欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • WM8524GEDT/R
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • WM8524GEDT/R图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • WM8524GEDT/R 现货库存
  • 数量21000 
  • 厂家WOLFSON 
  • 封装TSSOP16 
  • 批号23+ 
  • 代理原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • WM8524GEDT/R【货正价优】图
  • 深圳市昌和盛利电子有限公司

     该会员已使用本站11年以上
  • WM8524GEDT/R【货正价优】 现货库存
  • 数量36000 
  • 厂家WOLFSON 
  • 封装TSSOP16 
  • 批号08+ 
  • ▊▊★代理WOLFSON▊▊全系列销售【100%全新原装正品】★长期供应,量大可订,价格优惠!
  • QQ:1551106297QQ:1551106297 复制
    QQ:3059638860QQ:3059638860 复制
  • 0755-23125986 QQ:1551106297QQ:3059638860
  • WM8524GEDT/R图
  • 深圳市宏捷佳电子科技有限公司

     该会员已使用本站12年以上
  • WM8524GEDT/R 现货库存
  • 数量50000 
  • 厂家WOLFSON 
  • 封装TSSOP16 
  • 批号2020+ 
  • 绝对房间进口原装现货
  • QQ:2885134398QQ:2885134398 复制
    QQ:2885134554QQ:2885134554 复制
  • 0755-22669259 QQ:2885134398QQ:2885134554
  • WM8524GEDT/R图
  • 深圳市欧昇科技有限公司

     该会员已使用本站2年以上
  • WM8524GEDT/R 现货库存
  • 数量11534 
  • 厂家WOLFSON 
  • 封装TSSOP16 
  • 批号2020+ 
  • 诺德讯只做原装假一赔十
  • QQ:2885528234QQ:2885528234 复制
  • -0755-83220848 QQ:2885528234
  • WM8524GEDT/R图
  • 深圳市美思瑞电子科技有限公司

     该会员已使用本站12年以上
  • WM8524GEDT/R
  • 数量12245 
  • 厂家WOLFSON 
  • 封装TSSOP16 
  • 批号22+ 
  • 现货,原厂原装假一罚十!
  • QQ:2885659458QQ:2885659458 复制
    QQ:2885657384QQ:2885657384 复制
  • 0755-83952260 QQ:2885659458QQ:2885657384
  • WM8524GEDT/R图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • WM8524GEDT/R
  • 数量8947 
  • 厂家WOLFSON 
  • 封装NA/ 
  • 批号23+ 
  • 原厂直销,现货供应,账期支持!
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • WM8524GEDT/R图
  • 集好芯城

     该会员已使用本站13年以上
  • WM8524GEDT/R
  • 数量13205 
  • 厂家WOLFSON 
  • 封装TSSOP 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • WM8524GEDT/R图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • WM8524GEDT/R
  • 数量61845 
  • 厂家WOLFSON 
  • 封装TSSOP16 
  • 批号2023+ 
  • 绝对原装全新正品现货/优势渠道商、原盘原包原盒
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • WM8524GEDT/R图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • WM8524GEDT/R
  • 数量6000 
  • 厂家WM 
  • 封装09NOPB 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • WM8524GEDT/RV图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • WM8524GEDT/RV
  • 数量12000 
  • 厂家Wolfson 
  • 封装原厂原装 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • WM8524GEDT/R图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • WM8524GEDT/R
  • 数量56000 
  • 厂家WOLFSON 
  • 封装TSSOP16 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • WM8524GEDT/R图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • WM8524GEDT/R
  • 数量8650000 
  • 厂家WOLFSON 
  • 封装TSSOP16 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • WM8524GEDT/R图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • WM8524GEDT/R
  • 数量13050 
  • 厂家WOLFSON 
  • 封装TSSOP16 
  • 批号2023+ 
  • 绝对原装正品现货/优势渠道商、原盘原包原盒
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • WM8524GEDT/R图
  • 深圳市宇集芯电子有限公司

     该会员已使用本站6年以上
  • WM8524GEDT/R
  • 数量90000 
  • 厂家WOLFSON 
  • 封装TSSOP16 
  • 批号23+ 
  • 一级代理进口原装现货、假一罚十价格合理
  • QQ:1157099927QQ:1157099927 复制
    QQ:2039672975QQ:2039672975 复制
  • 0755-2870-8773手机微信同号13430772257 QQ:1157099927QQ:2039672975
  • WM8524GEDT/R图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • WM8524GEDT/R
  • 数量5185 
  • 厂家WM 
  • 封装TSSOP16 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755- QQ:2881894392QQ:2881894393
  • WM8524GEDT/R图
  • 深圳市宏诺德电子科技有限公司

     该会员已使用本站8年以上
  • WM8524GEDT/R
  • 数量68000 
  • 厂家WOLFSON 
  • 封装TSSOP16 
  • 批号22+ 
  • 全新进口原厂原装,优势现货库存,有需要联系电话:18818596997 QQ:84556259
  • QQ:84556259QQ:84556259 复制
    QQ:783839662QQ:783839662 复制
  • 0755- QQ:84556259QQ:783839662
  • WM8524GEDT/R图
  • 深圳市亿智腾科技有限公司

     该会员已使用本站8年以上
  • WM8524GEDT/R
  • 数量16680 
  • 厂家WOLFSON 
  • 封装TSSOP16 
  • 批号16+ 
  • 假一赔十★全新原装现货★★特价供应★工厂客户可放款
  • QQ:799387964QQ:799387964 复制
    QQ:2777237833QQ:2777237833 复制
  • 0755-82566711 QQ:799387964QQ:2777237833
  • WM8524GEDT/R图
  • 深圳市特拉特科技有限公司

     该会员已使用本站2年以上
  • WM8524GEDT/R
  • 数量18000 
  • 厂家WOLFSON 
  • 封装TSSOP16 
  • 批号新年份 
  • 原装正品,品质保证,值得你信赖
  • QQ:709809857QQ:709809857 复制
  • 0755-82531732 QQ:709809857
  • WM8524GEDT/R图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • WM8524GEDT/R
  • 数量8000 
  • 厂家WM 
  • 封装SSOP16 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • WM8524GEDT/R图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • WM8524GEDT/R
  • 数量20000 
  • 厂家WOLFSON 
  • 封装TSSOP16 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • WM8524GEDT/R图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • WM8524GEDT/R
  • 数量8580 
  • 厂家WOLFSON 
  • 封装TSSOP16 
  • 批号2021+ 
  • 全新原装挺实单欢迎来撩/可开票
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871

产品型号WM8524GEDT/R的概述

WM8524GEDT/R 芯片概述 WM8524GEDT/R是一款由英国威尔士的Wolfson Microelectronics(现为Cirrus Logic的一部分)生产的高性能音频DAC(数模转换器)。该芯片广泛应用于各种音频设备,如音响系统、音乐播放器、电视、蓝牙音箱等,旨在为用户提供卓越的音频体验。WM8524GEDT/R通过优化其设计,实现了低功耗、高质量的音频输出,是音频技术领域的重要组成部分。 详细参数 WM8524GEDT/R的关键参数包括: 1. 采样率:最高支持192kHz的采样率,确保高保真音频输出。 2. 分辨率:支持24位音频处理,能够捕捉细腻的音质细节。 3. 总谐波失真(THD):典型值为0.002%,确保音质的清晰度。 4. 信噪比(SNR):达到102dB,较高的信噪比增强了音频信号的纯净度。 5. 输出电压范围:可调节的输出电压,以适应不同的音频系统...

产品型号WM8533的Datasheet PDF文件预览

WM8533  
w
24-bit 192kHz Stereo DAC with 2Vrms Ground Referenced Line Output  
DESCRIPTION  
FEATURES  
The WM8533 is a stereo DAC with integral charge pump and  
software control interface. This provides 2Vrms line driver  
outputs using a 3.3V power supply rail.  
High performance stereo DAC with ground referenced line  
driver  
Audio performance  
106dB SNR (‘A-weighted’)  
-89dB THD @ -1dBFS  
The device features ground-referenced outputs and the use  
of a DC servo to eliminate the need for line driving coupling  
capacitors and effectively eliminate power on pops and  
clicks.  
Digital volume control ranging from -100dB to +12dB  
120dB mute attenuation  
All common sample rates from 8kHz to 192kHz supported  
I2C/SPI compatible and hardware control modes  
Data formats: LJ, RJ, I2S, DSP  
The device is controlled and configured either via the  
I2C/SPI compliant serial control interface or a hardware  
control interface.  
De-emphasis supported  
Maximum 1mV DC offset on line outputs  
Pop/click suppressed power up/down sequencer  
AVDD and LINEVDD +3.3V ±10% allowing single supply  
DBVDD supply supports +1.8V or +3.3V digital I/O  
1.842 x 1.772mm 20-ball WCSP  
The device supports all common audio sampling rates  
between 8kHz and 192kHz using all common MCLK / fs  
ratios. Master and slave modes are available and de-  
emphasis is also supported.  
The WM8533 has a 1.8 to 3.3V tolerant digital interface,  
allowing logic up to 3.3V to be connected.  
The device is available in a 1.842 x 1.772mm 20-ball WCSP.  
APPLICATIONS  
Consumer digital audio applications requiring 2Vrms output  
Set Top Box  
Digital TV  
DVD Players  
Games Consoles  
A/V Receivers  
BLOCK DIAGRAM  
W
WM8533  
CONTRL  
INTERFACE  
LEFT  
DAC  
LINEOUTL  
LINEREF  
MCLK  
BCLK  
LRCLK  
DACDAT  
DIGITAL  
AUDIO  
INTERFACE  
DGITAL  
FITERS  
RIGHT  
DAC  
LINEOUTR  
CHARGE PUMP  
WOLFSON MICROELECTRONICS plc  
Production Data, July 2012, Rev 4.0  
To receive regular email updates, sign up at http/www.wolfsonmicr.comenews  
Copyright 2012 Wolfson Microelectronics plc  
WM8533  
Production Data  
TABLE OF CONTENTS  
DESCRIPTION....................................................................................................... 1  
FEATURES............................................................................................................ 1  
APPLICATIONS .................................................................................................... 1  
BLOCK DIAGRAM ................................................................................................ 1  
TABLE OF CONTENTS......................................................................................... 2  
PIN CONFIGURATION.......................................................................................... 3  
ORDERING INFORMATION.................................................................................. 3  
PIN DESCRIPTION................................................................................................ 4  
ABSOLUTE MAXIMUM RATINGS........................................................................ 5  
RECOMMENDED OPERATING CONDITIONS..................................................... 5  
ELECTRICAL CHARACTERISTICS ..................................................................... 6  
TERMINOLOGY............................................................................................................... 7  
TYPICAL PERFORMANCE................................................................................... 7  
TYPICAL POWER CONSUMPTION................................................................................ 7  
SIGNAL TIMING REQUIREMENTS ...................................................................... 8  
SYSTEM CLOCK TIMING................................................................................................ 8  
AUDIO INTERFACE TIMING – MASTER MODE ............................................................ 9  
AUDIO INTERFACE TIMING – SLAVE MODE.............................................................. 10  
CONTROL INTERFACE TIMING – I2C MODE .............................................................. 11  
CONTROL INTERFACE TIMING – SPI MODE ............................................................. 12  
POWER ON RESET ...................................................................................................... 13  
DEVICE DESCRIPTION ...................................................................................... 15  
INTRODUCTION............................................................................................................ 15  
SOFTWARE CONTROL INTERFACE........................................................................... 15  
DIGITAL AUDIO INTERFACE........................................................................................ 19  
DIGITAL AUDIO INTERFACE CONTROL..................................................................... 21  
DIGITAL AUDIO DATA SAMPLING RATES.................................................................. 23  
DAC FEATURES............................................................................................................ 24  
HARDWARE CONTROL INTERFACE .......................................................................... 28  
REGISTER MAP.................................................................................................. 30  
REGISTER BITS BY ADDRESS.................................................................................... 31  
DIGITAL FILTER CHARACTERISTICS .............................................................. 35  
TERMINOLOGY............................................................................................................. 35  
DAC FILTER RESPONSES........................................................................................... 36  
DIGITAL DE-EMPHASIS CHARACTERISTICS............................................................. 37  
RECOMMENDED EXTERNAL COMPONENTS ................................................. 38  
RECOMMENDED ANALOGUE LOW PASS FILTER .................................................... 39  
RELEVANT APPLICATION NOTES .............................................................................. 39  
PACKAGE DIMENSIONS.................................................................................... 40  
IMPORTANT NOTICE ......................................................................................... 41  
ADDRESS......................................................................................................................41  
PD, July 2012, Rev 4.0  
w
2
Production Data  
WM8533  
PIN CONFIGURATION  
1
2
3
4
5
A
LINEOUTR  
LINEOUTL  
CPVOUTN  
CPCB  
CPCA  
AVDD  
B
AGND  
VMID  
CIFMODE  
BCLK  
LINEGND  
DACDAT  
LRCLK  
LINEREF  
C
D
SCLK/  
AIFMODE1  
SDA/  
AIFMODE0  
LINEVDD  
CS/MUTE  
MCLK  
DBVDD  
ORDERING INFORMATION  
MOISTURE  
SENSITIVITY LEVEL  
PEAK SOLDERING  
TEMPERATURE  
TEMPERATURE  
DEVICE  
RANGE  
PACKAGE  
20-ball W-CSP  
(Pb-free, tape and reel)  
WM8533ECSN/R  
-40 to +85oC  
MSL1  
260oC  
Note:  
Reel quantity = 5000  
PD, July 2012, Rev 4.0  
3
w
WM8533  
Production Data  
PIN DESCRIPTION  
PIN NO  
A1  
NAME  
AVDD  
TYPE  
DESCRIPTION  
Analogue supply  
Right line output  
Left line output  
Supply  
A2  
LINEOUTR  
LINEOUTL  
CPVOUTN  
CPCB  
Analogue Out  
Analogue Out  
Analogue Out  
Analogue Out  
Supply  
A3  
Charge pump negative rail decoupling pin  
Charge pump fly back capacitor pin  
Analogue ground  
A4  
A5  
B1  
AGND  
Ground feedback from output jack  
Analogue midrail decoupling pin  
Charge pump ground  
B2  
LINEREF  
VMID  
Analogue Input  
Analogue Out  
Supply  
B3  
B4  
LINEGND  
CPCA  
Charge pump fly back capacitor pin  
B5  
Analogue Out  
HARDWARE  
I2C SOFTWARE  
MODE  
SPI SOFTWARE  
MODE  
MODE  
I2C control interface  
clock input pin  
SPI control interface  
clock input pin  
SCLK/  
AIFMODE [1:0]  
00 = 24-bit LJ  
01 = 24-bit I2S  
10 = 16-bit RJ  
11 = 24-bit RJ  
C1  
C2  
C3  
Digital I/O  
Digital I/O  
AIFMODE1  
I2C interface data input  
pin  
SPI control interface  
data input pin  
SDA/  
AIFMODE0  
0 = select I2C control  
interface mode  
1 = select SPI control  
interface mode  
Z = select hardware  
mode  
Digital In  
Tri-Level  
CIFMODE  
Digital audio interface data input  
Charge pump supply  
C4  
C5  
DACDAT  
LINEVDD  
Digital In  
Supply  
I2C address select:  
0 = Mute enabled  
1 = Mute disabled  
SPI control interface  
chip select  
D1  
C¯¯S / M¯¯U¯T¯E¯  
Digital In  
0 = 0x34  
1 = 0x36  
Master clock  
Digital audio interface bit clock  
Digital audio interface left/right clock  
Digital interface supply (for digital audio and I2C interfaces)  
D2  
D3  
D4  
D5  
MCLK  
BCLK  
Digital In  
Digital I/O  
Digital I/O  
Supply  
LRCLK  
DBVDD  
Note: Tri-level pins which require the ‘Z’ state to be selected should be left floating (open)  
PD, July 2012, Rev 4.0  
4
w
Production Data  
WM8533  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously  
operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given  
under Electrical Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically  
susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling  
and storage of this device.  
Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage  
conditions prior to surface mount assembly. These levels are:  
MSL1 = unlimited floor life at <30C / 85% Relative Humidity. Not normally stored in moisture barrier bag.  
MSL2 = out of bag storage for 1 year at <30C / 60% Relative Humidity. Supplied in moisture barrier bag.  
MSL3 = out of bag storage for 168 hours at <30C / 60% Relative Humidity. Supplied in moisture barrier bag.  
The Moisture Sensitivity Level for each package type is specified in Ordering Information.  
CONDITION  
MIN  
-0.3V  
MAX  
+4.5V  
AVDD, LINEVDD, DBVDD  
Voltage range digital inputs  
Voltage range analogue inputs  
Temperature range, TA  
AGND -0.3V  
AGND -0.3V  
-40°C  
DBVDD +0.3V  
AVDD +0.3V  
+85°C  
Storage temperature after soldering  
-65°C  
+150°C  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
AVDD, LINEVDD  
DBVDD  
TEST CONDITIONS  
MIN  
2.97  
1.62  
TYP  
MAX  
3.63  
3.63  
UNIT  
Analogue supply range  
Digital buffer supply range  
Ground  
3.3  
V
V
V
AGND, LINEGND  
0
Notes  
1. Analogue grounds must always be within 0.3V of each other.  
2. LINEVDD and AVDD must always be within 0.3V of each other.  
PD, July 2012, Rev 4.0  
5
w
WM8533  
Production Data  
ELECTRICAL CHARACTERISTICS  
Test Conditions  
LINEVDD=AVDD=3.3V, DBVDD=1.8V, LINEGND=AGND=0V, TA=+25ºC,  
Slave Mode, fs=48kHz, MCLK=256fs, 24-bit data, unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
0dBFS  
MIN  
TYP  
MAX  
UNIT  
Analogue Output  
Output Level  
1.89  
1
2.1  
2.31  
Vrms  
k  
Load Impedance  
Load Capacitance  
No external RC filter  
300  
1
pF  
With filter shown in  
Figure 36  
µF  
DAC Performance  
Signal to Noise Ratio  
SNR  
RL = 10kΩ  
100  
106  
104  
106  
-89  
-86  
dB  
dB  
A-weighted  
RL = 10kΩ  
Un-weighted  
Dynamic Range  
DNR  
THD  
RL = 10kΩ  
A-weighted  
Total Harmonic Distortion  
RL = 10kΩ  
dB  
-1dBFS  
RL = 10kΩ  
-78  
0dBFS  
Power Supply Rejection Ratio  
(AVDD or LINEVDD)  
PSRR  
100Hz  
1kHz  
54  
54  
50  
95  
72  
0
dB  
dB  
20kHz  
Channel Separation  
1kHz  
20Hz to 20kHz  
1kHz  
System Absolute Phase  
Channel Level Matching  
Hardware Mute Attenuation  
Digital Soft Mute Attenuation  
Degrees  
dB  
0.1  
120  
100  
0
dB  
dB  
DC Offset at LINEOUTL and  
LINEOUTR  
+/-1  
mV  
LINEREF Rejection  
1kHz  
55  
37  
dB  
dB  
20kHz  
Digital Logic Levels  
Input HIGH Level  
VIH  
VIL  
0.7  
DBVDD  
V
V
V
V
Input LOW Level  
Output HIGH Level  
Output LOW Level  
0.3  
DBVDD  
VOH  
VOL  
0.9  
DBVDD  
IOH = 1mA  
IOL = -1mA  
0.1  
DBVDD  
Input Capacitance  
Input Leakage  
10  
0
pF  
+/-0.9  
A  
PD, July 2012, Rev 4.0  
6
w
Production Data  
WM8533  
TERMINOLOGY  
1. Signal-to-Noise Ratio (dB) – SNR is a measure of the difference in level between the maximum theoretical full scale  
output signal and the output with no input signal applied.  
2. Total Harmonic Distortion (dB) – THD is the level of the rms value of the sum of harmonic distortion products relative  
to the amplitude of the measured output signal.  
3. All performance measurements carried out with 20kHz low pass filter, and where noted an A-weighted filter. Failure to  
use such a filter will result in higher THD and lower SNR readings than are found in the Electrical Characteristics. The  
low pass filter removes out of band noise; although it is not audible it may affect dynamic specification values.  
4. Mute Attenuation – This is a measure of the difference in level between the full scale output signal and the output with  
mute applied.  
TYPICAL PERFORMANCE  
TYPICAL POWER CONSUMPTION  
Test Conditions  
LINEVDD=AVDD=3.3V, DBVDD=1.8V, LINEGND=AGND=0V, TA=+25°C, Slave Mode, quiescent (no signal)  
TEST CONDITIONS  
IAVDD  
ILINEVDD  
IDBVDD  
TOTAL  
(mA)  
(mW)  
(mA)  
(mW)  
(mA)  
(mW)  
(mA)  
(mW)  
No clocks applied  
Off  
0.7  
2.31  
0.9  
2.97  
0.05  
0.09  
1.65  
5.37  
SYS_ENA [1:0]=00  
fs=48kHz, MCLK=256fs  
Standby  
SYS_ENA [1:0]=01  
SYS_ENA [1:0]=11  
0.2  
4.4  
0.66  
2.0  
6.0  
6.6  
0.1  
0.1  
0.18  
0.18  
2.3  
7.44  
34.5  
Playback  
14.52  
19.8  
10.5  
fs=96kHz, MCLK=256fs  
Standby  
SYS_ENA [1:0]=01  
SYS_ENA [1:0]=11  
0.2  
4.9  
0.66  
2.8  
8.5  
9.24  
0.1  
0.1  
0.18  
0.18  
3.1  
10.08  
44.4  
Playback  
16.17  
28.05  
13.5  
fs=192kHz, MCLK=128fs  
Standby  
SYS_ENA [1:0]=01  
SYS_ENA [1:0]=11  
0.2  
4.9  
0.66  
2.8  
8.5  
9.24  
0.1  
0.1  
0.18  
0.18  
3.1  
10.08  
44.4  
Playback  
16.17  
28.05  
13.5  
PD, July 2012, Rev 4.0  
7
w
WM8533  
Production Data  
SIGNAL TIMING REQUIREMENTS  
SYSTEM CLOCK TIMING  
Figure 1 System Clock Timing Requirements  
Test Conditions  
The following timing information is valid across the full range of recommended operating conditions.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Master Clock Timing Information  
MCLK cycle time  
tMCLKY  
tMCLKH  
tMCLKL  
27  
11  
500  
ns  
ns  
ns  
%
MCLK high time  
MCLK low time  
11  
MCLK duty cycle (tMCLKH/tMCLKL)  
40:60  
60:40  
PD, July 2012, Rev 4.0  
8
w
Production Data  
WM8533  
AUDIO INTERFACE TIMING – MASTER MODE  
Figure 2 Master Mode Digital Audio Data Timing  
Test Conditions  
The following timing information is valid across the full range of recommended operating conditions.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
LRCLK propagation delay from BCLK falling edge  
DACDAT setup time to BCLK rising edge  
DACDAT hold time from BCLK rising edge  
tDL  
4
16  
ns  
ns  
ns  
tDST  
tDHT  
22  
25  
Table 1 Master Mode Audio Interface Timing  
PD, July 2012, Rev 4.0  
9
w
WM8533  
Production Data  
AUDIO INTERFACE TIMING – SLAVE MODE  
Figure 3 Digital Audio Data Timing – Slave Mode  
Test Conditions  
The following timing information is valid across the full range of recommended operating conditions.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
BCLK cycle time  
tBCY  
tBCH  
tBCL  
tLRSU  
tLRH  
tDH  
27  
11  
11  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK pulse width high  
BCLK pulse width low  
LRCLK set-up time to BCLK rising edge  
LRCLK hold time from BCLK rising edge  
DACDAT hold time from BCLK rising edge  
DACDAT set-up time to BCLK rising edge  
Table 2 Slave Mode Audio Interface Timing  
5
5
tDS  
7
Note: BCLK period should always be greater than or equal to MCLK period.  
PD, July 2012, Rev 4.0  
10  
w
Production Data  
WM8533  
CONTROL INTERFACE TIMING – I2C MODE  
I2C mode is selected by driving the CIFMODE pin low.  
Figure 4 Control Interface Timing – I2C Control Mode  
Test Conditions  
The following timing information is valid across the full range of recommended operating conditions.  
PARAMETER  
Program Register Input Information  
SCLK Frequency  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
400  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Low Pulse-Width  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
100  
100  
600  
600  
100  
SCLK High Pulse-Width  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
Data Setup Time  
SDA, SCLK Rise Time (see Note)  
SDA, SCLK Fall Time  
300  
300  
Setup Time (Stop Condition)  
Data Hold Time  
600  
2
900  
8
Pulse width of spikes that will be suppressed  
Table 3 Control Interface Timing – I2C Control Mode  
Note: When SCLK frequency 100kHz, the maximum rise time for SDA and SCLK is increased to 1000ns.  
PD, July 2012, Rev 4.0  
11  
w
WM8533  
Production Data  
CONTROL INTERFACE TIMING – SPI MODE  
SPI mode is selected by connecting the CIFMODE pin high.  
Figure 5 Control Interface Timing – SPI Control Mode  
Test Conditions  
The following timing information is valid across the full range of recommended operating conditions.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
¯¯  
SCLK rising edge to CS falling edge  
tCSU  
tCHO  
tSCY  
tSCL  
tSCH  
tDSU  
tDHO  
tps  
40  
40  
160  
64  
64  
20  
40  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
¯¯  
SCLK falling edge to CS rising edge  
SCLK pulse cycle time  
SCLK pulse width low  
SCLK pulse width high  
SDA to SCLK set-up time  
SDA to SCLK hold time  
Pulse width of spikes that will be suppressed  
Table 4 Control Interface Timing –SPI Control Mode  
8
PD, July 2012, Rev 4.0  
12  
w
Production Data  
WM8533  
POWER ON RESET  
Figure 6 Internal Power on Reset Circuit Schematic  
The WM8533 includes an internal Power-On-Reset circuit, as shown in Figure 6, which is used to  
reset the DAC digital logic into a default state after power up. The POR circuit is powered by AVDD  
and has as its inputs VMID and LINEVDD. It asserts POR low if VMID or LINEVDD are below a  
minimum threshold.  
Figure 7 Typical Power Timing Requirements  
Figure 7 shows a typical power-up sequence where LINEVDD comes up with AVDD. When AVDD  
goes above the minimum threshold, Vpora, there is enough voltage for the circuit to guarantee POR is  
asserted low and the chip is held in reset. In this condition, all writes to the control interface are  
ignored. After VMID rises to Vpord_hi and AVDD rises to Vpora_hi, POR is released high and all registers  
are in their default state and writes to the control interface may take place.  
On power down, POR is asserted low whenever LINEVDD or AVDD drop below the minimum  
threshold Vpora_low  
.
PD, July 2012, Rev 4.0  
13  
w
WM8533  
Production Data  
Test Conditions  
LINEVDD = AVDD = 3.3V, DBVDD = 1.8V, AGND = LINEGND = 0V, TA = +25ºC  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power Supply Input Timing Information  
VDD level to POR defined  
(LINEVDD/AVDD rising)  
Vpora  
Measured from LINEGND  
Measured from LINEGND  
Measured from LINEGND  
Measured from LINEGND  
158  
0.8  
mV  
V
VDD level to POR rising edge  
(VMID rising)  
Vpord_hi  
Vpora_hi  
Vpora_lo  
0.63  
1.44  
0.96  
1
VDD level to POR rising edge  
(LINEVDD/AVDD rising)  
1.8  
2.18  
1.97  
V
VDD level to POR falling edge  
(LINEVDD/AVDD falling)  
1.46  
V
Table 5 Power on Reset  
Note: All values are simulated results  
PD, July 2012, Rev 4.0  
14  
w
Production Data  
WM8533  
DEVICE DESCRIPTION  
INTRODUCTION  
The WM8533 provides high fidelity, 2Vrms ground referenced stereo line output from a single supply  
line with minimal external components. The integrated DC servo eliminates the requirement for  
external mute circuitry by minimising DC transients at the output during power up/down. The device  
is well-suited to both stereo and multi-channel systems.  
The device supports all common audio sampling rates between 8kHz and 192kHz using common  
MCLK / fs ratios. Master and slave modes are available.  
The WM8533 supports both hardware and software control modes.  
In hardware control mode, the digital audio interface format is switchable between 16 to 24bits LJ, RJ  
and I2S, and a mute control pin is also available.  
In software control modes, the digital audio interface is fully programmable, with two control interface  
addresses to allow multiple WM8533 devices to be configured independently.  
SOFTWARE CONTROL INTERFACE  
Software control mode is selected by logic 1 or 0 on the CIFMODE pin. The logic level is referenced  
to the DBVDD power domain. When software mode is selected, the associated multi-function control  
pins are defined as described in Table 6.  
PIN NAME  
PIN  
DESCRIPTION  
REF  
SDA  
Serial Data Input  
Serial Data Clock  
I2C Mode - Device Address  
C2  
C1  
D1  
SCLK  
C¯¯S  
SPI Mode - Chip Select  
CIFMODE  
Control Interface Mode  
0 = I2C Mode  
C3  
1 = SPI Mode  
Z = Hardware Mode  
Table 6 Software Control Pin Configuration  
In software control mode, the WM8533 is controlled by writing to its control registers. Readback is  
available for all registers, including device ID and power management status bits, in I2C control mode  
only. The control interface can operate as an I2C or SPI control interface: register read-back is  
provided on the bi-directional pin SDA in I2C mode. Note that Readback is not available in SPI mode.  
The WM8533 software control interface is supplied by the DBVDD power domain.  
The available software control interface modes are summarised as follows:  
I2C mode uses pins SCLK and SDA.  
SPI mode uses pins C¯¯S, SCLK and SDA.  
I2C mode is selected by setting the CIFMODE pin to logic 0.  
SPI mode is selected by setting the CIFMODE pin to logic 1.  
PD, July 2012, Rev 4.0  
15  
w
WM8533  
Production Data  
I2C CONTROL MODE  
In I2C mode, the WM8533 is a slave device on the control interface; SCLK is a clock input, while SDA  
is a bi-directional data pin. To allow arbitration of multiple slaves (and/or multiple masters) on the  
same interface, the WM8533 transmits logic 1 by tri-stating the SDA pin, rather than pulling it high.  
An external pull-up resistor is required to pull the SDA line high so that the logic 1 can be recognised  
by the master.  
In order to allow many devices to share a single I2C control bus, every device on the bus has a  
unique 8-bit device ID (this is not the same as the 8-bit address of each register in the WM8533).  
¯¯  
The device ID is determined by the logic level on the CS pin as shown in Table 7. The LSB of the  
device ID is the R/¯W¯ bit; this bit is set to logic 1 for “Read” and logic 0 for “Write”.  
¯¯  
CS  
DEVICE ID  
0
1
0011 0100 (34h)  
0011 0110 (36h)  
Table 7 Control Interface Device ID Selection  
The WM8533 operates as an I2C slave device only. The controller indicates the start of data transfer  
with a high to low transition on SDA while SCLK remains high. This indicates that a device ID,  
register address and data will follow. The WM8533 responds to the start condition and shift in the  
next eight bits on SDA (8-bit device ID, including Read/Write bit, MSB first). If the device ID received  
matches the device address of the WM8533, then the WM8533 responds by pulling SDA low on the  
next clock pulse (ACK). If the device ID is not recognised or the R/¯W¯ bit is set incorrectly, the  
WM8533 returns to the idle condition and waits for a new start condition and valid address.  
If the device ID matches the device ID of the WM8533, the data transfer continues as described  
below. The controller indicates the end of data transfer with a low to high transition on SDA while  
SCLK remains high. After receiving a complete address and data sequence the WM8533 returns to  
the idle state and waits for another start condition. If a start or stop condition is detected out of  
sequence at any point during data transfer (i.e. SDA changes while SCLK is high), the device returns  
to the idle condition.  
The WM8533 supports the following read and write operations:  
Single write  
Single read  
The sequence of signals associated with a single register write operation is illustrated in Figure 8.  
Figure 8 Control Interface I2C Register Write  
The sequence of signals associated with a single register read operation is illustrated in Figure 9.  
Figure 9 Control Interface I2C Register Read  
PD, July 2012, Rev 4.0  
16  
w
Production Data  
WM8533  
Figure 10 Single Register Write to Specified Address  
Figure 11 Single Register Read from Specified Address  
SPI CONTROL MODE  
The WM8533 can also be controlled by writing to registers through a SPI control interface. A control  
word consists of 24 bits. The first bit is the read/write bit (R/¯W¯) which must always be 0, which is  
followed by 7 address bits (A6 to A0) that determine which control register is accessed. The  
remaining 16 bits (B15 to B0) are data bits, corresponding to the 16 bits in each control register.  
Volume update registers R06h and R07h are unavailable in SPI control mode. To use volume update  
in software control mode, I2C mode must be used.  
In SPI mode, every rising edge of SCLK clocks in one data bit from the SDA pin. A rising edge on  
C¯¯S latches in a complete control word consisting of the last 24 bits.  
The SPI mode write operation protocol is illustrated in Figure 12.  
Figure 12 SPI Control Interface – Write operation  
In Write operations (R/¯W¯=0), all SDA bits are driven by the controlling device.  
PD, July 2012, Rev 4.0  
17  
w
WM8533  
Production Data  
REGISTER RESET  
Any write to register R0 (00h) will reset the WM8533. All register bits are reset to their default values.  
CHIP ID AND REVISION  
Reading from register R0 (00h) returns the Chip ID. Reading from register R1 returns the Chip  
revision number.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R0 (00h)  
Chip ID  
15:0  
CHIP_ID  
[15:0]  
8523h  
DEVICE_ID  
Writing to this register resets all registers to  
their default state.  
Reading from this register will indicate the  
Chip ID 8523h.  
R1 (01h)  
Chip Revision  
2:0  
CHIP_REV  
[2:0]  
001  
REVISION  
Indicates the Chip Revision number  
Table 8 Chip ID and Revision Number  
PD, July 2012, Rev 4.0  
18  
w
Production Data  
WM8533  
DIGITAL AUDIO INTERFACE  
The digital audio interface is used for inputting audio data to the WM8533. The digital audio interface  
uses three pins:  
DACDAT: DAC data input  
LRCLK: Left/Right data alignment clock  
BCLK: Bit clock, for synchronisation  
MASTER AND SLAVE MODE OPERATION  
The WM8533 digital audio interface can operate as a master or as a slave as shown in Figure 13 and  
Figure 14.  
Figure 13 Slave Mode  
Figure 14 Master Mode  
INTERFACE FORMATS  
The WM8533 supports five different audio data formats:  
Left justified  
Right justified  
I2S  
DSP Mode A  
DSP Mode B  
PCM operation is supported using the DSP mode. All of these modes are MSB first. They are  
described in the following sections. Refer to the “Signal Timing Requirements” section for timing  
information. Refer to Table 10 for interface control format register settings.  
AUDIO DATA FORMATS  
In Right Justified mode, the LSB is available on the last rising edge of BCLK before a LRCLK  
transition. All other bits are transmitted before (MSB first). Depending on word length, BCLK  
frequency and sample rate, there may be unused BCLK cycles after each LRCLK transition.  
Figure 15 Right Justified Audio Interface (assuming n-bit word length)  
PD, July 2012, Rev 4.0  
w
19  
WM8533  
Production Data  
In Left Justified mode, the MSB is available on the first rising edge of BCLK following a LRCLK  
transition. The other bits up to the LSB are then transmitted in order. Depending on word length,  
BCLK frequency and sample rate, there may be unused BCLK cycles before each LRCLK transition.  
Figure 16 Left Justified Audio Interface (assuming n-bit word length)  
In I2S mode, the MSB is available on the second rising edge of BCLK following a LRCLK transition.  
The other bits up to the LSB are then transmitted in order. Depending on word length, BCLK  
frequency and sample rate, there may be unused BCLK cycles between the LSB of one sample and  
the MSB of the next.  
Figure 17 I2S Justified Audio Interface (assuming n-bit word length)  
In DSP mode, the left channel MSB is available on either the 1st (mode B) or 2nd (mode A) rising edge  
of BCLK (selectable by AIF_LRCLK_INV) following a rising edge of LRCLK. Right channel data  
immediately follows left channel data. Depending on word length, BCLK frequency and sample rate,  
there may be unused BCLK cycles between the LSB of the right channel data and the next sample.  
In device master mode, the LRCLK output will resemble the frame pulse shown in Figure 18 and  
Figure 19. In device slave mode, Figure 20 and Figure 21, it is possible to use any length of frame  
pulse less than 1/fs, providing the falling edge of the frame pulse occurs greater than one BCLK  
period before the rising edge of the next frame pulse.  
Figure 18 DSP Mode Audio Interface (mode A, AIF_LRCLK_INV=0, Master)  
PD, July 2012, Rev 4.0  
w
20  
Production Data  
WM8533  
Figure 19 DSP Mode Audio Interface (mode B, AIF_LRCLK_INV=1, Master)  
Figure 20 DSP Mode Audio Interface (mode A, AIF_LRCLK_INV=0, Slave)  
Figure 21 DSP Mode Audio Interface (mode B, AIF_LRCLK_INV=1, Slave)  
DIGITAL AUDIO INTERFACE CONTROL  
The control of the audio interface in software mode is achieved by register write. Dynamically  
changing the audio data format may cause erroneous operation and is not recommended.  
Digital audio data is transferred to the WM8533 via the digital audio interface. The DAC operates in  
master or slave mode.  
The DAC audio interface requires left/right frame clock (LRCLK) and bit clock (BCLK). These can be  
supplied externally (slave mode) or they can be generated internally (master mode). Selection of  
master and slave mode is achieved by setting AIF_MSTR bit in Register 3.  
The frequency of LRCLK in master mode is dependent upon the DAC master clock frequency and the  
AIF_SR [2:0] bits. The frequency of BCLK in master mode can be selected by AIF_BCLKDIV [2:0].  
In slave mode, the MCLK to LRCLK ratio can be auto-detected or set manually using the AIF_SR  
[2:0] bits.  
PD, July 2012, Rev 4.0  
21  
w
WM8533  
Production Data  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Master/Slave Select  
R3 (03h)  
7
AIF_MSTR  
0
AIF_CTRL1  
0 = Slave  
1 = Master  
R4 (04h)  
BCLK Divider Control (Master Mode)  
000 = MCLK/4  
5:3  
2:0  
AIF_BCLKD  
IV [2:0]  
000  
000  
AIF_CTRL2  
001 = MCLK/8  
010 = 32fs  
011 = 64fs  
100 = 128fs  
101 to 111 = Reserved  
MCLK:LRCLK Ratio  
000 = Auto detect  
001 = 128fs  
AIF_SR  
[2:0]  
010 = 192fs  
011 = 256fs  
100 = 384fs  
101 = 512fs  
110 = 768fs  
111 = 1152fs  
Table 9 DAC Clocking Mode Control  
Interface timing is such that the input data and left/right clock are sampled on the rising edge of  
BCLK. By setting the appropriate BCLK and LRCLK polarity bits, the WM8533 DAC can sample data  
on the opposite clock edges.  
The control of audio interface formats and clock polarities is summarised in Table 10.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R3 (03h)  
LRCLK Inversion Control  
0 = Normal polarity  
6
AIF_LRCLK  
_INV  
0
AIF_CTRL1  
1 = Inverted polarity  
When AIF_FMT [1:0]=11 (DSP Mode):  
0 = Mode A (2nd clock)  
1 = Mode B (1st clock)  
BCLK Inversion Control  
Slave mode:  
5
AIF_BCLK_  
INV  
0
0 = use rising edge  
1 = use falling edge  
Master mode:  
0 = BCLK normal  
1 = BCLK inverted  
Audio Data Word Length  
00 = 16 bits  
4:3  
1:0  
AIF_WL  
[1:0]  
10  
10  
01 = 20 bits  
10 = 24 bits  
11 = 32 bits  
Audio Data Interface Format  
00 = Right justified  
01 = Left justified  
AIF_FMT  
[1:0]  
10 = I2S format  
11 = DSP mode  
Table 10 Audio Interface Control  
PD, July 2012, Rev 4.0  
22  
w
Production Data  
WM8533  
DIGITAL AUDIO DATA SAMPLING RATES  
The external master clock is applied directly to the MCLK input pin. In a system where there are a  
number of possible sources for the reference clock, it is recommended that the clock source with the  
lowest jitter be used for the master clock to optimise the performance of the WM8533.  
In slave mode the WM8533 has a detection circuit that automatically determines the relationship  
between the master clock frequency (MCLK) and the sampling rate (LRCLK), to within ±32 system  
clock periods. The MCLK must be synchronised with the LRCLK, although the device is tolerant of  
phase variations or jitter on the MCLK.  
If the device is configured in slave mode using auto-detect or in hardware mode, and during sample  
rate change the ratio between MCLK and LRCLK varies more than once within 1026 LRCLK periods,  
then it is recommended that the device be taken into the standby state or the off state before the  
sample rate change and held in standby until the sample rate change is complete. This will ensure  
correct operation of the detection circuit on the return to the enabled state. For details on the standby  
state, please refer to the “Software Control Interface” (software mode, page 15) and “Power Up and  
Down Control In Hardware Mode” sections of the datasheet (hardware mode, on page 29).  
The DAC supports MCLK to LRCLK ratios of 128fs to 1152fs and sampling rates of 8kHz to 192kHz,  
provided the internal signal processing of the DAC is programmed to operate at the correct rate.  
Table 11 shows typical master clock frequencies and sampling rates supported by the WM8533 DAC.  
MASTER CLOCK (MCLK) FREQUENCY (MHz)  
SAMPLE RATE  
(LRCLK)  
128fs  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
11.2896  
192fs  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
16.9344  
256fs  
2.048  
384fs  
3.072  
512fs  
4.096  
768fs  
6.144  
1152fs  
9.216  
8kHz  
32kHz  
8.192  
12.288  
16.384  
24.576  
36.864  
44.1kHz  
48kHz  
11.2896  
12.288  
16.9344  
18.432  
22.5792  
33.8688  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
24.576  
36.864  
88.2kHz  
96kHz  
22.5792  
24.576  
33.8688  
36.864  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
12.288  
18.432  
176.4kHz  
192kHz  
22.5792  
33.8688  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
24.576  
36.864  
Table 11 MCLK Frequencies and Audio Sample Rates  
PD, July 2012, Rev 4.0  
23  
w
WM8533  
Production Data  
DAC FEATURES  
SYSTEM ENABLE  
The WM8533 includes a number of enable and disable mechanisms to allow the device to be  
powered on and off in a pop-free manner. The SYS_ENA [1:0] control bits enable the DAC and  
analogue paths.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
System Power Control  
R2 (02h)  
1:0  
SYS_ENA  
[1:0]  
00  
PSCTRL1  
00 = Off  
01 = Power down  
10 = Power up (Digital Soft Mute)  
11 = Power up (un-muted)  
Table 12 System Enable Control  
Note: MCLK must be present at all times when using the SYS_ENA [1:0] bits. If MCLK is stopped at  
any point the device will power down to the ‘off’ state, but all register settings will remain. Restarting  
MCLK will start the device internal power sequence and the device will return to the power state set  
by the SYS_ENA [1:0] bits.  
The power up and power down sequences are summarised in Figure 22. There is no requirement to  
manually cycle the device through the sequence via register writes, as the device will always  
automatically step through each stage in the sequence.  
Power Up  
When SYS_ENA [1:0]=00, the internal clocks are stopped and all analogue and digital blocks are  
disabled for maximum power saving. The device starts up in this state in software mode. Setting  
SYS_ENA [1:0]=01 enables the internal charge pump and required control circuitry, but the signal  
path remains powered down. When SYS_ENA [1:0]=10 all blocks are powered up sequentially and  
full system configuration is achieved. Once this is complete, the device is ready to pass audio but is  
muted with a digital soft mute. Setting SYS_ENA [1:0]=11 releases the digital soft mute and audio  
playback begins.  
Power Down  
When SYS_ENA [1:0]=11 the device is powered up and passing audio. Changing SYS_ENA  
[1:0]=10 applies a digital soft mute to the output, with attenuation of 100dB on the input signal.  
Setting SYS_ENA [1:0]=01 sequentially powers down all circuit blocks but leaves the charge pump  
and required control circuitry enabled. This state is equivalent to the Hardware Mode mute state, and  
will give 120dB attenuation on the input signal. This can be considered the low-power standby state.  
Finally, setting SYS_ENA [1:0]=00 will disable all circuit blocks including the charge pump, and full  
system initialisation will be required to restart the device.  
Figure 22 SYS_ENA [1:0] Power Up and Down Sequences  
PD, July 2012, Rev 4.0  
24  
w
Production Data  
WM8533  
DIGITAL VOLUME CONTROL  
The WM8533 DAC includes digital volume control, allowing the digital gain to be adjusted between  
100dB and +12dB in 0.25dB steps. Volume update bits allow the user to write both left and right  
channel volume changes before the volume is updated.  
Note that digital volume control is only available in I2C mode.  
REGISTER  
ADDRESS  
BIT  
9
LABEL  
DEFAULT  
DESCRIPTION  
R6 (06h)  
DAC Digital Volume Update  
DACL_VU  
DACR_VU  
0
0
DAC_GAINL  
0 = Latch DAC volume setting into Register  
Map but do not update volume  
1 = Latch DAC volume setting into Register  
Map and update left and right channels  
simultaneously  
R7 (07h)  
9
DAC_GAINR  
R6 (06h)  
DAC Digital Volume  
000h = 100dB  
8:0  
8:0  
DACL_VOL  
[8:0]  
190h  
190h  
DAC_GAINL  
001h = 99.75dB  
002h = 99.5dB  
…0.25dB steps  
R7 (07h)  
DACR_VOL  
[8:0]  
DAC_GAINR  
190h = 0dB  
…0.25dB steps  
1BEh = +11.75dB  
1BFh to 1FFh = +12dB  
Table 13 DAC Digital Volume Control  
VOLUME CHANGE MODES  
Volume can be adjusted by step change (either using zero cross or not) or by soft ramp. The volume  
change mode is controlled by the DAC_VOL_DOWN_RAMP and DAC_VOL_UP_RAMP bits in R5:  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R5 (05h)  
DAC Digital Volume Increase Control  
0 = Apply volume increases instantly (step)  
1 = Ramp volume increases  
1
DAC_VOL  
_UP_RAM  
P
0
DAC_CTRL3  
DAC Digital Volume Decrease Control  
0 = Apply volume decreases instantly (step)  
1 = Ramp volume decreases  
0
DAC_VOL  
_DOWN_  
RAMP  
1
Table 14 Volume Ramp Control  
PD, July 2012, Rev 4.0  
25  
w
WM8533  
Production Data  
The effect of the volume ramp is illustrated in Figure 23.  
Figure 23 Volume Ramp Functionality  
Ramp Volume Changes  
If ramp volume changes are selected, the ramp rate is dependent upon the sampling rate. The ramp  
rates for common audio sample rates are shown in Table 15.  
SAMPLE RATE FOR DAC (kHz)  
GAIN RAMP RATE  
(ms/dB)  
1
8
32  
0.25  
0.18  
0.17  
0.1  
44.1  
48  
88.2  
96  
0.08  
0.05  
0.04  
176.4  
192  
Table 15 Volume Ramp Rate  
For example, when using a sample rate of 48kHz, the time taken for a volume change from an initial  
setting of 0dB to -20dB is calculated as follows:  
Volume Change (dB) x Volume Ramp Rate (ms/dB) = 20 x 0.17 = 3.4ms  
Zero cross is not used when ramping. The volume level in the DAC is set by the user in 0.25dB  
increments, but during the volume ramp increments of 0.125dB are actually used. This step size is  
inaudible and means there is no requirement to wait until a zero crossing occurs. Another benefit of  
not using zero cross when ramping is that predictable ramp times are produced – there is no signal  
dependency on the ramp time.  
PD, July 2012, Rev 4.0  
26  
w
Production Data  
WM8533  
Step Volume Changes and Zero Cross  
The step volume control includes optional zero cross functionality. When zero cross is enabled, by  
setting DAC_ZC=1, volume changes are not applied until the signal crosses zero so no discontinuity  
is seen in the output signal. Zero cross helps to prevent pop and click noise when changing volume  
settings and is therefore recommended if using step volume changes.  
The zero cross function includes a timeout which forces volume changes if a zero cross event does  
not occur. The timeout period is 14400 samples, equivalent to 300ms at 48kHz sample rate.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R5 (05h)  
Zero Cross Enable  
4
DAC_ZC  
0
DAC_CTRL3  
0 = Do not use zero cross  
1 = Use zero cross  
Table 16 Zero Cross Control  
Table 17 gives a summary of the volume mode settings and their effect.  
DAC_VOL_  
UP_RAMP  
DAC_VOL_  
DAC_ZC  
VOLUME CHANGE  
UP  
VOLUME CHANGE  
DOWN  
DOWN_RAMP  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
Step, no zero cross  
Step, no zero cross  
Ramp  
Step, no zero cross  
Ramp  
Step, no zero cross  
Ramp  
Ramp  
Step, use zero cross Step, use zero cross  
Step, use zero cross  
Ramp  
Ramp  
Step, use zero cross  
Ramp  
Ramp  
Table 17 Volume Change Summary  
MUTE  
A digital mute can be applied to left and right channels independently.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R5 (05h)  
Right DAC Mute  
3
DACR_MU  
TE  
0
DAC_CTRL3  
0 = Normal operation  
1 = Mute  
Left DAC Mute  
0 = Normal operation  
1 = Mute  
2
DACL_MUT  
E
0
Table 18 DAC Mute Control  
The DAC mute function in software mode is controlled by the register settings DAC_VOL_UP_RAMP,  
DAC_VOL_DOWN_RAMP and DAC_ZC as described in Table 17.  
PD, July 2012, Rev 4.0  
27  
w
WM8533  
Production Data  
DIGITAL MONOMIX CONTROL  
The DAC can be set to output a range of mono and stereo options using DAC_OP_MUX [1:0].  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R4 (04h)  
DAC Digital Monomix  
7:6  
DAC_OP_  
MUX [1:0]  
00  
AIF_CTRL2  
00 = Stereo (Normal Operation)  
01 = Mono (Left data to DACR)  
10 = Mono (Right data to DACL)  
11 = Digital Monomix, (L+R)/2  
Table 19 Digital Monomix Control  
DE-EMPHASIS  
A digital de-emphasis filter may be applied to the DAC output when the sampling frequency is  
44.1kHz. Operation at 48kHz and 32kHz is also possible, but with an increase in the error from the  
ideal response. Details of the de-emphasis filter characteristic for 32kHz, 44.1kHz and 48kHz can be  
seen in Figure 29 to Figure 34.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
DAC De-emphasis  
R3 (03h)  
8
DAC_DEE  
MP  
0
AIF_CTRL1  
0 = No de-emphasis  
1 = Apply de-emphasis  
Table 20 De-emphasis Control  
HARDWARE CONTROL INTERFACE  
The WM8533 can be controlled in hardware mode or in software modes. In hardware mode, the  
device is configured according to logic levels applied to hardware pins.  
Hardware control mode is selected by leaving CIFMODE pin open-circuit (high-impedance). When  
hardware mode is selected, the associated multi-function control pins are defined as described in  
Table 21.  
PIN NAME  
DESCRIPTION  
AIFMODE0 /  
AIFMODE1  
AIFMODE1  
AIFMODE0  
FORMAT  
0
0
1
1
0
1
0
1
24-bit Left Justified  
24-bit I2S  
16-bit Right Justified  
24-bit Right Justified  
M¯¯U¯T¯E¯  
Mute Control  
0 = Mute  
1 = Normal operation  
CIFMODE  
Control Interface Mode  
0 = I2C Mode  
1 = SPI Mode  
Z = Hardware Mode  
Table 21 Hardware Control Pin Configuration  
MUTE  
In hardware mode, the M¯¯U¯T¯E¯ pin controls the DAC mute to both left and right channels. When the  
mute is asserted a softmute is applied to ramp the signal down, with the ramp rate related to the  
sample rate as defined in Table 15 on page 26. When the mute is de-asserted the DAC output  
returns to normal in one step.  
PD, July 2012, Rev 4.0  
28  
w
Production Data  
WM8533  
POWER UP AND DOWN CONTROL IN HARDWARE MODE  
In hardware mode the MCLK, BCLK and M¯¯U¯T¯E¯ pins are monitored to control how the device powers  
up or down, and this is summarised in Figure 24 below.  
Figure 24 Hardware Power Sequence Diagram  
Off to Enable  
To power up the device to enabled, start MCLK and BCLK and set M¯¯U¯T¯E¯ = 1.  
Off to Standby  
To power up the device to standby, start MCLK and BCLK and set M¯¯U¯T¯E¯ = 0. Once the device is in  
standby mode, BCLK can be disabled and the device will remain in standby mode.  
Standby to Enable  
To transition from the standby state to the enabled state, set the M¯¯U¯T¯E¯ pin to logic 1 and start BCLK.  
Enable to Standby  
To power down to a standby state leaving the charge pump running, either set the M¯¯U¯T¯E¯ pin to logic  
0 or stop BCLK. MCLK must continue to run in these situations. The device will automatically mute  
and power down quietly in either case.  
Note: It is recommended that the device is placed in standby mode before sample rate change if the  
sample rate changes more than once in 1026 LRCLK periods, as detailed in “Digital Audio Data  
Sampling Rates” on page 23.  
Enable to Off  
To power down the device completely, stop MCLK at any time. It is recommended that the device is  
placed into standby mode as described above before stopping MCLK to allow a quiet shutdown.  
For the timing of the off state to enabled state transition (power on to audio out timing), and the  
enabled state to standby state transition (the shutdown timing), please refer to WTN0302.  
PD, July 2012, Rev 4.0  
29  
w
WM8533  
Production Data  
REGISTER MAP  
The complete register map is shown below. The detailed description can be found in the relevant text of the device  
description. The WM8533 can be configured using the Control Interface. All unused bits should be set to '0' and access to  
unlisted registers should be avoided.  
REG  
NAME  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DEFAULT  
DEVICE_ID /  
SW RESET  
R0 (0h)  
CHIP_ID [15:0]  
8523h  
R1 (1h)  
R2 (2h)  
R3 (3h)  
R4 (4h)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CHIP_REV [2:0]  
REVISION  
PSCTRL1  
0001h  
0000h  
1812h  
0000h  
0
0
SYS_ENA [1:0]  
AIF_FMT [1:0]  
DAC_  
DEEM  
P
AIF_L AIF_B  
AIF_M  
STR  
RCLK_ CLK_I AIF_WL [1:0]  
AIF_CTRL1  
AIF_CTRL2  
INV  
NV  
DAC_OP_MUX  
[1:0]  
0
0
AIF_BCLKDIV [2:0]  
AIF_SR [2:0]  
DAC_ DAC_  
DACR  
DAC_  
ZC  
DACL_ VOL_ VOL_D  
MUTE UP_R OWN_  
AMP RAMP  
R5 (5h)  
0
0
0
0
0
0
0
0
0
0
_MUT  
E
DAC_CTRL3  
0001h  
DACL_  
VU  
R6 (6h)  
R7 (7h)  
0
0
0
0
0
0
0
0
0
0
0
0
DACL_VOL [8:0]  
DACR_VOL [8:0]  
DAC_GAINL  
DAC_GAINR  
0190h  
0190h  
DACR  
_VU  
Table 22 Register Map  
PD, July 2012, Rev 4.0  
30  
w
Production Data  
WM8533  
REGISTER BITS BY ADDRESS  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
Chip ID  
R0 (00h)  
DEVICE_ID/  
SW RESET  
15:0  
CHIP_ID [15:0] 1000_0101_0010_0011  
Page 18  
Writing to this register resets all registers to  
their default state.  
Reading from this register will indicate the  
Chip ID 8523h.  
Register 00h DEVICE_ID / SW RESET  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
Chip Revision  
R1 (01h)  
2:0  
CHIP_REV [2:0]  
001  
Page 18  
REVISION  
Indicates the Chip Revision number  
Register 01h REVISION  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
System Power Control  
00 = Off  
R2 (02h)  
PSCTRL1  
1:0  
SYS_ENA [1:0]  
00  
Page 24  
01 = Power down  
10 = Power up (muted)  
11 = Power up (unmuted)  
Register 02h PSCTRL1  
PD, July 2012, Rev 4.0  
31  
w
WM8533  
Production Data  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
DAC De-emphasis Control  
REFER TO  
R3 (03h)  
AIF_CTRL1  
8
DAC_DEEMP  
0
Page 28  
Page 21  
Page 21  
0 = No de-emphasis  
1 = De-emphasis enabled  
Master/Slave Select  
0 = Slave mode  
7
6
AIF_MSTR  
0
0
1 = Master mode  
LRCLK Inversion Control  
0 = Normal polarity  
AIF_LRCLK_INV  
1 = Inverted polarity  
When AIF_FMT [1:0]=11 (DSP Mode):  
0 = Mode A (2nd clock)  
1 = Mode B (1st clock)  
BCLK Inversion Control  
Slave mode:  
5
AIF_BCLK_INV  
0
Page 21  
0 = Use rising edge  
1 = Use falling edge  
Master mode:  
0 = BCLK normal  
1 = BCLK inverted  
Audio Data Word Length  
00 = 16 bits  
4:3  
AIF_WL [1:0]  
10  
Page 21  
Page 21  
01 = 20 bits  
10 = 24 bits  
11 = 32 bits  
Reserved  
2
Reserved  
0
Audio Data Interface Format  
00 = Right justified  
01 = Left justified  
10 = I2S format  
2:0  
AIF_FMT [1:0]  
10  
11 = DSP mode  
Register 03h AIF_CTRL1  
PD, July 2012, Rev 4.0  
32  
w
Production Data  
WM8533  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Digital Monomix Control  
REFER TO  
R4 (04h)  
AIF_CTRL2  
7:6  
DAC_OP_MUX  
[1:0]  
00  
Page 28  
00 = Stereo (Normal operation)  
01 = Mono (Left data to DACR)  
10 = Mono (Right data to DACL)  
11 = Digital Monomix, (L+R)/2  
BCLK Divider Control (Master Mode)  
000 = MCLK/4  
5:3  
2:0  
AIF_BCLKDIV  
[2:0]  
000  
000  
Page 21  
001 = MCLK/8  
010 = 32fs  
011 = 64fs  
100 = 128fs  
101 to 111 = Reserved  
MCLK:LRCLK Ratio  
000 = Auto detect  
001 = 128fs  
AIF_SR [2:0]  
Page 21  
010 = 192fs  
011 = 256fs  
100 = 384fs  
101 = 512fs  
110 = 768fs  
111 = 1152fs  
Register 04h AIF_CTRL2  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
Zero Cross Enable  
0 = Do not use zero cross  
1 = Use zero cross  
R5 (05h)  
DAC_CTRL3  
4
DAC_ZC  
0
Page 25  
Right DAC Mute  
0 = Normal operation  
1 = Mute  
3
2
1
0
DACR_MUTE  
DACL_MUTE  
0
0
0
1
Page 27  
Page 27  
Page 25  
Page 25  
Left DAC Mute  
0 = Normal operation  
1 = Mute  
DAC Digital Volume Increase Control  
0 = Apply volume increases instantly (step)  
1 = Ramp volume increases  
DAC_VOL_  
UP_RAMP  
DAC Digital Volume Decrease Control  
0 = Apply volume decreases instantly (step)  
1 = Ramp volume decreases  
DAC_VOL_  
DOWN_RAMP  
Register 05h DAC_CTRL3  
PD, July 2012, Rev 4.0  
33  
w
WM8533  
Production Data  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
Left DAC Digital Volume Update  
R6 (06h)  
DAC_GAINL  
9
DACL_VU  
0
Page 25  
Page 25  
0 = Latch Left DAC volume setting into register map  
but do not update volume  
1 = Latch Left DAC volume setting into register map  
and update left and right channels simultaneously  
Left DAC Digital Volume Control  
000h = -100dB  
8:0  
DACL_VOL [8:0] 1_1001_0000  
001h = -99.75dB  
002h = -99.5dB  
…0.25dB steps  
190h = 0dB  
…0.25dB steps  
1BEh = +11.75dB  
1BFh to 1FFh = +12dB  
Register 06h DAC_GAINL  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
Right DAC Digital Volume Update  
0 = Latch Right DAC volume setting into register  
map but do not update volume  
R7 (07h)  
DAC_GAINR  
9
DACR_VU  
0
Page 25  
1 = Latch Right DAC volume setting into register  
map and update left and right channels  
simultaneously  
Right DAC Digital Volume Control  
000h = -100dB  
8:0  
DACR_VOL  
[8:0]  
1_1001_0000  
Page 25  
001h = -99.75dB  
002h = -99.5dB  
…0.25dB steps  
190h = 0dB  
…0.25dB steps  
1BEh = +11.75dB  
1BFh to 1FFh = +12dB  
Register 07h DAC_GAINR  
PD, July 2012, Rev 4.0  
34  
w
Production Data  
WM8533  
DIGITAL FILTER CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
14.5fs  
6.5fs  
MAX  
UNIT  
DAC Filter – 256fs to 1152fs  
Passband  
0.1dB  
f > 0.546fs  
0.1dB  
0.454fs  
0.1  
Passband Ripple  
Stopband  
dB  
dB  
0.546fs  
-50  
Stopband attenuation  
Group Delay  
DAC Filter – 128fs and 192fs  
Passband  
0.247fs  
0.1  
Passband Ripple  
Stopband  
dB  
dB  
0.753fs  
-50  
Stopband attenuation  
Group Delay  
f > 0.753fs  
TERMINOLOGY  
1. Stop Band Attenuation (dB) – the degree to which the frequency spectrum is attenuated (outside audio band)  
2. Pass-band Ripple – any variation of the frequency response in the pass-band region  
PD, July 2012, Rev 4.0  
35  
w
WM8533  
Production Data  
DAC FILTER RESPONSES  
0.2  
0.15  
0.1  
0
-20  
0.05  
0
-40  
-60  
-0.05  
-0.1  
-0.15  
-0.2  
-80  
-100  
-120  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency (Fs)  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Figure 25 DAC Digital Filter Frequency Response  
– 256fs to 1152fs Clock Modes  
Figure 26 DAC Digital Filter Ripple – 256fs to 1152fs Clock  
Modes  
0.2  
0
0
-20  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-40  
-60  
-80  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
-100  
Frequency (Fs)  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency (Fs)  
Figure 27 DAC Digital Filter Frequency Response  
– 128fs and 192fs Clock Modes  
Figure 28 DAC Digital Filter Ripple – 128fs to 192fs Clock  
Modes  
PD, July 2012, Rev 4.0  
36  
w
Production Data  
WM8533  
DIGITAL DE-EMPHASIS CHARACTERISTICS  
0
1
0.5  
0
-2  
-4  
-0.5  
-1  
-6  
-1.5  
-2  
-8  
-2.5  
-3  
-10  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Frequency (kHz)  
Frequency (kHz)  
Figure 29 De-Emphasis Frequency Response (32kHz)  
Figure 30 De-Emphasis Error (32kHz)  
Figure 31 De-Emphasis Frequency Response (44.1kHz)  
Figure 32 De-Emphasis Error (44.1kHz)  
0
1
0.8  
0.6  
0.4  
0.2  
0
-2  
-4  
-6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-8  
-10  
0
5
10  
15  
20  
0
5
10  
15  
20  
Frequency (kHz)  
Frequency (kHz)  
Figure 33 De-Emphasis Frequency Response (48kHz)  
Figure 34 De-Emphasis Error (48kHz)  
PD, July 2012, Rev 4.0  
37  
w
WM8533  
Production Data  
RECOMMENDED EXTERNAL COMPONENTS  
Figure 35 Recommended External Components  
Notes:  
1. Wolfson recommend using a single, common ground plane. Where this is not possible, care should be taken to  
optimise split ground configuration for audio performance.  
2. Charge Pump fly-back capacitor C5 should be placed as close to WM8533 as possible, followed by Charge Pump  
decoupling capacitor C1, then LINEVDD and VMID decoupling capacitors.  
3. Capacitor types should be chosen carefully. Capacitors with very low ESR are recommended for optimum  
performance.  
PD, July 2012, Rev 4.0  
38  
w
Production Data  
WM8533  
RECOMMENDED ANALOGUE LOW PASS FILTER  
Figure 36 Recommended Analogue Low Pass Filter (one channel shown)  
An external single-pole RC filter is recommended if the device is driving a wideband amplifier. Other  
filter architectures may provide equally good results.  
The filter shown in Figure 36 has a -3dB cut-off at 105.26kHz and a droop of 0.15dB at 20kHz. The  
typical output from the WM8533 is 2.1Vrms – when a 10kload is placed at the output of this  
recommended filter the amplitude across this load is 1.99Vrms.  
RELEVANT APPLICATION NOTES  
The following application notes, available from www.wolfsonmicro.com, may provide additional  
guidance for use of the WM8533.  
DEVICE PERFORMANCE:  
WAN0129 – Decoupling and Layout Methodology for Wolfson DACs, ADCs and CODECs  
WAN0144 – Using Wolfson Audio DACs and CODECs with Noisy Supplies  
WTN0302 - WM8524 Recommended Power Sequence and Timing (for hardware mode)  
GENERAL:  
WAN0108 – Moisture Sensitivity Classification and Plastic IC Packaging  
WAN0109 – ESD Damage in Integrated Circuits: Causes and Prevention  
WAN0158 – Lead-Free Solder Profiles for Lead-Free Components  
WAN0161 – Electronic End-Product Design for ESD  
PD, July 2012, Rev 4.0  
39  
w
WM8533  
Production Data  
PACKAGE DIMENSIONS  
B: 20 BALL W-CSP PACKAGE 1.842 X 1.772 X 0.451mm BODY, 0.35 mm BALL PITCH  
DM107.A  
6
A
D
A
2
DETAIL 1  
5
4
3
2
1
A2  
A1  
CORNER  
A
4
B
C
5
e
E1  
E
D
aaa  
B
2 X  
2 X  
B
M
ddd Z A B  
aaa  
A
e
DETAIL 2  
TOP VIEW  
D1  
BOTTOM VIEW  
f1  
SOLDER BALL  
f2  
bbb  
Z
h
1
Z
ccc  
A1  
Z
DETAIL 1  
DETAIL 2  
Dimensions (mm)  
Symbols  
A
NOM  
0.451  
0.172  
0.279  
1.842  
MIN  
MAX  
0.481  
0.198  
0.292  
1.867  
NOTE  
0.421  
0.146  
A1  
A2  
0.266  
1.817  
D
D1  
1.400 BSC  
1.772  
1.747  
E
E1  
e
1.797  
1.050 BSC  
0.350 BSC  
0.221  
5
f1  
0.2085  
0.3485  
0.175  
0.361  
f2  
h
0.205  
0.235  
aaa  
bbb  
ccc  
0.025  
0.060  
0.030  
0.015  
ddd  
NOTES:  
1. PRIMARY DATUM -Z- AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.  
2. THIS DIMENSION INCLUDES STAND-OFF HEIGHT ‘A1’.  
3. A1 CORNER IS IDENTIFIED BY INK/LASER MARK ON TOP PACKAGE.  
4. BILATERAL TOLERANCE ZONE IS APPLIED TO EACH SIDE OF THE PACKAGE BODY.  
5. ‘e’ REPRESENTS THE BASIC SOLDER BALL GRID PITCH.  
6. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
7. FOLLOWS JEDEC DESIGN GUIDE MO-211-C.  
PD, July 2012, Rev 4.0  
40  
w
Production Data  
WM8533  
IMPORTANT NOTICE  
Wolfson Microelectronics plc (“Wolfson”) products and services are sold subject to Wolfson’s terms and conditions of sale,  
delivery and payment supplied at the time of order acknowledgement.  
Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the  
right to make changes to its products and specifications or to discontinue any product or service without notice. Customers  
should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.  
Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty.  
Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.  
In order to minimise risks associated with customer applications, the customer must use adequate design and operating  
safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer  
product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for  
such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.  
Wolfson’s products are not intended for use in life support systems, appliances, nuclear systems or systems where  
malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage.  
Any use of products by the customer for such purposes is at the customer’s own risk.  
Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other  
intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or  
services might be or are used. Any provision or publication of any third party’s products or services does not constitute  
Wolfson’s approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document  
belong to the respective third party owner.  
Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is  
accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is  
not liable for any unauthorised alteration of such information or for any reliance placed thereon.  
Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in  
this datasheet or in Wolfson’s standard terms and conditions of sale, delivery and payment are made, given and/or  
accepted at that person’s own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any  
reliance placed thereon by any person.  
ADDRESS  
Wolfson Microelectronics plc  
Westfield House  
26 Westfield Road  
Edinburgh  
EH11 2QB  
Tel :: +44 (0)131 272 7000  
Fax :: +44 (0)131 272 7001  
Email :: sales@wolfsonmicro.com  
PD, July 2012, Rev 4.0  
41  
w
配单直通车
WM8524GEDT/R产品参数
型号:WM8524GEDT/R
生命周期:Transferred
Reach Compliance Code:unknown
风险等级:5.59
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!