欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • UPD78044BGF-017
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • UPD78044BGF-017图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • UPD78044BGF-017
  • 数量21000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • UPD78044BGF-017图
  • 集好芯城

     该会员已使用本站13年以上
  • UPD78044BGF-017
  • 数量12158 
  • 厂家NEC 
  • 封装QFP 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965

产品型号UPD78044F的Datasheet PDF文件预览

DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD78044H, 78045H, 78046H  
8-BIT SINGLE-CHIP MICROCOMPUTER  
The µPD78044H, µPD78045H, and µPD78046H are µPD78044H sub-series products in the 78K/0 series.  
These microcomputers are advanced models of the µPD78044A sub-series, featuring the added N-ch open-drain  
I/O ports.  
In addition, the µPD78P048B (one-time PROM or EPROM model) that can operate in the same voltage range as  
that of the mask ROM models, and various development tools are provided.  
The functions of these microcomputers are described in detail in the following User’s Manual. Be sure  
to read this manual when you design a system using any of these microcomputers.  
µPD78044H Sub-Series User’s Manual : To be created  
78K/0 Series User's Manual, Instruction: IEU-1372  
FEATURES  
• I/O ports: 68 (N-ch open-drain I/O: 13)  
• High-capacity ROM and RAM  
Data memory  
Internal high-speed RAM  
1024 bytes  
Item  
Program memory  
(ROM)  
Product name  
FIP display RAM  
48 bytes  
µPD78044H  
µPD78045H  
µPD78046H  
32K bytes  
40K bytes  
48K bytes  
• Wide range of instruction execution time:  
From high-speed (0.4 µs) to ultra low-speed (122 µs)  
• FIP controller/driver: total display outputs: 34  
• 8-bit resolution A/D converter: 8 channels  
• Serial interface: 1 channel  
• Timer: 5 channels  
• Power supply voltage: VDD = 2.7 to 5.5 V  
APPLICATIONS  
VCRs, audio systems, etc.  
ORDERING INFORMATION  
Part number  
Package  
µPD78044HGF-×××-3B9  
µPD78045HGF-×××-3B9  
µPD78046HGF-×××-3B9  
80-pin plastic QFP (14 × 20 mm)  
80-pin plastic QFP (14 × 20 mm)  
80-pin plastic QFP (14 × 20 mm)  
Remark ××× indicates ROM code number.  
The information in this document is subject to change without notice.  
The mark shows major revised points.  
Document No. U10865EJ1V0DS00 (1st edition)  
Date Published August 1996 P  
Printed in Japan  
1996  
©
µPD78044H, 78045H, 78046H  
78K/0 SERIES PRODUCT DEVELOPMENT  
The 78K/0 series products were developed as shown below. The sub-series names are indicated in frames.  
Products being mass-produced  
Products under development  
2
Y sub-series products are compatible with the I C bus.  
Used for control  
µ
A timer has been added to the PD78054 to enhance external interface functions.  
100-pin  
µPD78078  
µPD78078Y  
µ
ROM-less versions of the PD78078  
The serial I/O of the  
limited.  
100-pin  
100-pin  
µPD78070A  
µPD780018  
µPD78070AY  
µPD780018Y  
µPD78058FY  
µPD78054Y  
µPD78078 has been enhanced. The functions have been  
EMI noise-reduced version of the  
µPD78054  
80-pin  
80-pin  
µPD78058F  
µPD78054  
µPD78018F  
µPD78014  
µPD780001  
µPD78002  
µPD78083  
An UART and D/A converter have been added to the  
µ
PD78014 to enhance I/O.  
Low-voltage (1.8 V) versions of the PD78014. ROM and RAM variations have  
µ
64-pin  
64-pin  
µPD78018FY  
µPD78014Y  
been enhanced.  
An A/D converter and 16-bit timer have been added to the PD78002.  
µ
µ
An A/D converter has been added to the PD78002.  
64-pin  
64-pin  
µPD78002Y  
Basic sub-series for control  
42-/44-pin  
These products include an UART and can operate at a low voltage (1.8 V).  
For FIP driving  
µ
The I/O and FIP C/D of the PD78044F have been enhanced.  
100-pin  
80-pin  
80-pin  
64-pin  
µPD780208  
Total indication output pins: 53  
µ
A 6-bit U/D counter has been added to the PD78024.  
µ
PD78044F  
Total indication output pins: 34  
78K/0  
series  
µPD78044H  
µPD78024  
µ
N-ch open-drain I/O ports have been added to the PD78044F.  
Total indication output pins: 34  
Basic sub-series for FIP driving. Total indication output pins: 26  
For LCD driving  
The SIO of the  
µ
PD78064 has been enhanced. ROM and RAM  
µPD780308  
µPD78064B  
µPD78064  
µPD780308Y  
µPD78064Y  
100-pin  
100-pin  
100-pin  
have been expanded.  
µ
EMI noise-reduced version of the PD78064  
Sub-series for LCD driving. These products include an UART.  
Compatible with IEBusTM  
80-pin  
64-pin  
µPD78098  
An IEBus controller has been added to the PD78054.  
µ
For LV  
A PWM output, LV digital code decoder, and Hsync counter are  
incorporated.  
µPD78P0914  
µPD78044H, 78045H, 78046H  
The table below shows the main differences between sub-series.  
Timer  
Function  
External  
expan-  
sion  
ROM  
capacity  
8-bit  
A/D  
8-bit  
D/A  
Serial  
interface  
Minimum  
I/O  
VDD  
8-bit  
Watch  
1ch  
16-bit  
WDT  
1ch  
Sub-series name  
1.8 V  
2.7 V  
µPD78078  
32K-60K  
8ch  
3ch (UART:1ch) 88 pins  
61 pins  
2ch  
4ch 1ch  
µPD78070A  
µPD780018 48K-60K  
µPD78058F 48K-60K  
2ch  
88 pins  
2ch  
3ch (UART:1ch) 69 pins  
2ch  
2.0 V  
1.8 V  
2.7 V  
µPD78054  
µPD78018F 8K-60K  
µPD78014 8K-32K  
µPD780001 8K  
16K-60K  
2ch  
1ch  
53 pins  
1ch  
39 pins  
53 pins  
µPD78002  
8K-16K  
8ch  
1.8 V  
2.7 V  
µPD78083  
1ch (UART:1ch) 33 pins  
µPD780208 32K-60K  
µPD78044F 16K-40K  
µPD78044H 32K-48K  
2ch  
74 pins  
68 pins  
2ch  
1ch  
1ch  
1ch  
8ch  
1ch  
1ch  
2ch  
µPD78024  
24K-32K  
54 pins  
1.8 V  
2.0 V  
8ch  
µPD780308 48K-60K  
µPD78064B 32K  
3ch (UART:1ch) 57 pins  
2ch (UART:1ch)  
2ch  
1ch  
1ch  
µPD78064  
µPD78098  
16K-32K  
32K-60K  
2.7 V  
1ch  
2ch  
1ch  
3ch (UART:1ch) 69 pins  
2ch  
6ch  
1ch 8ch  
µPD78P0914 32K  
8ch  
2ch  
54 pins 4.5 V  
1ch  
For LV  
3
µPD78044H, 78045H, 78046H  
FUNCTIONAL OUTLINE  
Product name  
µPD78044H  
32K bytes  
µPD78045H  
40K bytes  
µPD78046H  
48K bytes  
Item  
Internal  
memory  
ROM  
1024 bytes  
48 bytes  
Internal high-speed RAM  
FIP display RAM  
General registers  
8 bits × 32 registers (8 bits × 8 registers × 4 banks)  
Variable instruction execution time  
Instruction  
cycle  
For main system clock  
For subsystem clock  
0.4 µs/0.8 µs/1.6 µs/3.2 µs/6.4 µs (at 5.0 MHz)  
122 µs (at 32.768 kHz)  
Instruction set  
• Multiplication/division (8 bits × 8 bits, 16 bits ÷ 8 bits)  
• Bit (set, reset, test, Boolean algebra)  
I/O ports (including those  
multiplexed with FIP pins)  
Total  
: 68 lines  
2 lines  
• CMOS input  
:
• CMOS I/O  
: 19 lines  
: 13 lines  
: 16 lines  
: 18 lines  
• N-ch open-drain  
• P-ch open-drain I/O  
• P-ch open-drain output  
FIP controller/driver  
A/D converter  
Total  
: 34 lines  
• Segments  
• Digits  
: 9 to 24 lines  
: 2 to 16 lines  
• 8-bit resolution × 8 channels  
• Power supply voltage: AVDD = 4.0 to 5.5 V  
Serial interface  
Timer  
3-wire serial I/O mode  
: 1 channel  
• 16-bit timer/event counter : 1 channel  
• 8-bit timer/event counter : 2 channels  
• Watch timer  
: 1 channel  
: 1 channel  
• Watchdog timer  
Timer output  
Clock output  
3 lines (one for 14-bit PWM output)  
19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz  
(main system clock: when operating at 5.0 MHz)  
32.768 kHz (subsystem clock: when operating at 32.768 kHz)  
Buzzer output  
1.2 kHz, 2.4 kHz, 4.9 kHz (main system clock: when operating at 5.0 MHz)  
Maskable interrupt  
Internal 8 lines, external 4 lines  
Internal 1 line  
Vectored  
interrupt  
Non-maskable interrupt  
Software interrupt  
1 line  
Text input  
Internal 1 line  
Power supply voltage  
Package  
VDD = 2.7 to 5.5 V  
80-pin plastic QFP (14 × 20 mm)  
µPD78044H, 78045H, 78046H  
CONTENTS  
1. PIN CONFIGURATION (TOP VIEW) .........................................................................................  
6
8
2. BLOCK DIAGRAM......................................................................................................................  
3. PIN FUNCTIONS.........................................................................................................................  
3.1 PORT PINS..........................................................................................................................................  
3.2 PINS OTHER THAN PORT PINS.......................................................................................................  
3.3 PIN I/O CIRCUITS AND PROCESSING OF UNUSED PINS ...........................................................  
9
9
11  
12  
4. MEMORY SPACE ....................................................................................................................... 15  
5. PERIPHERAL HARDWARE FUNCTIONS ................................................................................ 16  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
PORTS .............................................................................................................................................  
CLOCK GENERATOR CIRCUIT ....................................................................................................  
TIMER/EVENT COUNTER ..............................................................................................................  
CLOCK OUTPUT CONTROL CIRCUIT .........................................................................................  
BUZZER OUTPUT CONTROL CIRCUIT .......................................................................................  
A/D CONVERTER ...........................................................................................................................  
SERIAL INTERFACE ......................................................................................................................  
FIP CONTROLLER/DRIVER ..........................................................................................................  
16  
17  
17  
20  
20  
21  
22  
23  
6. INTERRUPT FUNCTION AND TEST FUNCTION ..................................................................... 25  
6.1  
6.2  
INTERRUPT FUNCTION.................................................................................................................  
TEST FUNCTION ............................................................................................................................  
25  
28  
7. STANDBY FUNCTION................................................................................................................ 29  
8. RESET FUNCTION ..................................................................................................................... 29  
9. INSTRUCTION SET .................................................................................................................... 30  
10. ELECTRICAL SPECIFICATIONS .............................................................................................. 33  
11. PACKAGE DRAWING ................................................................................................................ 50  
12. RECOMMENDED SOLDERING CONDITIONS ......................................................................... 51  
APPENDIX A DEVELOPMENT TOOLS ......................................................................................... 52  
APPENDIX B RELATED DOCUMENTS......................................................................................... 54  
5
µPD78044H, 78045H, 78046H  
1. PIN CONFIGURATION (TOP VIEW)  
80-pin plastic QFP (14 × 20 mm)  
µPD78044HGF-×××-3B9, µPD78045HGF-×××-3B9, µPD78046HGF-×××-3B9  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65  
P94/FIP6  
P93/FIP5  
P92/FIP4  
P114/FIP22  
P115/FIP23  
P116/FIP24  
1
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
2
3
4
P91/FIP3  
P90/FIP2  
P81/FIP1  
P80/FIP0  
P117/FIP25  
P120/FIP26  
P121/FIP27  
P122/FIP28  
P123/FIP29  
P124/FIP30  
P125/FIP31  
P126/FIP32  
P127/FIP33  
VDD  
5
6
7
V
DD  
8
9
P27  
P26  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
P25  
P24  
P23  
P22/SCK1  
P21/SO1  
P20/SI1  
P70  
P71  
P72  
RESET  
P74  
IC  
P00/INTP0/TI0  
P01/INTP1  
P02/INTP2  
P03/INTP3  
P30/TO0  
P31/TO1  
P32/TO2  
P73  
AVSS  
P17/ANI7  
P16/ANI6  
P15/ANI5  
P14/ANI4  
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
Cautions 1. Connect the IC (Internally Connected) pins directly to the VSS.  
2. Connect the AVDD pin to the VDD pin.  
3. Connect the AVSS pin to the VSS pin.  
µPD78044H, 78045H, 78046H  
SCK1  
PCL  
: Serial clock  
P00-P04  
P10-P17  
P20-P27  
P30-P37  
P70-P74  
P80, P81  
P90-P97  
: Port 0  
: Port 1  
: Port 2  
: Port 3  
: Port 7  
: Port 8  
: Port 9  
: Programmable clock  
: Buzzer clock  
BUZ  
FIP0-FIP33 : Fluorescent indicator panel  
VLOAD  
: Negative power supply  
: Crystal (main system clock)  
: Crystal (subsystem clock)  
: Reset  
X1, X2  
XT1, XT2  
RESET  
P100-P107 : Port 10  
P110-P117 : Port 11  
ANI0-ANI7 : Analog input  
AVDD  
AVSS  
AVREF  
VDD  
: Analog power supply  
P120-P127 : Port 12  
: Analog ground  
: Analog reference voltage  
: Power supply  
INTP0-INTP3 : Interrupt from peripherals  
TI0  
: Timer input  
: Timer output  
: Serial input  
: Serial output  
TO0-TO2  
SI1  
VSS  
: Ground  
SO1  
IC  
: Internally connected  
7
µPD78044H, 78045H, 78046H  
2. BLOCK DIAGRAM  
P00  
TO0/P30  
16-bit timer/  
event counter  
P01-P03  
P04  
Port 0  
Port 1  
Port 2  
TI0/INTP0/P00  
TO1/P31  
P33  
8-bit timer/  
event counter 1  
P10-P17  
P20-P27  
TO2/P32  
P34  
8-bit timer/  
event counter 2  
P30-P37  
P70-P74  
P80, P81  
Port 3  
Port 7  
Port 8  
Port 9  
Port 10  
Watchdog timer  
Watch timer  
SI1/P20  
SO1/P21  
Serial interface 1  
A/D converter  
SCK1/P22  
78K/0  
CPU core  
ROM  
P90-P97  
ANI0/P10-  
ANI7/P17  
AVDD  
AVSS  
P100-P107  
AVREF  
P110-P117  
P120-P127  
Port 11  
Port 12  
INTP0/TI0/P00-  
INTP3/P03  
Interrupt control  
Buzzer output  
BUZ/P36  
PCL/P35  
RAM  
1024 bytes  
Clock output  
control  
FIP0-FIP33  
FIP  
controller/driver  
VLOAD  
RESET  
X1  
System control  
X2  
XT1/P04  
XT2  
VDD  
V
SS  
IC  
Remark The capacity of the internal ROM differs depending on the product.  
µPD78044H, 78045H, 78046H  
3. PIN FUNCTIONS  
3.1 PORT PINS (1/2)  
On reset  
Shared by:  
INTP0/TI0  
Pin  
I/O  
Function  
Input  
Input  
Input only  
P00  
P01  
P02  
P03  
P04  
Input  
I/O  
Port 0  
5-bit I/O port  
Can be specified for input or output in 1-  
bit units. When used as an input port  
pin, a built-in pull-up resistor can be  
connected through software.  
INTP1  
INTP2  
INTP3  
XT1  
Note 1  
Input  
Input  
Input only  
Input  
I/O  
Port 1  
P10-P17  
ANI0-ANI7  
8-bit I/O port  
Can be specified for input or output in 1-bit units.  
When used as an input port pin, a built-in pull-up resistor can be  
Note 2  
connected through software.  
Input  
I/O  
SI1  
P20  
P21  
Port 2  
8-bit I/O port  
SO1  
Can be specified for input or output in 1-bit units.  
When used as an input port pin, a built-in pull-up resistor can be  
connected through software.  
SCK1  
P22  
P23  
P24  
P25  
P26  
P27  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
Input  
I/O  
Port 3  
TO0  
TO1  
TO2  
N-ch open-drain 8-bit I/O port  
Can be specified for input or output in 1-bit units.  
Can directly drive LEDs.  
A built-in pull-up resistor can be connected in 1-bit units by the  
mask option.  
PCL  
BUZ  
Notes 1. When the P04/XT1 pin is used as an input port pin, bit 6 (FRC) of the processor clock control register  
(PCC) must be set to 1. At this time, do not use the feedback resistor of the subsystem clock oscillator  
circuit.  
2. When the P10/ANI0 through P17/ANI7 pins are used as the analog input lines of the A/D converter, be  
sure to place the port 1 in the input mode. In this case, the built-in pull-up resistors are automatically  
unused.  
9
µPD78044H, 78045H, 78046H  
3.1 PORT PINS (2/2)  
Pin  
I/O  
Function  
On reset  
Input  
Shared by:  
P70-P74  
I/O  
Port 7  
5-bit N-ch open-drain I/O port  
Can be specified for input or output in 1-bit units.  
Can directly drive LEDs.  
A pull-up resistor can be connected in 1-bit units by the mask  
option.  
P80, P81  
Output  
Output  
Output  
I/O  
Port 8  
Output  
Output  
Output  
Input  
FIP0, FIP1  
2-bit P-ch open-drain high-voltage output port.  
Can directly drive LEDs.  
A pull-down resistor can be connected in 1-bit units by the  
mask option (whether VLOAD or VSS is connected can be  
specified in 2-bit units).  
P90-P97  
Port 9  
FIP2-FIP9  
8-bit P-ch open-drain high-voltage output port.  
Can directly drive LEDs.  
A pull-down resistor can be connected in 1-bit units by the  
mask option (whether VLOAD or VSS is connected can be  
specified in 4-bit units).  
P100-P107  
P110-P117  
Port 10  
FIP10-FIP17  
FIP18-FIP25  
8-bit P-ch open-drain high-voltage output port.  
Can directly drive LEDs.  
A pull-down resistor can be connected in 1-bit units by the  
mask option (whether VLOAD or VSS is connected can be  
specified in 4-bit units).  
Port 11  
8-bit P-ch open-drain high-voltage I/O port.  
Can be specified for input or output in 1-bit units.  
Can directly drive LEDs  
A pull-down resistor can be connected in 1-bit units by the  
mask option (whether VLOAD or VSS is connected can be  
specified in 4-bit units).  
P120-P127  
I/O  
Port 12  
Input  
FIP26-FIP33  
8-bit P-ch open-drain high-voltage I/O port  
Can be specified for input or output in 1-bit units.  
Can directly drive LEDs.  
A pull-down resistor can be connected in 1-bit units by the  
mask option (whether VLOAD or VSS is connected can be  
specified in 4-bit units).  
µPD78044H, 78045H, 78046H  
3.2 PINS OTHER THAN PORT PINS  
Pin  
INTP0  
I/O  
Function  
Valid edge (rising, falling, or both rising and falling edges) can  
be specified.  
On reset  
Input  
Shared by:  
P00/TI0  
P01  
Input  
INTP1  
INTP2  
INTP3  
SI1  
External interrupt input  
P02  
Input  
Input  
Input  
Input  
Input  
Input  
P03  
Falling edge-active external interrupt input  
Serial data input lines of serial interface  
Serial data output lines of serial interface  
Serial clock I/O lines of serial interface  
External count clock input to 16-bit timer (TM0)  
16-bit timer output (multiplexed with 14-bit PWM output)  
8-bit timer (TM1) output  
P20  
Input  
Output  
I/O  
SO1  
SCK1  
TI0  
P21  
P22  
P00/INTP0  
P30  
Input  
Output  
TO0  
TO1  
P31  
TO2  
8-bit timer (TM2) output  
P32  
PCL  
Output  
Clock output (for trimming main system clock and subsystem  
clock)  
Input  
P35  
Input  
P36  
BUZ  
Output  
Output  
Buzzer output  
FIP0, FIP1  
FIP2-FIP9  
FIP10-FIP15  
High-voltage, high-current digit/segment output of FIP  
controller/driver  
Output  
P80, P81  
P90-P97  
Output  
P100-P105  
Output  
Output  
High-voltage, high-current digit/segment output of FIP  
controller/driver  
FIP16, FIP17  
FIP18-FIP25  
FIP26-FIP33  
High-voltage segment output of FIP controller/driver  
Output  
Input  
P106, P107  
P110-P117  
P120-P127  
VLOAD  
Connects pull-down resistor to FIP controller/driver  
A/D converter analog input lines  
ANI0-ANI7  
Input  
Input  
P10-P17  
AVREF  
Input  
A/D converter reference voltage input line  
AVDD  
Analog power supply to A/D converter. Connected to the VDD pin.  
AVSS  
RESET  
X1  
Input  
Input  
A/D converter ground line. Connected to the VSS pin.  
System reset input  
Connect crystal for main system clock oscillation  
X2  
XT1  
XT2  
VDD  
Input  
Connect crystal for subsystem clock oscillation  
Input  
P04  
Positive power supply  
VSS  
Ground potential  
IC  
Internal connection. Connected directly to the VSS pin.  
11  
µPD78044H, 78045H, 78046H  
3.3 PIN I/O CIRCUITS AND PROCESSING OF UNUSED PINS  
Table 3-1 shows the I/O circuit type of each pin and the processing of unused pins.  
For the configuration of the I/O circuit of each type, see Fig. 3-1.  
Table 3-1 I/O Circuit Type  
Pin  
I/O circuit type  
I/O  
Input  
Recommended connections when unused  
Connected to VSS.  
P00/INTP0/TI0  
2
P01/INTP1  
8-A  
I/O  
Individually connected to VSS with a resistor.  
P02/INTP2  
P03/INTP3  
P04/XT1  
16  
11  
Input  
I/O  
Connected to VDD or VSS.  
P10/ANI0-P17/ANI7  
Individually connected to VDD or VSS with a resistor.  
P20/SI1  
8-A  
5-A  
8-A  
5-A  
8-A  
10-A  
P21/SO1  
P22/SCK1  
P23  
P24  
P25  
P26  
P27  
P30/TO0  
13-B  
P31/TO1  
P32/TO2  
P33  
22-A  
13-B  
P34  
P35/PCL  
P36/BUZ  
P37  
P70-P74  
P80/FIP0, P81/FIP1  
14-A  
15-C  
Output  
I/O  
Open  
P90/FIP2-P97/FIP9  
P100/FIP10-P107/FIP17  
P110/FIP18-P117/FIP25  
Individually connected to VDD or VSS with a resistor.  
P120/FIP26-P127/FIP33  
RESET  
XT2  
2
Input  
16  
Open  
AVREF  
AVDD  
AVSS  
VLOAD  
IC  
Connected to VSS.  
Connected to VDD.  
Connected to VSS.  
Connected directly to VSS.  
µPD78044H, 78045H, 78046H  
Fig. 3-1 Pin I/O Circuits (1/2)  
Type 10-A  
Type 2  
VDD  
Pull-up  
enable  
P-ch  
V
DD  
IN  
Data  
P-ch  
IN/OUT  
Open-drain  
Output disable  
N-ch  
Schmitt trigger input with hysteresis characteristics  
Type 5-A  
Type 11  
VDD  
VDD  
Pull-up  
enable  
Pull-up  
enable  
P-ch  
P-ch  
V
DD  
Data  
V
DD  
P-ch  
N-ch  
Data  
IN/OUT  
P-ch  
Output  
disable  
IN/OUT  
P-ch  
N-ch  
Output  
disable  
N-ch  
Comparator  
+
Input  
enable  
(Threshold voltage)  
REF  
V
Input enable  
Type 8-A  
Type 13-B  
V
DD  
V
DD  
(Mask  
option)  
Pull-up  
enable  
P-ch  
IN/OUT  
Data  
Output disable  
V
DD  
N-ch  
Data  
P-ch  
V
DD  
IN/OUT  
N-ch  
Output  
disable  
RD  
P-ch  
Input buffer with intermediate  
withstand voltage  
13  
µPD78044H, 78045H, 78046H  
Fig. 3-1 Pin I/O Circuits (2/2)  
Type 14-A  
Type 16  
Feedback  
cut-off  
V
DD  
V
DD  
P-ch  
P-ch  
P-ch  
OUT  
Data  
(Mask  
option)  
N-ch  
VLOAD  
(Mask  
option)  
XT1  
XT2  
Type 22-A  
Type 15-C  
V
DD  
V
DD  
V
DD  
(Mask  
option)  
P-ch  
P-ch  
IN/OUT  
IN/OUT  
Data  
Data  
Output disable  
N-ch  
N-ch  
V
DD  
RD  
P-ch  
(Mask  
option)  
N-ch  
RD  
V
LOAD  
Input buffer with intermediate  
withstand voltage  
(Mask  
option)  
µPD78044H, 78045H, 78046H  
4. MEMORY SPACE  
Fig. 4-1 shows the memory map for µPD78044H, µPD78045H, and µPD78046H.  
Fig. 4-1 Memory Map  
FFFFH  
Special function  
register (SFR)  
256 × 8 bits  
FF00H  
FEFFH  
General-purpose register  
32 × 8 bits  
FEE0H  
FEDFH  
Internal high-speed RAM  
1024 × 8 bits  
nnnnH  
Program area  
FB00H  
FAFFH  
Data  
memory  
space  
1000H  
0FFFH  
CALLF entry area  
Program area  
Inhibited  
0800H  
07FFH  
FA80H  
FA7FH  
FIP display RAM  
48 × 8 bits  
FA50H  
FA4FH  
0080H  
007FH  
Inhibited  
CALLT table area  
Vector table area  
nnnnH+1  
nnnnH  
0040H  
003FH  
Program  
memory  
space  
Internal ROM Note  
0000H  
0000H  
Note The internal ROM capacity varies depending on the product. (See the table below.)  
Product name  
Last address of internal  
ROM  
nnnnH  
µPD78044H  
µPD78045H  
µPD78046H  
7FFFH  
9FFFH  
BFFFH  
15  
µPD78044H, 78045H, 78046H  
5. PERIPHERAL HARDWARE FUNCTIONS  
5.1 PORTS  
I/O ports are classified into the following 5 kinds:  
• CMOS input (P00, P04)  
: 2  
• CMOS input/output (P01 - P03, ports 1 and 2)  
• N-ch open-drain input/output (ports 3 and 7)  
• P-ch open-drain output (ports 8 - 10)  
• P-ch open-drain input/output (ports 11 and 12)  
: 19  
: 13  
: 18  
: 16  
Total  
: 68  
Table 5-1 Port Function  
Product  
Port 0  
Pin  
Function  
P00, P04  
Input port  
P01-P03  
P10-P17  
P20-P27  
P30-P37  
I/O port. Can be specified for input or output in 1-bit units. When used as input port,  
built-in pull-up resistor can be connected through software.  
Port 1  
Port 2  
Port 3  
I/O port. Can be specified for input or output in 1-bit units. When used as input port,  
built-in pull-up resistor can be connected through software.  
I/O port. Can be specified for input or output in 1-bit units. When used as input port,  
built-in pull-up resistor can be connected through software.  
N-ch open-drain I/O port. Can be specified for input or output in 1-bit units.  
Built-in pull-up resistor can be connected in 1-bit units by the mask option.  
Can directly drive LED.  
Port 7  
P70-P74  
N-ch open-drain I/O port. Can be specified for input or output in 1-bit units.  
Built-in pull-up resistor can be connected in 1-bit units by the mask option.  
Can directly drive LED.  
Port 8  
Port 9  
Port 10  
P80, P81  
P90-P97  
P-ch open-drain high-voltage output port. Pull-down resistor can be connected in  
1-bit units by the mask option (connection to VLOAD or VSS can be specified in 2-bit units).  
Can directly drive LED.  
P-ch open-drain high-voltage output port. Pull-down resistor can be connected in  
1-bit units by the mask option (connection to VLOAD or VSS can be specified in 4-bit units).  
Can directly drive LED.  
P100-P107  
P-ch open-drain high-voltage output port. Pull-down resistor can be connected in  
1-bit units by the mask option (connection to VLOAD or VSS can be specified in 4-bit units).  
Can directly drive LED.  
Port 11  
Port 12  
P110-P117  
P120-P127  
P-ch open-drain high-voltage I/O port. Can be specified for input or output in 1-bit  
units. Pull-down resistor can be connected in 1-bit units by the mask option (connection to  
VLOAD or VSS can be specified in 4-bit units).  
Can directly drive LED.  
P-ch open-drain high-voltage I/O port. Can be specified for input or output in 1-bit units.  
Pull-down resistor can be connected in 1-bit units by the mask option (connection to  
VLOAD or VSS can be specified in 4-bit units).  
Can directly drive LED.  
µPD78044H, 78045H, 78046H  
5.2 CLOCK GENERATOR CIRCUIT  
The clock generator circuit has two kinds of generator circuits: the main system clock and subsystem clock.  
The instruction time can be changed.  
• 0.4 µs/0.8 µs/1.6 µs/3.2 µs/6.4 µs (with main system clock: 5.0 MHz)  
• 122 µs (with subsystem clock: 32.768 kHz)  
Fig. 5-1 Clock Generator Circuit Block Diagram  
Subsystem  
clock generator  
circuit  
XT1/P04  
XT2  
f
XT  
Clock output circuit  
Watch timer  
Noise  
eliminator  
f
X
8
f
X
16  
Pre-scaler  
1
Main system  
clock generator  
circuit  
X1  
X2  
2
Pre-scaler  
Clock to  
hardware peripherals  
f
X
f
XT  
f
2
X
f
X
f
X
fX  
2
22  
23 24  
Standby  
control  
circuit  
STOP  
CPU clock (  
f
CPU)  
To INTP0  
sampling clock  
5.3 TIMER/EVENT COUNTER  
Five channels of timer/event counters are provided.  
• 16-bit timer/event counter  
• 8-bit timer/event counter  
• Watch timer  
: 1 channel  
: 2 channels  
: 1 channel  
: 1 channel  
• Watchdog timer  
Table 5-2 Timer/Event Counter Groups and Configurations  
16-bit timer/  
event counter  
8-bit timer/  
event counter  
Watch  
timer  
Watchdog  
timer  
Interval timer  
1 channel  
2 channels  
1 channel  
1 channel  
External event counter  
Timer output  
1 channel  
1 output  
1 output  
1 input  
1 output  
1
2 outputs  
PWM output  
Pulse width measurement  
Square wave output  
Interrupt request  
Test input  
2 outputs  
2
1
1
1 input  
17  
µPD78044H, 78045H, 78046H  
Fig. 5-2 16-Bit Timer/Event Counter Block Diagram  
Internal bus  
16-bit compare  
register (CR00)  
INTTM0  
PWM  
pulse  
output  
control  
circuit  
16-bit timer/event  
counter output  
control circuit  
Match  
TO0/P30  
fX  
fX/2  
fX/22  
fX/23  
16-bit timer register (TM0)  
Clear  
Edge  
detector  
circuit  
Selector  
TI0/P00/INTP0  
INTP0  
16-bit capture  
register (CR01)  
Internal bus  
Fig. 5-3 8-Bit Timer/Event Counter Block Diagram  
Internal bus  
INTTM1  
8-bit compare  
register (CR10)  
8-bit compare  
register (CR20)  
Output  
control  
circuit  
Match  
TO2/P32  
INTTM2  
Match  
f
f
X
/2 -f  
X
/210  
8-bit timer  
register 1 (TM1)  
8-bit timer  
register 2 (TM2)  
f
X
/212  
Clear  
Clear  
Selector  
X/2-f  
X
/210  
f
X
/212  
Output  
control  
circuit  
TO1/P31  
Internal bus  
µPD78044H, 78045H, 78046H  
Fig. 5-4 Watch Timer Block Diagram  
f
W
214  
f
X
/28  
5-bit counter  
f
W
INTWT  
Pre-scaler  
f
XT  
f
W
213  
f
W
24  
f
W
25  
f
W
26  
f
W
27  
f
W
28  
fW  
29  
INTTM3  
Fig. 5-5 Watchdog Timer Block Diagram  
f
X
24  
f
WDT  
Pre-scaler  
f
X
23  
f
WDT  
f
WDT  
22  
f
WDT  
23  
f
WDT  
24  
f
WDT  
25  
f
WDT  
26  
f
WDT  
28  
INTWDT  
2
Maskable  
interrupt  
request  
8-bit  
counter  
RESET  
INTWDT  
Nonmaskable  
interrupt  
request  
19  
µPD78044H, 78045H, 78046H  
5.4 CLOCK OUTPUT CONTROL CIRCUIT  
Clocks of the following frequencies can be output to the clock:  
• 19.5 kHz/39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz (with main system clock: 5.0 MHz)  
• 32.768 kHz (with subsystem clock: 32.768 kHz)  
Fig. 5-6 Clock Output Control Circuit Block Diagram  
f
f
f
f
f
f
f
X
X
X
X
X
X
/23  
/24  
/25  
/26  
/27  
/28  
PCL/P35  
Sync circuit  
Output control circuit  
XT  
5.5 BUZZER OUTPUT CONTROL CIRCUIT  
Clocks of the following frequencies can be output to the buzzer:  
• 1.2 kHz/2.4 kHz/4.9 kHz (with main system clock: 5.0 MHz)  
Fig. 5-7 Buzzer Output Control Circuit Block Diagram  
f
f
f
X
X
X
/210  
/211  
/212  
BUZ/P36  
Output control circuit  
µPD78044H, 78045H, 78046H  
5.6 A/D CONVERTER  
An 8-bit resolution 8-channel A/D converter is provided.  
This A/D converter can be started in the following two modes:  
• Hardware start  
• Software start  
Fig. 5-8 A/D Converter Block Diagram  
Series resistor string  
AVDD  
ANI0/P10  
AVREF  
ANI1/P11  
ANI2/P12  
ANI3/P13  
ANI4/P14  
ANI5/P15  
ANI6/P16  
ANI7/P17  
Sample-and-hold circuit  
Voltage comparator  
AVSS  
Successive approximation  
register (SAR)  
Falling edge  
detector  
circuit  
Control  
circuit  
INTAD  
INTP3  
INTP3/P03  
A/D conversion result  
register (ADCR)  
Internal bus  
21  
µPD78044H, 78045H, 78046H  
5.7 SERIAL INTERFACE  
One channel of clocked serial interfaces is provided.  
Serial interface channel 1 can be operated in the 3-wire serial I/O mode, where the MSB or LSB is selectable as  
the first bit.  
Fig. 5-9 Serial Interface Channel 1 Block Diagram  
Internal bus  
Serial I/O shift register 1  
(SIO1)  
SI1/P20  
SO1/P21  
Interrupt  
Serial clock  
counter  
SCK1/P22  
INTCSI1  
request signal  
generator  
f
X
/22-f  
TO2  
X
/29  
Serial clock control  
circuit  
Selector  
µPD78044H, 78045H, 78046H  
5.8 FIP CONTROLLER/DRIVER  
An FIP controller/driver having the following features is provided:  
(a) Automatic output of segment signals (DMA operation) and digit signals  
by automatically reading display data  
(b) Display mode registers (DSPM0 and DSPM1) that can control an FIP of 9 to 24 segments and 2 to 16 digits  
(c) Port pins not used for FIP display can be used as output port or I/O port pins.  
(d) Display mode register (DSPM1) can adjust luminance in eight steps.  
(e) Hardware suitable for key scan application using segment pins  
(f) High-voltage output buffer (FIP driver) that can directly drive an FIP  
(g) Display output pins can be connected to a pull-down resistor by the mask option.  
Fig. 5-10 Selecting Display Modes  
Selecting number of digits  
0
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
0
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Caution If the total number of digits and segments exceeds 34, the specified number of digits takes  
precedence.  
23  
µPD78044H, 78045H, 78046H  
Fig. 5-11 FIP Controller/Driver Block Diagram  
Internal bus  
Display data memory  
Digit signal  
generator circuit  
Segment data latch  
Port output latch  
High-voltage buffer  
FIP1/P81  
FIP0/P80  
FIP33/P127  
µPD78044H, 78045H, 78046H  
6. INTERRUPT FUNCTION AND TEST FUNCTION  
6.1 INTERRUPT FUNCTION  
The following three types of interrupt functions are available:  
• Non-maskable interrupt  
• Maskable interrupt  
• Software interrupt  
: 1  
: 12  
: 1  
Table 6-1 Interrupt Source List  
Note 2  
Interrupt source  
Note 1  
Basic  
configura-  
tion  
Vector  
table  
address  
Interrupt  
type  
Internal/  
external  
Default  
priority  
Trigger  
Name  
type  
(A)  
(B)  
Non-maskable  
Watchdog timer overflow  
Internal  
External  
0
INTWDT  
INTWDT  
0004H  
(with watchdog timer mode 1 selected)  
Maskable  
Watchdog timer overflow  
(with interval timer mode selected)  
(C)  
(D)  
Pin input edge detection  
1
2
3
4
5
6
INTP0  
0006H  
0008H  
000AH  
000CH  
0010H  
0012H  
INTP1  
INTP2  
INTP3  
(B)  
End of serial interface channel 1 transfer  
Internal  
INTCSI1  
INTTM3  
Reference time interval signal from watch  
timer  
16-bit timer/event counter match signal  
generation  
7
8
9
INTTM0  
INTTM1  
INTTM2  
0014H  
0016H  
0018H  
8-bit timer/event counter 1 match signal  
generation  
8-bit timer/event counter 2 match signal  
generation  
End of A/D converter conversion  
Key scan timing from FIP controller/driver  
Execution of BRK instruction  
10  
11  
INTAD  
INTKS  
BRK  
001AH  
001CH  
003EH  
(E)  
Software  
Notes 1. Default priority is the priority order when several maskable interrupts are generated at the same time.  
0 is the highest order and the 11 is the lowest order.  
2. Basic configuration types (A) to (E) correspond to (A) to (E) in Fig. 6-1.  
25  
µPD78044H, 78045H, 78046H  
Fig. 6-1 Basic Configuration of Interrupt Function (1/2)  
(A) Internal non-maskable interrupt  
Internal bus  
Vector table  
Interrupt  
request  
Priority  
control circuit  
address  
generator circuit  
Standby  
release signal  
(B) Internal maskable interrupt  
Internal bus  
MK  
IE  
PR  
ISP  
Vector table  
address  
generator circuit  
Priority  
control circuit  
Interrupt  
request  
IF  
Standby  
release signal  
(C) External maskable interrupt (INTP0)  
Internal bus  
MK  
Sampling clock  
select register  
(SCS)  
External interrupt  
mode register  
(INTM0)  
IE  
PR  
ISP  
Vector table  
address  
generator circuit  
Priority  
control circuit  
Edge  
detector  
circuit  
Interrupt  
request  
Sampling  
clock  
IF  
Standby  
release signal  
µPD78044H, 78045H, 78046H  
Fig. 6-1 Basic Configuration of Interrupt Function (2/2)  
(D) External maskable interrupt (except INTP0)  
Internal bus  
MK  
External interrupt  
mode register  
(INTM0)  
IE  
PR  
ISP  
Vector table  
address  
generator circuit  
Priority  
control circuit  
Edge  
detector  
circuit  
Interrupt  
request  
IF  
Standby  
release signal  
(E) Software interrupt  
Internal bus  
Vector table  
address  
generator circuit  
Interrupt  
request  
Priority  
control circuit  
IF : Interrupt request flag  
IE : Interrupt enable flag  
ISP: In-service priority flag  
MK: Interrupt mask flag  
PR : Priority specification flag  
27  
µPD78044H, 78045H, 78046H  
6.2 TEST FUNCTION  
The following test function is available.  
Test input source  
Internal/external  
Internal  
Name  
Trigger  
INTWT  
Overflow of watch timer  
Fig. 6-2 Basic Configuration of Test Function  
Internal bus  
MK  
Standby  
release signal  
Test input  
source  
IF  
(INTWT)  
IF : Test request flag  
MK: Test mask flag  
µPD78044H, 78045H, 78046H  
7. STANDBY FUNCTION  
The standby function is to reduce the current dissipation of the system and can be effected in the following two  
modes:  
HALT mode : In this mode, the operating clock of the CPU is stopped. By using this mode in combination with  
the normal operation mode, the system can be operated intermittently, so that the average current  
dissipation can be reduced.  
STOP mode : Oscillation of the main system clock is stopped. All the operations on the main system clock are  
stopped, and therefore, the current dissipation of the system can be minimized with only the  
subsystem clock oscillating.  
Fig. 7-1 Standby Function  
CSS=1  
CSS=0  
Main system  
clock operation  
Subsystem  
clock operationNote  
Interrupt  
request  
STOP  
instruction  
Interrupt  
request  
HALT instruction  
HALT modeNote  
HALT instruction  
Interrupt  
request  
STOP mode  
HALT mode  
(Oscillation of main system  
clock stopped)  
(Clock supply to CPU stopped.  
Oscillation continues)  
(Clock supply to CPU stopped.  
Oscillation continues)  
Note By stopping the main system clock, the current dissipation can be reduced. When the CPU operates on  
the subsystem clock, stop the main system clock by setting bit 7 (MCC) of the processor clock control register  
(PCC). The STOP instruction cannot be used.  
Caution When the main system clock is stopped and the subsystem clock is operating, to switch again  
from the subsystem clock to the main system clock, allow sufficient time for the oscillation to  
settle before switching, by coding the program accordingly.  
8. RESET FUNCTION  
The system can be reset in the following two modes:  
• External reset by RESET pin  
• Internal reset by watchdog timer that detects hang up  
29  
µPD78044H, 78045H, 78046H  
9. INSTRUCTION SET  
(1) 8-bit instruction  
MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC,  
ROLC, ROR4, ROL4, PUSH, POP, DBNZ  
Second  
operand  
[HL + byte]  
#byte  
A
rNote  
sfr  
saddr !addr16  
PSW  
MOV  
[DE]  
[HL]  
[HL + B] $addr16  
[HL + C]  
1
None  
First  
operand  
A
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
MOV  
XCH  
MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
XCH  
MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
ROR  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
ROL  
RORC  
ROLC  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
r
MOV  
MOV  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
INC  
DEC  
XOR  
CMP  
B, C  
sfr  
DBNZ  
DBNZ  
MOV  
MOV  
MOV  
saddr  
MOV  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
INC  
DEC  
XOR  
CMP  
!addr16  
PSW  
MOV  
MOV  
MOV  
PUSH  
POP  
[DE]  
[HL]  
MOV  
MOV  
ROR4  
ROL4  
[HL + byte]  
[HL + B]  
MOV  
[HL + C]  
X
C
MULU  
DIVUW  
Note Except for r = A  
µPD78044H, 78045H, 78046H  
(2) 16-bit instruction  
MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW  
Second  
operand  
#word  
AX  
rpNote  
sfrp  
saddrp !addr16  
SP  
None  
First  
operand  
AX  
rp  
ADDW  
SUBW  
CMPW  
MOVW MOVW MOVW MOVW MOVW  
XCHW  
Note  
MOVW MOVW  
INCW  
DECW  
PUSH  
POP  
sfrp  
MOVW MOVW  
MOVW MOVW  
MOVW  
saddrp  
!addr16  
SP  
MOVW MOVW  
Note Only when rp = BC, DE, HL  
(3) Bit manipulation instruction  
MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR  
Second  
operand  
A.bit  
sfr.bit  
saddr.bit PSW.bit [HL].bit  
CY  
$addr16  
None  
First  
operand  
A.bit  
MOV1  
BT  
SET1  
CLR1  
BF  
BTCLR  
sfr.bit  
MOV1  
MOV1  
MOV1  
MOV1  
BT  
SET1  
CLR1  
BF  
BTCLR  
saddr.bit  
PSW.bit  
[HL].bit  
CY  
BT  
SET1  
CLR1  
BF  
BTCLR  
BT  
SET1  
CLR1  
BF  
BTCLR  
BT  
SET1  
CLR1  
BF  
BTCLR  
MOV1  
AND1  
OR1  
MOV1  
AND1  
OR1  
MOV1  
AND1  
OR1  
MOV1  
AND1  
OR1  
MOV1  
AND1  
OR1  
SET1  
CLR1  
NOT1  
XOR1  
XOR1  
XOR1  
XOR1  
XOR1  
31  
µPD78044H, 78045H, 78046H  
(4) Call/branch instruction  
CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ  
Second  
operand  
AX  
!addr16 !addr11 [addr5] $addr16  
First  
operand  
Basic operation  
BR  
CALL  
BR  
CALLF CALLT BR  
BC  
BNC  
BZ  
BNZ  
Compound  
operation  
BT  
BF  
BTCLR  
DBNZ  
(5) Other instructions  
ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP  
µPD78044H, 78045H, 78046H  
10. ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)  
Parameter  
Symbol  
VDD  
Conditions  
Rating  
–0.3 to +7.0  
Unit  
V
Power supply  
voltage  
VDD – 40 to VDD + 0.3  
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–0.3 to +0.3  
V
VLOAD  
AVDD  
AVREF  
AVSS  
VI1  
V
V
V
–0.3 to VDD + 0.3  
Input voltage  
P00-P04, P10-P17 (except when used as analog input pins),  
P20-P27, X1, X2, XT2, RESET  
V
Note 1  
–0.3 to +16  
V
V
VI2  
P30-P37, P70-P74  
N-ch open drain  
P-ch open drain  
VDD – 40 to VDD + 0.3  
–0.3 to VDD + 0.3  
VI3  
P110-P117, P120-P127  
P01-P03, P10-P17, P20-P27  
P30-P37, P70-P74  
Output voltage  
VO1  
VO2  
VO3  
VAN  
IOH  
V
Note 1  
–0.3 to +16  
V
VDD – 40 to VDD + 0.3  
V
P80, P81, P90-P97, P100-P107, P110-P117, P120-P127  
AVSS – 0.3 to AVREF + 0.3  
Analog input voltage  
ANI0-ANI7  
Analog input pin  
V
–10  
–30  
–30  
–120  
30  
Output current,  
high  
P01-P03, P10-P17, P20-P27 per pin  
P01-P03, P10-P17, P20-P27 total  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
mW  
°C  
P80, P81, P90-P97, P100-P107, P110-P117, P120-P127 per pin  
P80, P81, P90-P97, P100-P107, P110-P117, P120-P127 total  
Output current,  
low  
IOL  
P01-P03, P10-P17, P20-P27, P30-P37,  
P70-P74 per pin  
Peak value  
rms value  
Peak value  
rms value  
Peak value  
rms value  
Note 2  
15  
100  
P70-P74 total  
Note 2  
60  
100  
P01-P03, P10-P17, P20-P27, P30-P37 total  
Note 2  
60  
PTNote 3  
800  
600  
Total power  
dissipation  
TA = –40 to +60 °C  
TA = +85 °C  
–40 to +85  
Operating  
ambient  
TA  
temperature  
–65 to +150  
°C  
Storage  
Tstg  
temperature  
Caution Exposure to Absolute Maximum Ratings for extended periods may affect device reliability;  
exceeding the ratings could cause permanent damage. The parameters apply independently. The  
device should be operated within the limits specified under DC and AC Characteristics.  
Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of the correspond-  
ing port pin.  
Notes 1. For pins to which pull-up resistors are connected by the mask option, the rating is –0.3 to VDD + 0.3.  
2. To obtain the rms value, calculate [rms value] = [peak value] × √duty.  
33  
µPD78044H, 78045H, 78046H  
Notes 3. Permissible total power loss differs depending on the temperature (see the following figure).  
800  
600  
400  
200  
–40  
0
+40  
Temperature [°C]  
+80  
How to calculate total power loss  
The power consumption of the µPD78044H, µPD78045H, and µPD78046H can be classified into the three categories  
shown below. The sum of the three categories should be less than the total power loss PT (80 % or less of ratings is  
recommended).  
1
2
CPU power consumption: calculate VDD (MAX.) × IDD1 (MAX.).  
Output pin power consumption: Normal output and display output are available. Power consumption when  
maximum current flows into each output pin.  
3
Pull-down resistor power consumption: Power consumption by pull-down resistor connected to display  
output pin by the mask option.  
µPD78044H, 78045H, 78046H  
The following total power consumption calculation example assumes the case where the characters shown in the  
figure on the next page are displayed.  
Example: The operating conditions are as follows:  
VDD = 5 V ±10 %, operating at 5.0 MHz  
Supply current (IDD) = 21.6 mA  
Display outputs: 11 grids × 10 segments (cut width is 1/16)  
It is assumed that up to 15 mA flows to each grid pin, and that up to 3 mA flows to each segment pin.  
It is also assumed that all display outputs are turned off at key scan timings.  
Display output voltage: grid  
segment VO3 = VDD – 0.4 V (Voltage drop of 0.4 V is assumed.)  
Voltage applied to fluorescent indication panel (VLOAD) = –30 V  
VO3 = VDD – 2 V (Voltage drop of 2 V is assumed.)  
Mask-option pull-down resistor = 25 kΩ  
3
The total power loss is calculated by determining power consumption  
conditions.  
to  
under the above  
1
Power consumption of CPU: 5.5 V × 21.6 mA = 118.8 mW  
1
2
Power consumption at output pins:  
total current for all grids  
Grid:  
(VDD – VO3) ×  
× digit width (1 – cut width) =  
number of grids + 1  
15 mA × 11 grids  
2 V ×  
× (1 – 1/16) = 25.8 mW  
11 grids + 1  
total segment current for all dots to be lit  
number of grids + 1  
Segment: (VDD – VO3) ×  
0.4 V ×  
=
3 mA × 31 dots  
= 3.1 mW  
11 grids + 1  
3
Power consumption at pull-down resistors:  
Grid:  
(VO3 – VLOAD)2  
number of grids  
number of grids + 1  
11 grids  
×
× digit width =  
pull-down resistance  
(5.5 V – 2 V – (–30 V))2  
×
× (1 – 1/16) = 38.6 mW  
25 kΩ  
11 grids + 1  
Segment:  
(VO3 – VLOAD)2  
number of dots to be lit  
number of grids + 1  
31 dots  
×
=
pull-down resistance  
(5.5 V – 0.4 V – (–30 V))2  
×
= 127.3 mW  
25 kΩ  
11 grids + 1  
2
3
Total power consumption =  
+
+
= 118.8 + 25.8 + 3.1 + 38.6 + 127.3 = 313.6 mW  
1
In this example, the total power consumption does not exceed the rated value for the permissible total power loss  
shown in the graph on the previous page. Therefore, the calculation result in this example (313.6 mW) satisfies the  
requirement. If the total power consumption exceeds the rated value for the permissible total power loss, the power  
consumption must be reduced, by reducing the number of built-in pull-down resistors.  
35  
µPD78044H, 78045H, 78046H  
µPD78044H, 78045H, 78046H  
MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)  
Resonator  
Recommended circuit  
Parameter  
Conditions  
MIN.  
1
TYP.  
MAX.  
5
Unit  
Ceramic  
Oscillation frequency  
MHz  
Note 1  
SS X1  
V
X2  
resonator  
(fX)  
Oscillation settling  
4
5
ms  
C1  
C2  
Note 2  
time  
Crystal  
Oscillation frequency  
1
4.19  
MHz  
SS X1  
X2  
V
Note 1  
(fX)  
C1  
C2  
Oscillation settling  
VDD = 4.5 to 5.5 V  
10  
30  
5
ms  
Note 2  
time  
External  
clock  
X1 input frequency  
1
MHz  
Note 1  
(fX)  
X1  
X2  
X1 input high, low-level  
width (tXH, tXL)  
100  
500  
ns  
µ
PD74HCU04  
Notes 1. It indicates only the oscillator characteristics. For the instruction execution time, see the AC Charac-  
teristics.  
2. Time required until oscillation becomes stable after VDD is applied or the STOP mode is disabled.  
Cautions 1. If the main system clock oscillator is to be used, wire the area inside the broken line square  
as follows to avoid influence of wiring capacitance:  
• Make wiring as short as possible.  
• Do not cross other signal lines.  
• Do not get close to lines with fluctuating large current.  
• Make sure that the connecting points of the capacitor of the oscillator always have the same  
electric potential as VSS.  
• Do not connect the oscillator to a ground pattern that conducts a large current.  
• Do not take out signal from the oscillator.  
2. When switching to the main system clock again after the subsystem clock has been used with  
the main system clock stopped, be sure to set the program to provide enough time for the  
oscillation to stabilize.  
37  
µPD78044H, 78045H, 78046H  
SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)  
Resonator  
Crystal  
Recommended circuit  
Parameter  
Conditions  
MIN.  
32  
TYP.  
MAX.  
35  
Unit  
kHz  
Oscillation frequency  
32.768  
XT2 VSS  
R
XT1  
Note 1  
(fXT)  
C3  
C4  
Oscillation settling  
VDD = 4.5 to 5.5 V  
1.2  
2
s
Note 2  
time  
10  
External  
XT1 input frequency  
32  
5
100  
kHz  
µs  
XT1  
XT2  
Note 1  
(fXT)  
XT1 input high, low-  
level width (tXTH, tXTL)  
15  
Notes 1. It indicates only the oscillator characteristics. For the instruction execution time, see the AC Charac-  
teristics.  
2. Time required until oscillation becomes stable after VDD reaching MIN. of oscillation voltage range.  
Cautions 1. If the subsystem clock oscillator is to be used, wire the area inside the broken line square as  
follows to avoid influence of wiring capacitance:  
• Make wiring as short as possible.  
• Do not cross other signal lines.  
• Do not get close to lines with fluctuating large current.  
• Make sure that the connecting points of the capacitor of the oscillator always have the same  
electric potential as VSS.  
• Do not connect the oscillator to a ground pattern that conducts a large current.  
• Do not take out signal from the oscillator.  
2. The subsystem clock oscillator is more likely to have malfunctions due to noise than the main  
system clock oscillator because gain for the subsystem clock oscillator is made lower to  
reduce current consumption. When using the subsystem clock, be careful about how to  
connect wires.  
µPD78044H, 78045H, 78046H  
RECOMMENDED OSCILLATOR CONSTANT  
MAIN SYSTEM CLOCK: CERAMIC RESONATOR (TA = –40 to +85 °C)  
Manufacturer  
Product name  
Frequency  
(MHz)  
Recommended  
circuit constant  
Oscillator voltage range  
Remark  
C1 (pF)  
100  
100  
C2 (pF) MIN. (V) MAX. (V)  
Note  
Murata Mfg. Co., Ltd.  
CSB1000J  
1.00  
2.00  
2.00  
4.00  
4.00  
5.00  
5.00  
1.00  
2.00  
100  
100  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
Rd = 4.7 kΩ  
CSA2.00MG040  
CST2.00MG040  
CSA4.00MG  
CST4.00MGW  
CSA5.00MG  
CST5.00MGW  
CCR1000K2  
CCR2.0MC3  
Built-in capacitor  
Built-in capacitor  
30  
30  
30  
30  
Built-in capacitor  
Surface-mount type  
TDK Corp.  
150  
150  
Built-in capacitor,  
surface-mount type  
CCR4.0MC3  
4.00  
2.7  
5.5  
Built-in capacitor,  
surface-mount type  
FCR4.0MC5  
CCR5.0MC3  
4.00  
5.00  
2.7  
2.7  
5.5  
5.5  
Built-in capacitor  
Built-in capacitor,  
surface-mount type  
FCR5.0MC5  
5.00  
2.00  
2.00  
33  
33  
33  
33  
2.7  
2.7  
2.7  
5.5  
5.5  
5.5  
Built-in capacitor  
Built-in capacitor  
Matsushita Electronics  
Components Co., Ltd.  
EFOEC2004A4  
EFOS2004B5  
Built-in capacitor,  
surface-mount type  
EFOEC3584A4  
EFOS3584B5  
3.58  
3.58  
33  
33  
33  
33  
2.7  
2.7  
5.5  
5.5  
Built-in capacitor  
Built-in capacitor,  
surface-mount type  
EFOEC4004A4  
EFOS4004B5  
4.00  
4.00  
33  
33  
33  
33  
2.7  
2.7  
5.5  
5.5  
Built-in capacitor  
Built-in capacitor,  
surface-mount type  
EFOEC5004A4  
EFOS5004B5  
5.00  
5.00  
33  
33  
33  
33  
2.7  
2.7  
5.5  
5.5  
Built-in capacitor  
Built-in capacitor,  
surface-mount type  
Note When the CSB1000J (1.00 MHz) manufactured by Murata Mfg. is used, a limiting resistor (4.7 k) is  
necessary (see the figure in the next page). When one of other resonators is used, no limiting resistor is  
required.  
Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable  
oscillation but do not guarantee accuracy of the oscillation frequency. If the application circuit  
requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency  
of the resonator in the application circuit. For this, it is necessary to directly contact the  
manufacturer of the resonator that being used.  
39  
µPD78044H, 78045H, 78046H  
Recommended sample circuit for the main system clock when the CSB1000J manufactured by Murata Mfg.  
is used  
VSS  
X1  
X2  
CSB1000J  
Rd  
C2  
C1  
V
DD  
CAPACITANCE (TA = 25 °C, VDD = VSS = 0 V)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
15  
Unit  
pF  
Input  
CIN  
f = 1 MHz Unmeasured pins returned to 0 V  
capacitance  
Output  
COUT  
f = 1 MHz Unmeasured pins returned to 0 V  
35  
15  
pF  
pF  
capacitance  
Input/output  
capacitance  
CIO  
f = 1 MHz  
P01-P03, P10-P17,  
Unmeasured pins returned to 0 V P20-P27  
P30-P37, P70-P74  
P110-P117, P120-P127  
20  
35  
pF  
pF  
Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of the correspond-  
ing port pin.  
POWER SUPPLY VOLTAGE (TA = –40 to +85 °C)  
Parameter  
Conditions  
MIN.  
2.7Note 2  
4.5  
TYP.  
MAX.  
5.5  
Unit  
V
Note 1  
CPU  
Display controller/driver  
5.5  
V
PWM mode of 16-bit  
timer/event counter  
(TM0)  
4.5  
5.5  
V
A/D converter  
4.0  
2.7  
5.5  
5.5  
V
V
Other hardware  
Notes 1. Except for system clock oscillator, display controller/driver, and PWM.  
2. Operating power supply voltage differs depending on the cycle time. See the AC Characteristics.  
µPD78044H, 78045H, 78046H  
DC CHARACTERISTICS (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)  
Symbol  
MIN.  
0.7VDD  
0.8VDD  
0.7VDD  
VDD – 0.5  
VDD – 0.5  
VDD – 0.3  
0.65VDD  
0.7VDD  
0.7VDD  
VDD – 0.5  
0
MAX.  
Unit  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Parameter  
Conditions  
TYP.  
High-level  
VIH1  
VDD  
P21, P23  
P00-P03, P20, P22, P24-P27, RESET  
input voltage  
VDD  
VIH2  
VIH3  
VIH4  
VIH5  
Note 1  
15  
P30-P37, P70-P74  
N-ch open drain  
Note 2  
X1, X2  
VDD  
VDD  
Note 2  
XT1/P04, XT2  
VDD = 4.5 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD  
VDD  
VIH6  
VIH7  
P10-P17  
VDD  
VDD  
P110-P117, P120-P127  
VDD  
0.3VDD  
0.2VDD  
0.3VDD  
0.2VDD  
0.4  
Low-level  
VIL1  
VIL2  
VIL3  
P21, P23  
input voltage  
0
P00-P03, P20, P22, P24-P27, RESET  
0
P30-P37, P70-P74  
VDD = 4.5 to 5.5 V  
0
Note 2  
X1, X2  
VIL4  
VIL5  
0
Note 2  
XT1/P04, XT2  
0
0.4  
VDD = 4.5 to 5.5 V  
0.3  
0
0.3VDD  
0.3VDD  
VIL6  
VIL7  
VOH  
0
P10-P17  
VDD – 35  
VDD – 1.0  
P110-P117, P120-P127  
High-level  
output  
P01-P03, P10-P17, P20-P27,  
P80, P81, P90-P97,  
P100-P107, P110-P117,  
P120-P127  
VDD = 4.5 to 5.5 V  
IOH = –1 mA  
voltage  
VDD – 0.5  
IOH = –100 µA  
V
V
0.4  
VOL1  
VOL2  
2.0  
0.4  
0.5  
Low-level  
output  
P30-P37, P70-P74  
P01-P03, P10-P17, P20-P27  
IOL = 400 µA  
VDD = 4.5 to 5.5 V,  
IOL = 15 mA  
voltage  
VDD = 4.5 to 5.5 V,  
IOL = 1.6 mA  
V
V
Notes 1. Pins to which pull-up resistors are connected by the mask option become VDD.  
2. If the X1 pin is used for high-level voltage input, the X2 pin is used for low-level voltage input, or vice  
versa. This is also true for the XT1/P04 pin and XT2 pin.  
Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of the correspond-  
ing port pin.  
41  
µPD78044H, 78045H, 78046H  
DC CHARACTERISTICS (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)  
TYP.  
Unit  
Parameter  
Symbol  
Conditions  
P00-P03, P10-P17,  
MIN.  
MAX.  
3
µA  
ILIH1  
VIN = VDD  
High-level  
input leakage  
current  
P20-P27, RESET  
X1, X2, XT1/P04, XT2  
P30-P37, P70-P74  
VDD = 4.5 to 5.5 V  
µA  
µA  
µA  
µA  
µA  
ILIH2  
ILIH3  
ILIH4  
20  
20  
VIN = 15 V  
Note 1  
3
P110-P117, P120-P127,  
VIN = VDD  
Note 2  
3
P00-P03, P10-P17, P20-P27,  
RESET  
–3  
ILIL1  
VIN = 0 V  
Low-level  
input leakage  
current  
µA  
µA  
µA  
µA  
X1, X2, XT1/P04, XT2  
P30-P37, P70-P74  
–20  
ILIL2  
ILIL3  
ILIL4  
ILOH1  
Note 3  
–3  
P110-P117, P120-P127  
–10  
P01-P03, P10-P17, P20-P27,  
P80, P81, P90-P97, P100-P107,  
P110-P117, P120-P127  
3
VOUT = VDD  
High-level  
output  
leakage  
Note 4  
current  
µA  
µA  
P30-P37, P70-P74  
20  
–3  
VOUT = 15 V  
VOUT = 0 V  
ILOH2  
ILOL1  
P01-P03, P10-P17, P20-P27,  
P30-P37, P70-P74  
Low-level  
output  
leakage  
P80, P81, P90-P97, P100-P107,  
P110-P117, P120-P127  
–10  
VOUT = VLOAD = VDD – 35 V  
µA  
mA  
kΩ  
kΩ  
ILOL2  
IOD  
R1  
Note 4  
current  
–15  
20  
–25  
40  
VDD = 4.5 to 5.5 V, VO3 = VDD – 2 V  
Display output  
current  
90  
90  
VIN = 0 V, P30-P37, P70-P74  
Mask option  
pull-up resistor  
VDD = 4.5 to 5.5 V  
15  
40  
R2  
VIN = 0 V,  
Software pull-  
up resistor  
P01-P03, P10-P17,  
P20-P27  
20  
25  
500  
135  
kΩ  
kΩ  
VO3 – VLOAD = 35 V  
P80, P81, P90-P97,  
P100-P107, P110-P117,  
P120-P127  
65  
R3  
R4  
Mask option  
pull-down  
resistor  
VO3 – VSS = 5 V  
VIN = VDD  
15  
40  
90  
kΩ  
kΩ  
40  
80  
150  
Notes 1. When P110 to P117 and P120 to P127 do not contain the pull-down resistors (according to the  
specification of the mask option), a high-level input leakage current of 150 µA (MAX.) flows only during  
1.5 clocks after a read instruction has been executed to read out port 11 or 12 (P11 or P12) or port mode  
register 11 or 12 (PM11 or PM12). Outside the 1.5 clocks after a read instruction, the current is 3 µA  
(MAX.).  
2. When P110 to P117 and P120 to P127 do not contain the pull-down resistors (according to the  
specification of the mask option), a high-level input leakage current of 90 µA (MAX.) flows only during  
1.5 clocks after a read instruction has been executed to read out P11, P12, PM11, or PM12. Outside  
the 1.5 clocks after a read instruction, the current is 3 µA (MAX.).  
3. When P30 to P37 and P70 to P74 do not contain the pull-down resistors (according to the specification  
of the mask option), a low-level input leakage current of –150 µA (MAX.) flows only during 1.5 clocks  
after a read instruction has been executed to read out port 3 or 7 (P3 or P7) or port mode register 3 or  
7 (PM3 or PM7). Outside the 1.5 clocks after a read out instruction, the current is –3 µA (MAX.).  
4. Current which flows in the built-in pull-up or pull-down resistor is not included.  
Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of a port pin.  
µPD78044H, 78045H, 78046H  
DC CHARACTERISTICS (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)  
Parameter Symbol Conditions  
5.0 MHz crystal oscillation  
MIN.  
TYP.  
7.2  
0.9  
1.3  
550  
60  
MAX.  
21.6  
2.7  
Unit  
mA  
mA  
mA  
µA  
Power supply IDD1  
VDD = 5.0 V ±10 %Note 2  
VDD = 3.0 V ±10 %Note 3  
VDD = 5.0 V ±10 %  
VDD = 3.0 V ±10 %  
VDD = 5.0 V ±10 %  
VDD = 3.0 V ±10 %  
VDD = 5.0 V ±10 %  
VDD = 3.0 V ±10 %  
Note 1  
current  
Operating mode  
IDD2  
IDD3  
IDD4  
IDD5  
5.0 MHz crystal oscillation  
HALT mode  
3.9  
1650  
120  
70  
32.768 kHz crystal oscillation  
µA  
Note 4  
Operating mode  
35  
µA  
32.768 kHz crystal oscillation  
25  
50  
µA  
Note 4  
HALT mode  
5
10  
µA  
XT1 = 0 V  
VDD = 5.0 V ±10 %  
VDD = 3.0 V ±10 %  
1
20  
10  
µA  
µA  
STOP mode  
0.5  
Feedback resistor connected  
IDD6  
XT1 = 0 V  
VDD = 5.0 V ±10 %  
VDD = 3.0 V ±10 %  
0.1  
20  
10  
µA  
µA  
STOP mode  
0.05  
Feedback resistor not connected  
Notes 1. This current excludes the AVREF current, port current, and current which flows in the built-in pull-down  
resistor (mask option).  
2. When operating in high-speed mode (when the processor clock control register (PCC) is set to 00H)  
3. When operating in low-speed mode (when the PCC is set to 04H)  
4. When the main system clock is stopped  
43  
µPD78044H, 78045H, 78046H  
AC CHARACTERISTICS  
(1) Basic operation (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)  
TYP.  
122  
Symbol  
TCY  
Conditions  
MIN.  
0.4  
MAX.  
Parameter  
Unit  
Cycle time  
(minimum  
instruction  
execution  
time)  
Operated with main system clock  
VDD = 4.5 to 5.5 V  
32  
32  
µs  
µs  
µs  
0.8  
Note 1  
Operated with subsystem clock  
INTP0  
40  
125  
8/fsamNote 2  
Interrupt  
input high,  
low-level  
width  
tINTH  
tINTL  
µs  
µs  
INTP1-INTP3  
10  
µs  
tRSL  
10  
RESET low-  
level width  
Notes 1. Value when external clock input is used as subsystem clock. When a crystal is used, the value becomes  
114 µs.  
2. Selection of fsam = fX/2N+1, fX/64, or fX/128 is available (N = 0 to 4) by bits 0 and 1 (SCS0, SCS1) of the  
sampling clock select register (SCS).  
TCY vs. VDD (with main system clock operated)  
60  
30  
Operation guarantee  
range  
10  
µ
2.0  
1.0  
0.5  
0.4  
0
1
2
3
4
5
6
Power supply voltage VDD [V]  
µPD78044H, 78045H, 78046H  
(2) Serial interface channel 1 (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)  
(a) Three-wire serial I/O mode (SCK1: Internal clock output)  
Parameter  
SCK1 cycle time  
Symbol  
Conditions  
VDD = 4.5 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY1  
3200  
SCK1 high, low-level width  
tKH1  
tKL1  
VDD = 4.5 to 5.5 V  
tKCY1/2  
KCY1/2  
50  
t
150  
SI1 setup time to SCK1↑  
SI1 hold time from SCK1↑  
tSIK1  
tKSI1  
tKSO1  
100  
400  
Note  
SCK1SO1 output delay  
C = 100 pF  
VDD = 4.5 to 5.5 V  
300  
time  
1000  
Note C is a load capacitance of the SCK1 or SO1 output line.  
(b) Three-wire serial I/O mode (SCK1: External clock input)  
Parameter  
SCK1 cycle time  
Symbol  
Conditions  
VDD = 4.5 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY2  
3200  
400  
SCK1 high, low-level width  
tKH2  
tKL2  
VDD = 4.5 to 5.5 V  
VDD = 4.5 to 5.5 V  
1600  
100  
SI1 setup time to SCK1↑  
SI1 hold time from SCK1↑  
tSIK2  
tKSI2  
tKSO2  
400  
Note  
SCK1SO1 output delay  
C = 100 pF  
VDD = 4.5 to 5.5 V  
300  
1000  
160  
time  
SCK1 rise time and fall time  
tR2  
tF2  
Note C is a load capacitance of the SO1 output line.  
45  
µPD78044H, 78045H, 78046H  
AC timing test points (except X1, XT1 input)  
0.8VDD  
0.2VDD  
0.8VDD  
0.2VDD  
Test points  
Clock timing  
1/f  
X
t
XH  
t
XL  
VIH4 (Min.)  
X1 input  
V
IL4 (Max.)  
1/fXT  
t
XTH  
t
XTL  
VIH5 (Min.)  
XT1 input  
V
IL5 (Max.)  
Serial transfer timing  
3-wire serial I/O mode:  
t
KCY1, 2  
t
KH1, 2  
t
KL1, 2  
t
R2  
t
F2  
SCK1  
t
SIK1, 2  
t
KSI1, 2  
Input data  
SI1  
t
KSO1, 2  
SO1  
Output data  
46  
A/D CONVERTER CHARACTERISTICS (TA = –40 to +85 °C, AVDD = VDD = 4.0 to 5.5 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Symbol  
Conditions  
MIN.  
8
TYP.  
8
MAX.  
8
Unit  
bit  
%
Note 1  
Total error  
0.8  
Note 2  
Note 3  
Conversion time  
tCONV  
1 MHz fX 5.0 MHz  
19.1  
2.86  
AVSS  
200  
30  
µs  
µs  
V
Sampling time  
tSAMP  
VIAN  
Analog signal input  
voltage  
AVREF  
Reference voltage  
AVREF resistor  
AVDD current  
AVREF  
RAVREF  
AIDD  
4.0  
4
AVDD  
V
14  
kΩ  
µA  
200  
400  
Notes 1. Quantization error (±1/2LSB) is not included. This parameter is indicated as the ratio to the full-scale  
value.  
2. Set the A/D conversion time to 19.1 µs or more.  
3. Sampling time depends on the conversion time.  
47  
µPD78044H, 78045H, 78046H  
DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS  
(TA = –40 to +85 °C)  
Parameter  
Symbol  
VDDDR  
Conditions  
MIN.  
2.0  
TYP.  
0.1  
MAX.  
5.5  
Unit  
V
Data retention supply  
voltage  
Data retention supply  
current  
IDDDR  
VDDDR = 2.0 V  
10  
µA  
Subsystem clock stopped  
Feedback resistor not connected  
Release signal set time tSREL  
Oscillation settling time tWAIT  
0
µs  
ms  
ms  
17  
Release by RESET  
Release by interrupt  
2 /fX  
Note  
Note Selection of 212/fX, 214/fX to 217/fX is available by bits 0 to 2 (OSTS0 to OSTS2) of the oscillation settling  
time select register (OSTS).  
Data retention timing (STOP mode release by RESET)  
Internal reset operation  
HALT mode  
Operating mode  
STOP mode  
Data retention mode  
VDD  
VDDDR  
t
SREL  
STOP instruction execution  
RESET  
tWAIT  
Data retention timing (standby release signal: STOP mode release by interrupt signal)  
HALT mode  
Operating mode  
STOP mode  
Data retention mode  
VDD  
VDDDR  
tSREL  
STOP instruction execution  
Standby release signal  
(interrupt request)  
tWAIT  
48  
Interrupt input timing  
t
INTL  
tINTH  
INTP0-INTP2  
t
INTL  
INTP3  
RESET input timing  
t
RSL  
RESET  
49  
µPD78044H, 78045H, 78046H  
11. PACKAGE DRAWING  
80 PIN PLASTIC QFP (14 20)  
A
B
41  
40  
64  
65  
detail of lead end  
S
C D  
R
Q
25  
24  
80  
1
F
G
J
M
H
I
K
P
M
N
L
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.15 mm (0.006 inch) of  
its true position (T.P.) at maximum material condition.  
A
23.6±0.4  
0.929±0.016  
+0.009  
0.795  
B
20.0±0.2  
–0.008  
+0.009  
0.551  
C
14.0±0.2  
–0.008  
D
F
17.6±0.4  
1.0  
0.693±0.016  
0.039  
G
0.8  
0.031  
+0.004  
0.014  
H
0.35±0.10  
–0.005  
I
0.15  
0.006  
J
0.8 (T.P.)  
0.031 (T.P.)  
+0.008  
0.071  
K
L
1.8±0.2  
0.8±0.2  
–0.009  
+0.009  
0.031  
–0.008  
+0.10  
0.15  
+0.004  
0.006  
M
–0.05  
–0.003  
N
P
Q
R
S
0.10  
0.004  
2.7  
0.106  
0.1±0.1  
5°±5°  
3.0 MAX.  
0.004±0.004  
5°±5°  
0.119 MAX.  
P80GF-80-3B9-3  
Remark The shape and material of the ES version are the same as those of the corresponding mass-produced  
product.  
50  
12. RECOMMENDED SOLDERING CONDITIONS  
The conditions listed below shall be met when soldering the µPD78044H, µPD78045H, or µPD78046H.  
For details of the recommended soldering conditions, refer to our document Semiconductor Device Mounting  
Technology Manual (C10535E).  
Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under  
different conditions.  
Table 12-1 Soldering Conditions for Surface-Mount Devices  
µPD78044HGF-×××-3B9: 80-pin plastic QFP (14 × 20 mm)  
µPD78045HGF-×××-3B9: 80-pin plastic QFP (14 × 20 mm)  
µPD78046HGF-×××-3B9: 80-pin plastic QFP (14 × 20 mm)  
Soldering process  
Infrared ray reflow  
Soldering conditions  
Recommended conditions  
IR35-00-3  
Peak package's surface temperature: 235 °C  
Reflow time: 30 seconds or less (210 °C or more)  
Maximum allowable number of reflow processes: 3  
VPS  
Peak package's surface temperature: 215 °C  
Reflow time: 40 seconds or less (200 °C or more)  
Maximum allowable number of reflow processes: 3  
VP15-00-3  
WS60-00-1  
Wave soldering  
Solder temperature: 260 °C or less  
Flow time: 10 seconds or less  
Number of flow processes: 1  
Preheating temperature : 120 °C max.  
(measured on the package surface)  
Partial heating method  
Terminal temperature: 300 °C or less  
Heat time: 3 seconds or less (for one side of a device)  
Caution Do not apply two or more different soldering methods to one chip (except for partial heating  
method for terminal sections).  
51  
µPD78044H, 78045H, 78046H  
APPENDIX A DEVELOPMENT TOOLS  
The following tools are available for development of systems using the µPD78044H, µPD78045H, or µPD78046H.  
Language processing software  
Notes 1, 2, 3, 4  
RA78K/0  
CC78K/0  
DF78044  
Assembler package common to 78K/0 series  
Notes 1, 2, 3, 4  
Notes 1, 2, 3, 4  
Notes 1, 2, 3, 4  
C compiler package common to 78K/0 series  
Device file used in common with µPD78044A subseries  
C compiler library source file common to 78K/0 series  
CC78K/0-L  
PROM writing tools  
PG-1500  
PROM programmer  
PA-78P048GF  
Programmer adapter connected to PG-1500  
PA-78P048KL-S  
Notes 1, 2  
PG-1500 controller  
Control program for PG-1500  
Debugging tools  
IE-78000-R  
In-circuit emulator common to 78K/0 series  
Note 8  
IE-78000-R-A  
In-circuit emulator common to 78K/0 series (for integrated debugger)  
Break board common to 78K/0 series  
IE-78000-R-BK  
IE-78044-R-EM  
EP-78130GF-R  
EV-9200G-80  
Emulation board used in common with µPD78044A subseries  
Emulation probe used in common with µPD78134  
Socket mounted on target system created for 80-pin plastic QFP  
System simulator common to 78K/0 series  
Notes 5, 6, 7  
SM78K0  
Notes 4, 5, 6, 7, 8  
ID78K0  
Integrated debugger for IE-78000-R-A  
Notes 1, 2  
SD78K/0  
Screen debugger for IE-78000-R  
Notes 1, 2, 5, 6, 7  
DF78044  
Device file used in common with µPD78044A subseries  
Real-time OS  
Notes 1, 2, 3, 4  
RX78K/0  
Real-time OS for 78K/0 series  
OS for 78K/0 series  
Notes 1, 2, 3, 4  
MX78K0  
Notes 1. PC-9800 series (MS-DOSTM) based  
2. IBM PC/ATTM and compatible (PC DOSTM/IBM DOSTM/MS-DOS) based  
3. HP9000 series 300TM (HP-UXTM) based  
4. HP9000 series 700TM (HP-UX) based, SPARCstationTM (SunOSTM) based, EWS4800 series  
(EWS-UX/V) based  
5. PC-9800 series (MS-DOS + WindowsTM) based  
6. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based  
7. NEWSTM (NEWS-OSTM) based  
8. Under development  
52  
Fuzzy inference development support system  
Note 1  
Note 3  
FE9000  
FT9080  
/FE9200  
/FT9085  
Fuzzy knowledge data creation tool  
Note 1  
Note 2  
Translator  
Notes 1, 2  
FI78K0  
Fuzzy inference module  
Fuzzy inference debugger  
Notes 1, 2  
FD78K0  
Notes 1. PC-9800 series (MS-DOS) based  
2. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS) based  
3. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based  
Remarks 1. Please refer to the 78K/0 Series Selection Guide (U11126E) for information on third party develop-  
ment tools.  
2. RA78K/0, CC78K/0, SM78K/0, ID78K0, SD78K/0, and RX78K/0 are used in combination with  
DF78044.  
53  
µPD78044H, 78045H, 78046H  
APPENDIX B RELATED DOCUMENTS  
• Documents Related to Devices  
Document No.  
Document name  
Japanese  
To be prepared  
U10865J  
English  
To be prepared  
This manual  
To be prepared  
IEU-1372  
µPD78044H Sub-Series User’s Manual  
µPD78044H, 78045H, 78046H Data Sheet  
µPD78P048B Product Information  
To be prepared  
IEU-849  
78K/0 Series User’s Manual, Instruction  
78K/0 Series Instruction Summary Sheet  
78K/0 Series Instruction Set  
U10903J  
U10904J  
Documents Related to Development Tools (User’s Manual)  
Document No.  
Document name  
Japanese  
EEU-809  
English  
EEU-1399  
EEU-1404  
EEU-1402  
EEU-1280  
EEU-1284  
EEA-1208  
RA78K Series Assembler Package  
Operation  
Language  
EEU-815  
EEU-817  
EEU-656  
EEU-655  
EEA-618  
EEU-777  
EEU-651  
RA78K Series Structured Assembler Preprocessor  
CC78K Series C Compiler  
Operation  
Language  
CC78K/0 Compiler Application Note  
CC78K Series Library Source File  
PG-1500 PROM Programmer  
Programming Know-How  
EEU-1335  
PG-1500 Controller PC-9800 Series (MS-DOS) Base  
PG-1500 Controller IBM PC Series (PC DOS) Base  
IE-78000-R  
EEU-704  
EEU-5008  
EEU-810  
U10057J  
EEU-867  
EEU-833  
EEU-943  
EEU-5002  
U10092J  
EEU-1291  
U10540E  
U11376E  
U10057E  
EEU-1427  
EEU-1424  
EEU-1470  
U10181E  
U10092E  
IE-78000-R-A  
IE-78000-R-BK  
IE-78044-R-EM  
EP-78130GF-R  
SM78K0 System Simulator  
SM78K Series System Simulator  
Reference  
External Parts User Open  
Interface Specifications  
ID78K0 Integrated Debugger  
SD78K/0 Screen Debugger  
PC-9800 Series (MS-DOS) Base  
SD78K/0 Screen Debugger  
IBM PC/AT (PC DOS) Base  
Reference  
Tutorial  
U11151J  
EEU-852  
U10952J  
EEU-5024  
U11279J  
U10539E  
Reference  
Tutorial  
EEU-1414  
EEU-1413  
Reference  
Caution The above documents may be revised without notice. Use the latest versions when you design  
an application system.  
54  
Documents Related to Software to Be Incorporated into the Product (User’s Manual)  
Document No.  
Document name  
Japanese  
EEU-912  
English  
78K/0 Series Real-Time OS  
OS for 78K/0 Series MX78K0  
Basic  
Installation  
Technical  
Basic  
EEU-911  
EEU-913  
EEU-5010  
EEU-829  
EEU-862  
Tool for Creating Fuzzy Knowledge Data  
EEU-1438  
EEU-1444  
78K/0, 78K/II, and 87AD Series Fuzzy Inference Development  
Support System, Translator  
78K/0 Series Fuzzy Inference Development Support System,  
Fuzzy Inference Module  
EEU-858  
EEU-921  
EEU-1441  
EEU-1458  
78K/0 Series Fuzzy Inference Development Support System,  
Fuzzy Inference Debugger  
Other Documents  
Document No.  
Document name  
Japanese  
English  
IC PACKAGE MANUAL  
C10943X  
C10535J  
IEI-620  
SMD Surface Mount Technology Manual  
C10535E  
IEI-1209  
C10983E  
Quality Grades on NEC Semiconductor Device  
NEC Semiconductor Device Reliability/Quality Control System  
Electrostatic Discharge (ESD) Test  
C10983J  
MEM-539  
MEI-603  
MEI-604  
Guide to Quality Assurance for Semiconductor Device  
Guide for Products Related to Micro-Computer: Other Companies  
MEI-1202  
Caution The above documents may be revised without notice. Use the latest versions when you design  
an application system.  
55  
µPD78044H, 78045H, 78046H  
Cautions on CMOS Devices  
Countermeasures against static electricity for all MOSs  
1
Caution When handling MOS devices, take care so that they are not electrostatically charged.  
Strong static electricity may cause dielectric breakdown in gates. When transporting or storing  
MOS devices, use conductive trays, magazine cases, shock absorbers, or metal cases that NEC  
uses for packaging and shipping. Be sure to ground MOS devices during assembling. Do not  
allow MOS devices to stand on plastic plates or do not touch pins.  
Also handle boards on which MOS devices are mounted in the same way.  
CMOS-specific handling of unused input pins  
2
Caution Hold CMOS devices at a fixed input level.  
Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an intermediate-  
level input may be caused by noise. This allows current to flow in the CMOS device, resulting  
in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input level. Since unused  
pins may function as output pins at unexpected times, each unused pin should be separately  
connected to the VDD or GND pin through a resistor.  
If handling of unused pins is documented, follow the instructions in the document.  
Statuses of all MOS devices at initialization  
3
Caution The initial status of a MOS device is unpredictable when power is turned on.  
Since characteristics of a MOS device are determined by the amount of ions implanted in  
molecules, the initial status cannot be determined in the manufacture process. NEC has no  
responsibility for the output statuses of pins, input and output settings, and the contents of  
registers at power on. However, NEC assures operation after reset and items for mode setting  
if they are defined.  
When you turn on a device having a reset function, be sure to reset the device first.  
FIP is a trademark of NEC Corporation.  
IEBus is trademark of NEC Corporation.  
MS-DOS and Windows are trademarks of Microsoft Corporation.  
IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.  
HP9000 series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard.  
SPARCstation is a trademark of SPARC International, Inc.  
SunOS is a trademark of Sun Microsystems, Inc.  
NEWS and NEWS-OS are trademarks of SONY Corporation.  
56  
Regional Information  
Some information contained in this document may vary from country to country. Before using any NEC  
product in your application, please contact the NEC office in your country to obtain a list of authorized  
representatives and distributors. They will verify:  
• Device availability  
• Ordering information  
• Product release schedule  
• Availability of related technical literature  
• Development environment specifications (for example, specifications for third-party tools and  
components, host computers, power plugs, AC supply voltages, and so forth)  
• Network requirements  
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary  
from country to country.  
NEC Electronics Inc. (U.S.)  
Mountain View, California  
Tel: 800-366-9782  
NEC Electronics Hong Kong Ltd.  
Hong Kong  
Tel: 2886-9318  
NEC Electronics (Germany) GmbH  
Benelux Office  
Eindhoven, The Netherlands  
Tel: 040-2445845  
Fax: 800-729-9288  
Fax: 2886-9022/9044  
Fax: 040-2444580  
NEC Electronics (Germany) GmbH  
Duesseldorf, Germany  
Tel: 0211-65 03 02  
NEC Electronics Hong Kong Ltd.  
Seoul Branch  
Seoul, Korea  
NEC Electronics (France) S.A.  
France  
Fax: 0211-65 03 490  
Tel: 02-528-0303  
Fax: 02-528-4411  
Tel: 01-30-67 58 00  
Fax: 01-30-67 58 99  
NEC Electronics (UK) Ltd.  
Milton Keynes, UK  
Tel: 01908-691-133  
NEC Electronics Singapore Pte. Ltd.  
United Square, Singapore 1130  
Tel: 253-8311  
NEC Electronics (France) S.A.  
Spain Office  
Madrid, Spain  
Fax: 01908-670-290  
Fax: 250-3583  
Tel: 01-504-2787  
NEC Electronics Italiana s.r.1.  
Milano, Italy  
Tel: 02-66 75 41  
Fax: 01-504-2860  
NEC Electronics Taiwan Ltd.  
Taipei, Taiwan  
Tel: 02-719-2377  
NEC Electronics (Germany) GmbH  
Scandinavia Office  
Taeby Sweden  
Fax: 02-66 75 42 99  
Fax: 02-719-5951  
Tel: 8-63 80 820  
NEC do Brasil S.A.  
Sao Paulo-SP, Brasil  
Tel: 011-889-1680  
Fax: 011-889-1689  
Fax: 8-63 80 388  
J96. 3  
57  
µPD78044H, 78045H, 78046H  
Note that “preliminary” is not indicated in this document, even though the related documents may be preliminary  
versions.  
The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited  
without governmental license, the need for which must be judged by the customer. The export or re-export of this product  
from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales  
representative.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this  
document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from use of a device described herein or any other liability arising  
from use of such device. No license, either express, implied or otherwise, is granted under any patents,  
copyrights or other intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on  
a customer designated "quality assurance program" for a specific application. The recommended applications  
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each  
device before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 96. 5  
配单直通车
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!