欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • WM8731SEDS图
  • 深圳市创永盛伟业电子有限公司

     该会员已使用本站11年以上
  • WM8731SEDS 三甲现货
  • 数量16900 
  • 厂家欧胜微 
  • 封装SSOP 
  • 批号14+ 
  • 原装全新现货,全球最低!深圳市创盛电子有限公司
  • QQ:2881301286QQ:2881301286 复制
    QQ:2881301285QQ:2881301285 复制
  • 0755-83643681 QQ:2881301286QQ:2881301285
  • WM8731CLSEFL/R图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • WM8731CLSEFL/R 现货库存
  • 数量15899 
  • 厂家CIRRUS 
  • 封装QFN28 
  • 批号21+ 
  • ■正纳电子专业元器件代理
  • QQ:2881664480QQ:2881664480 复制
  • 0755-83532193 QQ:2881664480
  • WM8731LSEFL/R图
  • 深圳市恒益昌科技有限公司

     该会员已使用本站6年以上
  • WM8731LSEFL/R 现货库存
  • 数量7500 
  • 厂家WOLFSON 
  • 封装QFN28 
  • 批号23+ 
  • 全新原装现货,欢迎询购!
  • QQ:3336148967QQ:3336148967 复制
    QQ:974337758QQ:974337758 复制
  • 0755-82723761 QQ:3336148967QQ:974337758
  • WM8731CLSEFL/R图
  • 集好芯城

     该会员已使用本站13年以上
  • WM8731CLSEFL/R 现货库存
  • 数量24809 
  • 厂家 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • WM8731CLSEFL图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • WM8731CLSEFL 现货库存
  • 数量21000 
  • 厂家WOLFSON 
  • 封装QFN28 
  • 批号23+ 
  • 代理原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • WM8731图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • WM8731 现货库存
  • 数量20800 
  • 厂家WM 
  • 封装QFN 
  • 批号21+ 
  • 原装现货 欢迎咨询0755- 83790645
  • QQ:2881664479QQ:2881664479 复制
  • 755-83790645 QQ:2881664479
  • WM8731SEDS图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • WM8731SEDS 现货库存
  • 数量125000 
  • 厂家WOLFSON 
  • 封装SSOP-28 
  • 批号2023+ 
  • 绝对原装正品全新深圳进口现货,优质渠道供应商!
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • WM8731SEFL/R图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • WM8731SEFL/R 现货库存
  • 数量15500 
  • 厂家WOLFSON 
  • 封装QFN-28 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • WM8731LSEFL/R图
  • 深圳市金嘉锐电子有限公司

     该会员已使用本站14年以上
  • WM8731LSEFL/R 现货库存
  • 数量32560 
  • 厂家WOLFSON 
  • 封装QFN-28 
  • 批号2024+ 
  • 【原装优势★★★绝对有货】
  • QQ:2643490444QQ:2643490444 复制
  • 0755-22929859 QQ:2643490444
  • WM8731图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • WM8731 现货库存
  • 数量5000 
  • 厂家 
  • 封装 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • WM8731SEDS图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • WM8731SEDS 现货库存
  • 数量8000 
  • 厂家WOLFSON(欧胜) 
  • 封装 
  • 批号22+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • WM8731SEDS图
  • 深圳市华来深电子有限公司

     该会员已使用本站13年以上
  • WM8731SEDS 现货库存
  • 数量8860 
  • 厂家WOLFSON 
  • 封装SSOP28 
  • 批号18+ 
  • 受权代理!全新原装现货特价热卖!
  • QQ:1258645397QQ:1258645397 复制
    QQ:876098337QQ:876098337 复制
  • 0755-83238902 QQ:1258645397QQ:876098337
  • WM8731SEDS图
  • 深圳市亿智腾科技有限公司

     该会员已使用本站8年以上
  • WM8731SEDS 现货库存
  • 数量8860 
  • 厂家原装现货 
  • 封装N/A 
  • 批号16+ 
  • 全新原装现货★★特价供应★★。★★特价★★假一赔十,工厂客户可放款
  • QQ:799387964QQ:799387964 复制
    QQ:2777237833QQ:2777237833 复制
  • 0755-82566711 QQ:799387964QQ:2777237833
  • WM8731LSEFL图
  • 深圳市创永盛伟业电子有限公司

     该会员已使用本站11年以上
  • WM8731LSEFL 现货库存
  • 数量12388 
  • 厂家WOLFSON 
  • 封装原装正品 
  • 批号09+ 
  • 绝对原装现货价格优惠@@@@@@@
  • QQ:2881301286QQ:2881301286 复制
    QQ:2881301285QQ:2881301285 复制
  • 0755-83643681 QQ:2881301286QQ:2881301285
  • WM8731图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • WM8731 现货库存
  • 数量8500 
  • 厂家原厂 
  • 封装QFN28 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • WM8731CLSEFL图
  • 深圳市欧昇科技有限公司

     该会员已使用本站2年以上
  • WM8731CLSEFL 现货库存
  • 数量7516 
  • 厂家WOLFSON 
  • 封装QFN28 
  • 批号2020+ 
  • 原装假一赔十市场最低价
  • QQ:2885528234QQ:2885528234 复制
  • -0755-83220848 QQ:2885528234
  • WM8731CLSEFL/R图
  • 深圳市捷立辉科技有限公司

     该会员已使用本站10年以上
  • WM8731CLSEFL/R 现货库存
  • 数量69896 
  • 厂家WOLFSONWM8731S 
  • 封装QFN28 
  • 批号21+ 
  • 绝对原装现货,公司真实库存
  • QQ:1803576909QQ:1803576909 复制
  • -0755-82792948 QQ:1803576909
  • WM8731SEDS图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • WM8731SEDS 现货库存
  • 数量3950 
  • 厂家WOLFSON 
  • 封装SSOP28 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • WM8731CLSEFL/R图
  • 深圳市力拓辉电子有限公司

     该会员已使用本站13年以上
  • WM8731CLSEFL/R 现货库存
  • 数量35000 
  • 厂家WOLFSON 
  • 封装QFN28 
  • 批号1440+ 
  • 全新原装正品现货.
  • QQ:2881140004QQ:2881140004 复制
    QQ:2881140005QQ:2881140005 复制
  • 755-82787180 QQ:2881140004QQ:2881140005
  • WM8731LS图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • WM8731LS 现货库存
  • 数量9089 
  • 厂家WM 
  • 封装QFN 
  • 批号24+ 
  • 只做原装,假一赔十,支持实单
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • WM8731LSEFL/R图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • WM8731LSEFL/R 现货热卖
  • 数量17500 
  • 厂家WOLFSON 
  • 封装QFN 
  • 批号23+ 
  • 全新原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • WM8731SEDS/RV图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • WM8731SEDS/RV 现货热卖
  • 数量43520 
  • 厂家WOLFSON 
  • 封装SSOP28 
  • 批号2023+ 
  • 全新原装,一定原装房间仓库现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • WM8731LSEFL图
  • 深圳市创永盛伟业电子有限公司

     该会员已使用本站11年以上
  • WM8731LSEFL 现货热卖
  • 数量12388 
  • 厂家WOLFSON 
  • 封装原装正品 
  • 批号09+ 
  • 绝对原装现货价格优惠@@@@@@@
  • QQ:2881301286QQ:2881301286 复制
    QQ:2881301285QQ:2881301285 复制
  • 0755-83643681 QQ:2881301286QQ:2881301285
  • WM8731CLSEFL/R图
  • 深圳市捷立辉科技有限公司

     该会员已使用本站10年以上
  • WM8731CLSEFL/R 现货热卖
  • 数量69896 
  • 厂家WOLFSONWM8731S 
  • 封装QFN28 
  • 批号21+ 
  • 绝对原装现货,公司真实库存
  • QQ:1803576909QQ:1803576909 复制
  • -0755-82792948 QQ:1803576909
  • WM8731CLSEFL/R图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • WM8731CLSEFL/R 优势库存
  • 数量45870 
  • 厂家WOLFSON 
  • 封装QFN28 
  • 批号21+ 
  • ■原装长期供应支持小批量秒发货
  • QQ:2881664480QQ:2881664480 复制
  • 0755-83532193 QQ:2881664480
  • WM8731LSEFL/R图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • WM8731LSEFL/R 优势库存
  • 数量9000 
  • 厂家Wolfson 
  • 封装QFN28 
  • 批号2021+ 
  • 原装公司现货,特价处理89345486
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • WM8731CLSEFL图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • WM8731CLSEFL 热卖库存
  • 数量6000 
  • 厂家WOLFSON/欧胜 
  • 封装QFN28 
  • 批号23+ 
  • 全新原装现货,欢迎询购!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • WM8731LEFL图
  • 绿盛电子(香港)有限公司

     该会员已使用本站12年以上
  • WM8731LEFL 热卖库存
  • 数量18998 
  • 厂家WOLFSON 
  • 封装QFN28 
  • 批号2013+ 
  • ★专业代理音频功放IC,型号齐全,公司优势产品★
  • QQ:2752732883QQ:2752732883 复制
    QQ:240616963QQ:240616963 复制
  • 0755-25165869 QQ:2752732883QQ:240616963
  • WM8731CLSEFL图
  • 深圳市拓森弘电子有限公司

     该会员已使用本站1年以上
  • WM8731CLSEFL
  • 数量5300 
  • 厂家WOLFSON(欧胜) 
  • 封装 
  • 批号21+ 
  • 全新原装正品,库存现货实报
  • QQ:1300774727QQ:1300774727 复制
  • 13714410484 QQ:1300774727
  • WM8731图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • WM8731
  • 数量85000 
  • 厂家WOLFSON 
  • 封装 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • WM8731图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • WM8731
  • 数量75000 
  • 厂家特价 
  • 封装SOT23 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • WM8731LSEFL图
  • 深圳市芯鹏泰科技有限公司

     该会员已使用本站8年以上
  • WM8731LSEFL
  • 数量7536 
  • 厂家Wolfson 
  • 封装QFN-28 
  • 批号23+ 
  • 音频编解码器进口原装代理销售
  • QQ:892152356QQ:892152356 复制
  • 0755-82777852 QQ:892152356
  • WM8731CLSEFL/R图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • WM8731CLSEFL/R
  • 数量15899 
  • 厂家CIRRUS 
  • 封装QFN28 
  • 批号21+ 
  • ■正纳电子专业元器件代理
  • QQ:2881664480QQ:2881664480 复制
  • 0755-83532193 QQ:2881664480
  • WM8731LEFL/R图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站12年以上
  • WM8731LEFL/R
  • 数量3000 
  • 厂家WM 
  • 封装QFN 
  • 批号23+ 
  • 全新原装公司现货销售!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82772189 QQ:867789136QQ:1245773710
  • WM8731LSEFL/R图
  • 深圳市恒达亿科技有限公司

     该会员已使用本站16年以上
  • WM8731LSEFL/R
  • 数量17500 
  • 厂家WOLFSON 
  • 封装QFN28 
  • 批号23+ 
  • 全新原装现货,欢迎询购!
  • QQ:867789136QQ:867789136 复制
    QQ:1245773710QQ:1245773710 复制
  • 0755-82723761 QQ:867789136QQ:1245773710

产品型号WM8731的概述

WM8731 芯片概述 WM8731是一款高性能音频数模转换器(DAC),主要用于音频设备的信号处理。其设计旨在提供优质音频输出和灵活的音频接口,适用于多种应用场景,包括便携式音频播放器、音频播放系统、个人计算机声卡、智能家居设备等。WM8731的特点在于其高动态范围、低失真和低噪声,支持多种音频格式的采样,为数字音频信号提供出色的解析度。 WM8731 详细参数 WM8731的主要性能参数如下: 1. 采样率:支持从8kHz到96kHz的可调采样率,使其能够适应各种音频传输标准。 2. 位深:最高支持24位音频数据输入,确保了音频信号的高保真还原。 3. 动态范围:高达105dB,能够处理复杂的音频信号。 4. 总谐波失真(THD):小于0.03%,确保音质的纯净性。 5. 输入接口:支持I2S和左对齐音频数据格式的输入,优化兼容性。 6. 功耗:典型功耗约为36mW,适合便携式应用...

产品型号WM8731的Datasheet PDF文件预览

WM8731  
Portable Internet Audio CODEC with  
Headphone Driver and Programmable Sample Rates  
Advanced Information, Rev 2.0, February 2001  
DESCRIPTION  
FEATURES  
Audio Performance  
The WM8731 is a low power stereo CODEC with an  
integrated headphone driver. It offers the user the unique  
ability to independently program the ADC and DAC sample  
rates from a single clock source. The WM8731 is designed  
specifically for portable MP3 audio and speech players and  
recorders. The WM8731 is also ideal for MD, CD-RW  
machines and DAT recorders.  
97dB SNR (‘A’ weighted @ 48kHz) ADC  
100dB SNR (‘A’ weighted @ 48kHz) DAC  
1.42 – 3.6V Digital Supply Operation  
2.7 – 3.6V Analogue Supply Operation  
ADC and DAC Sampling Frequency: 8kHz – 96kHz  
Selectable ADC High Pass Filter  
2 or 3-Wire MPU Serial Control Interface  
Programmable Audio Data Interface Modes  
Stereo line and mono microphone level audio inputs are  
provided, along with a mute function, programmable line  
level volume control and a bias voltage output suitable for  
an electret type microphone.  
I2S, Left, Right Justified or DSP  
16/20/24/32 bit Word Lengths  
Master or Slave Clocking Mode  
Stereo 24-bit multi-bit sigma delta ADCs and DACs are  
used with oversampling digital interpolation and decimation  
filters. Digital audio input word lengths from 16-32 bits and  
sampling rates from 8kHz to 96kHz are supported.  
Stereo Audio Inputs and Outputs  
Microphone Input and Electret Bias with Side Tone Mixer  
Input and Output Volume and Mute Controls  
Highly Efficient Headphone Driver  
Playback Mode Power Consumption < 18mW  
Analogue Pass Through Power Consumption < 9mW  
28-Pin SSOP Package  
Stereo audio outputs are buffered for driving headphones  
from a programmable volume control, line level outputs are  
also provided along with anti-thump mute and power  
up/down circuitry.  
The device is controlled via a 2 or 3 wire serial interface.  
The interface provides access to all features including  
volume controls, mutes, de-emphasis and extensive power  
management facilities. The device is available in a small 28-  
pin SSOP package.  
APPLICATIONS  
Portable MP3 Players and Recorders  
CD and Minidisc Recorders  
BLOCK DIAGRAM  
AVDD  
CONTROL INTERFACE  
WM8731  
VMID  
HPVDD  
Bypass  
MUTE  
HPGND  
AGND  
ATTEN/  
MUTE  
+6 to -73dB  
1 dB Steps  
Side Tone  
H/P  
DRIVER  
VOL/  
MUTE  
MICBIAS  
RLINEIN  
RHPOUT  
VOL  
MUTE  
MUTE  
MUTE  
ADC  
ADC  
MUX  
DAC  
DAC  
Σ
Σ
+12 to -34.5dB,  
1.5dB Steps  
ROUT  
LOUT  
0dB/  
20dB  
DIGITAL  
FILTERS  
MICIN  
MUTE  
MUTE  
MUX  
MUTE  
VOL  
LLINEIN  
VOL/  
MUTE  
H/P  
DRIVER  
LHPOUT  
+12 to -34.5dB,  
1.5dB Steps  
Side Tone  
+6 to -73dB  
1 dB Steps  
ATTEN/  
MUTE  
MUTE  
CLKIN  
DIVIDER  
CLKOUT  
DIVIDER  
Bypass  
OSC  
DIGTAL AUDIO INTERFACE  
(Div x1, x2)  
(Div x1, x2)  
WOLFSON MICROELECTRONICS LTD  
Lutton Court, Bernard Terrace, Edinburgh, EH8 9NX, UK  
Tel: +44 (0) 131 667 9386  
Fax: +44 (0) 131 667 5176  
Email: sales@wolfson.co.uk  
www.wolfsonmicro.com  
Advanced Information data sheets  
contain preliminary data on new products  
in the preproduction phase of  
development. Supplementary data will be  
published at a later date.  
2001 Wolfson Microelectronics Ltd.  
WM8731  
Advanced Information  
TABLE OF CONTENTS  
DESCRIPTION.......................................................................................................1  
FEATURES ............................................................................................................1  
APPLICATIONS.....................................................................................................1  
BLOCK DIAGRAM.................................................................................................1  
PIN CONFIGURATION ..........................................................................................6  
ORDERING INFORMATION..................................................................................6  
PIN DESCRIPTION................................................................................................6  
ABSOLUTE MAXIMUM RATINGS.........................................................................7  
RECOMMENDED OPERATING CONDITIONS.....................................................7  
ELECTRICAL CHARACTERISTICS......................................................................8  
TERMINOLOGY...................................................................................................10  
POWER CONSUMPTION....................................................................................11  
MASTER CLOCK TIMING ...................................................................................12  
DIGITAL AUDIO INTERFACE – MASTER MODE  
DIGITAL AUDIO INTERFACE – SLAVE MODE  
MPU INTERFACE TIMING  
13  
14  
15  
DEVICE DESCRIPTION.......................................................................................17  
INTRODUCTION  
AUDIO SIGNAL PATH  
17  
18  
LINE INPUTS .......................................................................................................................................... 18  
MICROPHONE INPUT ............................................................................................................................ 20  
MICROPHONE BIAS............................................................................................................................... 21  
ADC......................................................................................................................................................... 22  
ADC FILTERS......................................................................................................................................... 23  
DAC FILTERS......................................................................................................................................... 23  
DAC......................................................................................................................................................... 24  
LINE OUTPUTS ...................................................................................................................................... 24  
HEADPHONE AMPLIFIER...................................................................................................................... 26  
BYPASS MODE ...................................................................................................................................... 28  
SIDETONE MODE................................................................................................................................... 29  
DEVICE OPERATION  
30  
DEVICE RESETTING.............................................................................................................................. 30  
CLOCKING SCHEMES........................................................................................................................... 30  
CORE CLOCK......................................................................................................................................... 30  
CRYSTAL OSCILLATOR........................................................................................................................ 31  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
2
WM8731  
Advanced Information  
CLOCKOUT ............................................................................................................................................ 31  
DIGITAL AUDIO INTERFACES .............................................................................................................. 32  
MASTER AND SLAVE MODE OPERATION .......................................................................................... 35  
AUDIO DATA SAMPLING RATES  
36  
NORMAL MODE SAMPLE RATES ........................................................................................................ 37  
128/192fs NORMAL MODE .................................................................................................................... 39  
512/768fs NORMAL MODE .................................................................................................................... 39  
USB MODE SAMPLE RATES................................................................................................................. 40  
ACTIVATING DSP AND DIGITAL AUDIO INTERFACE  
SOFTWARE CONTROL INTERFACE  
41  
41  
SELECTION OF SERIAL CONTROL MODE.......................................................................................... 41  
3-WIRE (SPI COMPATIBLE) SERIAL CONTROL MODE...................................................................... 42  
2-WIRE SERIAL CONTROL MODE........................................................................................................ 42  
POWER DOWN MODES  
REGISTER MAP  
43  
45  
DIGITAL FILTER CHARACTERISTICS...............................................................50  
TERMINOLOGY 50  
DAC FILTER RESPONSES.................................................................................51  
ADC FILTER RESPONSES.................................................................................52  
ADC HIGH PASS FILTER  
53  
DIGITAL DE-EMPHASIS CHARACTERISTICS...................................................54  
RECOMMENDED EXTERNAL COMPONENTS..................................................55  
PACKAGE DIMENSIONS....................................................................................56  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
3
WM8731  
Advanced Information  
TABLE OF FIGURES  
Figure 1 System Clock Timing Requirements............................................................................12  
Figure 2 Clock Out Timing Requirements...................................................................................12  
Figure 3 Master Mode Connection ..............................................................................................13  
Figure 4 Digital Audio Data Timing Master Mode ...................................................................13  
Figure 5 Slave Mode Connection.................................................................................................14  
Figure 6 Digital Audio Data Timing Slave Mode......................................................................14  
Figure 7 Program Register Input Timing - 3-Wire MPU Serial Control Mode..........................15  
Figure 8 Program Register Input Timing 2-Wire MPU Serial Control Mode .........................16  
Figure 9 Line Input Schematic .....................................................................................................18  
Figure 10 Line Input Application Drawing ..................................................................................19  
Figure 11 Microphone Input Schematic ......................................................................................20  
Figure 12 Microphone Input and Bias Application Drawing .....................................................21  
Figure 13 Microphone Bias Schematic .......................................................................................22  
Figure 14 Multi-Bit Oversampling Sigma Delta ADC Schematic...............................................22  
Figure 15 ADC Digital Filter..........................................................................................................23  
Figure 16 DAC Filter Schematic...................................................................................................23  
Figure 17 Multi-Bit Oversampling Sigma Delta Schematic .......................................................24  
Figure 18 Line Output Schematic ................................................................................................25  
Figure 19 Line Outputs Application Drawing .............................................................................26  
Figure 20 Headphone Amplifier Schematic ................................................................................26  
Figure 21 Headphone Output Application Drawing ...................................................................28  
Figure 22 Signal Routing in Bypass Mode...................................................................................28  
Figure 23 Side Tone Mode Schematic.........................................................................................29  
Figure 24 Crystal Oscillator Application Circuit..........................................................................31  
Figure 25 Left Justified Mode........................................................................................................32  
Figure 26 I2S Mode........................................................................................................................33  
Figure 27 Right Justified Mode.....................................................................................................33  
Figure 28 DSP Mode.......................................................................................................................33  
Figure 29 Master Mode .................................................................................................................36  
Figure 30 Slave Mode.....................................................................................................................36  
Figure 31 3-Wire Serial Interface...................................................................................................42  
Figure 32 2-Wire Serial Interface..................................................................................................42  
Figure 33 DAC Digital Filter Frequency Response Type 0 .......................................................51  
Figure 34 DAC Digital Filter Ripple Type 0.................................................................................51  
Figure 35 DAC Digital Filter Frequency Response Type 1 .......................................................51  
Figure 36 DAC Digital Filter Ripple Type 1.................................................................................51  
Figure 37 DAC Digital Filter Frequency Response Type 2 .......................................................51  
Figure 38 DAC Digital Filter Ripple Type 2.................................................................................51  
Figure 39 DAC Digital Filter Frequency Response Type 3 .......................................................52  
Figure 40 DAC Digital Filter Ripple Type 3.................................................................................52  
Figure 41 ADC Digital Filter Frequency Response Type 0 .......................................................52  
Figure 42 ADC Digital Filter Ripple Type 0.................................................................................52  
Figure 43 ADC Digital Filter Frequency Response Type 1 .......................................................52  
Figure 44 ADC Digital Filter Ripple Type 1.................................................................................52  
Figure 45 ADC Digital Filter Frequency Response Type 2 .......................................................53  
Figure 46 ADC Digital Filter Ripple Type 2.................................................................................53  
Figure 47 ADC Digital Filter Frequency Response Type 3 .......................................................53  
Figure 48 ADC Digital Filter Ripple Type 3.................................................................................53  
Figure 49 De-Emphasis Frequency Response (32kHz) ..............................................................54  
Figure 50 De-Emphasis Error (32kHz)..........................................................................................54  
Figure 51 De-Emphasis Frequency Response (44.1kHz) ...........................................................54  
Figure 52 De-Emphasis Error (44.1kHz).......................................................................................54  
Figure 53 De-Emphasis Frequency Response (48kHz) ..............................................................54  
Figure 54 De-Emphasis Error (48kHz)..........................................................................................54  
Figure 55 External Components Diagram....................................................................................55  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
4
WM8731  
Advanced Information  
TABLE OF TABLES  
Table 1 Powerdown Mode Current Consumption Examples....................................................11  
Table 2 Line Input Software Control............................................................................................19  
Table 3 Microphone Input Software Control...............................................................................21  
Table 4 ADC Software Control .....................................................................................................22  
Table 5 ADC Software Control .....................................................................................................23  
Table 6 DAC Software Control .....................................................................................................24  
Table 7 Output Software Control.................................................................................................25  
Table 8 Headphone Output Software Control ............................................................................27  
Table 9 Bypass Mode Software Control......................................................................................29  
Table 10 Side Tone Mode Table...................................................................................................29  
Table 11 Software Control of Reset.............................................................................................30  
Table 12 Software Control of Core Clock....................................................................................30  
Table 13 Programming CLKOUT..................................................................................................31  
Table 14 Digital Audio Interface Control.....................................................................................35  
Table 15 Programming Master/Slave Modes..............................................................................35  
Table 16 Sample Rate Control......................................................................................................37  
Table 17 Normal Mode Sample Rate Look-up Table..................................................................38  
Table 18 Normal Mode Actual Sample Rates..............................................................................39  
Table 19 128fs Normal Mode Sample Rate Look-up Table........................................................39  
Table 20 USB Mode Sample Rate Look-up Table.......................................................................40  
Table 21 USB Mode Actual Sample Rates ..................................................................................41  
Table 22 Activating DSP and Digital Audio Interface.................................................................41  
Table 23 Control Interface Mode Selection.................................................................................41  
Table 24 2-Wire MPU Interface Address Selection.....................................................................42  
Table 25 Power Conservation Modes Software Control ...........................................................43  
Table 26 Standby Mode ................................................................................................................44  
Table 27 Poweroff Mode ...............................................................................................................45  
Table 28 Mapping of Program Registers.....................................................................................45  
Table 29 Register Map Description..............................................................................................50  
Table 30 Digital Filter Characteristics .........................................................................................50  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
5
WM8731  
Advanced Information  
PIN CONFIGURATION  
ORDERING INFORMATION  
DEVICE  
TEMP. RANGE  
PACKAGE  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
DGND  
DCVDD  
XTO  
DBVDD  
CLKOUT  
BCLK  
-10 to +70oC  
28-pin SSOP  
2
XWM8731EDS  
3
4
XTI/MCLK  
SCLK  
DACDAT  
DACLRC  
ADCDAT  
ADCLRC  
HPVDD  
LHPOUT  
RHPOUT  
HPGND  
LOUT  
5
6
SDIN  
CSB  
7
8
MODE  
9
LLINEIN  
RLINEIN  
MICIN  
10  
11  
12  
13  
14  
MICBIAS  
VMID  
ROUT  
AGND  
AVDD  
PIN DESCRIPTION  
PIN  
1
NAME  
DBVDD  
CLKOUT  
BCLK  
TYPE  
Supply  
Digital Output  
Digital Input/Output Digital Audio Bit Clock, Pull Down, (see Note 1)  
Digital Input  
DAC Digital Audio Data Input  
Digital Input/Output DAC Sample Rate Left/Right Clock, Pull Down (see Note 1)  
Digital Output  
ADC Digital Audio Data Output  
Digital Input/Output ADC Sample Rate Left/Right Clock, Pull Down (see Note 1)  
DESCRIPTION  
Digital Buffers VDD  
Buffered Clock Output  
2
3
4
DACDAT  
DACLRC  
ADCDAT  
ADCLRC  
HPVDD  
LHPOUT  
RHPOUT  
HPGND  
LOUT  
5
6
7
8
Supply  
Headphone VDD  
9
Analogue Output  
Analogue Output  
Ground  
Left Channel Headphone Output  
Right Channel Headphone Output  
Headphone GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
Analogue Output  
Analogue Output  
Supply  
Left Channel Line Output  
ROUT  
Right Channel Line Output  
Analogue VDD  
AVDD  
AGND  
Ground  
Analogue GND  
VMID  
Analogue Output  
Analogue Output  
Analogue Input  
Analogue Input  
Analogue Input  
Digital Input  
Mid-rail reference decoupling point  
Electret Microphone Bias  
MICBIAS  
MICIN  
Microphone Input (AC coupled)  
Right Channel Line Input (AC coupled)  
Left Channel Line Input (AC coupled)  
Control Interface Selection, Pull Up (see Note 1)  
RLINEIN  
LLINEIN  
MODE  
CSB  
Digital Input  
3-Wire MPU Chip Select/ 2-Wire MPU interface address selection,  
active low, Pull up (see Note 1)  
23  
24  
25  
26  
27  
28  
SDIN  
SCLK  
Digital Input/Output 3-Wire MPU Data Input / 2-Wire MPU Data Input  
Digital Input  
Digital Input  
Digital Output  
Supply  
3-Wire MPU Clock Input / 2-Wire MPU Clock Input  
Crystal Input or Master Clock Input (MCLK)  
Crystal Output  
XTI/MCLK  
XTO  
DCVDD  
DGND  
Digital Core VDD  
Ground  
Digital GND  
Note:  
1. Pull Up/Down only present when Control Register Interface ACTIVE=0 to conserve power.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
6
WM8731  
Advanced Information  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at  
or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical  
Characteristics at the test conditions specified  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible  
to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage  
of this device.  
CONDITION  
MIN  
-0.3V  
MAX  
+3.63V  
Digital supply voltage  
Analogue supply voltage  
-0.3V  
+3.63V  
Voltage range digital inputs  
DGND -0.3V  
AGND -0.3V  
DVDD +0.3V  
AVDD +0.3V  
40MHz  
Voltage range analogue inputs  
Master Clock Frequency (see Note 4)  
Operating temperature range, TA  
Storage temperature  
-10°C  
-65°C  
+70°C  
+150°C  
Package body temperature (soldering 10 seconds)  
Package body temperature (soldering 2 minutes)  
+240°C  
+183°C  
Notes:  
1. Analogue and digital grounds must always be within 0.3V of each other.  
2. The digital supply core voltage (DCVDD) must always be less than or equal to the analogue supply voltage (AVDD) or  
digital supply buffer voltage (DBVDD).  
3. The digital supply buffer voltage (DBVDD) must always be less than or equal to the analogue supply voltage (AVDD).  
4. When CLKIDIV2=1  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
TEST  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
Digital supply range (Core)  
Digital supply range (Buffer)  
Analogue supply range  
Ground  
DCVDD  
DBVDD  
1.42  
2.7  
3.6  
3.6  
3.6  
V
V
AVDD, HPVDD  
DGND,AGND,HPGND  
IAVDD, IHPVDD  
2.7  
V
0
V
Total analogue supply current  
DCVDD, DBVDD,  
AVDD,  
13  
mA  
HPVDD= 3.3V  
Digital supply current  
IDCVDD, IDBVDD  
DCVDD, DBVDD,  
AVDD,  
HPVDD= 3.3V  
3
mA  
uA  
Standby Current Consumption  
10  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
7
WM8731  
Advanced Information  
ELECTRICAL CHARACTERISTICS  
Test Conditions  
AVDD, HPVDD, DBVDD = 3.3V, AGND = 0V, DCVDD = 1.5V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, XTI/MCLK =  
256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
Digital Logic Levels (CMOS Levels)  
Input LOW level  
VIL  
VIH  
VOL  
.3 x DBVDD  
V
V
V
Input HIGH level  
.7 x DBVDD  
Output LOW  
0.10 x  
DBVDD  
Output HIGH  
VOH  
.9 x DBVDD  
0.7  
V
Power On Reset Threshold (DCVDD)  
DCVDD Threshold On -> Off  
Hysteresis  
Vth  
VIH  
VOL  
0.9  
0.3  
0.6  
1.2  
V
V
V
DCVDD Threshold Off -> On  
Analogue Reference Levels  
Reference voltage (VMID)  
VVMID  
AVDD/2 –  
50mV  
AVDD/2  
50k  
AVDD/2 +  
50mV  
V
Potential divider resistance  
Line Input to ADC  
RVMID  
40k  
60k  
Ohms  
Input Signal Level (0dB)  
VINLINE  
1.0  
AVDD/3.3  
97  
Vrms  
SNR (Note 1,3)  
SNR (Note 1,3)  
SNR (Note 1,3)  
A-weighted, 0dB gain  
@ fs = 48kHz  
93  
dB  
dB  
dB  
A-weighted, 0dB gain  
@ fs = 96kHz  
94  
90  
A-weighted, 0dB gain  
@ fs = 48kHz, AVDD =  
2.7V  
Dynamic Range (Note 3)  
DR  
A-weighted, -60dB full  
scale input  
93  
97  
dB  
THD  
-1dB input, 0dB gain  
1kHz 100mVpp  
-85  
50  
45  
-80  
dB  
dB  
dB  
Power Supply Rejection Ratio  
PSSR  
20Hz to 20kHz  
100mVpp  
ADC channel separation  
Programmable Gain Maximum  
Programmable Gain Minimum  
Programmable Gain Step Size  
Mute attenuation  
1kHz input  
1kHz input  
90  
+12  
-34.5  
1.5  
dB  
dB  
Rsource < 50 Ohms  
Guaranteed Monotonic  
0dB, 1kHz input  
0dB gain  
dB  
dB  
80  
Input Resistance  
RINLINE  
CINLINE  
40k  
10k  
50k  
20k  
10  
Ohms  
Ohms  
pF  
12dB gain  
Input Capacitance  
Microphone Input to ADC @ 0dB Gain, fs = 8kHz (40k ohm Source Impedance. See Figure 11)  
Input Signal Level (0dB)  
VINMIC  
1.0  
AVDD/3.3  
90  
Vrms  
SNR (Note 1,3)  
A-weighted, 0dB gain  
85  
85  
dB  
dB  
Dynamic Range (Note 3)  
DR  
A-weighted, -60dB full  
scale input  
90  
THD  
0dB input, 0dB gain  
1kHz 100mVpp  
-80  
50  
45  
-75  
dB  
dB  
dB  
Power Supply Rejection Ratio  
PSSR  
20Hz to 20kHz  
100mVpp  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
8
WM8731  
Advanced Information  
Test Conditions  
AVDD, HPVDD, DBVDD = 3.3V, AGND = 0V, DCVDD = 1.5V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, XTI/MCLK =  
256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
Programmable Gain Boost  
MICBOOST bit  
set  
1kHz input  
34  
dB  
Rsource < 50 Ohms  
MICBOOST = 0  
Mic Path gain (MICBOOST gain  
is additional to this nominal  
gain)  
14  
dB  
Rsource < 50 Ohms  
Mute attenuation  
Input Resistance  
Input Capacitance  
Microphone Bias  
Bias Voltage  
0dB, 1kHz input  
80  
10k  
10  
dB  
Ohms  
pF  
RINMIC  
CINMIC  
8k  
12k  
VMICBIAS  
.75*AVDD 0.75*AVDD .75*AVDD +  
V
100mV  
100mV  
Bias Current Source  
Output Noise Voltage  
IMICBIAS  
Vn  
3
mA  
1K to 20kHz  
25  
nV/Hz  
Line Output for DAC Playback Only (Load = 10k ohms. 50pF)  
0dBfs Full scale output voltage  
At LINE outputs  
1.0 x  
AVDD/3.3  
100  
Vrms  
dB  
SNR (Note 1,2,3)  
A-weighted,  
@ fs = 48kHz  
A-weighted  
90  
SNR (Note 1,2,3)  
98  
93  
dB  
@ fs = 96kHz  
A-weighted,  
SNR (Note 1,2,3)  
dB  
@ fs = 48kHz, AVDD  
= 2.7V  
Dynamic Range (Note 3)  
THD  
DR  
A-weighted, -60dB  
full scale input  
85  
90  
dB  
1kHz, 0dBfs  
1kHz, -3dBfs  
1kHz 100mVpp  
-88  
-92  
50  
-80  
-86  
dB  
dB  
dB  
dB  
Power Supply Rejection Ratio  
PSSR  
20Hz to 20kHz  
100mVpp  
45  
DAC channel separation  
100  
dB  
Analogue Line Input to Line Output (Load = 10k ohms. 50pF, No Gain on Input ) Bypass Mode  
0dB Full scale output voltage  
1.0 x  
AVDD/3.3  
95  
Vrms  
SNR (Note 1, 3)  
THD  
90  
dB  
dB  
dB  
dB  
dB  
1kHz, 0dB  
1kHz, -3dB  
-86  
-80  
-86  
-92  
Power Supply Rejection Ratio  
PSSR  
1kHz 100mVpp  
50  
20Hz to 20kHz  
100mVpp  
45  
Mute attenuation  
1kHz, 0dB  
80  
dB  
Stereo Headphone Output  
0dB Full scale output voltage  
1.0 x  
AVDD/3.3  
30  
Vrms  
Max Output Power RL = 32  
ohms  
PO  
PO  
mW  
mW  
Max Output Power RL = 16  
ohms  
40  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
9
WM8731  
Advanced Information  
Test Conditions  
AVDD, HPVDD, DBVDD = 3.3V, AGND = 0V, DCVDD = 1.5V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, XTI/MCLK =  
256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
SNR (Note 3)  
THD  
A-weighted  
90  
97  
dB  
%
1kHz, RL = 32 ohms @  
PO = 10mW rms  
0.1  
60  
dB  
%
1kHz, RL = 32 ohms @  
PO = 20mW rms  
1.0  
40  
dB  
dB  
dB  
Power Supply Rejection Ratio  
PSSR  
1kHz 100mVpp  
50  
45  
20Hz to 20kHz  
100mVpp  
Programmable Gain Maximum  
Programmable Gain Minimum  
Programmable Gain Step Size  
Mute attenuation  
1kHz  
6
-73  
1
dB  
1kHz  
dB  
dB  
1kHz, 0dB  
80  
Microphone Input to Headphone Output Side Tone Mode  
0dB Full scale output voltage  
1.0 x  
AVDD/3.3  
95  
Vrms  
SNR (Note 1, 3)  
90  
dB  
dB  
dB  
Power Supply Rejection Ratio  
PSSR  
1kHz 100mVpp  
50  
20Hz to 20kHz  
100mVpp  
45  
Programmable Attenuation  
Maximum  
1kHz  
15  
dB  
Programmable Attenuation  
Minimum  
6
3
Programmable Attenuation Step  
Size  
1kHz  
dB  
dB  
Mute attenuation  
1kHz, 0dB  
80  
Notes:  
1. Ratio of output level with 1kHz full scale input, to the output level with the input short circuited, measured Aweighted  
over a 20Hz to 20kHz bandwidth using an Audio analyser.  
2. Ratio of output level with 1kHz full scale input, to the output level with all zeros into the digital input, measured A’  
weighted over a 20Hz to 20kHz bandwidth.  
3. All performance measurements done with 20kHz low pass filter, and where noted an A-weight filter. Failure to use  
such a filter will result in higher THD+N and lower SNR and Dynamic Range readings than are found in the Electrical  
Characteristics. The low pass filter removes out of band noise; although it is not audible it may affect dynamic  
specification values.  
4. VMID decoupled with 10uF and 0.1uF capacitors (smaller values may result in reduced performance).  
TERMINOLOGY  
1. Signal-to-noise ratio (dB) - SNR is a measure of the difference in level between the full scale output and the output  
with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).  
2. Dynamic range (dB) - DR is a measure of the difference between the highest and lowest portions of a signal.  
Normally a THD+N measurement at 60dB below full scale. The measured signal is then corrected by adding the 60dB  
to it. (e.g. THD+N @ -60dB= -32dB, DR= 92dB).  
3. THD+N (dB) - THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.  
4. Channel Separation (dB) - Also known as Cross-Talk. This is a measure of the amount one channel is isolated from  
the other. Normally measured by sending a full scale signal down one channel and measuring the other.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
10  
WM8731  
Advanced Information  
POWER CONSUMPTION  
MODE  
CURRENT CONSUMPTION  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
Record and Playback  
All active  
0
0
0
0
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
13  
12  
11  
TBD  
mA  
mA  
mA  
Oscillator disabled  
Oscillator and  
CLKOUT disabled,  
No microphone  
Playback Only  
Playback Only  
0
0
0
1
0
1
0
0
0
0
1
1
1
1
1
1
7
6
TBD  
mA  
mA  
Playback Only  
Oscillator and  
CLKOUT disabled  
Record Only  
Record Only  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
9
8
7
mA  
mA  
mA  
Line Record Only  
Record Only,  
Oscillator disabled  
Microphone Record  
Only,  
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
9
8
mA  
mA  
Microphone Record  
Only, Oscillator  
disabled  
Side Tone  
Microphone to  
Headphone Out  
0
0
0
0
0
1
0
0
1
1
1
1
0
0
1
1
3
2
mA  
mA  
Microphone to  
Headphone Out,  
Oscillator disabled  
Analogue Bypass  
Line In to Line Out  
0
0
0
0
0
1
0
0
1
1
1
1
1
1
0
0
3
2
mA  
mA  
Line In to Line Out,  
Oscillator disabled  
Standby  
Standby  
0
0
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1.5  
TBD  
TBD  
mA  
mA  
Standby, Oscillator  
and CLKOUT  
disabled  
0.05  
Power Down  
Power Down  
1
1
0
1
0
1
X
X
1
1
1
1
X
X
X
X
1.5  
mA  
mA  
Power Down,  
0.01  
Oscillator and  
CLKOUT disabled  
Table 1 Powerdown Mode Current Consumption Examples  
Notes:  
1. AVDD, HPVDD, DBVDD = 3.3V, AGND = 0V, DCVDD = 1.5V, DGND = 0V, TA = +25oC. Slave Mode, fs = 48kHz,  
XTI/MCLK = 256fs (12.288MHz).  
2. All figures are quiescent, with no signal.  
3. The power dissipation in the headphone itself not included in the above table.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
11  
WM8731  
Advanced Information  
MASTER CLOCK TIMING  
tXTIL  
XTI/MCLK  
tXTIH  
tXTIY  
Figure 1 System Clock Timing Requirements  
Test Conditions  
AVDD, HPVDD, DBVDD = 3.3V, AGND = 0V, DCVDD = 1.5V, DGND = 0V, TA = +25oC, Slave Mode fs = 48kHz, XTI/MCLK =  
256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
XTI/MCLK System clock pulse width  
high  
tXTIH  
tXTIL  
tXTIY  
18  
18  
ns  
ns  
ns  
XTI/MCLK System clock pulse width  
low  
XTI/MCLK System clock cycle time  
XTI/MCLK Duty cycle  
54  
40:60  
60:40  
XTI/MCLK  
CLKOUT  
tCOP  
CLKOUT  
(DIV X2)  
Figure 2 Clock Out Timing Requirements  
Test Conditions  
AVDD, HPVDD, DBVDD = 3.3V, AGND = 0V, DCVDD = 1.5V, DGND = 0V, TA = +25oC, Slave Mode fs = 48kHz, XTI/MCLK =  
256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
CLKOUT propagation delay from  
XTI/MCLK falling edge  
tCOP  
0
10  
ns  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
12  
WM8731  
Advanced Information  
DIGITAL AUDIO INTERFACE MASTER MODE  
BCLK  
ADCLRC  
WM8731  
DSP  
ENCODER/  
DECODER  
DACLRC  
CODEC  
ADCDAT  
DACDAT  
Note: ADC and DAC can run at different rates  
Figure 3 Master Mode Connection  
BCLK  
(Output)  
tDL  
ADCLRC/  
DACLRC  
(Outputs)  
tDDA  
ADCDAT  
DACDAT  
tDST  
tDHT  
Figure 4 Digital Audio Data Timing Master Mode  
Test Conditions  
AVDD, HPVDD, DBDD = 3.3V, AGND = 0V, DCVDD = 1.5V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, XTI/MCLK =  
256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
ADCLRC/DACLRC  
propagation delay from  
BCLK falling edge  
tDL  
0
10  
ns  
ADCDAT propagation delay  
from BCLK falling edge  
tDDA  
tDST  
tDHT  
0
10  
ns  
ns  
ns  
DACDAT setup time to  
BCLCK rising edge  
10  
10  
DACDAT hold time from  
BCLK rising edge  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
13  
WM8731  
Advanced Information  
DIGITAL AUDIO INTERFACE SLAVE MODE  
BCLK  
ADCLRC  
WM8731  
DSP  
ENCODER/  
DECODER  
DACLRC  
CODEC  
ADCDAT  
DACDAT  
Note: The ADC and DAC can run at different rates  
Figure 5 Slave Mode Connection  
tBCH tBCL  
BCLK  
tBCY  
DACLRC/  
ADCLRC  
tLRSU  
tDS  
tLRH  
DACDAT  
ADCDAT  
tDD  
tDH  
Figure 6 Digital Audio Data Timing Slave Mode  
Test Conditions  
AVDD, HPVDD, DBVDD = 3.3V, AGND = 0V, DCVDD = 1.5V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, XTI/MCLK =  
256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
BCLK cycle time  
tBCY  
tBCH  
tBCL  
50  
20  
20  
10  
ns  
ns  
ns  
ns  
BCLK pulse width high  
BCLK pulse width low  
DACLRC/ADCLRC set-up  
time to BCLK rising edge  
tLRSU  
DACLRC/ADCLRC hold  
time from BCLK rising edge  
tLRH  
tDS  
tDH  
tDD  
10  
10  
10  
0
ns  
ns  
ns  
ns  
DACDAT set-up time to  
BCLK rising edge  
DACDAT hold time from  
BCLK rising edge  
ADCDAT propagation delay  
from BCLK falling edge  
10  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
14  
WM8731  
Advanced Information  
MPU INTERFACE TIMING  
tCSL  
tCSH  
CSB  
tCSS  
tSCY  
tSCS  
tSCH  
tSCL  
SCLK  
SDIN  
LSB  
tDSU  
tDHO  
Figure 7 Program Register Input Timing - 3-Wire MPU Serial Control Mode  
Test Conditions  
AVDD, HPVDD, DBVDD = 3.3V, AGND = 0V, DCVDD = 1.5V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, XTI/MCLK =  
256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCLK rising edge to CSB rising  
edge  
tSCS  
60  
ns  
SCLK pulse cycle time  
SCLK pulse width low  
SCLK pulse width high  
SDIN to SCLK set-up time  
SCLK to SDIN hold time  
CSB pulse width low  
tSCY  
tSCL  
tSCH  
tDSU  
tDHO  
tCSL  
tCSH  
tCSS  
80  
20  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CSB pulse width high  
CSB rising to SCLK rising  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
15  
WM8731  
Advanced Information  
t3  
t3  
t5  
SDIN  
t4  
t6  
t2  
t8  
SCLK  
t7  
t1  
t10  
Figure 8 Program Register Input Timing 2-Wire MPU Serial Control Mode  
Test Conditions  
AVDD, HPVDD, DBVDD = 3.3V, AGND = 0V, DCVDD = 1.5V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, XTI/MCLK =  
256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCLK Frequency  
0
400  
kHz  
ns  
us  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Low Pulsewidth  
SCLK High Pulsewidth  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
Data Setup Time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t10  
600  
1.3  
600  
600  
100  
SDIN, SCLK Rise Time  
SDIN, SCLK Fall Time  
Setup Time (Stop Condition)  
Data Hold Time  
300  
300  
600  
900  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
16  
WM8731  
Advanced Information  
DEVICE DESCRIPTION  
INTRODUCTION  
The WM8731 is a low power audio CODEC designed specifically for portable audio products. Its  
features, performance and low power consumption make it ideal for portable MP3 players and  
portable mini-disc players.  
The CODEC includes line and microphone inputs to the on-board ADC, line and headphone outputs  
from the on-board DAC, a crystal oscillator, configurable digital audio interface and a choice of 2 or 3  
wire MPU control interface. It is fully compatible and an ideal partner for a range of industry standard  
microprocessors, controllers and DSPs.  
The CODEC includes three low noise inputs - mono microphone and stereo line. Line inputs have  
+12dB to -34dB logarithmic volume level adjustments and mute. The Microphone input has -6dB to  
34dB volume level adjustment. An electret microphone bias level is also available. All the required  
input filtering is contained within the device with no external components required.  
The on-board stereo analogue to digital converter (ADC) is of a high quality using a multi-bit high-  
order oversampling architecture delivering optimum performance with low power consumption. The  
output from the ADC is available on the digital audio interface. The ADC includes an optional digital  
high pass filter to remove unwanted dc components from the audio signal.  
The on-board digital to analogue converter (DAC) accepts digital audio from the digital audio  
interface. Digital filter de-emphasis at 32kHz, 44.1kHz and 48kHz can be applied to the digital data  
under software control. The DAC employs  
a high quality multi-bit high-order oversampling  
architecture to again deliver optimum performance with low power consumption.  
The DAC outputs, Microphone (SIDETONE) and Line Inputs (BYPASS) are available both at line  
level and through a headphone amplifier capable of efficiently driving low impedance headphones.  
The headphone output volume is adjustable in the analogue domain over a range of +6dB to 73dB  
and can be muted.  
The design of the WM8731 has given much attention to power consumption without compromising  
performance. It includes the ability to power off selective parts of the circuitry under software control,  
thus conserving power. Nine separate power save modes be configured under software control  
including a standby and power off mode.  
Special techniques allow the audio to be muted and the device safely placed into standby, sections  
of the device powered off and volume levels adjusted without any audible clicks, pops or zipper  
noises. Therefore standby and power off modes maybe used dynamically under software control,  
whenever recording or playing is not required.  
The device caters for a number of different sampling rates including industry standard 8kHz, 32kHz,  
44.1kHz, 48kHz, 88.2kHz and 96kHz. Additionally, the device has an ADC and DAC that can operate  
at different sample rates.  
There are two unique schemes featured within the programmable sample rates of the WM8731:  
Normal industry standard 256/384fs sampling mode may be used, with the added ability to mix  
different sampling rates. Also a special USB mode is included, whereby all audio sampling rates can  
be generated from a 12.00MHZ USB clock. Thus, for example, the ADC can record to the DSP at  
44.1kHz and be played back from the CODEC at 8kHz with no external digital signal processing  
required. The digital filters used at for both record and playback are optimised for each sampling rate  
used.  
The digitised output is available in a number of audio data formats I2S, DSP Mode (a burst mode in  
which frame sync plus 2 data packed words are transmitted), MSB-First, left justified and MSB-First,  
right justified. The digital audio interface can operate in both master or slave modes.  
The software control uses either 2 or 3-wire MPU interface.  
A crystal oscillator is included on board the device. The device can generate the system master clock  
or alternatively it can accept an external master clock from the audio system.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
17  
WM8731  
Advanced Information  
AUDIO SIGNAL PATH  
LINE INPUTS  
The WM8731 provides Left and Right channel line inputs (RLINEIN and LLINEIN). The inputs are  
high impedance and low capacitance, thus ideally suited to receiving line level signals from external  
hi-fi or audio equipment.  
Both line inputs include independent programmable volume level adjustments and ADC input mute.  
The scheme is illustrated in Figure 9. Passive RF and active Anti-Alias filters are also incorporated  
within the line inputs. These prevent high frequencies aliasing into the audio band or otherwise  
degrading performance.  
LINEIN  
12.5k  
To  
ADC  
VMID  
Figure 9 Line Input Schematic  
The gain between the line inputs and the ADC is logarithmically adjustable from +12dB to 34.5dB in  
1.5dB steps under software control. The ADC Full Scale input is 1.0V rms at AVDD = 3.3 volts. Any  
voltage greater than full scale will possibly overload the ADC and cause distortion. Note that the full  
scale input tracks directly with AVDD. The gain is independently adjustable on both Right and Left  
Line Inputs. However, by setting the INBOTH bit whilst programming the volume control, both  
channels are simultaneously updated with the same value. Use of INBOTH reduces the required  
number of software writes required. The line inputs to the ADC can be muted in the analogue domain  
under software control. The software control registers are shown Table 2. Note that the Line Input  
Mute only mutes the input to the ADC, this will still allow the Line Input signal to pass to the line  
output in Bypass Mode.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
18  
WM8731  
Advanced Information  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0000000  
4:0  
LINVOL[4:0]  
10111  
( 0dB )  
Left Channel Line Input Volume  
Control  
Left Line In  
11111 = +12dB . . 1.5dB steps down  
to 00000 = -34.5dB  
7
8
LINMUTE  
1
0
Left Channel Line Input Mute to ADC  
1 = Enable Mute  
0 = Disable Mute  
LRINBOTH  
Left to Right Channel Line Input  
Volume and Mute Data Load Control  
1 = Enable Simultaneous Load of  
LINVOL[4:0] and LINMUTE to  
RINVOL[4:0] and RINMUTE  
0 = Disable Simultaneous Load  
0000001  
4:0  
7
RINVOL[4:0]  
RINMUTE  
10111  
( 0dB )  
Right Channel Line Input Volume  
Control  
Right Line In  
11111 = +12dB . .1.5dB steps down  
to 00000 = -34.5dB  
1
0
Right Channel Line Input Mute to  
ADC  
1 = Enable Mute  
0 = Disable Mute  
8
RLINBOTH  
Right to Left Channel Line Input  
Volume and Mute Data Load Control  
1 = Enable Simultaneous Load of  
RINVOL[4:0] and RINMUTE to  
LINVOL[4:0] and LINMUTE  
0 = Disable Simultaneous Load  
Table 2 Line Input Software Control  
The line inputs are biased internally through the operational amplifier to VMID. Whenever the line  
inputs are muted or the device placed into standby mode, the line inputs are kept biased to VMID  
using special anti-thump circuitry. This reduces any audible clicks that may otherwise be heard when  
re-activating the inputs.  
The external components required to complete the line input application is shown in the Figure 10.  
C2  
R1  
LINEIN  
C1  
R2  
AGND  
AGND AGND  
Figure 10 Line Input Application Drawing  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
19  
WM8731  
Advanced Information  
For interfacing to a typical CD system, it is recommended that the input is scaled to ensure that there  
is no clipping of the signal. R1 = 5.6k, R2 = 5.6k, C1 = 220pF, C2 = 1µF.  
R1 and R2 form a resistive divider to attenuate the 2 Vrms output from a CD player to a 1 Vrms level,  
so avoiding overloading the inputs. R2 also provides a discharge path for C2, thus preventing the  
input to C2 charging to an excessive voltage which may otherwise damage any equipment connected  
that is not suitably protected against high voltages. C1 forms an RF low pass filter for increasing the  
rejection of RF interference picked up on any cables. C2 forms a DC blocking capacitor to remove  
the DC path between the WM8731 and the driving audio equipment. C2 together with the input  
impedance of the WM8731 form a high pass filter.  
MICROPHONE INPUT  
MICIN is a high impedance, low capacitance input suitable for connection to a wide range of  
monophonic microphones of different dynamics and sensitivities.  
The MICIN includes programmable volume adjustments and a mute function. The scheme is shown  
in Figure 11. Passive RF and active Anti-Alias filters are also incorporated within the microphone  
inputs. These allow a matched interface to the multi-bit oversampling ADC and preventing high  
frequencies aliasing into the audio band or otherwise degrading performance.  
50k  
20dB GAIN BOOST  
MICIN  
10k  
VMID  
To  
ADC  
VMID  
Figure 11 Microphone Input Schematic  
There are 2 stages of gain made up of two low noise inverting operational amplifiers.  
The 1st stage comprises a nominal gain of G1 = 50k/10k = 5. By adding an external resistor (Rmic) in  
series with MICIN the gain of stage can be adjusted. For example adding Rmic = 40K sets the gain  
of stage 1 to x1 (0dB). The equation below can be used to calculate the gain versus Rmic.  
G1 = 50k/ (Rmic + 10k)  
Or alternatively to calculate the value of Rmic to achieve a given gain, G1.  
Rmic = (50k/G1) 10k  
The internal 50k and 10k resistors have a tolerance of 15%. For Rmicext = 90k G = 0.5 (-6dB) and  
for Rmicext = 0 G = x10 (14dB).  
The 2nd stage comprises a 0dB gain stage that can be software configured to provide a fixed 20dB of  
gain for low sensitivity microphones.  
The microphone input can therefore be configured with a variable gain of between -6dB and 14dB on  
the 1st stage, and an additional fixed 0dB or 20dB on the 2nd stage. This allows for all gains to the  
input signal in the range 6dB to 34dB to be catered for.  
The ADC Full Scale input is 1.0V rms at AVDD = 3.3 volts. Any voltage greater than full scale will  
possibly overload the ADC and cause distortion. Note that the full scale input tracks directly with  
AVDD. Stage 1 and Stage 2 gains should be configured so that the ADC receives a maximum signal  
equal to its full scale for maximising the signal to noise.  
The software control for the MICIN is shown in Table 3. Note that the Microphone Mute only mutes  
the input to the ADC, this will still allow the Microphone Input signal to pass to the line output in  
Sidetone Mode.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
20  
WM8731  
Advanced Information  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0000100  
0
MICBOOST  
0
Microphone Input Level Boost  
1 = Enable Boost  
Analogue Audio  
Path Control  
0 = Disable Boost  
1
MUTEMIC  
1
Line Input Mute to ADC  
1 = Enable Mute  
0 = Disable Mute  
Table 3 Microphone Input Software Control  
The microphone input is biased internally through the operational amplifier to VMID. Whenever the  
line inputs are muted the MICIN input is kept biased to VMID using special anti-thump circuitry. This  
reduces any audible clicks that may otherwise be heard when re-activating the input.  
The application drawing for the microphone is shown in Figure 12.  
MICBIAS  
R1  
Rmic  
C2  
FROM  
MICIN  
MICROPHONE  
C1  
R2  
AGND  
AGND AGND  
Figure 12 Microphone Input and Bias Application Drawing  
Recommended component values are C1 = 220pF (npo ceramic), C2 = 1µF, R1 = 680 ohms, R2 =  
47k. Rmic values depends on gain setting (see above).  
R1 and R2 form part of the biasing network (refer to Microphone Bias section below). R1 connected  
to MICBIAS is necessary only for electret type microphones that require a voltage bias. R2 should  
always be present to prevent the microphone input from charging to a high voltage which may  
damage the microphone on connection. R1 and R2 should be large so as not to attenuate the signal  
from the microphone, which can have source impedance greater than 2k. C1 together with the  
source impedance of the microphone and the input impedance of MICIN forms an RF filter. C2 is a  
DC blocking capacitor to allow the microphone to be biased at a different DC voltage to the MICIN  
signal.  
MICROPHONE BIAS  
The MICBIAS output provides a low noise reference voltage suitable for biasing electret type  
microphones and the associated external resistor biasing network. Refer to the Microphone Input  
section for an application drawing and further description.  
The scheme for MICBIAS is shown in Figure 13. Note that there is a maximum source current  
capability of 3mA available for the MICBIAS. This limits the smallest value of external biasing  
resistors that can safely be used.  
Note that the MICBIAS output is not active in standby mode.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
21  
WM8731  
Advanced Information  
VMID  
MICBIAS  
AGND  
Figure 13 Microphone Bias Schematic  
ADC  
The WM8731 uses a multi-bit oversampled sigma-delta ADC. A single channel of the ADC is  
illustrated in the Figure 14.  
FROM MICROPHONE  
INPUT  
ANALOG  
INTEGRATOR  
TO ADC DIGITAL FILTERS  
FROM LINE INPUT  
MULTI  
BITS  
INSEL  
Figure 14 Multi-Bit Oversampling Sigma Delta ADC Schematic  
The use of multi-bit feedback and high oversampling rates reduces the effects of jitter and high  
frequency noise.  
The ADC Full Scale input is 1.0V rms at AVDD = 3.3 volts. Any voltage greater than full scale will  
possibly overload the ADC and cause distortion. Note that the full scale input tracks directly with  
AVDD.  
The device employs a pair of ADCs. The input can be selected from either the Line Inputs or the  
Microphone input under software control. The two channels cannot be selected independently. The  
control is shown in Table 4.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0000100  
2
INSEL  
0
Microphone/Line Input Select to ADC  
1 = Microphone Input Select to ADC  
0 = Line Input Select to ADC  
Analogue  
Audio Path  
Control  
Table 4 ADC Software Control  
The digital data from the ADC is fed for signal processing to the ADC Filters.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
22  
WM8731  
Advanced Information  
ADC FILTERS  
The ADC filters perform true 24 bit signal processing to convert the raw multi-bit oversampled data  
from the ADC to the correct sampling frequency to be output on the digital audio interface. Figure 15  
illustrates the digital filter path.  
TO DIGITAL  
AUDIO  
INTERFACE  
DIGITAL  
DIGITAL  
DIGITAL  
HPF  
DECIMATION  
FILTER  
FROM ADC  
DECIMATOR  
HPFEN  
Figure 15 ADC Digital Filter  
The ADC digital filters contain a digital high pass filter, selectable via software control. The high-pass  
filter response detailed in Digital Filter Characteristics. The software control is shown in Table 5.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0000101  
0
ADCHPD  
0
ADC High Pass Filter Enable  
(Digital)  
Digital Audio  
Path Control  
1 = Enable High Pass Filter  
0 = Disable High Pass Filter  
Table 5 ADC Software Control  
There are several types of ADC filters, frequency and phase responses of these are shown in Digital  
Filter Characteristics. The filter types are automatically configured depending on the sample rate  
chosen. Refer to the sample rate section for more details.  
DAC FILTERS  
The DAC filters perform true 24 bit signal processing to convert the incoming digital audio data from  
the digital audio interface at the specified sample rate to multi-bit oversampled data for processing by  
the analogue DAC. Figure 16 illustrates the DAC digital filter path.  
FROM DIGITAL  
DIGITAL  
TO LINE  
DIGITAL  
MUTE  
INTERPOLATION  
AUDIO  
INTERFACE  
DE_EMPHASIS  
OUTPUTS  
FILTER  
DEEMP  
DACMU  
Figure 16 DAC Filter Schematic  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
23  
WM8731  
Advanced Information  
The DAC digital filter can apply digital de-emphasis under software control, as shown in Table 6.The  
DAC can also perform a soft mute where the audio data is digitally brought to a mute level. This  
removes any abrupt step changes in the audio that might otherwise result in audible clicks in the  
audio outputs.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0000101  
2:1  
DEEMP[1:0]  
00  
De-emphasis Control  
(Digital)  
Digital  
Audio Path  
Control  
11 = 48kHz  
10 = 44.1kHz  
01 = 32kHz  
00 = Disable  
3
DACMU  
1
DAC Soft Mute Control  
(Digital)  
1 = Enable soft mute  
0 = Disable soft mute  
Table 6 DAC Software Control  
DAC  
The WM8731 employs a multi-bit sigma delta oversampling digital to analogue converter. The  
scheme for the converter is illustrated in Figure 17.  
FROM DAC  
DIGITAL  
FILTERS  
TO LINE OUTPUT  
Figure 17 Multi-Bit Oversampling Sigma Delta Schematic  
The DAC converts the multi-level digital audio data stream from the DAC digital filters into high  
quality analogue audio.  
LINE OUTPUTS  
The WM8731 provides two low impedance line outputs LLINEOUT and RLINEOUT, suitable for  
driving typical line loads of impedance 10K and capacitance 50pF. The line output is used to  
selectively sum the outputs from the DAC or/and the Line inputs in bypass mode.  
The LLINEOUT and RLINEOUT outputs are only available at a line output level and are not level  
adjustable in the analogue domain, having a fixed gain of 0dB. The level is fixed such that at the DAC  
full scale level the output level is Vrms at AVDD = 3.3 volts. Note that the DAC full scale level tracks  
directly with AVDD. The scheme is shown in Figure 18. The line output includes a low order audio  
low pass filter for removing out-of band components from the sigma-delta DAC. Therefore no further  
external filtering is required in most applications.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
24  
WM8731  
Advanced Information  
SIDETONE  
FROM MICROPHONE  
INPUT  
BYPASS  
FROM LINE  
INPUTS  
DACSEL  
FROM DAC  
LINEOUT  
VMID  
TO HEADPHONE AMP  
Figure 18 Line Output Schematic  
The DAC output, Line Input and microphone are summed into the Line Output. In DAC mode only the  
output from the DAC is routed to the line outputs. In Bypass mode the Line Input is summed into the  
Line Outputs. In Side Tone mode the Microphone Input is summed into the Line Output. These  
features can be used for either over-dubbing or, if the DAC is muted, as a pure analogue bypass or  
Side Tone feature, so avoiding any digital signal processing.  
The line output is muted by either muting the DAC (analogue) or Soft Muting (digital) and disabling  
the BYPASS and SIDETONE paths. Refer to the DAC section for more details. Whenever the DAC  
is muted or the device placed into standby mode the DC voltage is maintained at the line outputs to  
prevent any audible clicks from being present.  
The software control for the line outputs is shown in Table 7.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Bypass Switch  
0000100  
3
BYPASS  
1
Analogue  
Audio Path  
Control  
1 = Enable Bypass  
0 = Disable Bypass  
DAC Select  
4
5
DACSEL  
0
0
1 = Select DAC  
0 = Dont select DAC  
Side Tone Switch  
1 = Enable SideTone  
0 = Disable Side Tone  
SIDETONE  
Table 7 Output Software Control  
The recommended external components are shown in Figure 19.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
25  
WM8731  
Advanced Information  
R2  
LINEOUT  
C1  
R1  
AGND  
AGND  
Figure 19 Line Outputs Application Drawing  
Recommended values are C1 = 10µF, R1 = 47k, R2 = 100 ohms.  
C1 forms a DC blocking capacitor to the line outputs. R1 prevents the output voltage from drifting so  
protecting equipment connected to the line output. R2 forms a de-coupling resistor preventing  
abnormal loads from disturbing the device. Note that poor choice of dielectric material for C1 can  
have dramatic effects on the measured signal distortion at the output  
HEADPHONE AMPLIFIER  
The WM8731 has a stereo headphone output available on LHPOUT and RHPOUT. The output is  
designed specifically for driving 16 or 32 ohm headphones with maximum efficiency and low power  
consumption. The headphone output includes a high quality volume level adjustment and mute  
function.  
The scheme of the circuit is shown in Figure 20.  
FROM  
DAC VIA  
LINEOUT  
HPOUT  
VMID  
Figure 20 Headphone Amplifier Schematic  
LHPOUT and RHPOUT volumes can be independently adjusted under software control using the  
LHPVOL[6:0] and RHPVOL[6:0] bits respectively of the headphone output control registers. The  
adjustment is logarithmic with an 80dB range in 1dB steps from +6dB to 73dB.  
The headphone outputs can be separately muted by writing codes less than 0110000 to  
LHPVOL[6:0] or RHPVO[6:0]L bits. Whenever the headphone outputs are muted or the device  
placed into standby mode, the DC voltage is maintained at the line outputs to prevent any audible  
clicks from being present.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
26  
WM8731  
Advanced Information  
A zero cross detect circuit is provided at the input to the headphones under the control of the LZCEN  
and RZCEN bits of the headphone output control register. Using these controls the volume control  
values are only updated when the input signal to the gain stage is close to the analogue ground level.  
This minimises and audible clicks and zipper noise as the gain values are changed or the device  
muted. Note that this circuit has no time out so if only DC levels are being applied to the gain stage  
input of more than approximately 20mV, then the gain will not be updated. This zero cross function is  
enabled when the LZCEN and RZCEN bit is set high during a volume register write. If there is  
concern that a DC level may have blocked a volume change (one made with LZCEN or RZCEN set  
high) then a subsequent volume write of the same value, but with the LZCEN or RZCEN bit set low  
will force a volume update, regardless of the DC level.  
LHPOUT and RHPOUT volume and zero-cross setting can be changed independently. Alternatively,  
the user can lock the two channels together, allowing both to be updated simultaneously, halving the  
number of serial writes required, provided that the same gain is needed for both channels. This is  
achieved through writing to the HPBOTH bit of the control register. Setting LRHPBOTH whilst writing  
to LHPVOL and LZCEN will simultaneously update the Right Headphone controls similarly. The  
corresponding effect on updating RLHPBOTH is also achieved.  
The software control is given in Table 8.  
REGISTER  
ADDRESS  
BIT  
6:0  
LABEL  
DEFAULT  
DESCRIPTION  
0000010  
LHPVOL[6:0]  
1111001  
( 0dB )  
Left Channel Headphone Output  
Volume Control  
Left  
Headphone  
Out  
1111111 = +6dB  
. . 1dB steps down to  
0110000 = -73dB  
0000000 to 0101111 = MUTE  
7
8
LZCEN  
0
0
Left Channel Zero Cross detect  
Enable  
1 = Enable  
0 = Disable  
LRHPBOTH  
Left to Right Channel Headphone  
Volume, Mute and Zero Cross Data  
Load Control  
1 = Enable Simultaneous Load of  
LHPVOL[6:0] and LZCEN to  
RHPVOL[6:0] and RZCEN  
0 = Disable Simultaneous Load  
0000011  
6:0  
RHPVOL[6:0]  
1111001  
( 0dB )  
Right Channel Headphone Output  
Volume Control  
Right  
Headphone  
Out  
1111111 = +6dB  
. . 1dB steps down to  
0110000 = -73dB  
0000000 to 0101111 = MUTE  
7
8
RZCEN  
0
0
Right Channel Zero Cross Detect  
Enable  
1 = Enable  
0 = Disable  
RLHPBOTH  
Right to Left Channel Headphone  
Volume, Mute and Zero Cross Data  
Load Control  
1 = Enable Simultaneous Load of  
RHPVOL[6:0] and RZCEN to  
LHPVOL[6:0] and LZCEN  
0 = Disable Simultaneous Load  
Table 8 Headphone Output Software Control  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
27  
WM8731  
Advanced Information  
The recommended external components required to complete the application are shown in Figure 21.  
HPOUT  
C1  
AGND  
R1  
AGND  
Figure 21 Headphone Output Application Drawing  
Recommended values are C1 = 220uF (10V electrolytic), R1 = 47k  
C1 forms a DC blocking capacitor to isolate the dc of the HPOUT from the headphones. R1 form a  
pull down resistor to discharge C1 to prevent the voltage at the connection to the headphones from  
rising to a level that may damage the headphones.  
BYPASS MODE  
The WM8731 includes a bypass mode whereby analogue line inputs are routed directly to the  
analogue line outputs and headphone outputs. The scheme for this is in Figure 22.  
LINEIN  
12.5K  
SIDETONE (OFF)  
BYPASS (ON)  
VMID  
FROM  
LINE  
INPUTS  
DACSEL (OFF)  
FROM  
DAC  
LINEOUT  
VMID  
HPOUT  
VMID  
Figure 22 Signal Routing in Bypass Mode  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
28  
WM8731  
Advanced Information  
The bypass mode is selected under software control using the BYPASS microphone bit as shown in  
Table 9. In true bypass mode, the output from the DAC (DACSEL) and (SIDETONE) should be de-  
selected from the line output block. However this can also be used to sum the DAC output, Line  
Inputs together and microphone inputs. The analogue line input and headphone output volume  
controls and mutes are still operational in bypass mode. The 0dB gain setting is recommended for  
the Line Input volume control to avoid distortion. The maximum signal at any point in the bypass path  
must be no greater than 1.0V rms at AVDD = 3.3V, to avoid distortion. This amplitude tracks linearly  
with AVDD. This means that if the DAC is producing a 1Vrms signal, and it is being summed with  
1Vrms line BYPASS signal, the resulting LINEOP signal will be clipped.  
REGISTER  
ADDRESS  
BIT  
LABEL  
BYPASS  
DEFAULT  
DESCRIPTION  
0000100  
3
1
Bypass Switch (Analogue)  
1 = Enable Bypass  
Analogue  
Audio Path  
Control  
0 = Disable Bypass  
Table 9 Bypass Mode Software Control  
SIDETONE MODE  
The WM8731 also includes a side tone mode where the microphone input is routed to line and  
headphone outputs. The scheme for this is shown in Figure 23.  
The side tone mode allows the microphone input to be attenuated to the outputs for telephone and  
headset applications.  
50k  
10dB GAIN BOOST  
MICIN  
10k  
VMID  
SIDETONE (ON)  
VMID  
BYPASS (OFF)  
FROM  
LINE  
INPUTS  
DACSEL (OFF)  
FROM  
DAC  
LINEOUT  
VMID  
HPOUT  
VMID  
Figure 23 Side Tone Mode Schematic  
REGISTER  
ADDRESS  
0000100  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
5
SIDETONE  
0
Side Tone Switch (Analogue)  
1 = Enable Side Tone  
0 = Disable Side Tone  
Side Tone Attenuation  
11 = -15dB  
Analogue  
Audio Path  
Control  
7:6  
SIDEATT[1:0]  
00  
10 = -12dB  
01 = -9dB  
00 = -6dB  
Table 10 Side Tone Mode Table  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
29  
WM8731  
Advanced Information  
The side tone mode and attenuation is selected under software control using the SIDETONE bit as  
shown in Table 10. In true side tone the output from the DAC (DACSEL) and line inputs (BYPASS)  
should be deselected from the line output block. However, this can also be used to sum the DAC  
output, line inputs and microphone inputs together. The microphone boost gain control and  
headphone output volume control and mutes are still operational in side tone mode. The maximum  
signal at any point in the side tone path must be no greater than 1.0V rms at VDD = 3.3V, to avoid  
distortion. This amplitude tracks linearly with AVDD.  
DEVICE OPERATION  
DEVICE RESETTING  
The WM8731 contains a power on reset circuit that resets the internal state of the device to a known  
condition. The power on reset is applied as DCVDD powers on and released only after the voltage  
level of DCVDD crosses a minimum turn off threshold. If DCVDD later falls below a minimum turn on  
threshold voltage then the power on reset is re-applied. The threshold voltages and associated  
hysteresis are shown in the Electrical Characteristics table.  
The user also has the ability to reset the device to a known state under software control as shown in  
the table below.  
REGISTER  
ADDRESS  
BIT  
LABEL  
RESET  
DEFAULT  
DESCRIPTION  
0001111  
Reset Register  
8:0  
not reset  
Reset Register  
Writing 00000000 to register resets  
device  
Table 11 Software Control of Reset  
When using the software reset. In 3-wire mode the reset is applied on the rising edge of CSB and  
released on the next rising edge of SCLK. In 2-wire mode the reset is applied for the duration of the  
ACK signal (approximately 1 SCLK period, refer to Figure 32).  
CLOCKING SCHEMES  
In a typical digital audio system there is only one central clock source producing a reference clock to  
which all audio data processing is synchronised. This clock is often referred to as the audio systems  
Master Clock. To allow WM8731 to be used in a centrally clocked system, the WM8731 is capable of  
either generating this system clock itself or receiving it from an external source as will be discussed.  
For applications where it is desirable that the WM8731 is the system clock source, then clock  
generation is achieved through the use of a suitable crystal connected between the XTI/MCLK input  
and XTO output pins (see CRYSTAL OSCILLATOR section).  
For applications where a component other than the WM8731 will generate the reference clock, the  
external system can be applied directly through the XTI/MCLK input pin with no software  
configuration necessary. Note that in this situation, the oscillator circuit of the WM8731 can be safely  
powered down to conserve power (see POWER DOWN section).  
CORE CLOCK  
The WM8731 DSP core can be clocked either by MCLK or MCLK divided by 2. This is controlled by  
software as shown in Table 12 below.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0001000  
6
CLKIDIV2  
0
Core Clock divider select  
Sampling  
Control  
1 = Core Clock is MCLK divided by 2  
0 = Core Clock is MCLK  
Table 12 Software Control of Core Clock  
Having a programmable MCLK divider allows the device to be used in applications where higher  
frequency master Clocks are available. For example the device can support 512fs master clocks  
whilst fundamentally operating in a 256fs mode.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
30  
WM8731  
Advanced Information  
CRYSTAL OSCILLATOR  
The WM8731 includes a crystal oscillator circuit that allows the audio systems reference clock to be  
generated on the device. This is available to the rest of the audio system in buffered form on  
CLKOUT. The crystal oscillator is a low radiation type, designed for low EMI. A typical application  
circuit is shown in Figure 24.  
XTI/MCLK  
XTO  
Cp  
Cp  
DGND  
DGND  
Figure 24 Crystal Oscillator Application Circuit  
For crystal frequencies in the 12MHz range, a Cp of 10pF is recommended. For crystal frequencies  
in the 18MHz range, 15pF Cp is recommended.  
The WM8731 crystal oscillator provides an extremely low jitter clock source. Low jitter clocks are a  
requirement for high quality audio ADC and DACs, regardless of the converter architecture. The  
WM8731 architecture is less susceptible than most converter techniques but still requires clocks with  
less than approximately 1ns of jitter to maintain performance. In applications where there is more  
than one source for the master clock, it is recommended that the clock is generated by the WM8731  
to minimise such problems.  
CLOCKOUT  
The Core Clock is internally buffered and made available externally to the audio system on the  
CLKOUT output pin. CLKOUT provides a replication of the Core Clock, but buffered as suitable for  
driving external loads.  
There is no phase inversion between XTI/MCLK, the Core Clock and CLOCKOUT but there will  
inevitably be some delay. The delay will be dependent on the load that CLOCKOUT drives. Refer to  
Electrical Characteristics.  
CLKOUT can also be divided by 2 under software control, refer to Table 13. Note that if CLKOUT is  
not required then the CLKOUT buffer on the WM8731 can be safely powered down to conserve  
power (see POWER DOWN section). If the system architect has the choice between using FCLKOUT  
=
FMCLK or FCLKOUT = FMCLK/2 in the interface, the latter is recommended to conserve power. When the  
divide by two is selected CLKOUT changes on the rising edge of MCLK. Please refer to Electrical  
Characteristics for timing information.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0001000  
7
CLKODIV2  
0
CLKOUT divider select  
Sampling  
Control  
1 = CLOCKOUT is Core Clock  
divided by 2  
0 = CLOCKOUT is Core Clock  
Table 13 Programming CLKOUT  
CLKOUT is disabled and set low whenever the device is in reset.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
31  
WM8731  
Advanced Information  
DIGITAL AUDIO INTERFACES  
WM8731 may be operated in either one of the 4 offered audio interface modes. These are:  
Right justified  
Left justified  
I2S  
DSP mode  
All four of these modes are MSB first and operate with data 16 to 32 bits.  
Note that 32 bit data is not supported in right justified mode.  
The digital audio interface takes the data from the internal ADC digital filter and places it on the  
ADCDAT output. ADCDAT is the formatted digital audio data stream output from the ADC digital  
filters with left and right channels multiplexed together. ADCLRC is an alignment clock that controls  
whether Left or Right channel data is present on the ADCDAT lines. ADCDAT and ADCLRC are  
synchronous with the BCLK signal with each data bit transition signified by a BCLK high to low  
transition. BCLK maybe an input or an output dependent on whether the device is in master or slave  
mode. Refer to the MASTER/SLAVE OPERATION section  
The digital audio interface also receives the digital audio data for the internal DAC digital filters on the  
DACDAT input. DACDAT is the formatted digital audio data stream output to the DAC digital filters  
with left and right channels multiplexed together. DACLRC is an alignment clock that controls  
whether Left or Right channel data is present on DACDAT. DACDAT and DACLRC are synchronous  
with the BCLK signal with each data bit transition signified by a BCLK high to low transition. DACDAT  
is always an input. BCLK and DACLRC are either outputs or inputs depending whether the device is  
in master or slave mode. Refer to the MASTER/SLAVE OPERATION section  
There are four digital audio interface formats accommodated by the WM8731. These are shown in  
the figures below. Refer to the Electrical Characteristic section for timing information.  
Left Justified mode is where the MSB is available on the first rising edge of BCLK following a ADCLR  
or DACLRC transition.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
DACLRC/  
ADCLRC  
BCLK  
DACDAT/  
ADCDAT  
1
2
3
n
n-2 n-1  
1
2
3
n
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Figure 25 Left Justified Mode  
I2S mode is where the MSB is available on the 2nd rising edge of BCLK following a LRCLK  
transition.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
32  
WM8731  
Advanced Information  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
DACLRC/  
ADCLRC  
BCLK  
1 BCLK  
1 BCLK  
DACDAT/  
ADCDAT  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
LSB  
LSB  
MSB  
MSB  
Figure 26 I2S Mode  
Right Justified mode is where the LSB is available on the rising edge of BCLK preceding a LRCLK  
transition, yet MSB is still transmitted first.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
DACLRC/  
ADCLRC  
BCLK  
DACDAT/  
ADCDAT  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Figure 27 Right Justified Mode  
DSP mode is where the left channel MSB is available on either the 1st or 2nd rising edge of BCLK  
(selectable by LRP) following a LRC transition high. Right channel data immediately follows left  
channel data.  
1/fs  
1 BCLK  
DACLRC/  
ADCLRC  
BCLK  
RIGHT CHANNEL  
LEFT CHANNEL  
DACDAT/  
ADCDAT  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
MSB  
LSB  
Input Word Length (IWL)  
Note: Input word length is defined by the IWL register, LRP = 1  
Figure 28 DSP Mode  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
33  
WM8731  
Advanced Information  
In all modes DACLRC and ADCLRC must always change on the falling edge of BCLK, refer to Figure  
25, Figure 26, Figure 27 and Figure 28.  
Operating the digital audio interface in DSP mode allows ease of use for supporting the various  
sample rates and word lengths. The only requirement is that all data is transferred within the correct  
number of BCLK cycles to suit the chosen word length.  
In order for the digital audio interface to offer similar support in the three other modes (Left Justified,  
I2S and Right Justified), the DACLRC, ADCLRC and BCLK frequencies, continuity and mark-space  
ratios need more careful consideration.  
In Slave mode, DACLRC and ADCLRC inputs are not required to have a 50:50 mark-space ratio.  
BCLK input need not be continuous. It is however required that there are sufficient BCLK cycles for  
each DACLRC/ADCLRC transition to clock the chosen data word length. The non-50:50 requirement  
on the LRCs is of use in some situations such as with a USB 12MHZ clock. Here simply dividing  
down a 12MHz clock within the DSP to generate LRCs and BCLK will not generate the appropriate  
DACLRC or ADCLRC since they will no longer change on the falling edge of BCLK. For example,  
with 12MHz/32k fs mode there are 375 MCLK per LRC. In these situations DACLRC/ADCLRC can  
be made non 50:50.  
In Master mode, DACLRC and ADCLRC will be output with a 50:50 mark-space ratio with BCLK  
output at 64fs. The exception again is in USB mode where BCLK is always 12MHz. So for example in  
12MHz/32k fs mode there are 375 master clocks per LRC period. Therefore DACLRC and ADCLRC  
outputs will have a mark space ratio of 187:188.  
The ADC and DAC digital audio interface modes are software configurable as indicated in Table 13.  
Note that dynamically changing the software format may result in erroneous operation of the  
interfaces and is therefore not recommended.  
The length of the digital audio data is programmable at 16/20/24 or 32 bits. Refer to the software  
control table below. The data is signed 2s complement. Both ADC and DAC are fixed at the same  
data length. The ADC and DAC digital filters process data using 24 bits. If the ADC is programmed to  
output 16 or 20 bit data then it strips the LSBs from the 24 bit data. If the ADC is programmed to  
output 32 bits then it packs the LSBs with zeros. If the DAC is programmed to receive 16 or 20 bit  
data, the WM8731 packs the LSBs with zeros. If the DAC is programmed to receive 32 bit data, then  
it strips the LSBs.  
The DAC outputs can be swapped under software control using LRP and LRSWAP as shown in  
Table 14. Stereo samples are normally generated as a Left/Right sampled pair. LRSWAP reverses  
the order so that a Left sample goes to the right DAC output and a Right sample goes to the left DAC  
output. LRP swaps the phasing so that a Right/Left sampled pair is expected and preserves the  
correct channel phase difference.  
To accommodate system timing requirements the interpretation of BCLK maybe inverted, this is  
controlled vias the software shown in Table 14. This is especially appropriate for DSP mode.  
ADCDAT lines are always outputs. They power up and return from standby low.  
DACDAT is always an input. It is expected to be set low by the audio interface controller when the  
WM8731 is powered off or in standby.  
ADCLRC, DACLRC and BCLK can be either outputs or inputs depending on whether the device is  
configured as a master or slave. If the device is a master then the DACLRC and BCLK signals are  
outputs that default low. If the device is a slave then the DACLRC and BCLK are inputs. It is  
expected that these are set low by the audio interface controller when the WM8731 is powered off or  
in standby.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
34  
WM8731  
Advanced Information  
REGISTER  
ADDRESS  
BIT  
1:0  
LABEL  
DEFAULT  
10  
DESCRIPTION  
0000111  
FORMAT[1:0]  
Audio Data Format Select  
Digital Audio  
Interface  
Format  
11 = DSP Mode, frame sync + 2  
data packed words  
10 = I2S Format, MSB-First left-1  
justified  
01 = MSB-First, left justified  
00 = MSB-First, right justified  
3:2  
IWL[1:0]  
10  
Input Audio Data Bit Length Select  
11 = 32 bits  
10 = 24 bits  
01 = 20 bits  
00 = 16 bits  
4
LRP  
0
DACLRC phase control (in left, right  
or I2S modes)  
1 = Right Channel DAC data when  
DACLRC high  
0 = Right Channel DAC data when  
DACLRC low  
(opposite phasing in I2S mode)  
or  
DSP mode A/B select (in DSP mode  
only)  
1 = MSB is available on 2nd BCLK  
rising edge after DACLRC rising  
edge  
0 = MSB is available on 1st BCLK  
rising edge after DACLRC rising  
edge  
5
6
7
LRSWAP  
MS  
0
0
0
DAC Left Right Clock Swap  
1 = Right Channel DAC Data Left  
0 = Right Channel DAC Data Right  
Master Slave Mode Control  
1 = Enable Master Mode  
0 = Enable Slave Mode  
Bit Clock Invert  
BCLKINV  
1 = Invert BCLK  
0 = Dont invert BCLK  
Table 14 Digital Audio Interface Control  
Note: If right justified 32 bit mode is selected then the WM8731 defaults to 24 bits.  
MASTER AND SLAVE MODE OPERATION  
The WM8731 can be configured as either a master or slave mode device. As a master mode device  
the WM8731 controls sequencing of the data and clocks on the digital audio interface. As a slave  
device the WM8731 responds with data to the clocks it receives over the digital audio interface. The  
mode is set with the MS bit of the control register as shown in Table 15.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0000111  
6
MS  
0
Master Slave Mode Control  
1 = Enable Master Mode  
0 = Enable Slave Mode  
Digital Audio Interface  
Format  
Table 15 Programming Master/Slave Modes  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
35  
WM8731  
Advanced Information  
As a master mode device the WM8731 controls the sequencing of data transfer (ADCDAT,  
DACDAT) and output of clocks (BCLK, ADCLRC, DACLRC) over the digital audio interface. It uses  
the timing generated from either its on-board crystal or the MCLK input as the reference for the clock  
and data transitions. This is illustrated in Figure 29. ADCDAT is always an output from and DACDAT  
is always an input to the WM8731 independent of master or slave mode.  
BCLK  
ADCLRC  
DSP  
WM8731  
CODEC  
ENCODER/  
DECODER  
DACLRC  
ADCDAT  
DACDAT  
Note: ADC and DAC can run at different rates  
Figure 29 Master Mode  
As a slave device the WM8731 sequences the data transfer (ADCDAT, DACDAT) over the digital  
audio interface in response to the external applied clocks (BCLK, ADCLRC, DACLRC). This is  
illustrated in Figure 30.  
BCLK  
ADCLRC  
DSP  
WM8731  
CODEC  
ENCODER/  
DECODER  
DACLRC  
ADCDAT  
DACDAT  
Note: The ADC and DAC can run at different rates  
Figure 30 Slave Mode  
Note that the WM8731 relies on controlled phase relationships between audio interface BCLK,  
DACLRC and the master MCLK or CLKOUT. To avoid any timing hazards, refer to the timing section  
for detailed information.  
AUDIO DATA SAMPLING RATES  
The WM8731 provides for two modes of operation (normal and USB) to generate the required DAC  
and ADC sampling rates. Normal and USB modes are programmed under software control according  
to the table below.  
In Normal mode, the user controls the sample rate by using an appropriate MCLK or crystal  
frequency and the sample rate control register setting. The WM8731 can support sample rates from  
8ks/s up to 96ks/s.  
In USB mode, the user must use a fixed MLCK or crystal frequency of 12MHz to generate sample  
rates from 8ks/s to 96ks/s. It is called USB mode since the common USB (Universal Serial Bus)  
clock is at 12MHz and the WM8731 can be directly used within such systems. WM8731 can  
generate all the normal audio sample rates from this one Master Clock frequency, removing the need  
for different master clocks or PLL circuits.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
36  
WM8731  
Advanced Information  
Uniquely, the WM8731 offers the user the ability to sample the ADC and DAC at different rates under  
software control in both Normal and USB modes. The reduces the burden on any controlling DSP.  
However, the signal processing in the ADC and DAC over-sampling filters is tightly coupled together  
in order to minimise power consumption. To this end, only the combinations of sample rates listed in  
the following sections are supported. Note that these rates supported are anticipated to be the likely  
combinations used in typical audio systems.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0001000  
0
USB/  
0
Mode Select  
NORMAL  
BOSR  
Sampling  
Control  
1 = USB mode (250/272fs)  
0 = Normal mode (256/384fs)  
Base Over-Sampling Rate  
1
0
USB Mode  
0 = 250fs  
1 = 272fs  
Normal Mode  
0 = 256fs  
1 = 384fs  
5:2  
SR[3:0]  
0000  
ADC and DAC sample rate control;  
See USB Mode and Normal Mode  
Sample Rate sections for operation  
Table 16 Sample Rate Control  
NORMAL MODE SAMPLE RATES  
In normal mode MCLK/crystal oscillator is set up according to the desired sample rates of the ADC  
and DAC. For ADC or DAC sampling rates of 8, 32, 48 or 96kHz, MCLK frequencies of either  
12.288MHz (256fs) or 18.432MHz (384fs) can be used. For ADC or DAC sampling rates of 8, 44.1 or  
88.2kHz from MCLK frequencies of either 11.2896MHz (256fs) or 16.9344MHz (384fs) can be used.  
The table below should be used to set up the device to work with the various sample rate  
combinations. For example if the user wishes to use the WM8731 in normal mode with the ADC and  
DAC sample rates at 48kHz and 48kHz respectively then the device should be programmed with  
BOSR = 0, SR3 = 0, SR2 = 0, SR1 = 0 and SR0 = 0 with a 12.288MHz MCLK or with BOSR = 1,  
SR3 = 0, SR2 = 0, SR1 = 0 and SR0 = 0 with a 18.432MHz MCLK. The ADC and DAC will then  
operate with a Digital Filter of type 1, refer to Digital Filter Characteristics section for an explanation  
of the different filter types.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
37  
WM8731  
Advanced Information  
SAMPLING  
RATE  
MCLK  
FREQUENCY  
SAMPLE  
RATE  
REGISTER SETTINGS  
DIGITAL  
FILTER  
TYPE  
ADC  
DAC  
kHz  
kHz  
MHz  
BOSR  
SR3  
0
SR2  
0
SR1  
0
SR0  
48  
48  
12.288  
18.432  
12.288  
18.432  
12.288  
18.432  
12.288  
18.432  
12.288  
18.432  
12.288  
18.432  
11.2896  
16.9344  
11.2896  
16.9344  
11.2896  
16.9344  
11.2896  
16.9344  
11.2896  
16.9344  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
2
1
1
1
1
2
0
0
0
48  
8
8
48  
8
0
0
0
0
0
0
0
0
1
0
0
1
8
0
0
1
0
0
1
32  
32  
96  
44.1  
0
1
1
0
1
1
96  
0
1
1
0
1
1
44.1  
44.1  
1
0
0
1
0
0
8
1
0
0
(Note 1)  
44.1  
1
0
0
8
(Note 1)  
8
1
0
1
1
0
1
8
1
0
1
(Note 1) (Note 1)  
88.2 88.2  
1
0
1
1
1
1
1
1
1
Table 17 Normal Mode Sample Rate Look-up Table  
Notes:  
1. 8k not exact, actual = 8.018kHz  
2. All other combinations of BOSR and SR[3:0] that are not in the truth table are invalid  
The BOSR bit represents the base over-sampling rate. This is the rate that the WM8731 digital signal  
processing is carried out at. In Normal mode, with BOSR = 0, the base over-sampling rate is at  
256fs, with BOSR = 1, the base over-sampling rate is at 384fs. This can be used to determine the  
actual audio data rate produced by the ADC and required by the DAC.  
Example scenarios are:  
1. with a requirement that the ADC data rate is 8kHz and DAC data rate is 48kHz, then choosing  
MCLK = 12.288MHz the device is programmed with BOSR = 0 (256fs), SR3 = 0, SR2 = 0, SR1  
= 1, SR0 = 0.The ADC output data rate will then be exactly 8kHz (derived from 12.288MHz/256  
x1/6) and the DAC expects data at exactly 48kHz (derived from 12.288MHz/256)  
2. with a requirement that ADC data rate is 8kHz and DAC data rate is 44.1kHz, then choosing  
MCLK = 16.9344MHz the device is programmed with BOSR = 1 (384fs), SR3 = 1, SR2 = 0, SR1  
= 0, SR0 = 1. The ADC will no longer output data at exactly 8.000kHz, instead it will be  
8.018kHz (derived from 16.9344MHz/384 x 2/11), the DAC still is at exactly 44.1kHz (derived  
from 16.9344MHz/384). A slight (sub 0.5%) pitch shift will therefore result in the 8kHz audio  
data and (importantly) the user must ensure that the data across the digital interface is correctly  
synchronised at the 8.018kHz rate.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
38  
WM8731  
Advanced Information  
The exact sample rates achieved are defined by the relationships in Table 18 below.  
TARGET  
ACTUAL SAMPLING RATE  
SAMPLING  
RATE  
BOSR=0  
(256fs)  
BOSR=1  
(384fs)  
MCLK=12.288  
MCLK=11.2896  
kHz  
MCLK=18.432  
kHz  
MCLK=16.9344  
kHz  
kHz  
kHz  
8
8
8.018  
8
8.018  
12.288MHz/256 x 1/6  
32  
11.2896MHz/256 x 2/11  
not available  
18.432MHz/384 x 1/6  
32  
16.9344MHz/384 x 2/11  
32  
44.1  
48  
not available  
12.288MHz/256 x 2/3  
not available  
18.432MHz/384x 2/3  
not available  
44.1  
44.1  
11.2896MHz/256  
not available  
16.9344MHz /384  
not available  
48  
48  
12.288MHz/256  
not available  
18.432MHz/384  
not available  
88.2  
96  
88.2  
88.2  
11.2896MHz/384 x 2  
not available  
16.9344MHz /384 x 2  
not available  
96  
96  
12.288MHz/256 x 2  
18.432MHz/384 x 2  
Table 18 Normal Mode Actual Sample Rates  
128/192fs NORMAL MODE  
The Normal Mode sample rates are designed for standard 256fs and 384fs MCLK rates. However the  
WM8731 is also capable of being clocked from a 128 or 192fs MCLK for application over limited  
sampling rates as shown in the table below.  
SAMPLING  
RATE  
MCLK  
FREQUENCY  
SAMPLE  
RATE  
REGISTER SETTINGS  
DIGITAL  
FILTER  
TYPE  
ADC  
DAC  
kHz  
kHz  
MHz  
6.144  
9.216  
5.6448  
8.4672  
BOSR  
SR3  
SR2  
SR1  
SR0  
48  
48  
0
1
0
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
44.1  
44.1  
Table 19 128fs Normal Mode Sample Rate Look-up Table  
512/768fs NORMAL MODE  
512 fs and 768 fs MCLK rates can be accommodated by using the CLKIDIV2 bit. The core clock to  
the DSP will be divided by 2 so an external 512/768 MCLK will become 256/384 fs internally and the  
device otherwise operates as in Table 15 but with MCLK at twice the specified rate. See Table 12 for  
software control.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
39  
WM8731  
Advanced Information  
USB MODE SAMPLE RATES  
In USB mode the MCLK/crystal oscillator input is 12MHz only.  
SAMPLING  
RATE  
MCLK  
FREQUENCY  
SAMPLE  
RATE  
REGISTER SETTINGS  
DIGITAL  
FILTER  
TYPE  
ADC  
DAC  
kHz  
kHz  
MHz  
BOSR  
SR3  
SR2  
SR1  
SR0  
48  
48  
12.000  
0
0
0
0
0
0
1
1
0
0
1
1
0
1
1
0
1
0
1
0
1
0
1
0
3
2
44.1  
44.1  
12.000  
12.000  
12.000  
12.000  
12.000  
12.000  
12.000  
12.000  
12.000  
12.000  
1
0
1
0
1
0
1
0
0
1
1
0
1
0
1
0
1
0
0
1
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
1
1
1
1
1
(Note 2) (Note 2)  
48  
8
44.1  
(Note 2)  
8
(Note 1)  
48  
8
8
44.1  
(Note 2)  
(Note 1)  
8
8
8
8
(Note 1) (Note 1)  
32  
96  
32  
96  
88.2  
88.2  
(Note 3) (Note 3)  
Table 20 USB Mode Sample Rate Look-up Table  
Notes:  
1. 8k not exact, actual = 8.021kHz  
2. 44.1k not exact, actual = 44.118kHz  
3. 88.1k not exact, actual = 88.235kHz  
4. All other combinations of BOSR and SR[3:0] that are not in the truth table are invalid  
The table above can be used to set up the device to work with various sample rate combinations. For  
example if the user wishes to use the WM8731 in USB mode with the ADC and DAC sample rates at  
48kHz and 48kHz respectively then the device should be programmed with BOSR = 0, SR3 = 0, SR2  
= 0, SR1 = 0 and SR0 = 0. The ADC and DAC will then operate with a Digital Filter of type 0, refer to  
Digital Filter Characteristics section for an explanation of the different filter types.  
The BOSR bit represents the base over-sampling rate. This is the rate that the WM8731 digital signal  
processing is carried out at and the sampling rate will always be a sub-multiple of this. In USB mode,  
with BOSR = 0, the base over-sampling rate is defined at 250fs, with BOSR = 1, the base over-  
sampling rate is defined at 272fs. This can be used to determine the actual audio sampling rate  
produced by the ADC and required by the DAC.  
Example scenarios are, :-  
1. with a requirement that the ADC data sampling rate is 8kHz and DAC data sampling rate is  
48kHz the device is programmed with BOSR = 0 (250fs), SR3 = 0, SR2 = 0, SR1 = 1, SR0 =  
0.The ADC will then be exactly 8kHz ( derived from 12MHz/250 x 1/6 ) and the DAC expects  
data at exactly 48kHz ( derived from 12MHz/250 ).  
2. with a requirement that ADC data rate is 8kHz and DAC data rate is 44.1kHz the device is  
programmed with BOSR = 0 (272fs), SR3 = 0, SR2 = 0, SR1 = 1, SR0 = 0. The ADC will not  
output data at exactly 8kHz, instead it will be 8.021kHz ( derived from 12MHz/272 x 2/11 ) and  
the DAC at 44.118kHz ( derived from 12MHz/272 ). A slight (sub 0.5%) pitch shift will therefore  
results in the 8kHz and 44.1kHz audio data and (more importantly) the user must ensure that  
the data across the digital interface is correctly synchronised at the 8.021kHz and 44.117kHz  
rates.  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
40  
WM8731  
Advanced Information  
The exact sample rates supported for all combinations are defined by the relationships in Table 21  
below.  
TARGET  
ACTUAL SAMPLING RATE  
SAMPLING  
RATE  
BOSR=0  
BOSR=1  
(272fs)  
( 250fs)  
kHz  
kHz  
kHz  
8
8
8.021  
12MHz/(250 x 48/8)  
32  
12MHz/(272 x 11/2)  
not available  
32  
44.1  
48  
12MHz/(250 x 48/32)  
not available  
44.117  
12MHz/272  
48  
not available  
12MHz/250  
88.2  
96  
not available  
88.235  
12MHz/136  
96  
not available  
12MHz/125  
Table 21 USB Mode Actual Sample Rates  
ACTIVATING DSP AND DIGITAL AUDIO INTERFACE  
To prevent any communication problems from arising across the Digital Audio Interface the Audio  
Interface is disabled (tristate with weak 100k pulldown). Once the Audio Interface and the Sampling  
Control has been programmed it is activated by setting the ACTIVE bit under Software Control.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0001001  
Active Control  
0
ACTIVE  
0
Activate Interface  
1 = Active  
0 = Inactive  
Table 22 Activating DSP and Digital Audio Interface  
It is recommended that between changing any content of Digital Audio Interface or Sampling Control  
Register that the active bit is reset then set.  
SOFTWARE CONTROL INTERFACE  
The software control interface may be operated using either a 3-wire (SPI-compatible) or 2-wire MPU  
interface. Selection of interface format is achieved by setting the state of the MODE pin.  
In 3-wire mode, SDIN is used for the program data, SCLK is used to clock in the program data and  
CSB is used to latch in the program data. In 2-wire mode, SDIN is used for serial data and SCLK is  
used for the serial clock. In 2-wire mode, the state of CSB pin allows the user to select one of two  
addresses.  
SELECTION OF SERIAL CONTROL MODE  
The serial control interface may be selected to operate in either 2 or 3-wire modes. This is achieved  
by setting the state of the MODE pin.  
MODE  
INTERFACE  
FORMAT  
0
1
2 wire  
3 wire  
Table 23 Control Interface Mode Selection  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
41  
WM8731  
Advanced Information  
3-WIRE (SPI COMPATIBLE) SERIAL CONTROL MODE  
The WM8731 can be controlled using a 3-wire serial interface. SDIN is used for the program data,  
SCLK is used to clock in the program data and CSB is use to latch in the program data. The 3-wire  
interface protocol is shown in Figure 31.  
CSB  
SCLK  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SDIN  
Figure 31 3-Wire Serial Interface  
Notes:  
1. B[15:9] are Control Address Bits  
2. B[8:0] are Control Data Bits  
3. CSB is edge sensitive not level sensitive. The data is latched on the rising edge of CSB.  
2-WIRE SERIAL CONTROL MODE  
The WM8731 supports a 2-wire MPU serial interface. The device operates as a slave device only.  
The WM8731 has one of two slave addresses that are selected by setting the state of pin 10, (CSB).  
ACK  
ACK  
ACK  
DATA B15-8  
R ADDR  
R/W  
DATA B7-0  
SDIN  
SCLK  
START  
STOP  
Figure 32 2-Wire Serial Interface  
Notes:  
1. B[15:9] are Control Address Bits  
2. B[8:0] are Control Data Bits  
CSB STATE  
Address  
(Default = LOW)  
0
1
0011010  
0011011  
Table 24 2-Wire MPU Interface Address Selection  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
42  
WM8731  
Advanced Information  
To control the WM8731 on the 2-wire bus the master control device must initiate a data transfer by  
establishing a start condition, defined by a high to low transition on SDIN while SCLK remains high.  
This indicates that an address and data transfer will follow. All peripherals on the 2-wire bus respond  
to the start condition and shift in the next eight bits (7-bit address + R/W bit). The transfer is MSB  
first. The 7-bit address consists of a 6-bit base address + a single programmable bit to select one of  
two available addresses for this device (see table 24). If the correct address is received and the R/W  
bit is 0, indicating a write, then the WM8731 will respond by pulling SDIN low on the next clock pulse  
(ACK). The WM8731 is a write only device and will only respond to the R/W bit indicating a write. If  
the address is not recognised the device will return to the idle condition and wait for a new start  
condition and valid address.  
Once the WM8731 has acknowledged a correct address, the controller will send eight data bits (bits  
B[15]-B[8]). WM8731 will then acknowledge the sent data by pulling SDIN low for one clock pulse.  
The controller will then send the remaining eight data bits (bits B[7]-B[0]) and the WM8731 will then  
acknowledge again by pulling SDIN low.  
A stop condition is defined when there is a low to high transition on SDIN while SCLK is high. If a  
start or stop condition is detected out of sequence at any point in the data transfer then the device  
will jump to the idle condition.  
After receiving a complete address and data sequence the WM8731 returns to the idle state and  
waits for another start condition. Each write to a register requires the complete sequence of start  
condition, device address and R/W bit followed by the 16 register address and data bits.  
POWER DOWN MODES  
The WM8731 contains power conservation modes in which various circuit blocks may be safely  
powered down in order to conserve power. This is software programmable as shown in the table  
below.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0000110  
0
1
LINEINPD  
1
Line Input Power Down  
1 = Enable Power Down  
0 = Disable Power Down  
Power Down  
Control  
MICPD  
1
Microphone Input an Bias  
Power Down  
1 = Enable Power Down  
0 = Disable Power Down  
ADC Power Down  
2
3
4
5
6
7
ADCPD  
1
1
1
0
0
1
1 = Enable Power Down  
0 = Disable Power Down  
DAC Power Down  
DACPD  
1 = Enable Power Down  
0 = Disable Power Down  
Line Output Power Down  
1 = Enable Power Down  
0 = Disable Power Down  
Oscillator Power Down  
1 = Enable Power Down  
0 = Disable Power Down  
CLKOUT power down  
1 = Enable Power Down  
0 = Disable Power Down  
Power Off Device  
OUTPD  
OSCPD  
CLKOUTPD  
POWEROFF  
1 = Device Power Off  
0 = Device Power On  
Table 25 Power Conservation Modes Software Control  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
43  
WM8731  
Advanced Information  
The power down control can be used to either a) permanently disable functions when not required in  
certain applications or b) to dynamically power up and down functions depending on the operating  
mode, e.g.: during playback or record. Please follow the special instructions below if dynamic  
implementations are being used.  
LINEINPD: Simultaneously powers down both the Line Inputs. This can be done dynamically without  
any audible effects either on the ADC or to the Line Outputs in Bypass mode. This is of use when the  
device enters Playback, Pause or Stop modes or the Microphone input has been selected.  
MICPD: Simultaneously powers down both the Microphone Input and Microphone Bias. If this is done  
dynamically, audible pops through the ADC will result. This will only be audible if the Microphone  
Input is selected to the ADC at the time. If the state of MICPD is changed then the controlling DSP or  
microprocessor should switch to select the Line Inputs as input to the ADC (INSEL) before changing  
MICPD. This is of use when the device enters Playback, Pause or Stop modes or the Microphone  
Input is not selected.  
ADCPD: Powers down the ADC and ADC Filters. If this is done dynamically then audible pops will  
result if any signals were present through the ADC. To overcome this whenever the ADC is to be  
powered down, either mute the Microphone Input (MUTEIN) or MUTELINEIN, then change ADCPD.  
This is of use when the device enters Playback, Pause or Stop modes regardless of whether  
Microphone or Line Inputs are selected.  
DACPD: Powers down the DAC and DAC Digital Filters. If this is done dynamically then audible pops  
will result unless the following guidelines are followed. In order to prevent pops, the DAC should first  
be soft-muted (DACMU), the output should then be de-selected from the line and headphone output  
(DACSEL), then the DAC powered down (DACPD). This is of use when the device enters Record,  
Pause, Stop or Bypass modes.  
OUTPD: Powers down the Line Headphone Output. If this is done dynamically then audible pops  
may result unless the DAC is first soft-muted (DACMU). This is of use when the device enters  
Record, Pause or Stop modes.  
OSCPD: Powers off the on board crystal oscillator. The MCLK input will function independently of the  
Oscillator being powered down.  
CLKOUTPD: Powers down the CLOCKOUT pin. This conserves power, reduces digital noise and RF  
emissions if not required. CLKOUT is tied low when powered down.  
The device can be put into a standby mode (STANDBY) by powering down all the audio circuitry  
under software control as shown in Table 18. If the crystal oscillator and/or CLOKOUT pins are being  
used to derive the system master clock, these should probably never be powered off in standby.  
Provision has been made to independently power off these areas according to Table 26.  
DESCRIPTION  
0
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
STANDBY, but with Crystal  
Oscillator OS and CLKOUT  
available  
STANDBY, but with Crystal  
Oscillator OS available,  
CLKOUT not-available  
STANDBY, Crystal  
oscillator and CLKOUT not-  
available.  
Table 26 Standby Mode  
In STANDBY mode the Control Interface, a small portion of the digital and areas of the analogue  
circuitry remain active. The active analogue includes the analogue VMID reference so that the  
analogue line inputs, line outputs and headphone outputs remain biased to VMID. This reduces any  
audible effects caused by DC glitches when entering or leaving STANDBY mode.  
The device can be powered off by writing to the POWEROFF bit of the Power Down register. In  
POWEROFF mode the Control Interface and a small portion of the digital remain active. The  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
44  
WM8731  
Advanced Information  
analogue VMID reference is disabled. As in STANDBY mode the crystal oscillator and/or CLKOUT  
pin can be independently controlled. Refer to Table 27.  
DESCRIPTION  
1
1
1
0
1
1
0
0
1
X
X
X
1
1
1
1
1
1
X
X
X
X
X
X
POWEROFF, but with Crystal  
Oscillator OS and CLKOUT  
available  
POWEROFF, but with Crystal  
Oscillator OS available, CLKOUT  
not-available  
POWEROFF, Crystal oscillator  
and CLKOUT not-available.  
Table 27 Poweroff Mode  
REGISTER MAP  
The complete register map is shown in Table 28. The detailed description can be found in Table 29  
and in the relevant text of the device description. There are 11 registers with 16 bits per register (7 bit  
address + 9 bits of data). These can be controlled using either the 2 wire or 3 wire MPU interface.  
REGISTER  
B
B
B
B
B
B
B
9
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
15 14 13 12 11 10  
LRIN  
BOTH  
RLIN  
BOTH  
LRHP  
BOTH  
RLHP  
BOTH  
0
LIN  
MUTE  
RIN  
R0 (00h)  
R1 (02h)  
R2 (04h)  
R3 (06h)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
0
0
0
LINVOL  
RINVOL  
MUTE  
LZCEN  
RZCEN  
LHPVOL  
RHPVOL  
R4 (08h)  
R5 (0Ah)  
0
0
0
0
0
0
0
0
1
1
0
0
0
1
SIDEATT  
IDETONE DAC SEL BY PASS INSEL  
UTE MIC IC BOOST  
0
0
0
0
0
DAC MU  
DEEMPH ADC HPD  
PWR  
OFF  
BCLK  
INV  
CLK  
R6 (0Ch)  
R7 (0Eh)  
R8 (10h)  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
0
1
0
0
0
OSCPD OUTPD DACPD ADCPD MICPD LINEINPD  
OUTPD  
MS  
LR SWAP LRP  
IWL  
FORMAT  
CLKO  
DIV2  
0
CLKI  
DIV2  
0
0
0
SR  
BOSR  
SB/ NORM  
ACTIVE  
R9 (12h)  
0
0
0
0
0
0
1
1
0
1
0
1
1
1
0
0
0
0
0
R15(1Eh)  
RESET  
ADDRESS  
Table 28 Mapping of Program Registers  
DATA  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
45  
WM8731  
Advanced Information  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0000000  
4:0  
LINVOL[4:0]  
10111  
( 0dB )  
Left Channel Line Input Volume  
Control  
Left Line In  
11111 = +12dB . . 1.5dB steps down  
to 00000 = -34.5dB  
7
8
LINMUTE  
1
0
Left Channel Line Input Mute to ADC  
1 = Enable Mute  
0 = Disable Mute  
LRINBOTH  
Left to Right Channel Line Input  
Volume and Mute Data Load Control  
1 = Enable Simultaneous Load of  
LINVOL[4:0] and LINMUTE to  
RINVOL[4:0] and RINMUTE  
0 = Disable Simultaneous Load  
0000001  
4:0  
7
RINVOL[4:0]  
RINMUTE  
10111  
( 0dB )  
Right Channel Line Input Volume  
Control  
Right Line In  
11111 = +12dB . .1.5dB steps down  
to 00000 = -34.5dB  
1
0
Right Channel Line Input Mute to  
ADC  
1 = Enable Mute  
0 = Disable Mute  
8
RLINBOTH  
Right to Left Channel Line Input  
Volume and Mute Data Load Control  
1 = Enable Simultaneous Load of  
RINVOL[4:0] and RINMUTE to  
LINVOL[4:0] and LINMUTE  
0 = Disable Simultaneous Load  
0000010  
6:0  
LHPVOL  
[6:0]  
1111001  
( 0dB )  
Left Channel Headphone Output  
Volume Control  
Left Headphone  
Out  
1111111 = +6dB  
. . 1dB steps down to  
0110000 = -73dB  
0000000 to 0101111 = MUTE  
7
8
LZCEN  
0
0
Left Channel Zero Cross detect  
Enable  
1 = Enable  
0 = Disable  
LRHPBOTH  
Left to Right Channel Headphone  
Volume, Mute and Zero Cross Data  
Load Control  
1 = Enable Simultaneous Load of  
LHPVOL[6:0] and LZCEN to  
RHPVOL[6:0] and RZCEN  
0 = Disable Simultaneous Load  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
46  
WM8731  
Advanced Information  
DESCRIPTION  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
0000011  
6:0  
RHPVOL  
[6:0]  
1111001  
( 0dB )  
Right Channel Headphone Output  
Volume Control  
Right  
Headphone Out  
1111111 = +6dB  
. . 1dB steps down to  
0110000 = -73dB  
0000000 to 0101111 = MUTE  
7
8
RZCEN  
0
0
Right Channel Zero Cross detect  
Enable  
1 = Enable  
0 = Disable  
RLHPBOTH  
Right to Left Channel Headphone  
Volume, Mute and Zero Cross Data  
Load Control  
1 = Enable Simultaneous Load of  
RHPVOL[6:0] and RZCEN to  
LHPVOL[6:0] and LZCEN  
0 = Disable Simultaneous Load  
Microphone Input Level Boost  
1 = Enable Boost  
0000100  
0
MICBOOST  
MUTEMIC  
INSEL  
0
Analogue Audio  
Path Control  
0 = Disable Boost  
1
1
Line Input Mute to ADC  
1 = Enable Mute  
0 = Disable Mute  
2
0
Microphone/Line Input Select to ADC  
1 = Microphone Input Select to ADC  
0 = Line Input Select to ADC  
Bypass Switch  
3
BYPASS  
1
1 = Enable Bypass  
0 = Disable Bypass  
DAC Select  
4
DACSEL  
0
1 =Select DAC  
0 = Dont select DAC  
Side Tone Switch  
5
SIDETONE  
SIDEATT[1:0]  
0
1 = Enable Side Tone  
0 = Disable Side Tone  
Side Tone Attenuation  
11 = -15dB  
7:6  
00  
10 = -12dB  
01 = -9dB  
00 = -6dB  
0000101  
0
ADCHPD  
0
ADC High Pass Filter Enable  
1 = Enable High Pass Filter  
0 = Disable High Pass Filter  
De-emphasis Control  
11 = 48kHz  
Digital Audio  
Path Control  
2:1  
DEEMP[1:0]  
00  
10 = 44.1kHz  
01 = 32kHz  
00 = Disable  
3
DACMU  
1
DAC Soft Mute Control  
1 = Enable soft mute  
0 = Disable soft mute  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
47  
WM8731  
Advanced Information  
DESCRIPTION  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
0000110  
0
LINEINPD  
1
Line Input Power Down  
1 = Enable Power Down  
0 = Disable Power Down  
Power Down  
Control  
1
MICPD  
1
Microphone Input an Bias Power  
Down  
1 = Enable Power Down  
0 = Disable Power Down  
ADC Power Down  
2
3
4
5
6
7
ADCPD  
1
1
1
0
0
1
1 = Enable Power Down  
0 = Disable Power Down  
DAC Power Down  
DACPD  
1 = Enable Power Down  
0 = Disable Power Down  
Outputs Power Down  
1 = Enable Power Down  
0 = Disable Power Down  
Oscillator Power Down  
1 = Enable Power Down  
0 = Disable Power Down  
CLKOUT power down  
1 = Enable Power Down  
0 = Disable Power Down  
POWEROFF mode  
OUTPD  
OSCPD  
CLKOUTPD  
POWEROFF  
1 = Enable POWEROFF  
0 = Disable POWEROFF  
WOLFSON MICROELECTRONICS LTD  
AI Rev 2.0 February 2001  
48  
WM8731  
Advanced Information  
DESCRIPTION  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
0000111  
1:0  
FORMAT[1:0]  
10  
Audio Data Format Select  
Digital Audio  
Interface  
Format  
11 = DSP Mode, frame sync + 2 data  
packed words  
10 = I2S Format, MSB-First left-1  
justified  
01 = MSB-First, left justified  
00 = MSB-First, right justified  
3:2  
IWL[1:0]  
10  
Input Audio Data Bit Length Select  
11 = 32 bits  
10 = 24 bits  
01 = 20 bits  
00 = 16 bits  
4
LRP  
0
DACLRC phase control (in left, right  
or I2S modes)  
1 = Right Channel DAC data when  
DACLRC high  
0 = Right Channel DAC data when  
DACLRC low  
(opposite phasing in I2S mode)  
or  
DSP mode A/B select (in DSP mode  
only)  
1 = MSB is available on 2nd BCLK  
rising edge after DACLRC rising edge  
0 = MSB is available on 1st BCLK  
rising edge after DACLRC rising edge  
5
6
7
0
1
LRSWAP  
MS  
0
0
0
0
0
DAC Left Right Clock Swap  
1 = Right Channel DAC Data Left  
0 = Right Channel DAC Data Right  
Master Slave Mode Control  
1 = Enable Master Mode  
0 = Enable Slave Mode  
Bit Clock Invert  
BCLKINV  
1 = Invert BCLK  
0 = Dont invert BCLK  
0001000  
USB/  
NORMAL  
Mode Select  
Sampling  
Control  
1 = USB mode (250/272fs)  
0 = Normal mode (256/384fs)  
Base Over-Sampling Rate  
BOSR  
USB Mode  
0 = 250fs  
1 = 272fs  
Normal Mode  
0 = 256fs