欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • UPD6124AGS-E91-E1
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • UPD6124AGS-E91-E1图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • UPD6124AGS-E91-E1
  • 数量21000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号UPD6124AGS-XXX的Datasheet PDF文件预览

To our customers,  
Old Company Name in Catalogs and Other Documents  
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology  
Corporation, and Renesas Electronics Corporation took over all the business of both  
companies. Therefore, although the old company name remains in this document, it is a valid  
Renesas Electronics document. We appreciate your understanding.  
Renesas Electronics website: http://www.renesas.com  
April 1st, 2010  
Renesas Electronics Corporation  
Issued by: Renesas Electronics Corporation (http://www.renesas.com)  
Send any inquiries to http://www.renesas.com/inquiry.  
Notice  
1.  
2.  
All information included in this document is current as of the date this document is issued. Such information, however, is  
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please  
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to  
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.  
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights  
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights  
of Renesas Electronics or others.  
3.  
4.  
You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of  
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,  
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by  
you or third parties arising from the use of these circuits, software, or information.  
5.  
When exporting the products or technology described in this document, you should comply with the applicable export control  
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas  
Electronics products or the technology described in this document for any purpose relating to military applications or use by  
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and  
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited  
under any applicable domestic or foreign laws or regulations.  
6.  
7.  
Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics  
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages  
incurred by you resulting from errors in or omissions from the information included herein.  
Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and  
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as  
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular  
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior  
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for  
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way  
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an  
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written  
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise  
expressly specified in a Renesas Electronics data sheets or data books, etc.  
“Standard”:  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual  
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.  
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-  
crime systems; safety equipment; and medical equipment not specifically designed for life support.  
“Specific”:  
Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or  
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare  
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.  
8.  
9.  
You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,  
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation  
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or  
damages arising out of the use of Renesas Electronics products beyond such specified ranges.  
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have  
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,  
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to  
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a  
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire  
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because  
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system  
manufactured by you.  
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental  
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable  
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS  
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with  
applicable laws and regulations.  
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas  
Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this  
document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-  
owned subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD6124A, 6600A  
4-BIT SINGLE-CHIP MICROCONTROLLER  
FOR REMOTE CONTROL TRANSMISSION  
DESCRIPTION  
The µPD6124A and 6600A are 4-bit single-chip microcontrollers for infrared remote controllers for TVs, VCRs,  
stereos, cassette decks, air conditions, etc.  
These microcontrollers consist of ROM, RAM, a 4-bit parallel-processing ALU, a programmable timer, key input/  
output ports, and transmit output ports. Functioning is controlled by a program.  
A one-time PROM, model µPD61P24, to which a program can be written only once is also available. This one-time  
PROM is ideal for evaluation of programs running in a µPD6124A or 6600A, and for small-scale production of such  
systems.  
FEATURES  
Transmission-in-progress indication pin (S-OUT): 1  
pin  
Transmitter for programmable infrared remote control-  
ler  
Transmit carrier frequency (REM)  
fOSC/12, fOSC/8  
19 types of instructions  
Instruction execution time: 17.6 µs (with 455-kHz ce-  
ramic resonator)  
Standby operation (HALT/STOP mode)  
Low power consumption  
Current consumption in STOP mode (T  
Low-voltage operation  
Program memory (ROM) capacity  
µPD6124A: 1002 × 10 bits  
µPD6600A: 512 × 10 bits  
A
= 25°C)  
µPD6124A: VDD = 2.2 to 5.5 V  
Data memory (RAM) capacity: 32 × 5 bits  
9-bit programmable timer: 1 channel  
I/O pins (KI/O): 8 pins  
µPD6600A: VDD = 2.2 to 3.6 V  
Input pins (KI): 4 pins  
Serial input pins (S-IN): 1 pin  
Caution To use the NEC transmission format, ask NEC to supply the custom code.  
Do not use R0 when using a register as an operand of the branch instruction.  
The information in this document is subject to change without notice.  
Document No. U12391EJ5V0DS00 (5th edition)  
The mark  
shows major revised points.  
(Previous No. IC-1927)  
Date Published June 1997 N  
Printed in Japan  
1989  
©
µPD6124A, 6600A  
ORDERING INFORMATION  
Part Number  
Package  
µPD6124ACS-XXX  
µPD6124AGS-XXX  
20-pin plastic shrink DIP (300 mil)  
20-pin plastic SOP (300 mil)  
µPD6600ACS-XXX  
µPD6600AGS-XXX  
20-pin plastic shrink DIP (300 mil)  
20-pin plastic SOP (300 mil)  
Remark  
XXX indicates ROM code suffix.  
PIN CONFIGURATION (TOP VIEW)  
K
K
I/O1  
I/O0  
1
2
20 K I/O2  
19 K I/O3  
18 K I/O4  
17 K I/O5  
16 K I/O6  
15 K I/O7  
14 K I0  
S-IN 3  
S-OUT 4  
REM 5  
V
DD  
6
OSC-OUT 7  
OSC-IN 8  
13 K I1  
VSS  
9
12 K I2  
AC 10  
11 K I3  
2
µPD6124A, 6600A  
BLOCK DIAGRAM  
ROM  
D.P.  
CNTL CNTL  
Note  
(L)  
(H)  
L
ROM  
D.P.  
×
32 5 bits  
H
ROM  
(L)  
M
P
X
SP  
RAM  
M
PC(L)  
PC(H)  
P
X
ROM  
(H)  
ADD  
DEC  
RAM  
To S-OUT  
ALU  
TIMER TIMER  
(L) (H)  
KEY  
OUT(L) OUT(H)  
KEY  
KEY  
IN  
ACC  
Low-  
voltage  
detector  
circuit  
Watchdog  
timer  
function  
10 bits  
OSC  
MOD  
OSC-IN S-OUT REM  
OSC-OUT  
S-IN  
K
I/O0-KI/O7  
K
I0-KI3  
AC  
Note ROM capacity depends on the products.  
DIFFERENCES AMONG PRODUCTS  
Product Name  
Item  
µPD6124A  
1002 × 10 bits (Mark ROM)  
32 × 5 bits  
µPD6600A  
ROM Capacity  
RAM Capacity  
I/O Pins  
512 × 10 bits (Mask ROM)  
8 (KI/O0-KI/O7)  
S-IN Pins  
Provided  
Current Consumption  
(fOSC = STOP) (MAX.)  
S-IN High Level Input  
Current (MAX.)  
Transmit Carrier Frequency  
Low-voltage Detector  
(Reset) Circuit  
Supply Current  
Package  
2 µA  
30 µA  
fOSC/12, fOSC/8  
Provided  
VDD = 2.2 to 5.5 V  
VDD = 2.2 to 3.6 V  
• 20-pin plastic SOP (300 mil)  
• 20-pin plastic shrink DIP (300 mil)  
3
µPD6124A, 6600A  
1. PROGRAM COUNTER (PC) ……… 9 BITS : µPD6600A  
10 BITS : µPD6124A  
The program counter (PC) is a binary counter, which holds the address information for the program memory.  
Figure 1-1. Program Counter Organization  
(a)  
PD6600A  
µ
PC  
PC  
8
PC  
PC  
7
PC  
PC  
6
PC  
5
PC  
4
PC  
3
PC  
PC  
2
PC  
PC  
1
PC  
PC  
0
PC  
PC  
µ
(b)  
PD6124A  
PC  
9
8
7
6
PC  
5
PC  
4
PC  
3
2
1
0
Normally, the program counter contents are automatically incremented each time an instruction is executed,  
according to the number of instruction bytes.  
When executing a jump instruction (JMP0, JC, JF), the program counter indicates the jump destination.  
Immediate data or the data memory contents are loaded to all or some bits of the PC.  
When executing the call instruction (CALL0), the PC contents are incremented (+1) and saved into the stack memory.  
Then, a value needed for each jump instruction will be loaded.  
When executing the return instruction (RET), the stack memory contents are double incremented (+2) and loaded  
into the PC.  
When “all clear” is input or on reset, the PC contents are cleared to “000H”.  
2. STACK POINTER (SP) ……… 2 BITS  
This 2-bit register holds the start address information for the stack area. The stack area is shared with the data  
memory.  
The SP contents are incremented, when the call instruction (CALL0) is executed. They are decremented, when the  
return instruction (RET) is executed.  
The stack pointer is cleared to “00B” after reset or “all clear” is input, and indicates the highest address FH for the  
data memory as the stack area.  
The figure below shows the relationship for the stack pointer and the data memory area.  
Data memory  
(SP)  
11B  
10B  
01B  
00B  
R
R
R
R
C
D
E
F
If the stack pointer overflows or underflows, it is determined that the CPU overflows, and the PC internal reset signal  
will be generated.  
4
µPD6124A, 6600A  
3. PROGRAM MEMORY (ROM) ……… 512 STEPS × 10 BITS : µPD6600A  
1002 STEPS × 10 BITS : µPD6124A  
The program memory (ROM) is configured in 10 bits steps. It is addressed by the program counter.  
Program and table data are stored in the program memory.  
Figure 3-1. Program Memory Map  
0
0
1
(b) µPD6124A  
(a) µPD6600A  
000H  
000H  
1
0FFH  
100H  
0FFH  
100H  
1FFH  
1FFH  
200H  
2FFH  
300H  
3E9H  
3EAH  
3FFH  
Test program  
area  
4. DATA MEMORY (RAM) ……… 32 WORDS × 5 BITS  
The data memory is a RAM of 32 words × 5 bits. The data memory stores processing data. In some cases, the  
data memory is processed in 8-bit units. R0 may be used as the data pointer for the ROM.  
0
0
1
After power application, the RAM will be undefined. The RAM retains the previous data on reset.  
1
Figure 4-1. Data Memory Organization  
1
0
R0  
.
.
.
RB  
R
C
SP–3  
SP–2  
SP–1  
SP–0  
.
.
.
R
F
Caution Avoid using the RAM areas RD, RE, and RF in a CALL routine as much as possible because these areas  
are also used as stack memory areas (to prevent program hang-up in case the value of the SP is  
destroyed due to some reason such as noise).  
When using these RAM areas as general-purpose RAM areas, be sure to include stack pointer  
checking in the main routine.  
5
µPD6124A, 6600A  
5. DATA POINTER (R0)  
R0 (R10, R00) for the data memory can serve as the data pointer for the ROM.  
R0 specifies the low-order 8 bits in the ROM address. The high-order 2 bits in the ROM address are specified by  
the control register.  
Table referencing for ROM data can be easily executed by calling the ROM contents by setting the ROM address  
to the data pointer.  
On reset or “all clear” is input, it becomes undefined.  
Figure 5-1. Data Pointer Organization  
Control registers  
(P1 )  
R10  
R00  
Note  
AD  
9
AD  
8
AD  
7
AD  
6
AD  
5
AD  
4
AD  
3
AD  
2
AD  
1
AD  
0
R
0
Note  
µPD6600A: AD9 = 0  
6. ACCUMULATOR (A) ……… 4 BITS  
The accumulator (A) is a 4-bit register. The accumulator plays a major role in each operation.  
On reset or “all clear” is input, it becomes undefined.  
Figure 6-1. Accumulator Organization  
A
3
A
2
A
1
A
0
A
7. ARITHMETIC LOGIC UNIT (ALU) ……… 4 BITS  
The arithmetic logic unit (ALU) is a 4-bit operation circuit, and executes simple operations, such as arithmetic  
operations.  
8. FLAGS  
(1) Status flag  
When the status for each pin is checked by the STTS instruction, if the condition coincides with the condition  
specified by the STTS instruction, the status flag (F) is set (to 1).  
On reset or “all clear” is input, it becomes undefined.  
(2) Carry flag  
When the INC (increment) instruction or the RL (rotate left) instruction is executed, if a carry is generated from  
the MSB for the accumulator, the carry flag (C) is set (to 1).  
The carry flag (C) is also set (to 1), if the contents for the accumulator are “FH”, when the SCAF instruction  
is executed.  
On reset or “all clear” is input, it becomes undefined.  
6
µPD6124A, 6600A  
9. SYSTEM CLOCK GENERATOR  
The system clock generator consists of a resonator, which uses a ceramic resonator (400kHz to 500kHz).  
Figure 9-1. System Clock Generator  
OSC-IN  
STOP mode  
ø
System clock  
OSC-OUT  
In the STOP mode (oscillation stop HALT instruction), the oscillator in the system clock generator stops its operation,  
and the system clock ø is stopped.  
7
µPD6124A, 6600A  
10. TIMER  
The timer block determines the transmission output pattern. The timer consists of 10 bits, of which 9 bits serve as  
the 9-bit down counter and the remaining 1 bit serves as the 1-bit latch, which determines the carrier output validity.  
The 9-bit down counter is decremented (–1) every 8/fOSC(s) in synchronization with the machine cycle, after starting  
down count operation. Down counting stops after all of the 9 bits become 0. When down counting is stopped, the signal  
indicating that the timer operation has stopped, is output. If the CPU is at standby (HALT TIMER) for the timer operation  
completion, the standby (HALT) condition is released and the next instruction will be executed. If the next instruction  
again sets the value of the down counter, down counting continues without any error (the carrier output of the REM pin  
is not affected).  
Set the down count time according to the following calculation; (set value (HEX) + 1) × 8/fOSC. Setting the value to  
the timer is done by the timer manipulation instruction.  
When the down counter is operating, the remote control transmission carrier can be output to the REM pin. Whether  
or not to output the carrier can be selected by the MSB for the timer register block. Set “1”, when outputting the carrier,  
or “0”, when not outputting the carrier.  
If all the down counter bits become “0”, when outputting the carrier, the carrier output will be stopped. When not  
outputting the carrier, the REM pin output will become low level.  
A signal in synchronization with the REM output is output to the S-OUT pin. However, the waveform for the S-OUT  
pin is low, when the carrier is being output to the REM pin, or it is high, when the carrier is not being output to the REM  
pin.  
If the HALT instruction, which initiates the oscillation stop mode, is executed when the down counter is operating,  
the oscillation stop mode is initiated after down counting is stopped (after 0).  
Timer operation STOP/RUN is controlled by the control register (P1). (Refer to 13. CONTROL REGISTER (P1).)  
At reset (all clear) time, the REM pin goes low and S-OUT pin goes high. All 10 bits of the timer are cleared to 000H.  
Cautions 1. Because the timer clock is not synchronized with the carrier output, the pulse width may be  
shortened at the beginning and end of the carrier output.  
2. Reset caused by the low-voltage detector circuit causes the S-OUT pin to output low level.  
Figure 10-1. Timer Block Organization  
Set by timer mainpulation instruction  
MSB  
fosc/8  
1/0  
9-bit down counter  
From low-voltage  
detector (reset)  
circuit  
Clear  
Zero detection circuit  
S-OUT  
REM  
Carrier  
(fosc/12, fosc/8)  
Selected by control register  
D
2
of control register P  
1
(Timer RUN/STOP)  
8
µPD6124A, 6600A  
11. PIN FUNCTIONS  
11.1 KI/O PIN (P0)  
This is the 8-bit I/O pin for key-scan output. When the control register (P1) is set for the input port, the port can be  
used as an 8-bit input pin. When the port is set for the input mode, all of these pins are pulled down to the VSS level  
inside the LSI.  
At reset (all cleared), the value of I/O mode and output latch becomes undefined.  
Figure 11-1. KI/O Pin Organization  
(P  
1
)
Control register  
P10  
P00  
P0  
KI/O7  
KI/O6  
KI/O5  
KI/O4  
KI/O3  
KI/O2  
KI/O1  
KI/O0  
11.2 KI/O PULL-DOWN RESISTOR CONFIGURATION  
V
DD  
Input/output selection  
P-ch  
Pin  
N-ch  
Output signal  
Input signal  
V
SS  
CMOS  
R
Pull-down resistor  
N-ch  
When KI/O is set to the input mode, pull-down resistor R is turned on.  
9
µPD6124A, 6600A  
11.3 KI PIN (P12)  
This is the 4-bit pin for key input. All of these pins can be pulled down to the VSS level by mask option.  
Figure 11-2. KI Pin Organization  
P12  
KI3  
KI2  
KI1  
KI0  
P2  
Mask option  
11.4 KI PULL-DOWN RESISTOR CONFIGURATION  
V
DD  
P-ch  
N-ch  
Pin  
Input signal  
K pull-down  
I
resistor switch  
(Mask option)  
Pull-down  
resistor  
V
SS  
V
SS  
When the pull-down resistor switch is turned on (set 1) by the mask option, pull-down resistor R is turned on.  
Caution When using the pin as the key switch, turn on the pull-down resistor switch by the mask option.  
10  
µPD6124A, 6600A  
11.5 S-OUT PIN  
By going low whenever the carrier frequency is output from the REM pin, the S-OUT pin indicates that communication  
is in progress.  
The S-OUT pin is CMOS output.  
The S-OUT pin goes high on reset.  
11.6 S-IN PIN (D0 BIT OF P1)  
To input serial data, use the S-IN pin. When control register (P1) is set to serial input mode, the S-IN pin is connected  
as an input to the LSB of the accumulator; the S-IN pin can be pulled down to the VSS level by a mask option from within  
the LSI. In this state, if the rotate-left accumulator instruction (RL A) is executed, the data on the S-IN pin is copied  
to the LSB of the accumulator.  
If the control register is released from serial input mode, the S-IN pin goes into a high-impedance state, but no through  
current flows internally.  
When the RL A instruction is executed, the MSB is copied to the LSB.  
At reset (all cleared), the S-IN pin goes into a high-impedance state.  
Caution The µPD6123 is not provided with an S-IN pin.  
Figure 11-3. Configuration of the S-IN Pin  
S-IN  
CY  
A3  
A 2  
A1  
A0  
Control register  
11  
µPD6124A, 6600A  
12. PORT REGISTER (P×)  
KI/O, KI, and the control register are handled as port registers.  
The table below shows the relations between the port registers and pins.  
Table 12-1. Relations between Port Registers and Pins  
Input Mode  
Output Mode  
Pin  
Name  
On Reset  
Read  
Write  
Output latch  
Read  
Write  
Output latch  
KI/O  
KI  
Pin status  
Pin status  
Pin status  
Undefined [input mode, output latch]  
Input mode  
S-IN Pin status is read by RL A instruction when D0 of P1 register = 1.  
High impedance (D0 of P1 register = 0)  
P1× (H)  
P0× (L)  
P
0
K
I/O7-4  
K
I/O3-0  
P
10  
P
00  
Control register (H)  
Control register (L)  
P
P
1
2
P
P
11  
12  
P
01  
02  
K
I3-0  
P
12  
µPD6124A, 6600A  
13. CONTROL REGISTER (P1)  
The control register contains of 10 bits. The controllable items are shown in Table 13-1.  
Table 13-1. Control Register (P1) (1/2)  
(a) µPD6124A  
Bit  
D 9  
D 8  
D 7  
D 6  
D 5  
D 4  
D 3  
D 2  
D 1  
D 0  
D.P.  
AD9  
D.P.  
AD8  
RL A CC  
Name  
Test mode  
HALT  
MOD  
Timer  
K I/O  
A0  
0
1
NOP  
AD9 =0  
AD9 =1  
AD8 =0  
AD8 =1  
fOSC/8  
STOP  
RUN  
IN  
A3  
Set  
Value  
Be sure to set 0.  
OSC  
STOP  
fOSC/12  
OUT  
S-IN  
D0 .......................... Specifies data to be input to A0 when the accumulator is shifted to the left.  
0: A3, 1:S-IN  
D1 .......................... Specifies the status of KI/O, as follows:  
0: input mode, 1: output mode  
D2 .......................... Specifies the status of the timer, as follows:  
0: Count stop, 1: Count execution  
D3 .......................... Specifies the carrier frequency output from the REM pin.  
0: fOSC/8, 1: fOSC/12  
D4, D5 ................. Specify the high-order 2 bits of the ROM data pointer.  
D6 .......................... Determines what happen to the oscillation circuit when the HALT instruction is executed.  
0: Oscillation does not stop  
1: Oscillation stops (STOP mode)  
D7 .......................... Be sure to set this bit to 0.  
D8, D9 ................. These bits specify test modes. Be sure to set them to 0.  
Remark  
D0 = D8 = D9 = 0 on reset, and the other bits are undefined.  
13  
µPD6124A, 6600A  
Table 13-1. Control Register (P1) (2/2)  
(b) µPD6600A  
Bit  
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D.P.  
AD9  
D.P.  
AD8  
RL A CC  
Name  
Test mode  
HALT  
NOP  
MOD  
Timer  
K
I/O  
A0  
0
1
AD  
8
8
=0  
f
OSC/8  
STOP  
RUN  
IN  
A
3
Set  
Value  
Be sure to  
set 0.  
Be sure to set 0.  
OSC  
STOP  
AD  
=1  
f
OSC/12  
OUT  
S-IN  
D0 .......................... Specifies data to be input to A0 when the accumulator is shifted to the left.  
0: A3, 1:S-IN  
D1 .......................... Specifies the status of KI/O, as follows:  
0: input mode, 1: output mode  
D2 .......................... Specifies the status of the timer, as follows:  
0: Count stop, 1: Count execution  
D3 .......................... Specifies the carrier frequency output from the REM pin.  
0: fOSC/8, 1: fOSC/12  
D4 .......................... Specify the MSB of the ROM data pointer.  
D5 .......................... Be sure to reset them to 0.  
D6 .......................... Determines what happen to the oscillation circuit when the HALT instruction is executed.  
0: Oscillation does not stop  
1: Oscillation stops (STOP mode)  
D7 .......................... Be sure to set this bit to 0.  
D8, D9 ................. These bits specify test modes. Be sure to set them to 0.  
Remark  
D0 = D8 = D9 = 0 on reset, and the other bits are undefined.  
14  
µPD6124A, 6600A  
14. STANDBY FUNCTION (HALT INSTRUCTION)  
The µPD6600A is provided with the standby mode (HALT instruction), in order to reduce the power consumption,  
when not executing the program. Clock oscillation can be stopped in the standby mode (STOP mode).  
In the standby mode, the program execution stops. However, the contents of the internal registers and the data  
memory are all retained.  
14.1 STOP MODE (OSCILLATION STOP HALT INSTRUCTION)  
In the STOP mode, the operation of the system clock generator (ceramic resonator oscillation circuit) stops.  
Therefore, operations requiring the system clock will stop.  
If the HALT instruction is executed during timer operation, the program counter stops. The oscillation stop mode  
will be initiated, after the timer count down operation is completed.  
14.2 HALT MODE (OSCILLATION CONTINUE HALT INSTRUCTION)  
The CPU stops its operation, until the HALT release condition is satisfied.  
The system clock operation continues in this mode.  
14.3 STANDBY RELEASE CONDITIONS  
(1) S-IN input  
(2) KI/O input  
(3) KI input  
(4) Timer count down operation completion  
Remark  
Either high level or low level can be specified for setting a release condition by input.  
Table 14-1. Standby Mode Releasing Condition  
Releasing  
Condition  
D
3
D
2
D
1
D
0
Remarks  
When RL  
A
3
is selected, the standby mode is  
0
0
0
S-IN  
always released.  
0
0
0
0
1
1
1
0
1
K
I/O  
Valid only in the IN mode.  
0/1  
K
I
0
Timer  
Released when 0.  
Releasing condition: “0”···Low level detection  
“1”···High level detection  
15  
µPD6124A, 6600A  
15. AC PIN (ALL CLEAR PIN)  
Internal part of the CPU including the program counter can be reset by setting the AC pin to the low level.  
WATCHDOG TIMER FUNCTION  
A power-on reset function and a CR watchdog timer function, that can be controlled by program, can be realized  
by connecting a 0.1 µF capacitor across the AC pin and the VSS.  
V
DD  
Charge mode  
Charge start instruction  
Execute HALT instruction  
immediately before NOP.  
(Charge for 0.4 ms or more)  
0.1 µF  
Discharge mode  
Discharge start instruction  
Discharge starts after the NOP  
instruction execution.  
(Discharge time is about 5 ms from VDD to VthL  
0.1 µF  
)
V
Charge-discharge  
pattern  
V
DD  
The pattern must be  
controlled by the program,  
in such a manner that  
the C charge level will not  
V
thL  
go below VthL  
.
t
Caution When the watchdog timer function is not used, switch to charging mode by executing a NOP  
instruction immediately before a HALT instruction at the beginning of the program. (Be sure to  
connect the capacitor.)  
16  
µPD6124A, 6600A  
16. LOW-VOLTAGE DETECTOR (RESET) CIRCUIT  
The µPD6124A and 6600A are internally provided with the low-voltage detector (reset) circuit, in order to prevent  
program hang-up.  
When VDD goes down to 1 V or below, an internal reset signal is generated. In the reset condition, a low level is  
output to the S-OUT pin.  
AC pin  
Internal reset signal  
To S-OUT pin  
Reset circuit  
Caution The low-voltage detector circuit starts operating at a voltage ranging from 1 to 2.2 V. Hence, if the  
supply voltage is 2 V or lower, the program counter may hang up before the low-voltage detector  
circuit operates.  
17. MASK OPTIONS (PLA DATA)  
The following items can be selected by mask option selection:  
• Provide/not provide KI, S-IN pin pull-down resistor  
• Carrier duty selection (1/2, 1/3) at fOSC/12  
• Hang-up detection specification  
Mask option data should be registered at the object code end.  
BIT ASSIGNMENT BY SWITCH SELECTION  
LSB  
0
MSB  
Corresponding  
Portion  
7
6
5
4
3
0
2
0
1
K
I
K
I3  
K
I2  
K
I1  
K
I0  
0
pull-down resistorNote  
0
1
S-IN  
pull-down  
resistor  
Duty  
selection  
Duty  
S-IN  
0
0
0
0
K
ALL  
I/O  
HALT  
S-IN  
HALT  
HALT  
Hang-up detection  
0
2
K
I/O  
K
I
Note  
The setting (bit) positions differ from the µPD6125A and 6126A.  
17  
µPD6124A, 6600A  
SWITCH FOR DATA  
(1) Pull-down resistor  
...  
...  
When 0  
When 1  
Not provided (OFF)  
Provided (ON)  
(2) Modulation duty (at fOSC/12)  
...  
...  
When 0  
When 1  
1/2 duty  
1/3 duty  
(3) Hang-up detection  
<1> KI/O ALL  
If the switch for hang-up detection KI/O ALL is set to ON (1) by mask option, the system is reset if, in oscillation  
HALT (STOP) mode, the KI/O pin is in input mode, or if at least one of the KI/O pins is low (AC pin discharge  
mode).  
...  
...  
When 0  
When 1  
No reset function (OFF)  
Reset function (ON)  
Caution To use a pin as a key source of a key matrix, be sure to set the switch to ON by mask option.  
Figure 17-1. Hang-up Detection KI/O ALL Configuration Diagram  
K
K
K
K
K
K
I/O0 output signal  
I/O1 output signal  
I/O2 output signal  
I/O3 output signal  
I/O4 output signal  
I/O5 output signal  
VDD  
To RESET circuit  
Hang-up detection  
I/O ALL switch  
(Mask option)  
K
K
I/O6 output signal  
I/O7 output signal  
K
KI/O input/output selection  
<2> HALT releasing condition specification (S-IN, KI/O, KI)  
If the condition specified by mask option to be unused is satisfied in the HALT mode, the system is reset.  
...  
...  
When 0  
When 1  
Used  
Unused  
Caution Be sure to specify the HALT mode of the unused releasing condition to be unused (set).  
18  
µPD6124A, 6600A  
18. PROGRAM DEVELOPMENT TOOLS  
To develop programs for the µPD6124A and 6600A, an assembler and an emulator for the µPD612X series are  
available from I.C. Corp. For details, contact IC Corp.  
IC Corporation  
6th Barnet Gotanda Bldg.  
1-9-5 Higashi-Gotanda, Shinagawa-ku  
Tel. 03-3447-3793  
Fax. 03-3440-5606  
Caution To develop the programs for the µPD6124A and 6600A, use the µPD6124 because the µPD6124A and  
6600A are not available as the target devices for assembly and emulation.  
The upper limit of ROM addresses is different in the µPD6124A/6600A and µPD6124. Make sure that  
the program does not exceed 512 steps by checking the end address of the assembly listing after  
assembling the program.  
The mask option of the µPD6124A/6600A is the same as that of the µPD6124.  
19. ORDERING ROM CODE  
<1> To generate the data required for ordering a mask ROM, after assembling the program, convert the HEX file  
to a ROM file by using the PROM utility program "UPDPROM".  
Caution When using "UPDPROM" select "27256" for PROM TYPE.  
<2> Confirm that the instruction ROM code data is stored in addresses 0 through 7D3H (3FFH in µPD6600A) of  
the PROM.  
Also confirm that the mask option ROM code data are stored in addresses 7FF0H through 7FF2H.  
19  
µPD6124A, 6600A  
20. INSTRUCTION SET  
ACCUMULATOR MANIPULATION INSTRUCTIONS  
R
r
R10  
R11  
R12  
R1F  
R
00  
R
01  
R
0F  
ANL  
ANL  
ANL  
ANL  
A, R  
r
D00  
E00  
A00  
D01  
E01  
A01  
D02  
E02  
A02  
D0F  
E0F  
A0F  
D20  
E20  
A20  
D21  
E21  
A21  
D2F  
E2F  
A2F  
D10  
D30  
D31  
A, @R  
A, @R  
0
H
L
0
A, #data  
ORL A, R  
r
E10  
E30  
E31  
ORL A, @R  
ORL A, @R  
0
H
L
0
ORL A, #data  
XRL  
XRL  
XRL  
XRL  
INC  
RL  
A, R  
r
A10  
A30  
A31  
A13  
F13  
A, @R  
A, @R  
0
H
L
0
A, #data  
A
A
INPUT/OUTPUT INSTRUCTIONS  
P
P
P10  
P
11  
P12  
P00  
P01  
P02  
F1A  
21A  
D1A  
E1A  
A1Z  
IN  
A, PP  
, A  
F18  
218  
D18  
E18  
A18  
F19  
219  
D19  
E19  
A19  
F38  
238  
D38  
E38  
A38  
F39  
239  
D39  
E39  
A39  
F3A  
23A  
D3A  
E3A  
A3A  
OUT  
ANL  
ORL  
XRL  
P
P
A, PP  
A, PP  
A, PP  
P
OUT PP #data  
P
P
0
P
1
P
2
31A  
318  
319  
P1P and P0P operate in pair format  
DATA TRANSFER INSTRUCTIONS  
R
r
R10  
R11  
R12  
R1F  
R
00  
R
01  
R
0F  
MOV A, R  
r
F00  
F01  
F02  
F0F  
F20  
F21  
F2F  
MOV A, @R  
MOV A, @R  
0
0
H
H
F10  
F30  
F31  
MOV A, #data  
MOV  
R
r
, A  
200  
201  
202  
20F  
220  
221  
22F  
R
, #data  
, @R  
r
R
0
R
1
R
2
R
F
MOV  
MOV  
R
R
r
r
300  
320  
301  
321  
302  
322  
30F  
32F  
0
R1r and R0r operate in pair format  
20  
µPD6124A, 6600A  
BRANCH INSTRUCTIONS  
R
r
R
0
R
1
R
2
R
F
Pair register  
JMP0  
JMP0  
addr  
RrNote  
411  
401  
601  
621  
701  
721  
402  
40F  
60F  
62F  
70F  
72F  
JC  
addr  
611  
JC  
RrNote  
602  
622  
JNC  
JNC  
addr  
631  
RrNote  
JF  
addr  
711  
JF  
RrNote  
702  
722  
JNF  
JNF  
addr  
731  
RrNote  
Note  
r = 1 through F  
r = 0 canot be used.  
SUBROUTINE INSTRUCTIONS  
P
P
P0  
P1  
CALL0  
RET  
addr  
312  
412  
411  
TIMER/COUNTER MANIPULATION INSTRUCTIONS  
T
t
T
0-1  
T
1
T
0
MOV A, Tt  
MOV Tt , A  
F1F  
21F  
F3F  
23F  
MOV T, #data  
MOV T, @R0  
31F  
33F  
OTHER INSTRUCTIONS  
R
00  
R
01  
R
02  
R
0F  
HALT #data  
111  
131  
STTS R0r  
120  
121  
122  
12F  
STTS #data  
SCAF  
NOP  
D13  
000  
21  
µPD6124A, 6600A  
21. APPLICATION CIRCUIT EXAMPLE  
Key matrix  
20  
19  
18  
17  
16  
15  
1
K
K
I/O1  
I/O0  
K
K
K
K
K
K
I/O2  
I/O3  
I/O4  
I/O5  
V
DD  
V
DD  
2
3
S-IN  
SE303 series  
Transmission  
indication  
Infrared LED  
SE313  
SE307-C  
SE1003-C  
4
S-OUT  
REM  
I/O6  
I/O7  
2SC3616, 3618  
2SD1615, 1616  
2SC2001  
Mode select switch  
5
6
7
14  
13  
K
I0  
I1  
V
DD  
100 pF  
100 pF  
K
OSC-OUT  
OSC-IN  
3.0 V  
+
12  
11  
8
9
K
K
I2  
I3  
V
SS  
47 µF  
10  
AC  
0.1 µF  
µ
µ
PD6124A  
PD6600A  
Caution The ceramic resonator start up capacitor value must be determined, by taking the voltage level and  
the oscillation start up characteristics for the ceramic resonator into consideration.  
22  
µPD6124A, 6600A  
22. ELECTRICAL SPECIFICATIONS  
(1) µPD6124A Electrical Specifications  
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)  
Parameter  
Supply Voltage  
Symbol  
VDD  
VIN  
Ratings  
–0.3 to +7.0  
–0.3 to VDD + 0.3  
–20 to +75  
Unit  
V
Input Voltage  
V
Operating Ambient Temperature  
Storage Temperature  
TA  
°C  
°C  
Tstg  
–40 to +125  
Caution Even if one of the parameters exceeds its absolute maximum rating even momentarily, the quality  
of the product may be degraded. The absolute maximum rating therefore specifies the upper or lower  
limit of the value at which the product can be used without physical damages. Be sure to use the  
product(s) within the ratings.  
RECOMMENDED OPERATING RANGE (TA = –20 to +75 °C)  
Parameter  
Supply Voltage  
Oscillation Frequency  
Symbol  
VDD  
MIN.  
2.2  
TYP.  
MAX.  
5.5  
Unit  
V
fOSC  
400  
500  
kHz  
23  
µPD6124A, 6600A  
DC CHARACTERISTICS (VDD = 3.0 V, fOSC = 455 kHz, TA = 25 °C)  
Parameter  
Supply Voltage  
Symbol  
VDD  
IDD1  
IDD2  
IOH1  
IOL1  
IOH2  
IOL2  
IIH1  
Conditions  
MIN.  
2.2  
TYP.  
0.3  
MAX.  
5.5  
Unit  
V
Current Consumption 1  
fOSC = 455 kHz  
1.0  
mA  
µA  
mA  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
µA  
µA  
µA  
µA  
V
Current Consumption 2  
fOSC = STOP  
2.0  
REM High Level Output Current  
REM Low Level Output Current  
S-OUT High Level Output Current  
S-OUT Low Level Output Current  
KI High Level Input Current  
KI High Level Input Current  
KI Low Level Input Current  
KI/O High Level Input Current  
KI/O High Level Input Current  
KI/O Low Level Input Current  
KI/O High Level Output Current  
KI/O Low Level Output Current  
S-IN High Level Input Current  
S-IN High Level Input Current  
S-IN Low Level Input Current  
KI High Level Input Voltage  
KI Low Level Input Voltage  
KI/O High Level Input Voltage  
KI/O Low Level Input Voltage  
S-IN High Level Input Voltage  
S-IN Low Level Input Voltage  
AC Pull-Up Resistor  
VO = 1.0 V  
–5  
0.5  
–0.3  
1
–8  
1.5  
VO = 0.3 V  
2.5  
VO = 2.7 V  
–1.0  
1.5  
–2.0  
VO = 0.3 V  
VI = 3.0 V  
10  
30  
0.2  
IIH1'  
IIL1  
VI = 3.0 V, without pull-down resistor  
VI = 0 V  
–0.2  
30  
IIH2  
VI = 3.0 V  
10  
IIH2'  
IIL2  
VI = 3.0 V, without pull-down resistor  
0.2  
VI = 0 V  
–0.2  
–4.0  
100  
30  
IOH3  
IOL3  
IIH3  
V0 = 2.5 V  
–1.5  
25  
6
–2.0  
50  
V0 = 2.1 V  
VI = 3.0 V  
IIH3'  
IIL3  
VI = 3.0 V, without pull-down resistor  
VI = 0 V  
0.2  
–0.2  
3.0  
VIH1  
VIL1  
VIH2  
VIL2  
IIH3  
2.1  
0
VI = 3.0 V  
0.9  
V
1.3  
0
3.0  
V
0.4  
V
1.1  
0
3.0  
V
IIL3  
0.4  
V
R1  
VI = 0 V  
0.3  
150  
1.8  
0
3.0  
kΩ  
kΩ  
V
AC Pull-Down Resistor  
R2  
VI = 2.7 V  
1500  
3.0  
AC High Level Input Voltage  
AC Low Level Input Voltage  
VIH4  
VIL4  
1.2  
V
24  
µPD6124A, 6600A  
(2) µPD6600A Electrical Specifications  
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)  
Parameter  
Supply Voltage  
Symbol  
VDD  
VIN  
Ratings  
–0.3 to +7.0  
–0.3 to VDD + 0.3  
–20 to +75  
Unit  
V
Input Voltage  
V
Operating Ambient Temperature  
Storage Temperature  
TA  
°C  
°C  
Tstg  
–40 to +125  
Caution Even if one of the parameters exceeds its absolute maximum rating even momentarily, the quality  
of the product may be degraded. The absolute maximum rating therefore specifies the upper or lower  
limit of the value at which the product can be used without physical damages. Be sure to use the  
product(s) within the ratings.  
RECOMMENDED OPERATING RANGE (TA = –20 to +75 °C)  
Parameter  
Supply Voltage  
Oscillation Frequency  
Symbol  
VDD  
MIN.  
2.2  
TYP.  
MAX.  
3.6  
Unit  
V
fOSC  
400  
500  
kHz  
25  
µPD6124A, 6600A  
DC CHARACTERISTICS (VDD = 3.0 V, fOSC = 455 kHz, TA = 25 °C)  
Parameter  
Supply Voltage  
Symbol  
VDD  
IDD1  
IDD2  
IOH1  
IOL1  
IOH2  
IOL2  
IIH1  
Conditions  
MIN.  
2.2  
TYP.  
0.3  
MAX.  
3.6  
Unit  
V
Current Consumption 1  
fOSC = 455 kHz  
1.0  
mA  
µA  
mA  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
µA  
µA  
µA  
µA  
V
Current Consumption 2  
fOSC = STOP  
2.0  
REM High Level Output Current  
REM Low Level Output Current  
S-OUT High Level Output Current  
S-OUT Low Level Output Current  
KI High Level Input Current  
KI High Level Input Current  
KI Low Level Input Current  
KI/O High Level Input Current  
KI/O High Level Input Current  
KI/O Low Level Input Current  
KI/O High Level Output Current  
KI/O Low Level Output Current  
S-IN High Level Input Current  
S-IN High Level Input Current  
S-IN Low Level Input Current  
KI High Level Input Voltage  
KI Low Level Input Voltage  
KI/O High Level Input Voltage  
KI/O Low Level Input Voltage  
S-IN High Level Input Voltage  
S-IN Low Level Input Voltage  
AC Pull-Up Resistor  
VO = 1.0 V  
–5  
0.5  
–0.3  
1
–8  
1.5  
VO = 0.3 V  
2.5  
VO = 2.7 V  
–1.0  
1.5  
–2.0  
VO = 0.3 V  
VI = 3.0 V  
10  
30  
0.2  
IIH1'  
IIL1  
VI = 3.0 V, without pull-down resistor  
VI = 0 V  
–0.2  
30  
IIH2  
VI = 3.0 V  
10  
IIH2'  
IIL2  
VI = 3.0 V, without pull-down resistor  
0.2  
VI = 0 V  
–0.2  
–4.0  
100  
30  
IOH3  
IOL3  
IIH3  
VO = 2.5 V  
–1.5  
25  
6
–2.0  
50  
VO = 2.1 V  
VI = 3.0 V  
IIH3'  
IIL3  
VI = 3.0 V, without pull-down resistor  
VI = 0 V  
0.2  
–0.2  
3.0  
VIH1  
VIL1  
VIH2  
VIL2  
IIH3  
2.1  
0
VI = 3.0 V  
0.9  
V
1.3  
0
3.0  
V
0.4  
V
1.1  
0
3.0  
V
IIL3  
0.4  
V
R1  
VI = 0 V  
0.3  
150  
1.8  
0
3.0  
kΩ  
kΩ  
V
AC Pull-Down Resistor  
R2  
VI = 2.7 V  
400  
1500  
3.0  
AC High Level Input Voltage  
AC Low Level Input Voltage  
VIH4  
VIL4  
1.2  
V
RECOMMENDED CERAMIC RESONATOR  
(Common in µPD6124A and 6600A)  
External Capacitance (pF)  
Oscillation Voltage Range (V)  
Manufacturer  
Product  
Remarks  
C1  
C2  
MIN.  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
MAX.  
3.3  
5.0  
5.0  
5.0  
3.3  
6.0  
6.0  
6.0  
Murata Mfg. Co., Ltd.  
CSB375P  
CSB400P  
CSB455E  
CSB480E  
CSB500E  
CRK400  
220  
220  
100  
100  
100  
100  
100  
100  
220  
220  
100  
100  
100  
100  
100  
100  
Toko Ceramic Co., Ltd.  
CRK455  
CRK500  
26  
µPD6124A, 6600A  
23. CHARACTERISTICS CURVE (REFERENCE VALUE) (Common in µPD6124A and 6600A)  
I
OL vs V OL characteristic examples (REM)  
(T = 25 ± 3˚C)  
I
OH vs VOH characteristic examples (REM)  
(T = 25 ± 3˚C)  
A
A
5.0  
4.0  
3.0  
2.0  
1.0  
–10.0  
–5.0  
V
DD = 3 V  
V
DD = 3 V  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Low-level output voltage VOL [V]  
High-level output voltage VOH [V]  
I
OL vs V OL characteristic examples (S-OUT)  
(T = 25 ± 3˚C)  
I
OHvs VOH characteristic examples (S-OUT)  
(T = 25 ± 3˚C)  
A
A
5.0  
V
DD = 3 V  
–3.0  
V
DD = 3 V  
4.0  
3.0  
2.0  
1.0  
–2.0  
–1.0  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
low-level output voltage VOL [V]  
High-level output voltage VOH [V]  
I
OL vs V OL characteristic examples (KI/O0 -KI/O3  
)
I
OL vs VOL characteristic examples (KI/O0 -KI/O7  
)
(TA= 25 ± 3˚C)  
(TA= 25 ± 3˚C)  
µ
µ
V
DD = 3 V  
V
DD = 3 V  
50  
50  
0
0
1.0  
2.0  
3.0  
1.0  
2.0  
3.0  
Low-level output voltage VOL [V]  
Low-level output voltage VOL [V]  
27  
µPD6124A, 6600A  
I
OH vs V OH characteristic examples (KI/O0 -KI/O7  
(T = 25 ± 3˚C)  
)
A
V
DD = 3 V  
–4.0  
–3.0  
–2.0  
–1.0  
0
2.2  
2.4  
2.6  
2.8  
3.0  
High-level output voltage VOH [V]  
28  
µPD6124A, 6600A  
24. PACKAGE DRAWINGS  
20-Pin Plastic SOP (300 mil) (units in mm)  
20 PIN PLASTIC SOP (300 mil)  
20  
11  
detail of lead end  
1
10  
A
H
I
J
L
B
C
N
M
M
D
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.12 mm (0.005 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
13.00 MAX.  
0.78 MAX.  
1.27 (T.P.)  
0.512 MAX.  
0.031 MAX.  
0.050 (T.P.)  
+0.10  
0.40  
+0.004  
0.016  
D
–0.05  
–0.003  
E
F
G
H
I
0.1±0.1  
1.8 MAX.  
1.55  
0.004±0.004  
0.071 MAX.  
0.061  
7.7±0.3  
5.6  
0.303±0.012  
0.220  
J
1.1  
0.043  
+0.004  
0.008  
+0.10  
0.20  
K
L
–0.002  
–0.05  
+0.008  
0.024  
0.6±0.2  
–0.009  
M
N
0.12  
0.10  
0.005  
0.004  
+7°  
3°  
+7°  
3°  
P
–3°  
–3°  
P20GM-50-300B, C-4  
29  
µPD6124A, 6600A  
20PIN PLASTIC SHRINK DIP (300 mil)  
20  
11  
10  
1
A
K
L
I
J
C
H
M
B
G
R
F
M
D
N
NOTES  
ITEM MILLIMETERS  
INCHES  
1) Each lead centerline is located within 0.17 mm (0.007 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
19.57 MAX.  
1.78 MAX.  
1.778 (T.P.)  
0.771 MAX.  
0.070 MAX.  
0.070 (T.P.)  
2) ltem "K" to center of leads when formed parallel.  
+0.004  
0.020  
D
0.50±0.10  
–0.005  
F
G
H
I
0.85 MIN.  
3.2±0.3  
0.033 MIN.  
0.126±0.012  
0.020 MIN.  
0.170 MAX.  
0.200 MAX.  
0.300 (T.P.)  
0.256  
0.51 MIN.  
4.31 MAX.  
5.08 MAX.  
7.62 (T.P.)  
6.5  
J
K
L
+0.10  
0.25  
+0.004  
0.010  
M
–0.05  
–0.003  
N
R
0.17  
0.007  
0~15°  
0~15°  
P20C-70-300B-1  
30  
µPD6124A, 6600A  
20-PIN SHRINK DIP FOR ES (REFERENCE) (UNITS IN mm)  
fig.  
20  
1
22.8  
11.0  
7.8  
φ
φ
1.0  
0.46  
1.778 3.4  
31  
µPD6124A, 6600A  
25. RECOMMENDED SOLDERING CONDITIONS  
It is recommended that µPD6124A and 6600A be soldered under the following conditions.  
For details on the recommended soldering conditions, refer to Information Document “Semiconductor Device  
Mounting Technology Manual” (C10535E).  
For other soldering methods and conditions, consult NEC.  
Table 25-1. Soldering Conditions of Surface-Mount Type  
µPD6124AGS-XXX: 20-pin plastic SOP (300 mil)  
µPD6600AGS-XXX: 20-pin plastic SOP (300 mil)  
Symbol for  
Recommended Condition  
Soldering Method  
Soldering Conditions  
Infrared Reflow  
VPS  
Package peak temperature: 230°C, time: 30 seconds max. (210°C min.), number of times: 1  
Package peak temperature: 215°C, time: 40 seconds max. (200°C min.), number of times: 1  
IR30-00-1  
VP15-00-1  
Soldering bath temperature: 260°C max., time: 10 seconds max., number of times: 1  
Pre-heating temperature: 120°C max. (package surface temperature)  
Wave Soldering  
Partial Heating  
WS60-00-1  
Pin temperature: 300°C max., time: 3 seconds max. (per side)  
Caution Do not use two or more soldering methods in combination (except the partial heating method).  
Table 25-2. Soldering Conditions of Through-Hole Type  
µPD6124ACS-XXX: 20-pin plastic shrink DIP (300 mil)  
µPD6600ACS-XXX: 20-pin plastic shrink DIP (300 mil)  
Soldering Method  
Wave Soldering (Only for pin part)  
Partial Heating  
Soldering Conditions  
Soldering bath temperature: 260°C max., time: 10 seconds max.  
Pin temperature: 300°C max., time: 30 seconds max.  
Caution The wave soldering must be performed at the pin part only. Note that the solder must not be directly  
contacted to the package body.  
32  
µPD6124A, 6600A  
APPENDIX µPD612× SERIES PRODUCT LIST  
Part Number  
µPD6124A  
µPD6600A  
µPD61P24  
µPD6125A  
1002 × 10 bits  
µPD6126A  
Item  
ROM capacity  
1002 × 10 bits  
512 × 10 bits  
1002 × 10 bits  
(mask ROM)  
(mask ROM)  
(one-time PROM) (mask ROM)  
RAM capacity  
I/O pin  
32 × 5 bits  
8 pins (KI/O0-7)  
12 pins  
16 pins (KI/O0-7,  
I/O00-03, I/O10-13)  
(KI/O0-7, I/O00-03)  
S-IN pin  
Provided  
Current consumption  
(fOSC = STOP) (MAX.)  
2 µA  
1 µA  
S-IN high-level input  
current (MAX.)  
30 µA  
15 µA  
Transmission carrier frequency  
fOSC/12, fOSC/8  
Provided  
Low-voltage detection  
(reset) function  
None  
Mask option  
Supply voltage  
Package  
Provided  
None (fixed)  
Provided  
VDD = 2.0 to 5.5 V VDD = 2.2 to 3.6 V VDD = 2.2 to 5.5 V VDD = 2.0 to 6.0 V  
• 20-pin plastic SOP (300 mil)  
• 24-pin plastic  
SOP (300 mil)  
• 24-pin plastic  
shrink DIP  
• 28-pin plastic  
SOP (375 mil)  
• 20-pin plastic shrink DIP (300 mil)  
(300 mil)  
33  
µPD6124A, 6600A  
NOTES FOR CMOS DEVICES  
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note: Strong electric field, when exposed to a MOS device, can cause destruction  
of the gate oxide and ultimately degrade the device operation. Steps must  
be taken to stop generation of static electricity as much as possible, and  
quickly dissipate it once, when it has occurred. Environmental control must  
be adequate. When it is dry, humidifier should be used. It is recommended  
to avoid using insulators that easily build static electricity. Semiconductor  
devices must be stored and transported in an anti-static container, static  
shielding bag or conductive material. All test and measurement tools  
including work bench and floor should be grounded. The operator should  
be grounded using wrist strap. Semiconductor devices must not be touched  
with bare hands. Similar precautions need to be taken for PW boards with  
semiconductor devices on it.  
2 HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note: No connection for CMOS device inputs can be cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input  
level may be generated due to noise, etc., hence causing malfunction. CMOS  
device behave differently than Bipolar or NMOS devices. Input levels of  
CMOS devices must be fixed high or low by using a pull-up or pull-down  
circuitry. Each unused pin should be connected to VDD or GND with a  
resistor, if it is considered to have a possibility of being an output pin. All  
handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note: Power-on does not necessarily define initial status of MOS device. Produc-  
tion process of MOS does not define the initial operation status of the device.  
Immediately after the power source is turned ON, the devices with reset  
function have not yet been initialized. Hence, power-on does not guarantee  
out-pin levels, I/O settings or contents of registers. Device is not initialized  
until the reset signal is received. Reset operation must be executed imme-  
diately after power-on for devices having reset function.  
34  
µPD6124A, 6600A  
Regional Information  
Some information contained in this document may vary from country to country. Before using any NEC  
product in your application, please contact the NEC office in your country to obtain a list of authorized  
representatives and distributors. They will verify:  
• Device availability  
• Ordering information  
• Product release schedule  
• Availability of related technical literature  
• Development environment specifications (for example, specifications for third-party tools and  
components, host computers, power plugs, AC supply voltages, and so forth)  
• Network requirements  
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary  
from country to country.  
NEC Electronics Inc. (U.S.)  
Santa Clara, California  
Tel: 800-366-9782  
NEC Electronics Hong Kong Ltd.  
Hong Kong  
Tel: 2886-9318  
NEC Electronics (Germany) GmbH  
Benelux Office  
Eindhoven, The Netherlands  
Tel: 040-2445845  
Fax: 800-729-9288  
Fax: 2886-9022/9044  
Fax: 040-2444580  
NEC Electronics (Germany) GmbH  
Duesseldorf, Germany  
Tel: 0211-65 03 02  
NEC Electronics Hong Kong Ltd.  
Seoul Branch  
Seoul, Korea  
NEC Electronics (France) S.A.  
Velizy-Villacoublay, France  
Tel: 01-30-67 58 00  
Fax: 0211-65 03 490  
Tel: 02-528-0303  
Fax: 02-528-4411  
Fax: 01-30-67 58 99  
NEC Electronics (UK) Ltd.  
Milton Keynes, UK  
Tel: 01908-691-133  
NEC Electronics Singapore Pte. Ltd.  
United Square, Singapore 1130  
Tel: 253-8311  
NEC Electronics (France) S.A.  
Spain Office  
Madrid, Spain  
Fax: 01908-670-290  
Fax: 250-3583  
Tel: 01-504-2787  
NEC Electronics Italiana s.r.1.  
Milano, Italy  
Tel: 02-66 75 41  
Fax: 01-504-2860  
NEC Electronics Taiwan Ltd.  
Taipei, Taiwan  
Tel: 02-719-2377  
NEC Electronics (Germany) GmbH  
Scandinavia Office  
Fax: 02-66 75 42 99  
Fax: 02-719-5951  
Taeby, Sweden  
Tel: 08-63 80 820  
NEC do Brasil S.A.  
Sao Paulo-SP, Brasil  
Tel: 011-889-1680  
Fax: 011-889-1689  
Fax: 08-63 80 388  
J96. 8  
35  
µPD6124A, 6600A  
[MEMO]  
The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited  
without governmental license, the need for which must be judged by the customer. The export or re-export of this product  
from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales  
representative.  
The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 96.5  
配单直通车
UPD6124AGS-XXX产品参数
型号:UPD6124AGS-XXX
是否Rohs认证: 不符合
生命周期:Obsolete
零件包装代码:SOIC
包装说明:SOP,
针数:20
Reach Compliance Code:compliant
HTS代码:8542.31.00.01
风险等级:5.92
具有ADC:NO
地址总线宽度:
位大小:4
最大时钟频率:0.5 MHz
DAC 通道:NO
DMA 通道:NO
外部数据总线宽度:
JESD-30 代码:R-PDSO-G20
JESD-609代码:e0
I/O 线路数量:12
端子数量:20
最高工作温度:75 °C
最低工作温度:-20 °C
PWM 通道:NO
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):NOT SPECIFIED
认证状态:Not Qualified
ROM可编程性:MROM
座面最大高度:1.8 mm
速度:0.5 MHz
最大供电电压:5.5 V
最小供电电压:2.2 V
标称供电电压:3 V
表面贴装:YES
技术:MOS
温度等级:COMMERCIAL EXTENDED
端子面层:TIN LEAD
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:5.6 mm
uPs/uCs/外围集成电路类型:MICROCONTROLLER
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!