欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • VIPER27HN图
  • 深圳市高捷芯城科技有限公司

     该会员已使用本站11年以上
  • VIPER27HN 现货库存
  • 数量5098 
  • 厂家ST(意法半导体) 
  • 封装DIP-7 
  • 批号23+ 
  • 百分百原装正品,可原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-83062789 QQ:3007977934QQ:3007947087
  • VIPER27HN图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • VIPER27HN 现货库存
  • 数量8500 
  • 厂家ST/意法 
  • 封装DIP8 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • VIPER27HN图
  • 深圳市广百利电子有限公司

     该会员已使用本站6年以上
  • VIPER27HN 现货库存
  • 数量18500 
  • 厂家ST(意法) 
  • 封装DIP-7 
  • 批号23+ 
  • ★★全网低价,原装原包★★
  • QQ:1483430049QQ:1483430049 复制
  • 0755-83235525 QQ:1483430049
  • VIPER27HN图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • VIPER27HN 现货库存
  • 数量26800 
  • 厂家STM 
  • 封装22+ 
  • 批号PDIP-7 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • VIPER27HN图
  • 深圳市华兴微电子有限公司

     该会员已使用本站16年以上
  • VIPER27HN 现货库存
  • 数量5250 
  • 厂家ST 
  • 封装公司现货 
  • 批号2303+ 
  • 现货现货!实单专线点击QQ2880509074!只有进口
  • QQ:604502381QQ:604502381 复制
  • 0755-83002105 QQ:604502381
  • VIPER27HN图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • VIPER27HN 现货库存
  • 数量1025 
  • 厂家STM 
  • 封装PDIP-7 
  • 批号 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • VIPER27HN图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • VIPER27HN
  • 数量5300 
  • 厂家ST(意法) 
  • 封装DIP-7 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • VIPER27HN图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • VIPER27HN
  • 数量25025 
  • 厂家ST/意法 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • VIPER27HN图
  • 集好芯城

     该会员已使用本站13年以上
  • VIPER27HN
  • 数量13718 
  • 厂家ST 
  • 封装PDIP-7 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • VIPER27HN图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • VIPER27HN
  • 数量34355 
  • 厂家ST 
  • 封装DIP7 
  • 批号2023+ 
  • 绝对原装正品全新进口深圳现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • VIPER27HN图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • VIPER27HN
  • 数量18310 
  • 厂家ST 
  • 封装PDIP-7 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • VIPER27HN图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • VIPER27HN
  • 数量35693 
  • 厂家ST 
  • 封装DIP7 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • VIPER27HN图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • VIPER27HN
  • 数量3500 
  • 厂家STMicroelectronics 
  • 封装8-DIP 
  • 批号23+ 
  • 全新原装现货特价销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710
  • VIPER27HN图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • VIPER27HN
  • 数量11530 
  • 厂家Power Integrations 
  • 封装8-SOIC 
  • 批号23+ 
  • 全新原装现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • VIPER27HN图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • VIPER27HN
  • 数量100000 
  • 厂家ST Microelectronics 
  • 封装N/A 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • VIPER27HN图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • VIPER27HN
  • 数量5680 
  • 厂家ST 
  • 封装DIP 
  • 批号23+ 
  • 原装正品长期供货
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • VIPER27HN图
  • 千层芯半导体(深圳)有限公司

     该会员已使用本站9年以上
  • VIPER27HN
  • 数量6000 
  • 厂家ST 
  • 封装SMD 
  • 批号2019+ 
  • 交流/直流转换器
  • QQ:2685694974QQ:2685694974 复制
    QQ:2593109009QQ:2593109009 复制
  • 0755-83978748,0755-23611964,13760152475 QQ:2685694974QQ:2593109009
  • VIPER27HN图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • VIPER27HN
  • 数量7064 
  • 厂家ST 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • VIPER27HN图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • VIPER27HN
  • 数量9328 
  • 厂家ST-意法半导体 
  • 封装7DIP 
  • 批号▉▉:2年内 
  • ▉▉¥8.3元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • VIPER27HN图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • VIPER27HN
  • 数量8650000 
  • 厂家ST 
  • 封装原厂封装 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • VIPER27HN图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • VIPER27HN
  • 数量13880 
  • 厂家ST/意法半导体 
  • 封装DIP-7 
  • 批号21+ 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • VIPER27HN图
  • 深圳市芯鹏泰科技有限公司

     该会员已使用本站8年以上
  • VIPER27HN
  • 数量7536 
  • 厂家STMicroelectronics 
  • 封装7-DIP 
  • 批号23+ 
  • ACDC转换器离线转换开关
  • QQ:892152356QQ:892152356 复制
  • 0755-82777852 QQ:892152356
  • VIPER27HN图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • VIPER27HN
  • 数量12800 
  • 厂家ST进口原装 
  • 封装DIP7 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • VIPER27HN图
  • 深圳市湘达电子有限公司

     该会员已使用本站10年以上
  • VIPER27HN
  • 数量6600 
  • 厂家ST 
  • 封装7-DIP 
  • 批号20+ 
  • 原盒原装原标签,市场最低价。
  • QQ:215672808QQ:215672808 复制
  • 0755-83229772 QQ:215672808
  • VIPER27HN图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • VIPER27HN
  • 数量8800 
  • 厂家ST/意法 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • VIPER27HN图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • VIPER27HN
  • 数量65000 
  • 厂家ST 
  • 封装DIP7 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • VIPER27HN图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • VIPER27HN
  • 数量144474 
  • 厂家ST 
  • 封装DIP7 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507162QQ:2355507162 复制
    QQ:2355507165QQ:2355507165 复制
  • 86-755-83616256 QQ:2355507162QQ:2355507165
  • VIPER27HN图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • VIPER27HN
  • 数量4000 
  • 厂家ST/意法 
  • 封装DIP-7 
  • 批号21+ 
  • 羿芯诚只做原装 原厂渠道 价格优势
  • QQ:2881498351QQ:2881498351 复制
  • 0755-22968581 QQ:2881498351
  • VIPER27HN图
  • 深圳市西昂特科技有限公司

     该会员已使用本站13年以上
  • VIPER27HN
  • 数量5789 
  • 厂家STMicroelect 
  • 封装8-DIP (7 引线, 
  • 批号09+ 
  • 全新原装现货特价
  • QQ:2881291855QQ:2881291855 复制
    QQ:1158574719QQ:1158574719 复制
  • 0755-82524647 QQ:2881291855QQ:1158574719
  • VIPER27HN图
  • 深圳市芯柏然科技有限公司

     该会员已使用本站7年以上
  • VIPER27HN
  • 数量26800 
  • 厂家STM 
  • 封装PDIP-7 
  • 批号22+ 
  • 授权代理直销,原厂原装现货,假一罚十,特价销售
  • QQ:287673858QQ:287673858 复制
  • 0755-82533534 QQ:287673858

产品型号VIPER27HN的概述

芯片VIPER27HN的概述 VIPER27HN是一款由STMicroelectronics公司设计和制造的集成电路,属于高效能Mains Power Supply的系列产品。其主要功能是作为一种单片式开关电源(Switching Power Supply),广泛应用于电源适配器、电视机、电器、家居自动化设备等。VIPER27HN以其高效能、低待机功耗以及出色的电磁兼容性(EMC)性能而受到专业工程师的青睐。 VIPER27HN的详细参数 VIPER27HN具有一系列优秀的电气参数,使其适合于各类高性能电源的设计。 - 输入电压范围:95V到265V交流电(AC) - 输出功率:最大可提供20W的输出功率 - 开关频率:典型开关频率为100kHz - 效率:在特定负载条件下效率可达到80%以上 - 电源耗能:待机功耗低于30mW VIPER27HN的输出电压可通过外部电阻分压器配置,以...

产品型号VIPER27HN的Datasheet PDF文件预览

VIPER27  
Off-line high voltage converters  
Features  
800 V avalanche rugged power section  
PWM operation with frequency jittering for low  
EMI  
SO16 narrow  
SO
16  
DIP-7  
Operating frequency:  
– 60 kHz for L type  
– 115 kHz for H type  
Description  
Standby power < 50 mW at 265 Vac  
The device is an off-line converter with an 800 V  
rugged power section, a PWM control, two levels  
of over-current protection, overvoltage and  
overload protections, hysteretic thermal  
protection, soft-start and safe auto-restart after  
any fault condition removal. Burst mode operation  
and device very low consumption help to meet the  
standby energy saving regulations.  
Limiting current with adjustable set point  
Adjustable and accurate overvoltage  
protection  
On-board soft-start  
Safe auto-restart after a fault condition  
Hysteretic thermal shutdown  
Advance frequency jittering reduces EMI filter  
cost. Brown-out function protects the switch mode  
power supply when the rectified input voltage  
level is below the normal minimum level specified  
for the system. The high voltage start-up circuit is  
embedded in the device.  
Application  
Auxiliary power supply for consumer and home  
equipments  
ATX auxiliary power supply  
Figure 1.  
Typical topology  
Low / medium power AC-DC adapters  
+
+
SMPS for set-top boxes, DVD players and  
DC input high voltage  
wide range  
DC Output voltage  
recorders, white goods  
-
-
DRAIN DRAIN  
BR  
VIPER27  
VDD  
FB  
GND  
CONT  
Table 1.  
Device summary  
Order codes  
Package  
Packaging  
VIPER27LN / VIPER27HN  
VIPER27HD / VIPER27LD  
DIP-7  
Tube  
SO16 narrow  
VIPER27HDTR / VIPER27LDTR  
Tape and reel  
July 2010  
Doc ID 15133 Rev 5  
1/31  
www.st.com  
31  
Contents  
VIPER27  
Contents  
1
2
3
4
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Typical power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4.1  
4.2  
4.3  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
5
6
7
Typical electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Typical circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Operation descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Power section and gate driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
High voltage startup generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power-up and soft-start up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power down operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Auto restart operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Current mode conversion with adjustable current limit set point . . . . . . . 18  
Overvoltage protection (OVP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
About CONT pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.10 Feed-back and overload protection (OLP) . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.11 Burst-mode operation at no load or very light load . . . . . . . . . . . . . . . . . . 23  
7.12 Brown-out protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
7.13 2nd level over current protection and hiccup mode . . . . . . . . . . . . . . . . . 25  
8
9
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2/31  
Doc ID 15133 Rev 5  
VIPER27  
Block diagram  
1
Block diagram  
Figure 2.  
Block diagram  
VDD  
BR  
DRAIN  
+
Vin_OK  
Internal Supply bus  
SUPPLY  
& UVLO  
HV_ON  
I
-
DDch  
THERMAL  
&
V
Reference Voltages  
BRth  
SHUTDOWN  
OSCILLATOR  
UVLO  
SOFT  
OTP  
OCP  
BLOCK  
START  
-
OCP  
BURST  
TURN-ON  
LOGIC  
S
CONT  
+
Q
.
OVP  
LOGIC  
PWM  
LEB  
+
-
R1  
R2  
+
-
OVP  
2nd OCP  
LOGIC  
Ref  
OLP OVP OTP  
Rsense  
BURST-MODE  
LOGIC  
BURST  
FB  
GND  
2
Typical power  
Table 2.  
Typical power  
230 VAC  
85-265 VAC  
Part number  
Adapter(1)  
Open frame(2)  
Adapter(1)  
10 W  
Open frame(2)  
VIPER27  
18 W  
20 W  
12 W  
1. Typical continuous power in non ventilated enclosed adapter measured at 50 °C ambient.  
2. Maximum practical continuous power in an open frame design at 50 °C ambient, with adequate heat sinking.  
Doc ID 15133 Rev 5  
3/31  
Pin settings  
VIPER27  
3
Pin settings  
Figure 3.  
Connection diagram (top view)  
Note:  
The copper area for heat dissipation has to be designed under the DRAIN pins.  
Table 3.  
Pin n.  
Pin description  
Name  
Function  
DIP7 SO16N  
This pin represents the device ground and the source of the power  
section.  
1
-
1...2  
4
GND  
N.A.  
VDD  
Not available for user. It can be connected to GND (pins 1-2) or left not  
connected.  
Supply voltage of the control section. This pin also provides the charging  
current of the external capacitor during start-up time.  
2
5
Control pin. The following functions can be selected:  
1. current limit set point adjustment. The internal set default value of the  
cycle-by-cycle current limit can be reduced by connecting to ground an  
3
4
6
CONT external resistor.  
2. output voltage monitoring. A voltage exceeding VOVP threshold (see  
Table 8 on page 7) shuts the IC down reducing the device consumption.  
This function is strobed and digitally filtered for high noise immunity.  
Control input for duty cycle control. Internal current generator provides  
bias current for loop regulation. A voltage below the threshold VFBbm  
activates the burst-mode operation. A level close to the threshold VFBlin  
means that we are approaching the cycle-by-cycle over-current set point.  
7
8
FB  
BR  
Brownout protection input with hysteresis. A voltage below the threshold  
VBRth shuts down (not latch) the device and lowers the power  
5
consumption. Device operation restarts as the voltage exceeds the  
threshold VBRth + VBRhyst. It can be connected to ground when not used.  
High voltage drain pin. The built-in high voltage switched start-up bias  
7,8  
13...16 DRAIN current is drawn from this pin too.  
Pins connected to the metal frame to facilitate heat dissipation.  
4/31  
Doc ID 15133 Rev 5  
VIPER27  
Electrical data  
4
Electrical data  
4.1  
Maximum ratings  
Table 4.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
Max  
Min  
VDRAIN Drain-to-source (ground) voltage  
800  
5
V
Repetitive avalanche energy  
EAV  
mJ  
(limited by TJ = 150 °C)  
Repetitive avalanche current  
IAR  
1.5  
3
A
(limited by TJ = 150 °C)  
IDRAIN Pulse drain current (limited by TJ = 150 °C)  
VCONT Control input pin voltage (with ICONT = 1 mA)  
A
V
-0.3  
-0.3  
-0.3  
-0.3  
Self limited  
VFB  
VBR  
VDD  
IDD  
Feed-back voltage  
5.5  
V
Brown-out input pin voltage (with IBR = 0.5 mA)  
Supply voltage (IDD = 25 mA)  
Input current  
Self limited  
V
Self limited  
V
25  
1
mA  
Power dissipation at TA < 40 °C (DIP-7)  
Power dissipation at TA < 60 °C (SO16N)  
Operating junction temperature range  
PTOT  
TJ  
W
1.5  
150  
150  
-40  
-55  
°C  
°C  
TSTG Storage temperature  
4.2  
Thermal data  
Table 5.  
Symbol  
Thermal data  
Max value  
Parameter  
Unit  
SO16N  
DIP7  
Thermal resistance junction pin  
(Dissipated power = 1 W)  
RthJP  
RthJA  
RthJA  
25  
35  
°C/W  
°C/W  
°C/W  
Thermal resistance junction ambient  
(Dissipated power = 1 W)  
60  
50  
100  
80  
Thermal resistance junction ambient (1)  
(Dissipated power = 1 W)  
2
1. When mounted on a standard single side FR4 board with 100 mm (0.155 sq in) of Cu (35 µm thick)  
Doc ID 15133 Rev 5  
5/31  
Electrical data  
VIPER27  
4.3  
Electrical characteristics  
(TJ = -25 to 125 °C, VDD = 14 V(a); unless otherwise specified)  
Table 6.  
Symbol  
Power section  
Parameter  
Test condition  
IDRAIN = 1 mA, VFB = GND  
Min Typ Max Unit  
VBVDSS  
IOFF  
Break-down voltage  
800  
V
μA  
Ω
TJ = 25 °C  
VDRAIN = max rating,  
VFB = GND  
OFF state drain current  
60  
7
IDRAIN = 0.4 A, VFB = 3 V, VBR = GND,  
TJ = 25 °C  
Drain-source on state  
resistance  
RDS(on)  
IDRAIN = 0.4 A, VFB = 3 V, VBR = GND,  
TJ = 125 °C  
14  
Ω
Effective (energy related)  
output capacitance  
COSS  
VDRAIN = 0 to 640 V  
40  
pF  
Table 7.  
Symbol  
Supply section  
Parameter  
Test condition  
Min Typ Max Unit  
Voltage  
V
Drain-source start voltage  
Start up charging current  
Operating voltage range  
60 80 100  
-2 -3 -4 mA  
-0.4 -0.6 -0.8 mA  
V
_START  
DRAIN  
VDRAIN = 120 V, VBR = GND, VFB = GND,  
VDD = 4 V  
IDDch  
VDRAIN = 120 V, VBR = GND, VFB = GND,  
VDD = 4 V after fault.  
VDD  
After turn-on  
IDD = 20 mA  
8.5  
23.5  
V
V
V
VDDclamp VDD clamp voltage  
23.5  
VDDon  
VDDoff  
VDD start up threshold  
13 14 15  
VDRAIN = 120 V, VBR = GND, VFB = GND  
VDRAIN = 120 V, VBR = GND, VFB = GND  
VDD under voltage  
shutdown threshold  
7.5  
4
8
8.5  
5
V
V
VDD restart voltage  
threshold  
V
4.5  
DD(RESTART)  
Current  
Operating supply current,  
not switching  
VFB = GND, FSW = 0 kHz, VBR = GND,  
VDD = 10 V  
IDD0  
0.9 mA  
VDRAIN = 120 V, FSW = 60 kHz  
VDRAIN = 120 V, FSW = 115 kHz  
2.5 mA  
3.5 mA  
Operating supply current,  
switching  
IDD1  
Operating supply current,  
with protection tripping  
IDD_FAULT  
IDD_OFF  
400 μA  
270 μA  
Operating supply current  
with VDD < VDD_OFF  
VDD = 7 V  
a. Adjust V above V  
start-up threshold before settings to 14 V.  
DD  
DDon  
6/31  
Doc ID 15133 Rev 5  
VIPER27  
Electrical data  
Table 8.  
Symbol  
Controller section  
Parameter  
Test condition  
Min Typ Max Unit  
Feed-back pin  
VFBolp  
VFBlin  
VFBbm  
Over load shutdown threshold  
Linear dynamics upper limit  
Burst mode threshold  
4.5 4.8 5.2  
3.2 3.5 3.7  
0.6  
V
V
Voltage falling  
V
VFBbmhys Burst mode hysteresis  
IFB Feed-back sourced current  
RFB(DYN) Dynamic resistance  
Voltage rising  
VFB = 0.3 V  
100  
mV  
-150 -200 -280 μA  
3.3 V < VFB < 4.8 V  
VFB < 3.3 V  
-3  
μA  
kΩ  
14  
2
21  
6
HFB  
ΔVFB / ΔID  
V/A  
CONT pin  
VCONT_l Low level clamp voltage  
ICONT = -100 µA  
0.5  
V
Current limitation  
VFB = 4 V,  
IDlim  
tSS  
Max drain current limitation  
Soft-start time  
ICONT = -10 µA  
TJ = 25 °C  
0.66 0.7 0.74  
A
8.5  
ms  
ns  
TON_MIN Minimum turn ON time  
220 400 480  
td  
Propagation delay  
100  
300  
160  
ns  
tLEB  
Leading edge blanking  
ns  
ID_BM  
Peak drain current during burst mode  
VFB = 0.6 V  
mA  
Oscillator section  
VIPER27L  
VDD = operating voltage range,  
VFB = 1 V  
54  
60  
66 kHz  
FOSC  
VIPER27H  
103 115 127 kHz  
VIPER27L  
VIPER27H  
4
8
kHz  
kHz  
Hz  
FD  
Modulation depth  
FM  
Modulation frequency  
Maximum duty cycle  
250  
DMAX  
70  
80  
%
Over current protection (2nd OCP)  
IDMAX Second over current threshold  
Overvoltage protection  
1
A
VOVP  
Overvoltage protection threshold  
2.7  
3
3.3  
V
TSTROBE Overvoltage protection strobe time  
2.2  
us  
Doc ID 15133 Rev 5  
7/31  
Electrical data  
VIPER27  
Table 8.  
Symbol  
Controller section (continued)  
Parameter  
Test condition  
Min Typ Max Unit  
Brown out protection  
VBRth  
VBRhyst Voltage hysteresis above VBRth  
IBRhyst Current hysteresis  
VBRclamp Clamp voltage  
Brown out threshold  
Voltage falling  
0.41 0.45 0.49  
50  
V
mV  
μA  
V
Voltage rising  
7
12  
IBR = 250 µA  
3
VDIS  
Brown out disable voltage  
50  
150 mV  
Thermal shutdown  
TSD  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
150 160  
30  
°C  
°C  
THYST  
8/31  
Doc ID 15133 Rev 5  
VIPER27  
Electrical data  
Figure 4.  
Minimum turn-on time test circuit  
V
DRAIN  
GND  
VDD  
DRAIN  
DRAIN  
90 %  
T
ONmin  
14 V  
CONT  
FB  
50 Ω  
10 %  
Time  
Time  
I
DRAIN  
BR  
I
3.5 V  
DLIM  
30 V  
Figure 5.  
Brown out threshold test circuit  
V
BR  
BR  
V
+V  
BRth BRhyst  
GND  
VDD  
DRAIN  
DRAIN  
V
BRth  
V
DIS  
I
Time  
Time  
Time  
10 kΩ  
CONT  
FB  
I
BRhyst  
I
BRhyst  
BR  
14 V  
I
DRAIN  
30 V  
2 V  
Figure 6.  
OVP threshold test circuit  
V
CONT  
GND  
VDD  
DRAIN  
DRAIN  
V
OVP  
14 V  
CONT  
FB  
10 kΩ  
Time  
Time  
V
DRAIN  
BR  
30 V  
2 V  
Note:  
Adjust VDD above VDDon start-up threshold before settings to 14 V  
Doc ID 15133 Rev 5  
9/31  
Typical electrical characteristics  
VIPER27  
5
Typical electrical characteristics  
Figure 7.  
Current limit vs TJ  
Figure 8.  
Switching frequency vs TJ  
Figure 9.  
Drain start voltage vs TJ  
Figure 10. HFB vs TJ  
Figure 11. Brown out threshold vs TJ  
Figure 12. Brown out hysteresis vs TJ  
10/31  
Doc ID 15133 Rev 5  
VIPER27  
Typical electrical characteristics  
Figure 13. Brown out hysteresis current Figure 14. Operating supply current  
vs TJ  
(no switching) vs TJ  
Figure 15. Operating supply current  
(switching) vs TJ  
Figure 16. current limit vs RLIM  
Figure 17. Power MOSFET on-resistance Figure 18. Power MOSFET break down  
vs TJ voltage vs TJ  
Doc ID 15133 Rev 5  
11/31  
Typical electrical characteristics  
Figure 19. Thermal shutdown  
VIPER27  
VDD  
VDDon  
VDDoff  
VDD(RESTART)  
time  
time  
IDRAIN  
TJ  
TSD  
TSD - THYST  
time  
Normal operation  
Normal operation  
Shut down after over temperature  
12/31  
Doc ID 15133 Rev 5  
VIPER27  
Typical circuit  
6
Typical circuit  
Figure 20. Min-features flyback application  
D3  
Vout  
R1  
AC IN  
AC IN  
C2  
BR  
C1  
C5  
D1  
GND  
D2  
R2  
R3  
OPTO  
VDD  
DRAIN  
R5  
BR  
CONTROL  
FB  
C3  
R4  
C6  
CONT  
GND  
U2  
C4  
R6  
Figure 21. Full-features flyback application  
D3  
Vout  
Rh  
R1  
D1  
AC IN  
C2  
BR  
C1  
C5  
Rl  
AC IN  
GND  
Daux  
Rovp  
D2  
R2  
R3  
OPTO  
VDD  
DRAIN  
R5  
BR  
CONTROL  
FB  
C3  
C6  
R4  
CONT  
GND  
U2  
Rlim  
C4  
R6  
Doc ID 15133 Rev 5  
13/31  
Operation descriptions  
VIPER27  
7
Operation descriptions  
VIPER27 is a high-performance low-voltage PWM controller chip with an 800 V, avalanche  
rugged Power section.  
The controller includes: the oscillator with jittering feature, the start up circuits with soft-start  
feature, the PWM logic, the current limit circuit with adjustable set point, the second over  
current circuit, the burst mode management, the brown-out circuit, the UVLO circuit, the  
auto-restart circuit and the thermal protection circuit.  
The current limit set-point is set by the CONT pin. The burst mode operation guaranties high  
performance in the stand-by mode and helps in the energy saving norm accomplishment.  
All the fault protections are built in auto restart mode with very low repetition rate to prevent  
IC's over heating.  
7.1  
Power section and gate driver  
The power section is implemented with an avalanche ruggedness N-channel MOSFET,  
which guarantees safe operation within the specified energy rating as well as high dv/dt  
capability. The power section has a BVDSS of 800 V min. and a typical RDS(on) of 7 Ω  
at 25 °C.  
The integrated SenseFET structure allows a virtually loss-less current sensing.  
The gate driver is designed to supply a controlled gate current during both turn-on and turn-  
off in order to minimize common mode EMI. Under UVLO conditions an internal pull-down  
circuit holds the gate low in order to ensure that the power section cannot be turned on  
accidentally.  
7.2  
High voltage startup generator  
The HV current generator is supplied through the DRAIN pin and it is enabled only if the  
input bulk capacitor voltage is higher than VDRAIN_START threshold, 80 VDC typically. When  
the HV current generator is ON, the IDDch current (3 mA typical value) is delivered to the  
capacitor on the VDD pin. In case of auto restart mode after a fault event, the IDDch current is  
reduced to 0.6 mA, in order to have a slow duty cycle during the restart phase.  
14/31  
Doc ID 15133 Rev 5  
VIPER27  
Operation descriptions  
7.3  
Power-up and soft-start up  
If the input voltage rises up till the device start threshold, VDRAIN_START, the VDD voltage  
begins to grow due to the IDDch current (see Table 7 on page 6) coming from the internal  
high voltage start up circuit. If the VDD voltage reaches VDDon threshold (see Table 7 on  
page 6) the power MOSFET starts switching and the HV current generator is turned OFF.  
See Figure 23 on page 16.  
The IC is powered by the energy stored in the capacitor on the VDD pin, CVDD, until when  
the self-supply circuit (typically an auxiliary winding of the transformer and a steering diode)  
develops a voltage high enough to sustain the operation.  
C
VDD capacitor must be sized enough to avoid fast discharge and keep the needed voltage  
value higher than VDDoff threshold. In fact, a too low capacitance value could terminate the  
switching operation before the controller receives any energy from the auxiliary winding.  
The following formula can be used for the VDD capacitor calculation:  
Equation 1  
IDDch × tSSaux  
C
VDD= ----------------------------------------  
V
DDon VDDoff  
The tSSaux is the time needed for the steady state of the auxiliary voltage. This time is  
estimated by applicator according to the output stage configurations (transformer, output  
capacitances, etc.).  
During the converter start up time, the drain current limitation is progressively increased to  
the maximum value. In this way the stress on the secondary diode is considerably reduced.  
It also helps to prevent transformer saturation. The soft-start time lasts 8.5 ms and the  
feature is implemented for every attempt of start up converter or after a fault.  
Figure 22. IDD current during start-up and burst mode  
VDD  
VDDon  
VDDoff  
t
VFB  
VFBolp  
VFBlin  
VFBbmhys  
VFBbm  
t
VDRAIN  
t
IDD  
IDD1  
IDD0  
t
IDDch (-3 mA)  
BURST MODE  
NORMAL MODE  
START- UP  
NORMAL MODE  
Doc ID 15133 Rev 5  
15/31  
Operation descriptions  
Figure 23. Timing diagram: normal power-up and power-down sequences  
VIPER27  
VIN  
VIN < VDRAIN_START  
HV startup is no more activated  
VDRAIN_START  
VDD  
time  
regulation is lost here  
VDDon  
VDDoff  
VDD(RESTART)  
VDRAIN  
time  
IDD  
time  
time  
IDDch (3mA)  
Power-off  
Normal operation  
Power-on  
Figure 24. Soft-start: timing diagram  
IDRAIN  
IDlim  
t
VFB  
VFBolp  
VFBlin  
t
VOUT  
t
STEADY STATE  
tSS ( SOFT START- UP )  
DELAY (OLP)  
16/31  
Doc ID 15133 Rev 5  
VIPER27  
Operation descriptions  
7.4  
Power down operation  
At converter power down, the system loses regulation as soon as the input voltage is so low  
that the peak current limitation is reached. The VDD voltage drops and when it falls below  
the VDDoff threshold (see Table 7 on page 6) the power MOSFET is switched OFF, the  
energy transfers to the IC interrupted and consequently the VDD voltages decreases,  
Figure 23 on page 16. Later, if the VIN is lower than VDRAIN_START (see Table 7 on page 6),  
the start up sequence is inhibited and the power down completed. This feature is useful to  
prevent converter’s restart attempts and ensures monotonic output voltage decay during the  
system power down.  
7.5  
Auto restart operation  
If after a converter power down, the VIN is higher than VDRAIN_START, the start up sequence  
is not inhibited and will be activated only when the VDD voltage drops down the  
V
DD(RESTART) threshold (see Table 7 on page 6). This means that the HV start up current  
generator restarts the VDD capacitor charging only when the VDD voltage drops below  
DD(RESTART). The scenario above described is for instance a power down because of a  
V
fault condition. After a fault condition, the charging current, IDDch, is 0.6 mA (typ.) instead of  
the 3 mA (typ.) of a normal start up converter phase. This feature together with the low  
V
DD(RESTART) threshold ensures that, after a fault, the restart attempts of the IC has a very  
long repetition rate and the converter works safely with extremely low power throughput.  
The Figure 25 shows the IC behavioral after a short circuit event.  
Figure 25. Timing diagram: behavior after short circuit  
6
$$  
9''RQ  
9''RII  
6KRUWꢀFLUFXLWꢀRFFXUVꢀKHUH  
9''ꢅ5(67$57ꢆ  
7UHS  
ꢁꢀꢂꢃꢂꢄ7UHSꢀ  
6
W
$2!).  
)
W
W
$$  
)
ꢀꢁꢂ M!  
$$CH  
6
&"  
W
W
6
&"OLP  
&"LIN  
6
7.6  
Oscillator  
The switching frequency is internally fixed to 60 kHz or 115 kHz. In both case the switching  
frequency is modulated by approximately 4 kHz (60 kHz version) or 8 kHz  
(115 kHz version) at 250 Hz (typical) rate, so that the resulting spread-spectrum action  
distributes the energy of each harmonic of the switching frequency over a number of side-  
band harmonics having the same energy on the whole but smaller amplitudes.  
Doc ID 15133 Rev 5  
17/31  
Operation descriptions  
VIPER27  
7.7  
Current mode conversion with adjustable current limit set  
point  
The device is a current mode converter: the drain current is sensed and converted in voltage  
that is applied to the non inverting pin of the PWM comparator. This voltage is compared  
with the one on the feed-back pin through a voltage divider on cycle by cycle basis.  
The VIPER27 has a default current limit value, IDlim, that the designer can adjust according  
the electrical specification, by the RLIM resistor connected to the CONT see Figure 16 on  
page 11.  
The CONT pin has a minimum current sunk needed to activate the IDlim adjustment: without  
R
LIM or with high RLIM (i.e. 100 kΩ) the current limit is fixed to the default value (see IDlim,  
Table 8 on page 7).  
7.8  
Overvoltage protection (OVP)  
The VIPER27 has integrated the logic for the monitor of the output voltage using as input  
signal the voltage VCONT during the OFF time of the power MOSFET. This is the time when  
the voltage from the auxiliary winding tracks the output voltage, through the turn ratio  
NAUX  
--------------  
NSEC  
The CONT pin has to be connected to the auxiliary winding through the diode DOVP and the  
resistors ROVP and RLIM as shows the Figure 27 on page 20 When, during the OFF time,  
the voltage VCONT exceeds, four consecutive times, the reference voltage VOVP (see Table 8  
on page 7) the overvoltage protection will stop the power MOSFET and the converter enters  
the auto-restart mode.  
In order to bypass the noise immediately after the turn off of the power MOSFET, the voltage  
V
CONT is sampled inside a short window after the time TSTROBE, see Table 8 on page 7 and  
the Figure 26 on page 19. The sampled signal, if higher than VOVP, trigger the internal OVP  
digital signal and increments the internal counter. The same counter is reset every time the  
signal OVP is not triggered in one oscillator cycle.  
Referring to the Figure 21, the resistors divider ratio kOVP will be given by:  
Equation 2  
VOVP  
kOVP = --------------------------------------------------------------------------------------------------  
NAUX  
--------------  
⋅ (VOUTOVP + VDSEC) VDAUX  
NSEC  
Equation 3  
RLIM  
kOVP = ---------------------------------  
R
LIM + ROVP  
18/31  
Doc ID 15133 Rev 5  
VIPER27  
Operation descriptions  
Where:  
VOVP is the OVP threshold (see Table 8 on page 7)  
VOUT OVP is the converter output voltage value to activate the OVP set by designer  
NAUX is the auxiliary winding turns  
NSEC is the secondary winding turns  
VDSEC is the secondary diode forward voltage  
VDAUX is the auxiliary diode forward voltage  
ROVP together RLIM make the output voltage divider  
Than, fixed RLIM, according to the desired IDlim, the ROVP can be calculating by:  
Equation 4  
1 kOVP  
----------------------  
×
ROVP = RLIM  
kOVP  
The resistor values will be such that the current sourced and sunk by the CONT pin be  
within the rated capability of the internal clamp.  
Figure 26. OVP timing diagram  
V
AUX  
0
V
CONT  
t
t
V
OVP  
0.5 µs  
2 µs  
STROBE  
t
t
t
OVP  
COUNTER  
RESET  
COUNTER  
STATUS  
0 1  
1 2  
2 0  
0
0
0
0
0
1
1
2
2
3
3
4
FAULT  
t
t
NORMAL OPERATION  
TEMPORARY DISTURBANCE  
FEEDBACK LOOP FAILURE  
Doc ID 15133 Rev 5  
19/31  
Operation descriptions  
VIPER27  
7.9  
About CONT pin  
Referring to the Figure 27, through the CONT pin, the below features can be implemented:  
1. Current limit set point  
2. Over voltage protection on the converter output voltage  
The Table 9 on page 20 referring to the Figure 27, lists the external components needed to  
activate one or plus of the CONT pin functions.  
Figure 27. CONT pin configuration  
SOFT  
R
Daux  
START  
OCP  
BLOCK  
-
OV P  
CONT  
OCP  
to GATE driver  
+
Auxiliary  
winding  
OVP  
LOGIC  
R
LIM  
From R  
SENSE  
OVP  
Table 9.  
CONT pin configurations  
(1)  
Function / component  
IDlim reduction  
OVP  
RLIM  
ROVP  
No  
DAUX  
See Figure 16  
80 kΩ  
No  
Yes  
Yes  
See Equation 4  
See Equation 4  
I
Dlim reduction + OVP  
See Figure 16  
1.  
R
has to be fixed before of R  
LIM OVP  
7.10  
Feed-back and overload protection (OLP)  
The VIPER27 is a current mode converter: the feedback pin controls the PWM operation,  
controls the burst mode and actives the overload protection. Figure 28 on page 22 and  
Figure 29 show the internal current mode structure.  
With the feedback pin voltage between VFBbm and VFBlin, (see Table 8 on page 7) the drain  
current is sensed and converted in voltage that is applied to the non inverting pin of the  
PWM comparator. See Figure 2 on page 3.  
This voltage is compared with the one on the feedback pin through a voltage divider on  
cycle by cycle basis. When these two voltages are equal, the PWM logic orders the switch  
off of the power MOSFET. The drain current is always limited to IDlim value.  
In case of overload the feedback pin increases in reaction to this event and when it goes  
higher than VFBlin, the PWM comparator is disabled and the drain current is limited to IDlim by  
the OCP comparator, seeFigure 2 on page 3.  
20/31  
Doc ID 15133 Rev 5  
VIPER27  
Operation descriptions  
When the feedback pin voltage reaches the threshold VFBlin an internal current generator  
starts to charge the feedback capacitor (CFB) and when the feedback voltage reaches the  
VFBolp threshold, the converter is turned off and the start up phase is activated with reduced  
value of IDDch to 0.6 mA, see Table 7 on page 6.  
During the first start up phase of the converter, after the soft-start up time, tSS, the output  
voltage could force the feedback pin voltage to rise up to the VFBolp threshold that switches  
off the converter itself.  
To avoid this event, the appropriate feedback network has to be selected according to the  
output load. More the network feedback fixes the compensation loop stability. The Figure 28  
on page 22 and Figure 29 show the two different feedback networks.  
The time from the over load detection (VFB = VFBlin) to the device shutdown  
(VFB = VFBolp) can be set by CFB value (see Figure 28 on page 22 and Figure 29), using the  
formula:  
Equation 5  
V
FBolp VFBlin  
---------------------------------------  
×
TOLP delay = CFB  
3μA  
In the Figure 28, the capacitor connected to FB pin (CFB) is part of the compensation circuit  
as well as it needs to activate the over load protection (see equation 5).  
After the start up time, tSS, during which the feedback voltage is fixed at VFBlin, the output  
capacitor could not be at its nominal value and the controller interprets this situation as an  
over load condition. In this case, the OLP delay helps to avoid an incorrect device shut down  
during the start up phase.  
Owing to the above considerations, the OLP delay time must be long enough to by-pass the  
initial output voltage transient and check the over load condition only when the output  
voltage is in steady state. The output transient time depends from the value of the output  
capacitor and from the load.  
When the value of the CFB capacitor calculated for the loop stability is too low and cannot  
ensure enough OLP delay, an alternative compensation network can be used and it is  
showed in Figure 29 on page 22.  
Using this alternative compensation network, two poles (fPFB, fPFB1) and one zero (fZFB) are  
introduced by the capacitors CFB and CFB1 and the resistor RFB1  
.
The capacitor CFB introduces a pole (fPFB) at higher frequency than fZB and fPFB1. This pole  
is usually used to compensate the high frequency zero due to the ESR (equivalent series  
resistor) of the output capacitance of the fly-back converter.  
The mathematical expressions of these poles and zero frequency, considering the scheme  
in Figure 29 are reported by the equations below:  
Equation 6  
1
fZFB  
=
2πCFB1 RFB1  
Doc ID 15133 Rev 5  
21/31  
Operation descriptions  
Equation 7  
VIPER27  
RFB(DYN) + RFB1  
fPFB  
=
2 ⋅ π ⋅ CFB  
(
RFB(DYN) RFB1  
)
)
Equation 8  
1
fPFB1  
=
2πCFB1  
(
RFB1 +RFB(DYN)  
The RFB(DYN) is the dynamic resistance seen by the FB pin.  
The CFB1 capacitor fixes the OLP delay and usually CFB1 results much higher than CFB  
.
The Equation 5 can be still used to calculate the OLP delay time but CFB1 has to be  
considered instead of CFB. Using the alternative compensation network, the designer can  
satisfy, in all case, the loop stability and the enough OLP delay time alike.  
Figure 28. FB pin configuration  
From sense FET  
PWM  
To PWM Logic  
+
PWM  
CONTROL  
-
Cfb  
BURST  
BURST-MODE  
LOGIC  
BURST-MODE  
REFERENCES  
OLP comparator  
+
To disable logic  
-
4.8V  
Figure 29. FB pin configuration  
From sense FET  
PWM  
+
To PWM Logic  
PWM  
CONTROL  
-
Rfb1  
Cfb  
BURST  
BURST-MODE  
LOGIC  
Cfb1  
BURST-MODE  
REFERENCES  
OLP comparator  
To disable logic  
+
-
4.8V  
22/31  
Doc ID 15133 Rev 5  
VIPER27  
Operation descriptions  
7.11  
Burst-mode operation at no load or very light load  
When the load decrease the feedback loop reacts lowering the feedback pin voltage. If it  
falls down the burst mode threshold, VFBbm, the power MOSFET is not more allowed to be  
switched on. After the MOSFET stops, as a result of the feedback reaction to the energy  
delivery stop, the feedback pin voltage increases and exceeding the level, VFBbm  
+
VFBbmhys, the power MOSFET starts switching again. The burst mode thresholds are  
reported on Table 8 and Figure 30 shows this behavior. Systems alternates period of time  
where power MOSFET is switching to period of time where power MOSFET is not switching;  
this device working mode is the burst mode. The power delivered to output during switching  
periods exceeds the load power demands; the excess of power is balanced from not  
switching period where no power is processed. The advantage of burst mode operation is  
an average switching frequency much lower then the normal operation working frequency,  
up to some hundred of hertz, minimizing all frequency related losses. During the burst-mode  
the drain current peak is clamped to the level, ID_BM, reported on Table 8.  
Figure 30. Burst mode timing diagram, light load management  
V
FB  
hyster.  
VFBbm  
t
t
I
DRAIN  
Normal-mode  
Normal-mode  
Burst-mode  
7.12  
Brown-out protection  
Brown-out protection is a not-latched shutdown function activated when a condition of mains  
under voltage is detected. The Brown-out comparator is internally referenced to VBRth  
threshold, see Table 8 on page 7, and disables the PWM if the voltage applied at the BR pin  
is below this internal reference. Under this condition the power MOSFET is turned off. Until  
the Brown out condition is present, the VDD voltage continuously oscillates between the  
VDDon and the UVLO thresholds, as shown in the timing diagram of Figure 31 on page 24. A  
voltage hysteresis is present to improve the noise immunity.  
The switching operation is restarted as the voltage on the pin is above the reference plus the  
before said voltage hysteresis. See Figure 5 on page 9.  
The Brown-out comparator is provided also with a current hysteresis, IBRhyst. The designer  
has to set the rectified input voltage above which the power MOSFET starts switching after  
brown out event, VINon, and the rectified input voltage below which the power MOSFET is  
switched off, VINoff. Thanks to the IBRhyst, see Table 8 on page 7, these two thresholds can  
be set separately.  
Doc ID 15133 Rev 5  
23/31  
Operation descriptions  
VIPER27  
Figure 31. Brown-out protection: BR external setting and timing diagram  
V
IN  
V
V
INon  
INoff  
V
t
BR  
V
BRth  
VDD  
V
IN  
t
t
V
I
V
+
-
in_OK  
DIS  
Rh  
IBR  
BRhyst  
Disable  
BR  
VDD  
+
-
V
in_OK  
t
V
DDon  
V
BRth  
V
I
DDoff  
BRhyst  
Rl  
t
t
V
DRAIN  
V
OUT  
t
Fixed the VINon and the VINoff levels, with reference to Figure 31, the following relationships  
can be established for the calculation of the resistors RH and RL:  
Equation 9  
VBRhyst  
VINon VINoff VBRhyst  
VINoff VBRth  
VBRth  
RL = −  
+
×
IBRhyst  
IBRhyst  
Equation 10  
VINon VINoff VBRhyst  
R L  
VBRhyst  
R H  
=
×
IBRhyst  
R L  
+
IBRhyst  
For a proper operation of this function, VIN on must be less than the peak voltage at  
minimum mains and VIN off less than the minimum voltage on the input bulk capacitor at  
minimum mains and maximum load.  
The BR pin is a high impedance input connected to high value resistors, thus it is prone to  
pick up noise, which might alter the OFF threshold when the converter operates or gives  
origin to undesired switch-off of the device during ESD tests.  
It is possible to bypass the pin to ground with a small film capacitor (e.g. 1-10 nF) to prevent  
any malfunctioning of this kind.  
If the brown-out function is not used the BR pin has to be connected to GND, ensuring that  
the voltage is lower than the minimum of VDIS threshold (50 mV, see Table 8). In order to  
enable the brown-out function the BR pin voltage has to be higher than the maximum of  
VDIS threshold (150 mV, see Table 8).  
24/31  
Doc ID 15133 Rev 5  
VIPER27  
Operation descriptions  
nd  
7.13  
2 level over current protection and hiccup mode  
The VIPER27 is protected against short circuit of the secondary rectifier, short circuit on the  
secondary winding or a hard-saturation of fly-back transformer. Such as anomalous  
condition is invoked when the drain current exceed the threshold IDMAX, see Table 8 on  
page 7.  
To distinguish a real malfunction from a disturbance (e.g. induced during ESD tests) a  
“warning state” is entered after the first signal trip. If in the subsequent switching cycle the  
signal is not tripped, a temporary disturbance is assumed and the protection logic will be  
reset in its idle state; otherwise if the IDMAX threshold is exceeded for two consecutive  
switching cycles a real malfunction is assumed and the power MOSFET is turned OFF.  
The shutdown condition is latched as long as the device is supplied. While it is disabled, no  
energy is transferred from the auxiliary winding; hence the voltage on the VDD capacitor  
decays till the VDD under voltage threshold (VDDoff), which clears the latch.  
The start up HV current generator is still off, until VDD voltage goes below its restart voltage,  
VDD(RESTART). After this condition the VDD capacitor is charged again by 600 µA current,  
and the converter switching restarts if the VDDon occurs. If the fault condition is not removed  
the device enters in auto-restart mode. This behavioral results in a low-frequency  
intermittent operation (Hiccup-mode operation), with very low stress on the power circuit.  
See the timing diagram of Figure 32.  
Figure 32. Hiccup-mode OCP: timing diagram  
V
DD  
Secondary diode is shorted here  
VDDon  
VDD  
off  
VDD  
(RESTART)  
t
IDRAIN  
IDMAX  
t
t
VDRAIN  
Doc ID 15133 Rev 5  
25/31  
Package mechanical data  
VIPER27  
8
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
Table 10. DIP-7 mechanical data  
mm  
Dim.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
5.33  
0.38  
2.92  
0.36  
1.14  
0.20  
9.02  
7.62  
6.10  
3.30  
0.46  
1.52  
0.25  
9.27  
7.87  
6.35  
2.54  
7.62  
4.95  
0.56  
1.78  
0.36  
10.16  
8.26  
7.11  
b2  
c
D
E
E1  
e
eA  
eB  
L
10.92  
3.81  
2.92  
0.40  
3.30  
2.508  
0.50  
M
N
0.60  
0.60  
N1  
O
0.548  
26/31  
Doc ID 15133 Rev 5  
VIPER27  
Package mechanical data  
Figure 33. Package dimensions  
Doc ID 15133 Rev 5  
27/31  
Package mechanical data  
VIPER27  
Table 11. SO16 narrow mechanical data  
mm  
Dim.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
1.75  
0.25  
0.1  
1.25  
0.31  
0.17  
9.8  
0.51  
0.25  
10  
c
D
9.9  
6
E
5.8  
6.2  
4
E1  
e
3.8  
3.9  
1.27  
h
0.25  
0.4  
0
0.5  
1.27  
8
L
k
ccc  
0.1  
28/31  
Doc ID 15133 Rev 5  
VIPER27  
Package mechanical data  
Figure 34. SO16 narrow mechanical data  
Doc ID 15133 Rev 5  
29/31  
Revision history  
VIPER27  
9
Revision history  
Table 12. Document revision history  
Date  
Revision  
Changes  
16-Jan-2009  
20-Jul-2009  
22-Oct-2009  
16-Jun-2010  
30-Jul-2010  
1
2
3
4
5
Initial release  
Added SO16 narrow package.  
Updated Table 5 on page 5.  
Updated Figure 3 on page 4 and Table 3 on page 4.  
Updated Figure 11, Figure 12 and Figure 13.  
30/31  
Doc ID 15133 Rev 5  
VIPER27  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2010 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 15133 Rev 5  
31/31  
配单直通车
VIPER27HN产品参数
型号:VIPER27HN
Brand Name:STMicroelectronics
生命周期:Active
零件包装代码:DIP
包装说明:DIP, DIP7/8,.3
针数:7
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
Factory Lead Time:12 weeks
风险等级:1.51
模拟集成电路 - 其他类型:SWITCHING CONTROLLER
控制模式:CURRENT-MODE
控制技术:PULSE WIDTH MODULATION
最大输入电压:23.5 V
最小输入电压:8.5 V
标称输入电压:14 V
JESD-30 代码:R-PDIP-T7
JESD-609代码:e3
长度:9.27 mm
功能数量:1
端子数量:7
封装主体材料:UNSPECIFIED
封装代码:DIP
封装等效代码:DIP7/8,.3
封装形状:RECTANGULAR
封装形式:CHIP CARRIER, HEAT SINK/SLUG, VERY THIN PROFILE
峰值回流温度(摄氏度):NOT SPECIFIED
认证状态:Not Qualified
座面最大高度:5.33 mm
子类别:Switching Regulator or Controllers
表面贴装:YES
最大切换频率:127 kHz
端子面层:Matte Tin (Sn) - annealed
端子形式:THROUGH-HOLE
端子节距:2.54 mm
端子位置:QUAD
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:7.62 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!