公司

     该会员已使用本站2年以上
  • UCC28600D
  • 数量75 
  • 厂家TI 
  • 封装SOP8 
  • 批号21+ 
  • 只做原装正品,支持实单
  • QQ:2938238007QQ:2938238007 复制
    QQ:1840507767QQ:1840507767 复制
  • -0755-82578309 QQ:2938238007QQ:1840507767
  • UCC28600D图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • UCC28600D
  • 数量6500 
  • 厂家TI 
  • 封装SOP8 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • UCC28600DR图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • UCC28600DR
  • 数量15000 
  • 厂家TI/德州仪器 
  • 封装SOP8 
  • 批号23+ 
  • 全新原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • UCC28600DG4图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • UCC28600DG4
  • 数量15000 
  • 厂家TI 
  • 封装SMD 
  • 批号2018+ 
  • TI一级代理商专营进口原装现货假一赔十
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • UCC28600D图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • UCC28600D
  • 数量28555 
  • 厂家TI/德州仪器 
  • 封装SOIC-8 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • UCC28600D图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • UCC28600D
  • 数量3026 
  • 厂家TI 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151

产品型号UCC28600D的概述

引言 随着现代电子设备对电源转换效率和稳定性的越来越高的要求,各种高效能电源管理IC(集成电路)应运而生。UCC28600D便是其中一款广受欢迎的解决方案,专门设计用于离线电源转换器。其核心功能在于能够实现高效的反激式(Flyback)变换,适用于工业、家电、通信等众多领域。 UCC28600D的概述 UCC28600D是一款高集成度的PWM(脉宽调制)控制器,专为离线反激式转换器设计。该芯片采用了创新的控制技术,灵活地支持宽输入电压范围,使其能够配合相应的功率MOSFET实现高于90%的效率。这种设计能够为USB、LED驱动及各种低功耗应用提供成本效益高且高效的解决方案。通过其在工作模式上的灵活性以及对负载变化响应的快速性,UCC28600D可确保输出电压的稳定性及负载电流的变化不影响输出品质。 UCC28600D的详细参数 UCC28600D的关键参数包括: - 输入电压范围:8...

产品型号UCC28600D的Datasheet PDF文件预览

UCC28600  
www.ti.com  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
8-Pin Quasi-Resonant Flyback Green-Mode Controller  
Check for Samples: UCC28600  
1
FEATURES  
APPLICATIONS  
2
Green-Mode Controller With Advanced Energy  
Saving Features  
Bias Supplies for LCD-Monitors, LCD-TV,  
PDP-TV, and Set Top Boxes  
Quasi-Resonant Mode Operation for Reduced  
EMI and Low Switching Losses (Low Voltage  
Switching)  
AC/DC Adapters and Offline Battery Chargers  
Energy Efficient Power Supplies up to 200 W  
Low Standby Current for System No-Load  
Power Consumption  
Low Startup Current: 25 μA Maximum  
Programmable Overvoltage Protection, Line  
and Load  
Internal Overtemperature Protection  
Current Limit Protection  
DESCRIPTION  
The UCC28600 is a PWM controller with advanced  
energy features to meet stringent world-wide energy  
efficiency requirements.  
UCC28600 integrates built-in advanced energy  
saving features with high level protection features to  
provide cost effective solutions for energy efficient  
power supplies. UCC28600 incorporates frequency  
fold back and green mode operation to reduce the  
operation frequency at light load and no load  
operations.  
Cycle-by-Cycle Power Limit  
Primary-Side Overcurrent Hiccup Restart  
Mode  
1-A Sink TrueDrive, -0.75-A Source Gate  
UCC28600 is offered in the 8-pin SOIC (D) package.  
Operating junction temperature range is -40°C to  
105°C.  
Drive Output  
Programmable Soft-Start  
Green-Mode Status Pin (PFC Disable Function)  
.
.
TYPICAL APPLICATION  
Primary  
NP  
Secondary  
CBULK  
RSU  
NS  
NB  
CB  
18 V  
ROVP1  
UCC28600  
CSS  
1
2
3
4
SS STATUS  
8
7
6
5
CVDD  
UCC28051  
1
2
3
4
VO_SNS VCC  
8
7
6
5
FB  
OVP  
VDD  
OUT  
ROVP2  
COMP  
DRV  
CS  
MULTIN GND  
GND  
Feedback  
M1  
CS  
ZCD  
CBP  
RPL  
RCS  
TL431  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
TrueDrive is a trademark of Texas Instruments.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 20052011, Texas Instruments Incorporated  
UCC28600  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
www.ti.com  
DESCRIPTION (CONT.)  
The Design Calculator, (Texas Instruments Literature number SLVC104), located in the Tools and Software  
section of the UCC28600 product folder, provides a user-interactive iterative process for selecting recommended  
component values for an optimal design.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted(1)  
UCC28600  
32  
UNIT  
V
VDD  
Supply voltage range  
Supply current  
IDD < 20 mA  
IDD  
20  
mA  
IOUT(sink)  
IOUT(source)  
Output sink current (peak)  
Output source current (peak)  
Analog inputs  
1.2  
A
V
-0.8  
FB, CS, SS  
-0.3 to 6.0  
-1.0 to 6.0  
-1.0  
VOVP  
IOVP(source)  
VSTATUS  
mA  
V
VDD = 0 V to 30 V  
30  
Power dissipation  
SOIC-8 package, TA = 25°C  
650  
mW  
TJ  
Operating junction temperature range  
Storage temperature  
55 to 150  
65 to 150  
300  
Tstg  
TLEAD  
°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
(1) Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditionsis not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages  
are with respect to GND. Currents are positive into, negative out of the specified terminal. Consult Packaging Section of the databook  
for thermal limitations and considerations of packages.  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM  
MAX  
UNIT  
V
VDD  
IOUT  
TJ  
Input voltage  
21  
Output sink current  
0
A
Operating junction temperature  
-40  
105  
°C  
ELECTROSTATIC DISCHARGE (ESD) PROTECTION  
MIN  
MAX  
UNIT  
Human body model  
CDM  
2000  
1500  
V
2
Copyright © 20052011, Texas Instruments Incorporated  
UCC28600  
www.ti.com  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
ELECTRICAL CHARACTERISTICS  
VDD = 15 V, 0.1-μF capacitor from VDD to GND, 3.3-nF capacitor from SS to GND charged over 3.5 V, 500-resistor from  
OVP to -0.1 V, FB = 4.8 V, STATUS = not connected, 1-nF capacitor from OUT to GND, CS = GND, TA = -40°C to 105°C,  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Overall  
ISTARTUP  
ISTANDBY  
Startup current  
Standby current  
VDD = VUVLO -0.3 V  
12  
350  
2.5  
5.0  
26  
25  
μA  
VFB = 0 V  
550  
Not switching  
3.5  
mA  
7.0  
IDD  
Operating current  
VDD clamp  
130 kHz, QR mode  
FB = GND, IDD = 10 mA  
21  
32  
V
Undervoltage Lockout  
VDD(uvlo)  
Startup threshold  
10.3  
6.3  
13.0  
8
15.3  
9.3  
Stop threshold  
Hysteresis  
V
ΔVDD(uvlo)  
PWM (Ramp)(1)  
DMIN  
4.0  
5.0  
6.0  
Minimum duty cycle  
Maximum duty cycle  
VSS = GND, VFB = 2 V  
0%  
DMAX  
QR mode, fS = max, (open loop)  
99%  
Oscillator (OSC)  
fQR(max)  
Maximum QR and DCM frequency  
Minimum QR and FFM frequency  
Soft start frequency  
117  
32  
130  
40  
143  
fQR(min)  
VFB = 1.3 V  
48 kHz  
48  
fSS  
VSS = 2.0 V  
32  
40  
dTS/dFB  
Feedback (FB)  
RFB  
VCO gain  
TS for 1.6 V < VFB < 1.8 V  
-38  
-30  
-22 μs/V  
Feedback pullup resistor  
FB, no load  
12  
3.30  
0.3  
20  
4.87  
0.5  
28  
6.00  
0.7  
kΩ  
VFB  
QR mode  
Green-mode ON threshold  
Green-mode OFF threshold  
Green-mode hysteresis  
FB threshold burst-ON  
FB threshold burst-OFF  
Burst Hysteresis  
VFB threshold  
VFB threshold  
1.2  
1.4  
1.6  
VFB threshold  
0.7  
0.9  
1.1  
V
VFB during green mode  
VFB during green mode  
VFB during green mode  
0.3  
0.5  
0.7  
0.5  
0.7  
0.9  
0.13  
0.25  
0.42  
Status  
RDS(on)  
STATUS on resistance  
VSTATUS = 1 V  
1.0  
2.4  
3.8  
2.0  
kΩ  
μA  
ISTATUS(leakage)  
STATUS leakage/off current  
VFB = 0.44 V, VSTATUS = 15 V  
-0.1  
(1) RSCT and CCST are not connected in the circuit for maximum and minimum duty cycle tests, current sense tests and power limit tests.  
Copyright © 20052011, Texas Instruments Incorporated  
3
UCC28600  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
VDD = 15 V, 0.1-μF capacitor from VDD to GND, 3.3-nF capacitor from SS to GND charged over 3.5 V, 500-resistor from  
OVP to -0.1 V, FB = 4.8 V, STATUS = not connected, 1-nF capacitor from OUT to GND, CS = GND, TA = -40°C to 105°C,  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Current Sense (CS)(2)  
ACS(FB)  
Gain, FB = ΔVFB / ΔVCS  
QR mode  
2.5  
1.25  
175  
V/V  
Shutdown threshold  
VFB = 2.4 V, VSS = 0 V  
CS = 1.0 VPULSE  
1.13  
100  
1.38  
300  
V
CS to output delay time (power limit)  
ns  
CS to output delay time (over current  
fault)  
CS = 1.45 VPULSE  
50  
100  
150  
CS discharge impedance  
CS offset  
CS = 0.1 V, VSS = 0 V  
25  
115  
250  
VCS(os)  
SS mode, VSS 2.0 V, via FB  
0.35  
0.40  
0.45  
V
Power Limit (PL)(2)  
IPL(cs)  
CS current  
OVP = -300 μA  
-165  
0.70  
1.05  
-150  
0.81  
1.20  
-135  
0.92  
1.37  
μA  
CS working range  
PL threshold  
QR mode, peak CS voltage  
Peak CS voltage + CS offset  
V
VPL  
Soft Start (SS)  
ISS(chg)  
ISS(dis)  
Softstart charge current  
Softstart discharge current  
Switching ON threshold  
VSS = GND  
-8.3  
2.0  
0.8  
-6.0  
5.0  
1.0  
-4.5  
10  
μA  
mA  
V
VSS = 0.5 V  
VSS  
Output switching start  
1.2  
Overvoltage Protection (OVP)  
IOVP(line)  
VOVP(on)  
VOVP(load)  
Line overvoltage protection  
IOVP threshold, OUT = HI  
-512  
-125  
3.37  
-450  
3.75  
-370  
-25  
μA  
mV  
V
VFB = 4.8 V, VSS = 5.0 V, IOVP(on), = -300  
μA  
OVP voltage at OUT = HIGH  
Load overvoltage protection  
VOVP threshold, OUT = LO  
4.13  
Thermal Protection (TSP)  
Thermal shutdown (TSP) temperature(3)  
130  
140  
15  
150  
°C  
Thermal shutdown hysteresis  
OUT  
tRISE  
tFALL  
Rise time  
Fall time  
10% to 90% of 13 V typical out clamp  
50  
10  
75  
20  
ns  
(2) RSCT and CCST are not connected in the circuit for maximum and minimum duty cycle tests, current sense tests and power limit tests.  
(3) Ensured by design. Not production tested.  
4
Copyright © 20052011, Texas Instruments Incorporated  
UCC28600  
www.ti.com  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
OPEN LOOP TEST CIRCUIT  
R
5 V  
+
CST  
37.4 k  
UCC28600  
See Note  
SS  
1
2
3
4
8
7
6
5
STATUS  
STATUS  
C
CST  
C
3.3 nF  
SS  
R
500 Ω  
OVP  
560 pF  
See Note  
I
I
OVP  
V
V
FB  
FB  
OVP  
V
OVP  
C
47 pF  
FB  
CS  
VDD  
V
DD  
CS  
I
DD  
CS  
GND  
OUT  
V
OUT  
R
GND  
OUT  
10 Ω  
C
DD  
100 nF  
C
OUT  
1.0 nF  
C
BIAS  
1 µF  
NOTE  
RCST and CCST are not connected for maximum and minimum duty cycle tests, current  
sense tests and power limit tests.  
BLOCK DIAGRAM/TYPICAL APPLICATION  
RSU  
CBULK  
RVDD  
CVDD  
ROVP1  
OVP  
VDD  
ROVP2  
6
7
UCC28600  
+
26 V  
UVLO  
5.0  
VREF  
REF  
13/8 V  
On-Chip  
Thermal  
Shutdown  
Fault Logic  
REF_OK  
OVR_T  
UVLO  
QR DETECT  
____  
OUT  
LOAD_OVP  
LOAD_OVP  
LINE_OVP  
CS  
VDD  
LINE_OVP  
CS  
STATUS  
8
1
STATUS  
SS_DIS  
SS_OVR  
BURST  
RUN  
BURST  
QR_DONE  
OSCILLATOR  
RUN  
SS_OVR QR_DONE  
OSC_CL CLK  
SS  
REF  
OUT  
CSS  
5
SET  
D
Q
Q
+
CLR  
GREEN MODE  
OSC_CL  
FB  
FB_CLAMP  
PL  
CS  
REF  
1.2 V  
3
4
GAIN = 1/2.5  
Modulation  
Comparison  
RPL  
RCS  
20 kW  
Feedback  
FB  
2
+
1.5R  
GND  
R
400 mV  
Copyright © 20052011, Texas Instruments Incorporated  
5
UCC28600  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
www.ti.com  
ORDERING INFORMATION  
PACKAGES  
TA  
PART NUMBER  
-40°C to 105°C  
SOIC (D)(1)  
UCC28600D  
(1) SOIC (D) package is available taped and reeled by adding Rto the above part numbers. Reeled quantities for UCC28600DR is 2,500  
devices per reel.  
DEVICE INFORMATION  
UCC28600  
D PACKAGE  
(TOP VIEW)  
SS  
FB  
CS  
STATUS  
OVP  
VDD  
1
2
3
4
8
7
6
5
GND  
OUT  
TERMINAL FUNCTIONS  
TERMINAL  
I/O DESCRIPTION  
NAME  
NO.  
Current sense input. Also programs power limit, and used to control modulation and activate overcurrent  
protection. The CS voltage input originates across a current sense resistor and ground. Power limit is  
programmed with an effective series resistance between this pin and the current sense resistor.  
CS  
3
I
I
Feedback input or control input from the optocoupler to the PWM comparator used to control the peak current  
in the power MOSFET. An internal 20-kresistor is between this pin and the internal 5-V regulated voltage.  
Connect the collector of the photo-transistor of the feedback optocoupler directly to this pin; connect the emitter  
of the photo-transistor to GND. The voltage of this pin controls the mode of operation in one of the three  
modes: quasi resonant (QR), frequency foldback mode (FFM) and green mode (GM).  
FB  
2
Ground for internal circuitry. Connect a ceramic 0.1-μF bypass capacitor between VDD and GND, with the  
capacitor as close to these two pins as possible.  
GND  
OUT  
4
5
-
1-A sink (TrueDrive) and 0.75-A source gate drive output. This output drives the power MOSFET and  
switches between GND and the lower of VDD or the 13-V internal output clamp.  
O
Over voltage protection (OVP) input senses line-OVP, load-OVP and the resonant trough for QR turn-on.  
Detect line, load and resonant conditions using the primary bias winding of the transformer, adjust sensitivity  
with resistors connected to this pin.  
OVP  
SS  
7
1
I
I
Soft-start programming pin. Program the soft-start rate with a capacitor to ground; the rate is determined by the  
capacitance and the internal soft-start charge current. Placement of the soft-start capacitor is critical and should  
be placed as close as possible to the SS pin and GND, keeping trace length to a minimum. All faults discharge  
the SS pin to GND through an internal MOSFET with an RDS(on) of approximately 100 . The internal modulator  
comparator reacts to the lowest of the SS voltage, the internal FB voltage and the peak current limit.  
ACTIVE HIGH open drain signal that indicates the device has entered standby mode. This pin can be used to  
disable the PFC control circuit (high impedance = green mode). STATUS pin is high during UVLO, (VDD <  
startup threshold), and softstart, (SS < FB).  
STATUS  
VDD  
8
6
O
I
Provides power to the device. Use a ceramic 0.1-μF by-pass capacitor for high-frequency filtering of the VDD  
pin, as described in the GND pin description. Operating energy is usually delivered from auxiliary winding. To  
prevent hiccup operation during start-up, a larger energy storage cap is also needed between VDD and GND.  
6
Copyright © 20052011, Texas Instruments Incorporated  
UCC28600  
www.ti.com  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
TERMINAL COMPONENTS  
TERMINAL  
I/O DESCRIPTION(1) (2) (3)  
NAME  
NO.  
ǒV  
CS(os)ǓǒICS(2) CS(1)Ǔ  
* V  
* I  
PL  
R
+
CS  
I
I
* I  
I
CS(2) P(1)  
CS(1) P(2)  
(1)  
ǒV  
CS(os)ǓǒIP(2) P(1)Ǔ  
* V  
* I  
PL  
R
+
PL  
I
I
* I  
I
CS(1) P(2)  
CS(2) P(1)  
CS  
3
I
where:  
(3)  
IP1 is the peak primary current at low line, full load  
IP2 is the peak primary current at high line, full load(3)  
ICS1 is the power limit current that is sourced at the CS pin at low-line voltage(3)  
ICS2 is the power limit current that is sourced at the CS pin at high-line voltage(3)  
VPL is the Power Limit (PL) threshold(2)  
VCS(os) is the CS offset voltage(2)  
FB  
2
4
5
I
-
Opto-isolator collector  
GND  
OUT  
Bypass capacitor to VDD, CBP = 0.1 μF  
Power MOSFET gate  
O
N
1
B
ǒ Ǔ  
R
+
V
OVP1  
BULK(ov)  
I
N
OVP(line)  
P
ȡ
ȧ
N
Ȣ
ȣ
V
OVP(load)  
ȧ
R
+ R  
OVP2  
OVP1  
ȧN  
ȧ
B
S
ǒV  
FǓ* V  
) V  
OUT(shutdown)  
OVP(load)  
Ȥ
OVP  
7
I
where:  
IOVP(line) is OVPline current threshold(2)  
(3)  
VBULK(ov) is the allowed input over- voltage level  
(2)  
VOVP(load) is OVPload  
VOUT(shutdown) is the allowed output over-voltage level(3)  
VF is the forward voltage of the secondary rectifier  
NB is the number of turns on the bias winding(3)  
NS is the number of turns on the secondary windings(3)  
NP is the number of turns on the primary windings(3)  
(1) Refer to Figure 1 for all reference designators in the Terminal Components Table.  
(2) Refer to the Electrical Characteristics Table for constant parameters.  
(3) Refer to the UCC28600 Design Calculator (TI Literature Number SLVC104) or laboratory measurements for currents, voltages and times  
in the operational circuit.  
Copyright © 20052011, Texas Instruments Incorporated  
7
UCC28600  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
www.ti.com  
TERMINAL COMPONENTS (continued)  
TERMINAL  
I/O DESCRIPTION(1) (2) (3)  
NAME  
NO.  
(
)
t
due power limit  
SS(min)  
C
u I  
 
SS  
SS  
  ǒV  
CS(os)Ǔ  
A
* V  
PL  
CS(FB)  
where tSS(min) is the greater of:  
2
ȱ* R  
ȧ
Ȳ
ȳ
ȣ
ȡ
ǒV  
OUT(step)Ǔ  
* DV  
C
OUT  
LOAD(ss) OUT  
t
+
ȏn 1 *  
ȧ
ȧ
ȧ
SS(min)  
2
R
P
LOAD(ss)  
Ȣ
OUT(max)limit
Ȥ  
ȴ
or  
SS  
1
I
2
C
V
ȱ
ȧ
Ȳ
OUT ȳ  
OUT  
t
+
ȧ
SS(min)  
2 P  
LIM  
ȴ
(2)  
RLOAD(ss) is the effective load impedance during soft-start(4)  
ΔVOUT(step) is the allowed change in VOUT due to a load step(4)  
(4)  
POUT(max limit) Programmed power limit level, in W  
ACS(FB) is the current sense gain(5)  
VCS(os) is the CS offset voltage(5)  
ISS is the soft-start charging current(5)  
VPL is the power limit threshold(5)  
V
BE(off)  
R
+
ST2  
I
STATUS(leakage)  
I
CC  
R
 
VDD  
* V  
* R  
 
ǒ Ǔ * R  
V
DS(on) BE(sat)  
ƪ
ƫ
ST2  
(uvlo*on)  
BE(sat)  
DS(on)  
b
sat  
R
+
ST1  
I
CC  
ǒ Ǔ  
  R  
) V  
BE(sat)  
ǒ Ǔ  
ST2  
b
STATUS  
8
O
sat  
where:  
βSAT is the gain of transistor QST in saturation  
VBE(sat) is the base-emitter voltage of transistor QST in saturation  
VDD(uvlo-on) is the startup threshold(5)  
ICC is the collector current of QST  
ISTATUS(leakage) is the maximum leakage/off current of the STATUS pin(5)  
VBE(off) is the maximum allowable voltage across the base emitter junction that will not turn QST on  
RDS(on) is the RDS(on) of STATUS(5)  
(4) Refer to the UCC28600 Design Calculator (TI Literature Number SLVC104) or laboratory measurements for currents, voltages and times  
in the operational circuit.  
(5) Refer to the Electrical Characteristics Table for constant parameters.  
8
Copyright © 20052011, Texas Instruments Incorporated  
UCC28600  
www.ti.com  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
TERMINAL COMPONENTS (continued)  
TERMINAL  
I/O DESCRIPTION(1) (2) (3)  
NAME  
NO.  
CVDD is the greater of:  
T
BURST  
ǒI  
OUT(hi) QR(max)Ǔ  
C
+
) C  
V
f
ƪ
ƫ
VDD  
DD  
ISS  
DV  
DD(burst)  
or  
t
SS  
ǒI  
OUT(hi) QR(max)Ǔ  
C
+
) C  
V
f
ƪ
ƫ
VDD  
DD  
ISS  
DVDD  
(uvlo)  
(3)  
ȡ
NP
Ȣ  
LEAKAGEǒC ) C  
Ǔȣ  
SNUB ȧ  
Ȥ
DS1(os) QR(max) ǸL  
ǒV  
f
D
N
p
B
ǒ Ǔ  
ǒ Ǔ  
R
+
ȧ
VDD  
4
I
) C  
V
f
DD  
ISS OUT(hi) QR(max)  
V
BULK(min)  
VDD  
6
I
R
+
SU  
I
STARTUP  
where:  
IDD is the operating current of the UCC28600(6)  
CISS is the input capacitance of MOSFET M1  
VOUT(hi) is VOH of the OUT pin, either 13 V (typ) VOUT clamp or less as measured  
fQR(max) is fS at high line, maximum load(6)  
TBURST is the measured burst mode period  
ΔVDD(burst) is the allowed VDD ripple during burst mode  
ΔVDD(uvlo) is the UVLO hysteresis(6)  
VDS1(os) is the amount of drain-source overshoot voltage  
LLEAKAGE is the leakage inductance of the primary winding  
CD is the total drain node capacitance of MOSFET M1  
ISTARTUP is IDD start-up current of the UCC28600(6)  
CSNUB is the snubber capacitor value  
tSS is the soft start charge time(7)  
(6) Refer to the Electrical Characteristics Table for constant parameters.  
(7) Refer to the UCC28600 Design Calculator (TI Literature Number SLVC104) or laboratory measurements for currents, voltages and times  
in the operational circuit.  
Copyright © 20052011, Texas Instruments Incorporated  
9
UCC28600  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
www.ti.com  
PFC OUTPUT  
or  
BRIDGE RECTIFIER  
PRIMARY  
SECONDARY  
+
+
VOUT  
N1  
RSU  
RSNUB  
CSNUB  
CBULK  
N2  
ROUT  
VBULK  
COUT  
-
-
D2  
D1  
RVDD  
CVDD  
NB  
CBIAS  
PFC CONTROLLER BIAS  
(if used)  
QST  
ROVP1  
RST2  
RST1  
ICC  
UCC28600  
1
SS  
STATUS  
8
CSS  
FEEDBACK  
2
3
4
FB  
OVP  
VDD  
OUT  
7
6
5
ROVP2  
CS  
M1  
GND  
TL431  
CBP  
100nF  
RPL  
RCS  
Figure 1. Pin Termination Schematic  
10  
Copyright © 20052011, Texas Instruments Incorporated  
UCC28600  
www.ti.com  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
APPLICATION INFORMATION  
Functional Description  
The UCC28600 is a multi-mode controller, as illustrated in Figure 3 and Figure 4. The mode of operation  
depends upon line and load conditions. Under all modes of operation, the UCC28600 terminates the OUT = HI  
signal based on the switch current. Thus, the UCC28600 always operates in current mode control so that the  
power MOSFET current is always limited.  
Under normal operating conditions, the FB pin commands the operating mode of the UCC28600 at the voltage  
thresholds shown in Figure 2. Soft-start and fault responses are the exception. Soft-start mode hard-switch  
controls the converter at 40 kHz. The soft-start mode is latched-OFF when VFB becomes less than VSS for the  
first time after UVLOON. The soft-start state cannot be recovered until after passing UVLOOFF, and then, UVLOON  
.
At normal rated operating loads (from 100% to approximately 30% full rated power) the UCC28600 controls the  
converter in quasi-resonant mode (QRM) or discontinuous conduction mode (DCM), where DCM operation is at  
the clamped maximum switching frequency (130 kHz). For loads that are between approximately 30% and 10%  
full rated power, the converter operates in frequency foldback mode (FFM), where the peak switch current is  
constant and the output voltage is regulated by modulating the switching frequency for a given and fixed VIN.  
Effectively, operation in FFM results in the application of constant volt-seconds to the flyback transformer each  
switching cycle. Voltage regulation in FFM is achieved by varying the switching frequency in the range from 130  
kHz to 40 kHz. For extremely light loads (below approximately 10% full rated power), the converter is controlled  
using bursts of 40-kHz pulses. Keep in mind that the aforementioned boundaries of steady-state operation are  
approximate because they are subject to converter design parameters.  
Refer to the typical applications block diagram for the electrical connections to implement the features.  
FFM  
GreenMode  
QR Mode or DCM Mode  
GreenMode  
Hysteresis  
Burst  
Hysteresis  
VFB  
0V 0.50V.7V  
1.4V  
2.0V  
4.0V  
5.0V  
Figure 2. Mode Control with FB Pin Voltage  
Copyright © 20052011, Texas Instruments Incorporated  
11  
 
UCC28600  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
www.ti.com  
START  
Continuous Fault  
Monitor  
N
RUN = Logic Low  
STATUS = Hi Z  
VDD < 8V?  
REF < 4V?  
Y
VDD > 13V?  
OVP = Logic High?  
OT = Logic High?  
OC = Logic High  
N
Y
RUN = Logic High  
STATUS = Hi Z  
Soft Start  
RUN = Logic Low  
Monitor V FB  
V FB < 1.4V  
1.4V < V FB < 2.0V  
V FB > 2.0V  
Fixed V/s  
40kHz  
STATUS = 0V  
(In Run-Mode)  
STATUS = 0V  
(In Run-Mode)  
Fixed V/s  
Freq. Foldback  
(Light Load)  
Quasi-Resonant  
Mode or DCM  
(Normal Load)  
N
V FB < 0.5V  
Y
Zero Pulses  
STATUS = Hi Z  
(In Green-Mode)  
STATUS = 0V  
(In Run-Mode)  
Fixed V-sec  
40kHz Burst  
N
Y
Y
N
VFB > 1.5V?  
VFB > 1.2V?  
Figure 3. Control Flow Chart  
12  
Copyright © 20052011, Texas Instruments Incorporated  
 
UCC28600  
www.ti.com  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
DCM  
SS Mode  
QR Mode  
(Valley Switching, VS)  
Green Mode  
FFM, (VS)  
(maximum fs)  
(Fixed f  
)
SW  
fsw  
(VS)  
f
=
MAX  
Oscillator Frequency  
(130 kHz)  
This mode applies bursts of  
40kHz soft−start pulses to the  
power MOSFET gate. The  
average fsw is shown in this  
operating mode.  
f
GRMODE_MX  
(40 kHz)  
f
SS  
(40 kHz)  
f
QR_MIN  
Internally Limit-  
ed to 40 kHz  
t
t
V
FB  
Hysteretic  
Transition into  
Green Mode  
Burst Hysteresis  
V
OUT  
t
V
STATUS  
Green Mode,  
PFC bias OFF  
t
t
Load shown is slightly  
less than overcurrent  
threshold  
Regular Operation  
IC Off  
Fixed Frequency  
Softstart  
Green Mode  
Frequency  
Foldback  
P
OUT  
P
OUT, (max)  
t
Figure 4. Operation Mode Switching Frequencies  
Copyright © 20052011, Texas Instruments Incorporated  
13  
 
UCC28600  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
www.ti.com  
Details of the functional boxes in the Block Diagram/Typical Application drawing are shown in Figure 5, Figure 6,  
Figure 7 and Figure 8. These figures conceptualize how the UCC28600 executes the command of the FB voltage  
to have the responses that are shown in Figure 2, Figure 3 and Figure 4. The details of the functional boxes also  
conceptualize the various fault detections and responses that are included in the UCC28600. During all modes of  
operation, this controller operates in current mode control. This allows the UCC28600 to monitor the FB voltage  
to determine and respond to the varying load levels such as heavy, light or ultra-light.  
Quasi-resonant mode and DCM occurs for feedback voltages VFB between 2.0 V and 4.0 V, respectively. In turn,  
the CS voltage is commanded to be between 0.4 V and 0.8 V. A cycle-by-cycle power limit imposes a fixed 0.8-V  
limit on the CS voltage. An overcurrent shutdown threshold in the fault logic gives added protection against  
high-current, slew-rate shorted winding faults, shown in Figure 8. The power limit feature in the QR DETECT  
circuit of Figure 7 adds an offset to the CS signal that is proportional to the line voltage. The power limit feature is  
programmed with RPL, as shown in the typical applications diagram.  
REF  
Oscillator  
OSC Peak  
Comparator  
+
4.0V  
SS_OVR  
S
R
Q
Q
QR_DONE  
OSC_CL  
CLK  
+
130 kHz OSC  
Clamp  
Comparator  
0.1V  
+
OSC Valley  
Comparator  
RUN  
Figure 5. Oscillator Details  
Mode Clamps  
1.4 V  
OSC_CL  
+
+
450 k  
100 kΩ  
100 kΩ  
450 kΩ  
FB  
2.0 V  
FB_CL  
+
Figure 6. Mode Clamp Details  
14  
Copyright © 20052011, Texas Instruments Incorporated  
 
 
UCC28600  
www.ti.com  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
CIN  
RSU  
NP  
NS  
COUT  
CVDD  
Auxiliary  
Winding  
ROVP1  
NB  
ROVP2  
VDD  
OVP  
7
UCC28600  
QR Detect  
0.1 V  
Slope  
-0.1 V  
0.1 V  
+
+
+
RCS  
QR_DONE  
(Oscillator)  
OUT (From Driver)  
LOAD_OVP  
(Fault Logic)  
+
+
+
REF (5 V)  
3.75 V  
ILINE  
RPL1  
REF (5 V)  
ILINE  
Power Limit  
Offset  
LINE_OVP  
(Fault Logic)  
ILINE  
2
0.45 V  
1 kW  
Burst  
(from FAULT logic)  
1
0
CS  
CS  
3
RPL2  
Figure 7. QR Detect Details  
Copyright © 20052011, Texas Instruments Incorporated  
15  
 
UCC28600  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
www.ti.com  
UCC28600  
UVLO  
Fault Logic  
REF  
SET  
REF_OK  
D
Q
Thermal  
Shutdown  
OVR_T  
Q
CLR  
RUN  
LINE_OVP  
REF  
(5 V)  
(QR Detect)  
SS/DIS  
LOAD_OVP  
(QR Detect)  
Over−Current  
Shutdown  
20 k  
S
Q
Q
BURST  
+
0.5 V/0.7 V  
+
R
Burst  
FB  
1.25 V  
Power−Up Reset  
8
3
STATUS  
7
+
0.5 V/1.4 V  
FB  
SS_OVR  
CS  
CS  
Figure 8. Fault Logic Details  
Quasi-Resonant / DCM Control  
Quasi-resonant (QR) and DCM operation occur for feedback voltages VFB between 2.0 V and 4.0 V. In turn, the  
peak CS voltage is commanded to be between 0.4 V and 0.8 V. During this control mode, the rising edge of OUT  
always occurs at the valley of the resonant ring after demagnetization. Resonant valley switching is an integral  
part of QR operation. Resonant valley switching is also imposed if the system operates at the maximum  
switching frequency clamp. In other words, the frequency varies in DCM operation in order to have the switching  
event occur on the first resonant valley that occurs after a 7.7-μs (130-kHz) interval. Notice that the CS pin has  
an internal dependent current source, 1/2 ILINE. This current source is part of the cycle-by-cycle power limit  
function that is discussed in the Protection Features section.  
Frequency Foldback Mode Control  
Frequency foldback mode uses elements of the FAULT LOGIC, shown in Figure 8 and the mode clamp circuit,  
shown in Figure 6. At the minimum operating frequency, the internal oscillator sawtooth waveform has a peak of  
4.0 V and a valley of 0.1 V. When the FB voltage is between 2.0 V and 1.4 V, the FB_CL signal in Figure 6  
commands the oscillator in a voltage controlled oscillator (VCO) mode by clamping the peak oscillator voltage.  
The additional clamps in the OSCILLATOR restrict VCO operation between 40 kHz and 130 kHz. The FB_CL  
voltage is reflected to the modulator comparator effectively clamping the reflected CS command to 0.4 V.  
Green-Mode Control  
Green mode uses element of the fault logic, shown in Figure 8 and the mode clamps circuit, shown in Figure 6.  
The OSC_CL signal clamps the Green-mode operating frequency at 40 kHz. Thus, when the FB voltage is  
between 1.4 V and 0.5 V, the controller is commanding an excess of energy to be transferred to the load which  
in turn, drives the error higher and FB lower. When FB reaches 0.5 V, OUT pulses are terminated and do not  
resume until FB reaches 0.7 V. In this mode, the converter operates in hysteretic control with the OUT pulse  
terminated at a fixed CS voltage level of 0.4 V. The power limit offset is turned OFF during Green mode and it  
returns to ON when FB is above 1.4 V, as depicted in Figure 8. Green mode reduces the average switching  
frequency in order to minimize switching losses and increase the efficiency at light load conditions.  
16  
Copyright © 20052011, Texas Instruments Incorporated  
 
UCC28600  
www.ti.com  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
Fault Logic  
Advanced logic control coordinates the fault detections to provide proper power supply recovery. This provides  
the conditioning for the thermal protection. Line overvoltage protection (line OVP) and load OVP are  
implemented in this block. It prevents operation when the internal reference is below 4.5 V. If a fault is detected  
in the thermal shutdown, line OVP, load OVP, or REF, the UCC28600 undergoes a shutdown/retry cycle.  
Refer to the fault logic diagram in Figure 8 and the QR detect diagram in Figure 7 to program line OVP and load  
OVP. To program the load OVP, select the ROVP1 ROVP2 divider ratio to be 3.75 V at the desired output  
shut-down voltage. To program line OVP, select the impedance of the ROVP1 ROVP2 combination to draw 450  
μA when the VOVP is 0.45 V during the ON-time of the power MOSFET at the highest allowable input voltage.  
Oscillator  
The oscillator, shown in Figure 5, is internally set and trimmed so it is clamped by the circuit in Figure 5 to a  
nominal 130-kHz maximum operating frequency. It also has a minimum frequency clamp of 40 kHz. If the FB  
voltage tries to drive operation to less than 40 kHz, the converter operates in green mode.  
Status  
The STATUS pin is an open drain output, as shown in Figure 8. The status output goes into the OFF-state when  
FB falls below 0.5 V and it returns to the ON-state (low impedance to GND) when FB rises above 1.4 V. This pin  
is used to control bias power for a PFC stage, as shown in Figure 9. Key elements for implementing this function  
include QST, RST1 and RST2, as shown in the figure. Resistors RST1 and RST2 are selected to saturate QST when it  
is desirable for the PFC to be operational. During green mode, the STATUS pin becomes a high impedance and  
RST1 causes QST to turn-OFF, thus saving bias power. If necessary, use a zener diode and a resistor (DZ1 and  
RCC) to maintain VCC in the safe operating range of the PFC controller. Note the DVDD - CVDD combination is in  
addition to the standard DBIAS - CBIAS components. This added stage is required to isolate the STATUS circuitry  
from the startup resistor, RSU, to ensure there is no conduction through STATUS when VDD is below the UVLO  
turn-on threshold.  
Primary  
Secondary  
CBULK  
NP  
NS  
RSU  
DBIAS  
To Zero  
Current  
Detection  
RVCC  
Q1  
NB  
DVDD  
CBIAS  
RST2  
RST1  
10 V  
DZ1  
UCC28600  
STATUS  
M2  
UCC28051  
VCC  
8
6
Feedback  
8
2
4
FB  
CVDD  
M1  
RCS  
VDD  
CVCC  
0.1 mF  
GND  
TL431  
GND  
5
Figure 9. Using STATUS for PFC Shut-Down During Green Mode  
Copyright © 20052011, Texas Instruments Incorporated  
17  
 
UCC28600  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
www.ti.com  
Operating Mode Programming  
Boundaries of the operating modes are programmed by the flyback transformer and the four components RPL,  
RCS, ROVP1 and ROVP2; shown in the Block Diagram/Application drawing.  
The transformer characteristics that predominantly affect the modes are the magnetizing inductance of the  
primary and the magnitude of the output voltage, reflected to the primary. To a lesser degree (yet significant), the  
boundaries are affected by the MOSFET output capacitance and transformer leakage inductance. The design  
procedure here is to select a magnetizing inductance and a reflected output voltage that operates at the  
DCM/CCM boundary at maximum load and maximum line. The actual inductance should be noticeably smaller to  
account for the ring between the magnetizing inductance and the total stray capacitance measured at the drain  
of the power MOSFET. This programs the QR/DCM boundary of operation. All other mode boundaries are preset  
with the thresholds in the oscillator and green-mode blocks.  
The four components RPL, RCS, ROVP1 and ROVP2 must be programmed as a set due to the interactions of the  
functions. The use of the UCC28600 design calculator, TI Literature Number SLVC104, is highly recommended  
in order to achieve the desired results with a careful balance between the transformer parameters and the  
programming resistors.  
Protection Features  
The UCC28600 has many protection features that are found only on larger, full featured controllers. Refer to the  
Block Diagram/Typical Application and Figures 1, 4, 5, 6 and 7 for detailed block descriptions that show how the  
features are integrated into the normal control functions.  
Overtemperature  
Overtemperature lockout typically occurs when the substrate temperature reaches 140°C. Retry is allowed if the  
substrate temperature reduces by the hysteresis value. Upon an overtemperature fault, CSS on softstart is  
discharged and STATUS is forced to a high impedance.  
18  
Copyright © 20052011, Texas Instruments Incorporated  
UCC28600  
www.ti.com  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
Cycle-by-Cycle Power Limit  
The cycle terminates when the CS voltage plus the power limit offset exceeds 1.2 V.  
In order to have power limited over the full line voltage range of the QR Flyback converter, the CS pin voltage  
must have a component that is proportional to the primary current plus a component that is proportional to the  
line voltage due to predictable switching frequency variations due to line voltage. At power limit, the CS pin  
voltage plus the internal CS offset is compared against a constant 1.2-V reference in the PWM comparator. Thus  
during cycle-by-cycle power limit, the peak CS voltage is typically 0.8 V.  
The current that is sourced from the OVP pin (ILINE) is reflected to a dependent current source of ½ ILINE, that is  
connected to the CS pin. The power limit function can be programmed by a resistor, RPL, that is between the CS  
pin and the current sense resistor. The current, ILINE, is proportional to line voltage by the transformer turns ratio  
NB/NP and resistor ROVP1. Current ILINE is programmed to set the line over voltage protection. Resistor RPL results  
in the addition of a voltage to the current sense signal that is proportional to the line voltage. The proper amount  
of additional voltage has the effect of limiting the power on a cycle-by-cycle basis. Note that RCS, RPL, ROVP1 and  
ROVP2 must be adjusted as a set due to the functional interactions.  
Current Limit  
When the primary current exceeds maximum current level which is indicated by a voltage of 1.25 V at the CS  
pin, the device initiates a shutdown. Retry occurs after a UVLOOFF/UVLOON cycle.  
Over-Voltage Protection  
Line and load over voltage protection is programmed with the transformer turn ratios, ROVP1 and ROVP2. The OVP  
pin has a 0-V voltage source that can only source current; OVP cannot sink current.  
Line over voltage protection occurs when the OVP pin is clamped at 0 V. When the bias winding is negative,  
during OUT = HI or portions of the resonant ring, the 0-V voltage source clamps OVP to 0 V and the current that  
is sourced from the OVP pin is mirrored to the Line_OVP comparator and the QR detection circuit. The  
Line_OVP comparator initiates a shutdown-retry sequence if OVP sources any more than 450 μA.  
Load-over voltage protection occurs when the OVP pin voltage is positive. When the bias winding is positive,  
during demagnetization or portions of the resonant ring, the OVP pin voltage is positive. If the OVP voltage is  
greater than 3.75 V, the device initiates a shutdown. Retry occurs after a UVLOOFF/UVLOON cycle.  
Undervoltage Lockout  
Protection is provided to guard against operation during unfavorable bias conditions. Undervoltage lockout  
(UVLO) always monitors VDD to prevent operation below the UVLO threshold.  
Copyright © 20052011, Texas Instruments Incorporated  
19  
UCC28600  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
www.ti.com  
TYPICAL CHARACTERISTICS  
CLAMP VOLTAGE  
vs  
SWITCHING FREQUENCY  
vs  
TEMPERATURE  
TEMPERATURE  
31  
29  
27  
25  
23  
21  
142  
137  
132  
127  
122  
117  
50  
0
50  
100  
150  
50  
0
50  
100  
150  
TJ – Temperature – °C  
TJ – Temperature – °C  
Figure 10.  
Figure 11.  
PL THRESHOLD  
vs  
OVER VOLTAGE PROTECTION THRESHOLD  
vs  
TEMPERATURE  
TEMPERATURE  
0.95  
–372  
–392  
–412  
–432  
–452  
–472  
–492  
–512  
0.90  
0.85  
0.80  
0.75  
0.70  
50  
0
50  
100  
150  
50  
0
50  
100  
150  
TJ – Temperature – °C  
TJ – Temperature – °C  
Figure 12.  
Figure 13.  
20  
Copyright © 20052011, Texas Instruments Incorporated  
UCC28600  
www.ti.com  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
PRACTICAL DESIGN NOTES  
Non-Ideal Current Sense Value  
Resistors RCS, RPL, ROVP1 and ROVP2 must be programmed as a set due to functional interactions in the  
converter. Often, the ideal value for RCS is not available because the selection range of current sense resistors is  
too coarse to meet the required power limit tolerances. This issue can be solved by using the next larger  
available value of RCS and use a resistive divider with a Thevenin resistance that is equal to the ideal RPL value  
in order to attenuate the CS signal to its ideal value, as shown in Figure 14. The equations for modifying the  
circuit are:  
R
CS  
ǒ Ǔ  
R
+ R  
 
PL  
PL1  
R
DCS  
(4)  
RDCS = ideal, but non-standard, value of current sense resistor.  
RPL = previously calculated value of the power limit resistor.  
R
PL1  
R
+
PL2  
R
CS  
ǒ Ǔ* 1  
R
DCS  
(5)  
RCS = available, standard value current sense resistor.  
The board should be laid out to include RPL2 in order to fascillitate final optimization of the design based upon  
readily available components.  
From power  
MOSFET  
From power  
MOSFET  
R
R
PL  
PL1  
To CS  
To CS  
R
R
R
DCS  
PL2  
CS  
(a)  
(b)  
Figure 14. Modifications to Fit a Standard Current Sense Resistor Value  
Copyright © 20052011, Texas Instruments Incorporated  
21  
 
UCC28600  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
www.ti.com  
Snubber Damping  
Resonance between the leakage inductance and the MOSFET drain capacitance can cause false load-OVP  
faults, in spite of the typical 2-μs delay in load-OVP detection. The bias winding is sensitive to the overshoot and  
ringing because it is well coupled to the primary winding. A technique to eliminate the problem is to use an R2CD  
snubber instead of an RCD snubber, shown in Figure 15. A damping resistor added to the RCD snubber reduces  
ringing between the drain capacitor and the inductance when the snubber diode commutates OFF.  
PRIMARY  
SECONDARY  
L
LEAK  
C
D
Resonance  
+
V
D
C
BULK  
L
M
C
SNUB  
V
R
SNUB1  
IN  
V  
SNUB  
V
BULK  
L
LEAK  
D
S
V
R
+
M
1
C
D
V
0V  
0V  
D
+
V
G
V
G
R
CS  
(b)  
(a)  
Reduced L  
C
D
LEAK  
Resonance  
PRIMARY  
SECONDARY  
V
D
+
V  
SNUB  
L
M
C
BULK  
R
C
SNUB2  
V
R
SNUB1  
IN  
V
BULK  
SNUB  
D
L
LEAK  
V
R
S
+
M
1
0V  
0V  
C
D
V
D
V
G
+
V
G
R
CS  
(d)  
(c)  
Figure 15. (a) RCD Snubber, (b) RCD Snubber Waveform, (c) R2CD Snubber, (d) R2CD Snubber  
Waveform  
22  
Copyright © 20052011, Texas Instruments Incorporated  
 
UCC28600  
www.ti.com  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
Begin the design of the R2CD using the same procedure as designing an RCD snubber. Then, add the damping  
resistor, RSNUB2. The procedure is as follows:  
DV  
SNUB  
Pick  
+ between 0.5 and 1  
V
R
(6)  
Select a capacitor for ΔVSNUB  
:
2
I
L
cs(peak) LEAK  
C
+ ǒV ) DVSNUBǓ2  
SNUB  
2
* V  
R
R
(7)  
(8)  
Pick RSNUB to discharge CSNUB  
:
L
I
V
LEAK CS(peak)  
1
2
R
1
1
R
+
ǒ
)
Ǔ
*
ǒ
Ǔ
SNUB1  
DV  
C
f
DV  
SNUB  
SNUB  
S(max)  
SNUB  
2
é
ê
ê
ù
ú
ú
ú
é
ê
ê
ù
2
ú
DV  
1
æ ö  
ç ÷  
1
æ
ç
è
SNUB ö  
÷
ú
VR +  
´ 1+  
´
VR  
1
2
2
3
ê
è ø ê  
ú
ø
+
ê
ë
ú
û
ê
ë
ú
û
VSNUB  
P R  
(
=
)
SNUB1  
RSNUB1  
(9)  
Pick RSNUB2 to dampen the LLEAK-CSNUB resonance with a Q that is between 1.7 and 2.2:  
DV  
SNUB  
R
+
SNUB2  
I
CS(peak)  
(10)  
ȡ
ȣ
L
f
ȧ
ȧ
ȧ
ȧ
2
LEAK S(max)  
ȧ1  
PǒRSNUBǓ + I  
R
CS(peak)  
SNUB2  
ȧ3  
Ȣ
DV  
SNUB  
2
ǒV ) Ǔ  
R
Ȥ
(11)  
(12)  
,
FQor+thǸe original selection of ΔVSNUB  
2V  
R
) 1  
DV  
SNUB  
Copyright © 20052011, Texas Instruments Incorporated  
23  
 
UCC28600  
SLUS646J NOVEMBER 2005REVISED JULY 2011  
www.ti.com  
REFERENCES  
1. Power Supply Seminar SEM-1400 Topic 2: Design And Application Guide For High Speed MOSFET Gate  
Drive Circuits, by Laszlo Balogh, Texas Instruments Literature Number SLUP133  
2. Datasheet, UCC3581 Micro Power PWM Controller, Texas Instruments Literature Number SLUS295  
3. Datasheet, UCC28051 Transition Mode PFC Controller, Texas Instruments Literature Number SLUS515  
4. UCC28600 Design Calculator, A QR Flyback Designer.xls, spreadsheet for Microsoft Excel 2003, Texas  
Instruments Literature Number SLVC104  
5. Design Considerations for the UCC28600, Texas Instruments Literature Number SLUA399  
RELATED PRODUCTS  
UCC28051 Transition Mode PFC Controller (SLUS515)  
UCC3581 Micro Power PWM Controller (SLUS295)  
REVISION HISTORY  
Changes from Revision H (November 2005) to Revision I  
Page  
Changed Equation 9 ........................................................................................................................................................... 23  
24  
Copyright © 20052011, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
UCC28600D  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
8
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
28600D  
UCC28600DG4  
UCC28600DR  
UCC28600DRG4  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
D
75  
Green (RoHS  
& no Sb/Br)  
28600D  
28600D  
28600D  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
OTHER QUALIFIED VERSIONS OF UCC28600 :  
Automotive: UCC28600-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Jan-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
UCC28600DR  
SOIC  
D
8
2500  
330.0  
12.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Jan-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
340.5 338.1 20.6  
UCC28600DR  
D
8
2500  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

    UCC28600D相关文章


    Fatal error: Uncaught PDOException: SQLSTATE[HY000]: General error: 145 mroonga: repair: can't recover from crash while updating in /www/wwwroot/website_ic37/s.ic37.com/index.php:504 Stack trace: #0 /www/wwwroot/website_ic37/s.ic37.com/index.php(504): PDO->query() #1 /www/wwwroot/website_ic37/www.ic37.com/s_index.php(3): include('...') #2 {main} thrown in /www/wwwroot/website_ic37/s.ic37.com/index.php on line 504