欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • XCKU3P-1SFVB784E
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • XCKU3P-1SFVB784E图
  • 集好芯城

     该会员已使用本站13年以上
  • XCKU3P-1SFVB784E 现货库存
  • 数量2935 
  • 厂家XILINX(赛灵思) 
  • 封装 
  • 批号22+ 
  • 原装原厂现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • XCKU3P-1SFVB784E图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • XCKU3P-1SFVB784E
  • 数量10000 
  • 厂家XILINX 
  • 封装FCBGA-784(23x23) 
  • 批号23+ 
  • 公司只售原装 支持实单
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • XCKU3P-1SFVB784E图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • XCKU3P-1SFVB784E
  • 数量65000 
  • 厂家XILINX(赛灵思) 
  • 封装FCBGA-784(23x23) 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • XCKU3P-1SFVB784E图
  • 深圳市旺能芯科技有限公司

     该会员已使用本站4年以上
  • XCKU3P-1SFVB784E
  • 数量26000 
  • 厂家XILINX 
  • 封装FCBGA-784(23x23) 
  • 批号21+ 
  • 深圳全新原装库存现货
  • QQ:2881495751QQ:2881495751 复制
  • 13602549709 QQ:2881495751
  • XCKU3P-1SFVB784E图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • XCKU3P-1SFVB784E
  • 数量2935 
  • 厂家XILINX(赛灵思) 
  • 封装 
  • 批号24+ 
  • 原装原厂现货
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820
  • XCKU3P-1SFVB784E图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • XCKU3P-1SFVB784E
  • 数量8735 
  • 厂家XILINX(赛灵思) 
  • 封装NA/ 
  • 批号23+ 
  • 原厂直销,现货供应,账期支持!
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • XCKU3P-1SFVB784E图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • XCKU3P-1SFVB784E
  • 数量865000 
  • 厂家XILINX 
  • 封装FPGA 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • XCKU3P-1SFVB784E图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • XCKU3P-1SFVB784E
  • 数量3577 
  • 厂家Xilinx 
  • 封装784-BFBGA,FCBGA 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • XCKU3P-1SFVB784E图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • XCKU3P-1SFVB784E
  • 数量3577 
  • 厂家Xilinx 
  • 封装784-BFBGA,FCBGA 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • XCKU3P-1SFVB784E图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • XCKU3P-1SFVB784E
  • 数量2191 
  • 厂家XILINX 
  • 封装FPGA 304 I/O 784FCBGA 
  • 批号23+ 
  • 全新原装现货热卖
  • QQ:2885348317QQ:2885348317 复制
    QQ:2885348339QQ:2885348339 复制
  • 0755-83209630 QQ:2885348317QQ:2885348339
  • XCKU3P-1SFVB784E图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • XCKU3P-1SFVB784E
  • 数量660000 
  • 厂家Xilinx Inc. 
  • 封装原厂原装 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • XCKU3P-1SFVB784E图
  • 深圳市双微电子科技有限公司

     该会员已使用本站10年以上
  • XCKU3P-1SFVB784E
  • 数量29687 
  • 厂家XILINX 
  • 封装BGA 
  • 批号20+ 
  • 询货请加QQ 全新原装 现货库存
  • QQ:1965209269QQ:1965209269 复制
    QQ:1079402399QQ:1079402399 复制
  • 15889219681 QQ:1965209269QQ:1079402399
  • XCKU3P-1SFVB784E图
  • 柒号芯城电子商务(深圳)有限公司

     该会员已使用本站13年以上
  • XCKU3P-1SFVB784E
  • 数量700000 
  • 厂家XILINX 
  • 封装FCBGA-784(23X23) 
  • 批号2023+ 
  • 柒号芯城跟原厂的距离只有0.07公分
  • QQ:2881677436QQ:2881677436 复制
    QQ:2881620402QQ:2881620402 复制
  • 18922803401 QQ:2881677436QQ:2881620402
  • XCKU3P-1SFVB784E图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • XCKU3P-1SFVB784E
  • 数量6500000 
  • 厂家赛灵思 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • XCKU3P-1SFVB784E图
  • 深圳德田科技有限公司

     该会员已使用本站7年以上
  • XCKU3P-1SFVB784E
  • 数量3000 
  • 厂家XILINX(赛灵思) 
  • 封装N/A 
  • 批号22+ 
  • 原装现货质量保证,可出样品可开税票
  • QQ:229754250QQ:229754250 复制
  • 0755-83254070 QQ:229754250
  • XCKU3P-1SFVB784E图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • XCKU3P-1SFVB784E
  • 数量72282 
  • 厂家XILINX/赛灵思 
  • 封装NA 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • XCKU3P-1SFVB784E图
  • 深圳市欧瑞芯科技有限公司

     该会员已使用本站11年以上
  • XCKU3P-1SFVB784E
  • 数量10000 
  • 厂家Xilinx(赛灵思) 
  • 封装784-BFBGA,FCBGA 
  • 批号23+/24+ 
  • 绝对原装正品,可开13%专票,欢迎采购!!!
  • QQ:3354557638QQ:3354557638 复制
    QQ:3354557638QQ:3354557638 复制
  • 18565729389 QQ:3354557638QQ:3354557638
  • XCKU3P-1SFVB784E图
  • 深圳市金嘉锐电子有限公司

     该会员已使用本站14年以上
  • XCKU3P-1SFVB784E
  • 数量28620 
  • 厂家Xilinx 
  • 封装原厂原装 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:2643490444QQ:2643490444 复制
  • 0755-22929859 QQ:2643490444
  • XCKU3P-1SFVB784E图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • XCKU3P-1SFVB784E
  • 数量4020 
  • 厂家Xilinx Inc. 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • XCKU3P-1SFVB784E图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • XCKU3P-1SFVB784E
  • 数量
  • 厂家XILINX 
  • 封装BGA 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!单价:11375元
  • QQ:97877805QQ:97877805 复制
  • 171-4729-0036(微信同号) QQ:97877805

产品型号XCKU3P-1SFVB784E的概述

芯片XCKU3P-1SFVB784E的研究与应用 概述 XCKU3P-1SFVB784E是一款由赛灵思(Xilinx)公司提供的高性能FPGA(现场可编程门阵列),属于UltraScale系列。作为一款可广泛应用于通信、数据中心、自动化、国防等领域的处理器,XCKU3P具有极高的灵活性和可重构性。其内部架构设计用于处理海量数据,同时保持低功耗特性,适用于高速数据处理需求。 XCKU3P的设计让工程师可以根据实际需求定制逻辑和功能,从而达到最佳性能。由于现代产业环境对数据处理能力要求的迅速提高,FPGA已逐渐成为高性能计算、复杂信息处理和特定应用领域的关键部件。 详细参数 基本参数 - 系列:XCKU - 型号:XCKU3P-1SFVB784E - 逻辑单元数量:约 3M - 片上内存:两种类型;Block RAM和UltraRAM,以提供不同的存储需求 - DSP单元:装载ASTR...

产品型号XCL101A181ER-G的Datasheet PDF文件预览

XCL100/XCL101Series  
Inductor Built-in Step-up “micro DC/DC” Converter  
ETR28004-005  
GreenOperation Compatible  
GENERAL DESCRIPTION  
The XCL100/XCL101 series is a synchronous step-up micro DC/DC converter which integrates an inductor and a control IC  
in one tiny package (2.5mm×2.0mm, h=1.0mm). A stable step-up power supply is configured using only two capacitors  
connected externally. An internal coil simplifies the circuit and enables minimization of noise and other operational trouble  
due to the circuit wiring.  
The XCL100/XCL101 series can be used in applications that start from a single alkaline or nickel-metal hydride battery  
because the input voltage range is 0.7V ~ 5.5V. The output voltage can be set from 1.8V to 5.0V (±2.0%) in steps of 0.1V.  
PFM control enables a low quiescent current, making these products ideal for portable devices that require high efficiency.  
The XCL100/XCL101 features a load disconnect function to break continuity between the input and output at shutdown  
(A,B Type), and a bypass mode function to maintain continuity between the input and output (C Type).  
FEATURES  
APPLICATIONS  
Input Voltage Range  
:
Operating hold voltage 0.7V~5.5V  
Start-up voltage 0.9V~5.5V  
Wearable devices  
Mobile phones, Smart phones  
Mouses, Keyboards  
Remote controls  
Output Voltage Range  
Output Current  
:
:
:
:
:
:
1.8V ~ 5.0V (±2.0%) 0.1V increment  
100mAVOUT=3.3V, VBAT=1.8V (TYP.)  
6.3μA (VBAT=VOUT+0.5V)  
PFM Control  
Supply Current  
Control Method  
PFM Switching Current  
Functions  
Portable information devices  
Game consoles  
350mA  
Load Disconnection or  
Bypass Mode  
CL Discharge  
Output Capacitor  
Operating Ambient Temperature  
Package  
:
:
:
:
Ceramic Capacitor Compatible  
-40ºC ~ 85ºC  
CL-2025, CL-2025-02  
EU RoHS Compliant, Pb Free  
Environmentally Friendly  
TYPICALAPPLICATION CIRCUIT  
TYPICAL PERFORMANCE  
CHARACTERISTICS  
XCL101C501BR-G  
7L1  
100  
1
VSS  
NC  
6
5
Lx  
80  
VOUT  
CL  
10μF  
4.2V  
3.6V  
2
3
VOUT  
VBAT  
60  
VIN= 3.0V  
VCE  
CE 4  
40  
8L2  
VIN  
20  
CIN  
VOUT=5.0V  
10μF  
0
0.01  
0.1  
1
10  
100  
1000  
Output Current:IOUT (mA)  
(TOP VIEW)  
L1 and Lx”, “L2 and VBAT” is connected by PCB pattern.  
1/25  
XCL100/XCL101 Series  
BLOCK DIAGRAM  
XCL101A/XCL101C Type  
L1  
L2  
Inductor  
LX  
PFM Comparator Unit  
CFB RFB1  
Parasitic Diode  
Controller  
VOUT  
Current Sense  
PFM Controller  
VOUT  
PFM  
Comparator  
RFB2  
Buffer  
Driver  
and  
Inrush  
Current  
Protection  
FB  
-
+
VSS  
VOUT  
VREF  
VDD  
VBAT - VOUT Detector  
CE and Bypass  
Controller Logic  
CE  
VBAT  
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.  
XCL101B Type  
L1  
LX  
L2  
Inductor  
PFM Comparator Unit  
CFB RFB1  
Parasitic Diode  
Controller  
VOUT  
Current Sense  
PFM Controller  
VOUT  
PFM  
Comparator  
RFB2  
CL  
Discharge  
Buffer  
Driver  
and  
Inrush  
Current  
Protection  
FB  
-
+
VSS  
VOUT  
VREF  
VDD  
VBAT - VOUT Detector  
CE and Bypass  
Controller Logic  
CE  
VBAT  
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.  
2/25  
XCL100/XCL101  
Series  
BLOCK DIAGRAM  
XCL100A/XCL100C Type  
L1  
LX  
L2  
Inductor  
PFM Comparator Unit  
CFB RFB1  
Parasitic Diode  
Controller  
VOUT  
Current Sense  
PFM Controller  
VOUT  
PFM  
Comparator  
RFB2  
Buffer  
Driver  
and  
Inrush  
Current  
Protection  
FB  
-
+
VSS  
VOUT  
VREF  
VDD  
VBAT - VOUT Detector  
CE and Bypass  
Controller Logic  
CE  
Hysteresi s UVLO  
Comparator  
VBAT  
+
-
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.  
XCL100B Type  
L1  
L2  
Inductor  
LX  
PFM Comparator Unit  
CFB RFB1  
Parasitic Diode  
Controller  
VOUT  
Current Sense  
PFM Controller  
VOUT  
PFM  
Comparator  
RFB2  
CL  
Discharge  
Buffer  
Driver  
and  
Inrush  
Current  
Protection  
FB  
-
+
VSS  
VOUT  
VREF  
VDD  
VBAT - VOUT Detector  
CE and Bypass  
Controller Logic  
CE  
Hysteresi s UVLO  
Comparator  
VBAT  
+
-
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.  
3/25  
XCL100/XCL101 Series  
PRODUCTION CLASSIFICATION  
Ordering Information  
(*1)  
XCL100①②③④⑤⑥-⑦  
PFM control, Without UVLO function  
DESIGNATOR  
ITEM  
SYMBOL  
DESCRIPTION  
A
B
C
Load Disconnection Without CL Auto Discharge  
Load Disconnection With CL Auto Discharge  
Product Type  
VBAT Bypass Without CL Auto Discharge  
Output Voltage  
②③  
Output Voltage  
18 ~ 50  
e.g. VOUT=3.3V⇒②=3, =3  
UVLO Function VUVLO_R=1.65V  
CL-2025-02 (3,000pcs/Reel)  
(*2)  
UVLO Function  
1
⑤⑥-⑦  
Packages (Order Unit)  
ER-G(*3)  
(*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.  
(*2) Please contact our sales representatives for UVLO release voltage other than those listed above.  
It can be set from 1.65V to 2.2V in 0.05V increments.  
(*3) ER-G is storage temperature range "-40~ 125 ".  
(*1)  
XCL101①②③④⑤⑥-⑦  
PFM control, With UVLO function  
DESIGNATOR  
ITEM  
SYMBOL  
DESCRIPTION  
A
B
C
Load Disconnection Without CL Auto Discharge  
Load Disconnection With CL Auto Discharge  
VBAT Bypass Without CL Auto Discharge  
Product Type  
Output Voltage  
②③  
Output Voltage  
UVLO Function  
18 ~ 50  
e.g. VOUT=3.3V⇒②=3, =3  
1
No UVLO  
BR-G(*2)  
ER-G(*3)  
CL-2025 (3,000pcs/Reel)  
CL-2025-02 (3,000pcs/Reel)  
⑤⑥-⑦  
Packages (Order Unit)  
(*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.  
(*2) BR-G is storage temperature range "-40~ 105 ".  
(*3) ER-G is storage temperature range "-40~ 125 ".  
4/25  
XCL100/XCL101  
Series  
PIN CONFIGURATION  
7 L1  
VSS  
6
1 LX  
NC 5  
CE 4  
2 VOUT  
3 VBAT  
* If the dissipation pad needs to be connected to other pins, it should be connected  
to the VSS pin.  
* Please refer to pattern layout page for the connecting to PCB.  
8 L2  
(BOTTOM VIEW)  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTIONS  
1
2
3
4
5
6
7
8
LX  
VOUT  
VBAT  
CE  
NC  
VSS  
L1  
Switching  
Output Voltage  
Power Input  
Chip Enable  
No Connection  
Ground  
Inductor Electrodes  
L2  
CE PIN FUNCTION  
PIN NAME  
SIGNAL  
STATUS  
H
L
Operation  
CE  
A,B Type : Stand-by  
C Type : Bypass Mode  
* Please do not leave the CE pin open.  
ABSOLUTE MAXIMUM RATINGS  
Ta=25ºC  
UNITS  
PARAMETER  
SYMBOL  
RATINGS  
VBAT Pin Voltage  
LX Pin Voltage  
VBAT  
VLX  
VOUT  
VCE  
ILX  
-0.3 ~ 7.0  
-0.3 ~ VOUT + 0.3 or 7.0 (*1)  
-0.3 ~ 7.0  
V
V
VOUT Pin Voltage  
V
CE Pin Voltage  
-0.3 ~ 7.0  
V
LX Pin Current  
700  
mA  
Power Dissipation  
Operating Ambient Temperature  
Pd  
1000 (40mm x 40mm Standard board) (*2)  
mW  
ºC  
Topr  
-40 ~+85  
-40 ~ 105  
CL-2025  
Storage  
ºC  
Tstg  
Temperature(*3)  
CL-2025-02  
-40 ~ 125  
ºC  
All voltages are described based on the GND.  
(*1) The maximum value should be either VOUT+0.3V or 7.0V in the lowest.  
(*2) The power dissipation figure shown is PCB mounted and is for reference only.  
Please refer to PACKAGING INFORMATION for the mounting condition.  
(*3) Storage temperature, are divided by the product specification of the package.  
5/25  
XCL100/XCL101 Series  
ELECTRICAL CHARACTERISTICS  
XCL101Axx1/ XCL101Bxx1  
Ta=25 ºC  
MAX. UNITS CIRCUIT  
PARAMETER  
Input Voltage  
SYMBOL  
VBAT  
CONDITIONS  
MIN.  
-
TYP.  
-
-
5.5  
V
V
-
VPULL=1.5V, Voltage to start oscillation  
while VOUT is decreasing  
(*2)  
Output Voltage  
VOUT(E)  
<E1>  
Operation Start Voltage  
Operation Hold Voltage  
VST1  
VHLD  
IOUT=1mA  
-
-
-
0.9  
-
V
V
RL=1kΩ  
0.7  
Oscillation stops, VBAT=VCE=1.5V  
VOUT=VOUT(T) (*1) +0.5V  
Supply Current  
Iq  
<E2>  
μA  
Input Pin Current  
Stand-by Current  
IBAT  
ISTB  
VOUT=VOUT(T) (*1)+0.5V  
-
-
0.25  
0.1  
1.0  
1.0  
1.0  
405  
6.0  
μA  
μA  
μA  
mA  
μs  
VBAT=VLX=VOUT(T) (*1), VOUT=VCE=0V  
VBAT=VLX=VOUT(T) (*1), VOUT=VCE=0V  
IOUT=3mA  
LX Leak Current  
ILXL  
-
0.1  
PFM Switching Current  
Maximum On Time  
IPFM  
295  
3.1  
350  
4.6  
tONMAX  
VPULL=1.5V, VOUT=VOUT(T) (*1)×0.98V  
LX SW “Pch” ON  
Resistance (*3)  
VBAT=VCE=VLX=VOUT(E) (*2)+ 0.5V,  
IOUT=200mA  
RLXP  
<E3>  
0.6  
Ω
Ω
LX SW “Nch” ON  
Resistance (*4)  
RLXN  
VBAT=VOUT(E) (*2)=3.3V, VOUT=1.7V  
-
-
VBAT=VPULL=1.5V  
VOUT=VOUT(T) (*1)×0.98V  
While VCE= 0.3→0.75V,  
Voltage to start oscillation  
VBAT=VPULL=1.5V  
VOUT=VOUT(T) (*1)× 0.98V  
While VCE=0.75 → 0.3V,  
Voltage to stop oscillation  
CE “H” Voltage  
CE “L” Voltage  
VCEH  
0.75  
-
-
5.5  
V
V
VCEL  
VSS  
0.3  
CE “H” Current  
CE “L” Current  
ICEH  
ICEL  
VBAT=VCE=VLX=VOUT=5.5V  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
VBAT=VLX=VOUT=5.5V, VCE=0V  
CL Discharge  
Resistance  
(B Type)  
RDCHG  
VBAT=VOUT=2.0V, VCE=0V  
165  
210  
254  
Ω
Inductance Value  
L
Test Frequency=1MHz  
-
-
4.7  
-
-
μH  
-
-
(Inductor) Rated Current  
IDC  
ΔT=+40℃  
700  
mA  
Unless otherwise stated, VBAT= VCE= 1.5V  
(*1)  
V
V
=Nominal Output Voltage  
=Effective Output Voltage  
OUT(T)  
(*2)  
OUT(E)  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output  
voltage, including the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic  
example.  
(*3) LX SW “Pch” ON resistance =(VLX-VOUTpin measurement voltage) / 200mA  
(*4) LX SW “Nch” ONresistance measurement method is shown in the measurement circuit diagram.  
6/25  
XCL100/XCL101  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCL101Cxx1  
Ta=25 ºC  
PARAMETER  
Input Voltage  
SYMBOL  
VBAT  
CONDITIONS  
MIN.  
-
TYP.  
-
MAX. UNITS  
CIRCUIT  
-
-
5.5  
V
V
VPULL=1.5V, Voltage to start oscillation  
while VOUT is decreasing  
(*2)  
Output Voltage  
VOUT(E)  
<E1>  
Operation Start Voltage  
Operation Hold Voltage  
VST1  
VHLD  
IOUT=1mA  
-
-
-
0.9  
-
V
V
RL=1kΩ  
0.7  
Oscillation stops,  
VOUT=VOUT(T)+0.5V (*1)  
Supply Current  
Iq  
<E2>  
μA  
Input Pin Current  
Bypass Mode Current  
PFM Switching Current  
Maximum On Time  
IBAT  
IBYP  
VBAT=VCE=1.5V, VOUT=VOUT(E)(*2)+0.5V  
VBAT=VLX=5.5V, VCE=0V  
-
0.25  
3.5  
1.0  
6.1  
405  
6.0  
μA  
μA  
mA  
μs  
-
IPFM  
IOUT=3mA  
295  
3.1  
350  
4.6  
tONMAX  
VPULL=1.5V, VOUT=VOUT(T)(*1)×0.98V  
LX SW “Pch” ON  
Resistance (*3)  
VBAT=VLX=VCE=VOUT(E)(*2)+ 0.5V,  
IOUT=200mA  
RLXP  
<E3>  
0.6  
Ω
Ω
LX SW “Nch” ON  
Resistance (*4)  
RLXN  
VBAT=VOUT(E)(*2)=3.3V, VOUT=1.7V  
-
-
VBAT=VPULL=1.5V  
VOUT=VOUT(T)(*1)×0.98V  
While VCE=0.3→0.75V,  
Voltage to start oscillation  
VBAT=VPULL=1.5V  
VOUT=VOUT(T) (*1)× 0.98V  
While VCE=0.75 → 0.3V,  
Voltage to stop oscillation  
CE “H” Voltage  
VCEH  
0.75  
-
-
5.5  
V
V
CE “L” Voltage  
VCEL  
VSS  
0.3  
-
CE “H” Current  
CE “L” Current  
ICEH  
ICEL  
L
VBAT=VCE=VLX=VOUT=5.5V  
VBAT=VLX=VOUT=5.5V, VCE=0V  
Test Frequency=1MHz  
ΔT=+40℃  
-0.1  
-
-
0.1  
0.1  
-
μA  
μA  
μH  
mA  
-0.1  
Inductance Value  
-
-
4.7  
700  
(Inductor) Rated Current  
IDC  
-
-
Unless otherwise stated, VBAT= VCE= 1.5V  
(*1)  
V
V
=Nominal Output Voltage  
=Effective Output Voltage  
OUT(T)  
(*2)  
OUT(E)  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output  
voltage, including the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic  
example.  
(*3) LX SW “Pch” ON resistance =(VLX-VOUTpin measurement voltage) / 200mA  
(*4) LX SW “Nch” ONresistance measurement method is shown in the measurement circuit diagram.  
7/25  
XCL100/XCL101 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCL100Axxx/ XCL100Bxxx  
Ta=25℃  
PARAMETER  
Input Voltage  
SYMBOL  
VBAT  
CONDITIONS  
MIN.  
TYP.  
MAX.  
5.5  
UNITS  
V
CIRCUIT  
-
VPULL=1.5V, Voltage to start oscillation  
while VOUT is decreasing  
(*2)  
VOUT(E)  
Output Voltage  
E1  
V
V
V
VRELEAS  
VST  
IOUT=1mA  
Operation Start Voltage  
Operation Hold Voltage  
-
-
-
(*6)  
E(E)  
VDETECT  
VHLD  
RL=1kΩ  
-
(*7)  
(E)  
Iq  
Oscillation stops,VOUT=VOUT(T)+0.5V (*1)  
VOUT=VOUT(T)+0.5V (*1)  
VBAT=VLX=VOUT(T) (*1), VOUT=VCE=0V  
VBAT=VLX=VOUT(T) (*1), VOUT=VCE=0V  
IOUT=3mA  
Supply Current2  
Input Pin Current2  
Stand-by Current  
LX Leak Current  
E4  
E5  
μA  
μA  
μA  
μA  
mA  
IBAT  
ISTB  
ILXL  
IPFM  
-
-
0.1  
0.1  
350  
1.0  
1.0  
405  
PFM Switching Current  
295  
VPULL=VRELEASE(T)+0.1V (*5)  
VOUT=VOUT()×0.98 (*1)  
VBAT=VLX=VCE=VOUT(T)+0.5V (*1)  
IOUT=200mA  
,
tONMAX  
Maximum ON Time  
3.1  
4.6  
E3  
0.6  
6.0  
μs  
Ω
,
LX SW “Pch” ON  
Resistance(*3)  
RLXP  
LX SW “Nch” ON  
Resistance (*4)  
RLXN  
VBAT=VCE=3.3V, VOUT=1.7V  
-
-
Ω
VBAT=VPULL=VRELEASE(T)+0.1V (*5)  
VOUT=VOUT()×0.98 (*1)  
,
VCEH  
CE “H” Voltage  
0.75  
-
-
5.5  
V
V
While VCE=0.3→0.75V,  
Voltage to start oscillation  
VBAT=VPULL=VRELEASE(T)+0.1V (*5)  
VOUT=VOUT()×0.98 (*1)  
,
VCEL  
CE “L” Voltage  
VSS  
0.3  
While VCE=0.75→0.3V,  
Voltage to stop oscillation  
ICEH  
ICEL  
VBAT=VCE=VLX=VOUT=5.5V  
CE “H” Current  
CE “L” Current  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
VBAT= VLX=VOUT=5.5V, VCE=0V  
CL Discharge Resistance  
(B Type)  
RDCHG  
IDQ  
VBAT=VOUT=2.0V, VCE=0V  
165  
210  
E6  
254  
Ω
VBAT=VCE=VDETECT(E) - 0.1V(*7)  
IOUT=0mA  
,
UVLO Current  
μA  
VPULL=VOUT=VOUT(T)×0.98 (*1) ,VBAT=VCE  
Voltage to start oscillation while VBAT is  
increasing  
VRELEASE(E)  
UVLO Release Voltage  
E7  
V
V
(*6)  
VPULL=VOUT=VOUT(T)×0.98(*1), VBAT=VCE  
VRELEASE(E) -Voltage to stop oscillation  
while VBAT is decreasing (*6)  
(*8)  
VHYS(E)  
UVLO Hysteresis Voltage  
0.1  
0.15  
0.2  
L
Test Frequency=1.0MHz  
Inductance Value  
-
-
4.7  
-
-
μH  
-
-
IDC  
T=+40℃  
(Inductor) Rated Current  
700  
mA  
Unless otherwise stated, VBAT=VCE= VRELEASE(T)+0.1V (*5)  
(*1)  
V
V
=Nominal Output Voltage  
=Effective Output Voltage  
OUT(T)  
(*2)  
OUT(E)  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage, including  
the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example.  
(*3) LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA  
(*4) The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram.  
(*5)  
(*6)  
V
V
= Nominal UVLO release voltage  
V
V
= Actual UVLO release voltage  
RELEASE(E)  
RELEASE(T)  
(*7)  
(*8)  
= VRELEASE(E) -VHYS(E)= Actual UVLO detect voltage  
= Actual UVLO hysteresis voltage  
HYS(E)  
DETECT(E)  
8/25  
XCL100/XCL101  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCL100Cxxx  
Ta=25℃  
PARAMETER  
Input Voltage  
SYMBOL  
VBAT  
CONDITIONS  
MIN.  
TYP.  
MAX.  
5.5  
UNITS  
V
CIRCUIT  
-
VPULL=1.5V, Voltage to start oscillation  
while VOUT is decreasing  
(*2)  
VOUT(E)  
Output Voltage  
E1  
V
V
V
VRELEAS  
VST  
IOUT=1mA  
Operation Start Voltage  
Operation Hold Voltage  
-
-
-
(*6)  
E(E)  
VDETECT  
VHLD  
RL=1kΩ  
-
(*7)  
(E)  
Iq  
Oscillation stops,VOUT=VOUT(T)+0.5V (*1)  
VOUT=VOUT(T)+0.5V (*1)  
VBAT=VLX=5.5V, VCE=0V  
IOUT=3mA  
Supply Current2  
Input Pin Current2  
E4  
E5  
μA  
μA  
μA  
mA  
IBAT  
IBYP  
IPFM  
Bypass Mode Current  
PFM Switching Current  
-
3.5  
350  
6.1  
295  
405  
VPULL=VRELEASE(T)+0.1V (*5)  
VOUT=VOUT()×0.98 (*1)  
VBAT=VLX=VCE=VOUT(T)+0.5V (*1)  
IOUT=200mA  
,
tONMAX  
Maximum ON Time  
3.1  
4.6  
E3  
0.6  
6.0  
μs  
Ω
,
LX SW “Pch” ON  
Resistance(*3)  
RLXP  
LX SW “Nch” ON  
Resistance (*4)  
RLXN  
VBAT=VCE=3.3V, VOUT=1.7V  
-
-
Ω
VBAT=VPULL=VRELEASE(T)+0.1V (*5)  
VOUT=VOUT()×0.98 (*1)  
,
VCEH  
CE “H” Voltage  
CE “L” Voltage  
0.75  
-
-
5.5  
V
V
While VCE=0.3→0.75V,  
Voltage to start oscillation  
VBAT=VPULL=VRELEASE(T)+0.1V (*5)  
VOUT=VOUT()×0.98 (*1)  
,
VCEL  
VSS  
0.3  
While VCE=0.75→0.3V,  
Voltage to stop oscillation  
ICEH  
ICEL  
VBAT=VCE=VLX=VOUT=5.5V  
CE “H” Current  
CE “L” Current  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
VBAT= VLX=VOUT=5.5V, VCE=0V  
VBAT=VCE=VDETECT(E) - 0.1V(*7)  
,
IDQ  
UVLO Current  
E6  
μA  
IOUT=0mA  
VPULL=VOUT=VOUT(T)×0.98 (*1) ,VBAT=VCE  
Voltage to start oscillation while VBAT is  
increasing  
VRELEASE(E)  
UVLO Release Voltage  
E7  
V
(*6)  
VPULL=VOUT=VOUT(T)×0.98(*1), VBAT=VCE  
VRELEASE(E) -Voltage to stop oscillation  
while VBAT is decreasing (*6)  
(*8)  
VHYS(E)  
UVLO Hysteresis Voltage  
0.1  
0.15  
0.2  
V
L
Test Frequency=1.0MHz  
Inductance Value  
-
-
4.7  
-
-
μH  
-
-
IDC  
T=+40℃  
(Inductor) Rated Current  
700  
mA  
Unless otherwise stated, VBAT=VCE= VRELEASE(T)+0.1V (*5)  
(*1)  
V
V
=Nominal Output Voltage  
=Effective Output Voltage  
OUT(T)  
(*2)  
OUT(E)  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage, including  
the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example.  
(*3) LX SW “Pch” ON resistance=(VLX-VOUT pin measurement voltage) / 200mA  
(*4) The LX SW “Nch” ON resistance measurement method is shown in the measurement circuit diagram.  
(*5)  
(*6)  
V
V
= Nominal UVLO release voltage  
V
V
= Actual UVLO release voltage  
RELEASE(E)  
RELEASE(T)  
(*7)  
(*8)  
= VRELEASE(E) -VHYS(E)= Actual UVLO detect voltage  
= Actual UVLO hysteresis voltage  
HYS(E)  
DETECT(E)  
9/25  
XCL100/XCL101 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
SYMBOL  
PARAMETER  
UNITS:V  
E1  
E2  
E3  
E4  
LX SW “Pch” ON  
Output Voltage  
UNITS:V  
Supply Current  
UNITSμA  
Supply Current2  
UNITSμA  
Resistance  
UNITSΩ  
Output  
MIN  
MAX  
TYP  
MAX  
TYP  
0.84  
MAX  
1.08  
TYP.  
MAX.  
Voltage  
1.8  
1.9  
2.0  
2.1  
1.764  
1.862  
1.960  
2.058  
1.836  
1.938  
2.040  
2.142  
6.1  
9.4  
6.8  
9.7  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
2.156  
2.254  
2.352  
2.450  
2.548  
2.646  
2.744  
2.842  
2.940  
3.038  
3.136  
3.234  
3.332  
3.430  
3.528  
3.626  
3.724  
3.822  
3.920  
4.018  
4.116  
4.214  
4.312  
4.410  
4.508  
4.606  
4.704  
4.802  
4.900  
2.244  
2.346  
2.448  
2.550  
2.652  
2.754  
2.856  
2.958  
3.060  
3.162  
3.264  
3.366  
3.468  
3.570  
3.672  
3.774  
3.876  
3.978  
4.080  
4.182  
4.284  
4.386  
4.488  
4.590  
4.692  
4.794  
4.896  
4.998  
5.100  
6.2  
9.7  
0.75  
0.97  
6.9  
9.8  
6.3  
6.4  
6.5  
10.0  
10.2  
10.4  
0.65  
0.61  
0.57  
0.85  
0.78  
0.74  
7.0  
7.1  
7.2  
10.0  
10.1  
10.2  
6.7  
10.7  
0.53  
0.72  
7.3  
10.3  
10/25  
XCL100/XCL101  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
SYMBOL  
E5  
E6  
E7  
E8  
UVLO RELEASE  
VOLTAGE  
UVLO Bypass  
Current  
PARAMETER Input Pin Current2  
UVLO Current  
UNITSμA  
UNITS:V  
UNITSμA  
UNITSV  
UNITSμA  
UVLO  
Release  
Voltage  
TYP.  
MAX.  
TYP.  
MAX.  
MIN.  
MAX.  
TYP.  
MAX.  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
2.10  
2.15  
2.20  
1.601  
1.649  
1.698  
1.746  
1.795  
1.843  
1.892  
1.940  
1.989  
2.037  
2.086  
2.134  
1.699  
1.751  
1.802  
1.854  
1.905  
1.957  
2.008  
2.060  
2.111  
2.163  
2.214  
2.266  
0.71  
0.73  
0.75  
0.77  
0.79  
0.82  
1.50  
1.60  
1.60  
1.60  
1.70  
1.70  
3.25  
3.27  
3.29  
3.31  
3.33  
3.35  
6.00  
6.10  
6.20  
6.20  
6.30  
6.30  
2.15  
2.20  
2.30  
2.35  
2.40  
2.45  
4.10  
4.20  
4.20  
4.30  
4.30  
4.40  
11/25  
XCL100/XCL101 Series  
TEST CIRCUITS  
<Test Circuit No.>  
<Test Circuit No.>  
L2  
L2  
V
BAT  
OUT  
V
BAT  
CE  
CE  
A
NC  
V
NC  
V
OUT  
CL  
CIN  
Rpull  
Vpull  
GND  
Lx  
GND  
Lx  
V
*External components  
CIN:4.7μF(Ceramic)  
CL:10μF(Ceramic)  
Rpull:100 ohm  
L1  
L1  
A
Waveform check point  
<Test Circuit No.>  
<Test Circuit No.>  
L2  
L2  
VBAT  
V
BAT  
CE  
CE  
NC  
VOUT  
NC  
V
OUT  
L
CL  
A
A
GND  
Lx  
GND  
L1  
Lx  
L1  
V
A
CIN  
*External components  
CIN:4.7μF(Ceramic)  
CL:10μF(Ceramic)  
RL  
V
Waveform check point  
L:4.7μH(Selected goods)  
<Test Circuit No.>  
<Test Circuit No.>  
L2  
L2  
V
BAT  
V
BAT  
OUT  
CE  
CE  
NC  
V
OUT  
NC  
V
A
A
GND  
Lx  
GND  
L1  
Lx  
V
L1  
CIN  
*External components  
CIN:4.7μF(Ceramic)  
<Test Circuit No.>  
<Test Circuit No.>  
L2  
L2  
V
BAT  
OUT  
Lx  
V
BAT  
CE  
CE  
NC  
V
NC  
V
OUT  
CL  
CIN  
Rpull  
V1  
GND  
GND  
L1  
Lx  
L1  
A
Vpull  
Waveform check point  
*External components  
CIN:4.7μF(Ceramic)  
CL:10μF(Ceramic)  
Rpull:4.7 ohm  
<LX SW “Nch” ON Resistance Measurement Method>  
Use Test Circuit No.8 to adjust Vpull so that the LX pin voltage becomes 100mV when the Nch drive Tr is ON and then the  
voltage at both ends of Rpull is measured to find the Lx SW "Nch" ON resistance.  
RLXN=0.1 / {(V1 - 0.1) / 4.7)}  
Note that V1 is the Rpull previous voltage when the Nch driver Tr is ON. Use an oscilloscope or other instrument to measure  
the LX pin voltage and V1.  
12/25  
XCL100/XCL101  
Series  
TYPICAL APPLICATION CIRCUIT  
7L1  
1
VSS  
NC  
6
5
Lx  
VOUT  
2
3
VOUT  
VBAT  
CL  
10μF  
VCE  
CE 4  
8L2  
VIN  
CIN  
10μF  
(TOP VIEW)  
* The embedded coil is optimized for XCL100/XCL101 series. Please do not use for other purposes.  
Recommended External Components】  
MANUFACTURE  
PRODUCT NUMBER  
C1608JB1A106K  
VALUE  
10μF/10V  
10μF/10V  
10μF/10V  
10μF/10V  
10μF/10V  
10μF/10V  
22μF/10V  
47μF/6.3V  
L×W (mm)  
1.60 × 0.80  
1.60 × 0.80  
2.00 × 1.25  
2.00 × 1.25  
1.60 × 0.80  
2.00 × 1.25  
2.00 × 1.25  
2.00 × 1.25  
C1608X5R1A106K  
C2012JB1A106K  
TDK  
C2012X5R106K  
CIN, CL  
LMK107BBJ106MALT  
LMK212ABJ106KG  
LMK212BBJ226MG  
JMK212BBJ476MG  
TAIYO YUDEN  
13/25  
XCL100/XCL101 Series  
OPERATION EXPLANATION  
The XCL100/XCL101 Series consists of a standard voltage source, a PFM comparator, a Nch driver Tr, a Pch synchronous rectifier switch Tr,  
a current sense circuit, a PFM control circuit and a CE control circuit, etc. (refer to the block diagram below.)  
L1  
LX  
L2  
L1  
LX  
L2  
Inductor  
Inductor  
PFM Comparator Unit  
CFB RFB1  
PFM Comparator Unit  
CFB RFB1  
Parasitic Diode  
Controller  
Parasitic Diode  
Controller  
VOUT  
VOUT  
Current Sense  
PFM Controller  
VOUT  
Current Sense  
PFM Controller  
VOUT  
PFM  
Comparator  
RFB2  
CL  
Discharge  
Buffer  
Driver  
and  
Inrush  
Current  
Protection  
PFM  
Comparator  
RFB2  
CL  
Discharge  
FB  
Buffer  
Driver  
and  
Inrush  
Current  
Protection  
-
FB  
-
+
VSS  
+
VSS  
VOUT  
VREF  
VOUT  
VREF  
VDD  
VBAT - VOUT Detector  
CE and Bypass  
Controller Logic  
CE  
VDD  
VBAT - VOUT Detector  
Hysteresi s UVLO  
Comparator  
CE and Bypass  
Controller Logic  
VBAT  
CE  
+
-
VBAT  
< XCL101BType BLOCK DIAGRAM >  
< XCL100B Type BLOCK DIAGRAM >  
Current limit PFM control is used for the control method to make it difficult for the output voltage ripple to increase even when the switching  
current is superimposed, so the product can be used within a wide voltage and current range. Further, because PFM control is used, it has  
excellent transient response to support low capacity ceramic capacitors to realize a compact, high-performance boost DC/DC converter.  
The synchronous driver and rectifier switch Tr efficiently sends the coil energy to the capacitor connected to the VOUT pin to achieve highly  
efficient operation from low to high loads.  
The electrical characteristics actual output voltage VOUT(E) is the PFM comparator threshold voltage shown in the block diagram. Therefore, the  
booster circuit output voltage average value, including the peripheral components, depends on the ripple voltage, so this must be carefully  
evaluated before being used in the actual product.  
VBAT=VCE=2.0VVOUT=3.3VIOUT=70mAL=4.7μHCL=10μFTa=25℃  
VBAT=VCE=2.0VVOUT=3.3VIOUT=20mAL=4.7μHCL=10μFTa=25℃  
VLX  
VLX  
VLX:2V/div  
VOUT Voltage  
Average  
VOUT Voltage  
VOUT  
VOUT:50mV/div  
ILX:200mA/div  
VOUT  
Average  
VOUT(E)  
VOUT(E)  
IPFM  
ILX  
ILX  
2[μs/div]  
2[μs/div]  
< Reference Voltage Source (VREF)>  
The reference voltage source (VREF voltage) provides the reference voltage to ensure stable output voltage of the DC/DC converter.  
< PFM Control >  
The voltage from the output voltage divided by the division resistors RFB1 and RFB2 in the IC is used as feedback voltage (FB voltage), and the  
PFM comparator is compared with the FB voltage and VREF. If the FB voltage is lower than VREF, the signal is sent to the buffer driver via the  
PFM control circuit and the Nch driver Tr is turned ON. If the FB voltage is higher than VREF, the PFM comparator sends a signal that does not  
turn ON the Nch driver Tr.  
The current sense circuit monitors the current flowing in the Nch driver Tr connected to the Lx pin when the Nch driver Tr is ON. When the  
prescribed PFM switching current (IPFM) is reached, the signal is sent to the buffer driver via the PFM control circuit to turn OFF the Nch driver Tr  
and turn ON the Pch synchronous rectifier switch Tr.  
The Pch synchronous rectifier switch Tr ON time (off time) is dynamically optimized internally. After the off time has passed, when the PFM  
comparator confirms the VOUT voltage has exceeded the set voltage, a signal that does not allow the Nch driver Tr to be turned on is sent from  
the PFM comparator to the PFM control circuit, but if the VOUT voltage remains lower than the set voltage, then Nch driver Tr ON is started.  
The intervals of the above ①②③ linked operations are continuously adjusted in response to the load current to ensure the output voltage is  
kept stable from low to high loads and that it is done with good efficiency.  
14/25  
XCL100/XCL101  
Series  
OPERATION EXPLANATION (Continued)  
<PFM Switching Current>  
The PFM switching current unit monitors the current flowing in the Nch driver Tr and functions to limit the current flowing in the Nch driver Tr,  
but if the load current becomes much larger than the PFM switching energy, the VOUT voltage becomes lower and prevents the coil current in the  
Nch driver Tr OFF period from lowering, which affects the internal circuit delay time and results in an excessive current that is larger than the  
PFM switching current flowing in the Nch driver Tr and Pch synchronous rectifier switch Tr.  
<Load Disconnection Function, Bypass Mode>  
When "L" voltage is input to the CE pin, the A/B type enters into standby mode and the C type enters into bypass mode to stop the circuit required  
for the boost operation. In the standby mode the load cut-off function operates and both the Nch driver Tr and Pch synchronous rectifier switch Tr  
are turned OFF, which cuts off the current to the LX pin and VOUT pin and the parasitic diode control circuit connects the parasitic diode cathode of  
the Pch synchronous rectifier switch Tr to the LX pin . In the bypass mode the Nch driver Tr is OFF, the Pch synchronous rectifier switch Tr is  
ON when VLX > VOUT, and the parasitic diode control circuit connects the parasitic diode cathode of the Pch synchronous rectifier switch Tr to the  
VOUT pin . Also, when VLX < VOUT, the Pch synchronous rectifier switch Tr is turned OFF and the parasitic diode cathode is connected to the VOUT  
pin .  
Note: Except for the moment when the VBAT voltage rises up under a start-up condition.  
Parasitic Diode  
Controller  
Parasitic Diode  
Controller  
LX Pin Side  
VOUT Pin Side  
LX Pin Side  
VOUT Pin Side  
Buffer Driver  
Buffer Driver  
< VBAT-VOUT Voltage Detection Circuit>  
The VBAT-VOUT voltage detection circuit compares the VBAT pin voltage with the VOUT pin voltage, and whichever is the highest is operated to  
become the IC power supply (VDD). In addition, if, during normal operation, the input voltage becomes higher than the output voltage, the Nch  
driver Tr is turned OFF and the Pch synchronous rectifier switch Tr is kept ON so that the input voltage passes through to the output voltage  
(through mode). When the input voltage becomes lower than the output voltage, the circuit automatically returns to the normal boost operation.  
This detection circuit does not operate when in the standby mode.  
<Inrush Current Protection Function>  
When the VBAT or VCE power supply is input, CL is charged via the stable current that results from the inrush current protection function (refer to  
graphs below). Therefore, this function minimizes potential over current from the VBAT pin to the VOUT pin. Also, this current value depends on the  
VBAT voltage. After CL is charged by the aforementioned stable current and VOUT reaches around the VBAT voltage level, the inrush current  
protection function will be released after several hundred μs ~ several ms and the IC will then move to step-up mode, bypass mode or through  
mode.  
Inrush Current Protection Characteristics  
300  
250  
200  
150  
100  
50  
600  
550  
500  
450  
400  
350  
300  
250  
200  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.0  
(V)  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage: V  
BAT  
15/25  
XCL100/XCL101 Series  
OPERATION EXPLANATION (Continued)  
<UVLO Function >  
The UVLO function is selectable on the XCL100 series as an option. When the VBAT pin voltage falls below the UVLO detect voltage, the IC stops  
switching or BYPASS operation and cuts off the current to the LX pin and VOUT pin (UVLO mode). In addition, when the VBAT pin voltage recovers to  
above the UVLO release voltage, the IC begins operating again.  
<CL Discharge Function>  
With the B Type an optional CL discharge function can be selected. This function uses the Nch Tr connected between VOUT and GND to discharge,  
at high speed, the load capacity CL charge when the "L" voltage is input to the CE pin (when in the IC standby mode). This is done to prevent  
malfunction of the application caused by a residual charge in CL when the IC is stopped.  
The discharge time is determined by the CL discharge resistance RDCHG, including the Nch Tr, and CL. The constant τ=CL×RDCHG is determined at  
this time, and the following formula is used to find the output voltage discharge time. However, the CL discharge resistance RDCHG varies depending  
on the VBAT or VOUT voltage, so the discharge time cannot be determined easily.  
Therefore, carefully check this in the actual product.  
V=VOUT × e - t /τor t=τIn(VOUT / V)  
V: Output voltage after discharge  
VOUT: Output voltage  
: Discharge time  
τ: CL × RDCHG  
CL: Capacity value of the load capacitor (CL)  
RDCHG: Low resistance value of the CL discharge resistance.  
However, this changes depending on the voltage.  
Output Voltage Discharge characteristics  
RDCHG = 210Ω (TYP.), CL=10μF  
5.5  
1.8V  
3.3V  
5.0V  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
1
2
3
4
5
6
7
8
9
10  
Discharge Time(ms)  
16/25  
XCL100/XCL101  
Series  
NOTE ON USE  
1. Be careful not to exceed the absolute maximum ratings for externally connected components and this IC.  
2. The DC/DC converter characteristics greatly depend not only on the characteristics of this IC but also on those of externally connected  
components, so refer to the specifications of each component and be careful when selecting the components. Be especially careful of the  
characteristics of the capacitor used for the load capacity CL and use a capacitor with B characteristics (JIS Standard) or an X7R/X5R (EIA  
Standard) ceramic capacitor.  
3. Use a ground wire of sufficient strength. Ground potential fluctuation caused by the ground current during switching could cause the IC  
operation to become unstable, so reinforce the area around the GND pin of the IC in particular.  
4. Mount the externally connected components in the vicinity of the IC. Also use short, thick wires to reduce the wire impedance.  
5. An excessive current that is larger than the PFM switching current flowing in the Nch driver Tr and Pch synchronous rectifier switch Tr, which  
could destroy the IC.  
6. When in the bypass mode, the internal Pch synchronous rectifier switch Tr turns ON to allow current to flow to the Lx pin and VOUT pin. When  
an excessive current comes from the VOUT pin when this bypass operates, it could destroy the Pch synchronous rectifier switch Tr.  
7. The CE pin does not have an internal pull-up or pull-down, etc. Apply the prescribed voltage to the CE pin.  
8. The embedded coil is optimized for XCL100/XCL101 series. Please do not use for other purposes.  
9. At high temperatures, the product performance could vary causing the efficiency to decline. Evaluate this carefully before use if the product  
will be used at high temperatures.  
10. Please note that the leak current of the Pch synchronous rectifier switch Tr during high-temperature standby operation could cause the  
output voltage to increase.  
11. When the voltage difference between VIN and VOUT is small, switching energy increases and there is a possibility that the ripple voltage  
will be too large. And when the ripple voltage becomes big by influence of a load current, please add the CL capacitor.  
12. When the booster circuit is activated by a low input voltage, during the time until the output voltage reaches about 1.7V, the PFM switching  
current function might not operate causing the coil current to be superimposed. (See the figure below.)  
VBAT=VCE=00.9VVOUT=1.8VIOUT=1mAL=4.7μHCL=10μFTa=25℃  
VOUT  
VBAT=VCE  
VBAT=VCE:1.0V/div  
VLX  
VOUT:1.0V/div  
VLX:2.0V/div  
ILX:200mA/div  
ILX  
200[μs/div]  
VOUT  
VBAT=VCE  
VLX  
VBAT=VCE:1.0V/div  
VOUT:1.0V/div  
VLX:2.0V/div  
Zoom  
ILX:200mA/div  
ILX  
50[μs/div]  
VBAT=VCE=01.7VVOUT=1.8VIOUT=1mAL=4.7μHCL=10μFTa=25℃  
VOUT  
VBAT=VCE:1.0V/div  
VOUT:1.0V/div  
VLX:2.0V/div  
VBAT=VCE  
VLX  
ILX  
ILX:200mA/div  
200[μs/div]  
VOUT  
VBAT=VCE:1.0V/div  
VOUT:1.0V/div  
VLX:2.0V/div  
VBAT=VCE  
VLX  
Zoom  
ILX  
ILX:200mA/div  
50[μs/div]  
17/25  
XCL100/XCL101 Series  
NOTE ON USE (Continued)  
13. If the CL capacity or load current becomes excessively large, the output voltage start-up time, when the power is turned on, will increase, so  
the coil current might be superimposed during the time it takes for the output voltage to become sufficiently higher than the VBAT voltage.  
14. If the input voltage is higher than the output voltage, then the circuit automatically enters the through mode. When the input voltage  
becomes close to the output voltage, there could be repeated switching between the boost mode and through mode causing the ripple  
voltage to fluctuate. (Refer to the graphic below)  
VBAT=VCE=3.316V,VOUT=3.412V,IOUT=3mA,L=4.7μH,CL=10μF,Ta=25  
VOUT  
VOUT:100mV/div  
VBAT  
VBAT:100mV/div  
VLX  
VLX:2.0V/div  
200[μs/div]  
15. If a different power supply is connected from an external source to the IC could be destroyed.  
Refer to the table below for external voltage availability for each product type and operating conditions.  
V
RELEASE(E)VBAT5.5V  
0.9VVBATVRELEASE(E)  
V
BAT0.9V  
Series/  
TYPE  
(UVLO Release State)  
(UVLO Detect State)  
CE="L"  
Yes  
CE="H"  
CE="L"  
CE="H"  
CE="L" CE="H"  
XCL100A  
XCL100B  
Yes  
Yes  
Applied  
Voltage  
to the  
No  
No  
No  
(CL Discharge  
Operation)  
(CL Discharge  
Operation)  
(CL Discharge  
Operation)  
Yes  
No  
No  
VOUT pin  
No  
XCL100C  
(Reverse Flow  
toward the input)  
Yes  
Yes  
0.9VVBAT5.5V  
V
BAT0.9V  
Series/  
TYPE  
CE="L"  
CE="H"  
CE="L"  
CE="H"  
XCL101A  
XCL101B  
Yes  
Applied  
Voltage  
to the  
No  
(CL Discharge  
Operation)  
Yes  
No  
No  
VOUT pin  
No  
XCL101C  
(Reverse Flow  
toward the input)  
16. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.  
17. Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs and post-  
aging protection treatment when using Torex products in their systems.  
18/25  
XCL100/XCL101  
Series  
NOTE ON USE (Continued)  
18. With the A Type, when the VBAT or VCE power supply is input, if the VOUT pin voltage does not exceed VBAT -0.35V, which can happen due to  
the load current being more than the inrush protection current, step-up mode or through mode operations won’t function correctly.  
19. In the case of products with the UVLO function that do not have CL discharge, the output voltage may occasionally rise due to leakage current  
from the Pch synchronous switch Tr when high-temperature UVLO mode operates.  
20. The proper position of mounting is based on the coil terminal  
Instruction of pattern layouts  
1. In order to stabilize VBAT voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as possible to the VBAT and ground  
pins.  
2. Please mount each external component as close to the IC as possible.  
3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance.  
4. Make sure that the ground traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of  
switching may result in instability of the IC.  
5. Internal driver transistors bring on heat because of the transistor current and ON resistance of the driver transistors.  
6. As precautions on mounting, please set the mounting position accuracy within 0.05 mm  
Recommended Pattern Layout  
TOREX  
XCL101  
GND  
CE  
IC  
LX  
Lx  
VIN  
CL  
GND  
VOUT  
<Top view>  
<Bottom view>  
About the appearance (coil part)  
(1) Coils are compliant with general surface mount type chip coil (inductor) specifications and may have scratches, flux contamination and the  
like.  
19/25  
XCL100/XCL101 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
1) Output Voltage vs. Output Current  
XCL101C501BR-G  
XCL101C331BR-G  
3.7  
3.5  
3.3  
3.1  
2.9  
5.8  
5.4  
5.0  
4.6  
4.2  
Ta=25  
Ta=25  
VIN=1.5V  
1.8V  
VIN=3.0V  
3.6V  
3.0V  
4.2V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current:IOUT (mA)  
Output Current:IOUT (mA)  
2) Efficiency vs. Output Current  
XCL101C331BR-G  
XCL101C501BR-G  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
4.2V  
3.6V  
3.0V  
1.8V  
VIN= 1.5V  
VIN= 3.0V  
Ta=25  
100 1000  
Ta=25℃  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
100  
1000  
Output Current:IOUT (mA)  
Output Current:IOUT (mA)  
3) Ripple Voltage vs. Output Current  
XCL101C331BR-G  
XCL101C501BR-G  
200  
160  
120  
80  
200  
160  
120  
80  
Ta=25℃  
Ta=25℃  
VIN=3.0V  
3.6V  
4.2V  
VIN=1.5V  
1.8V  
3.0V  
40  
40  
0
0
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current:IOUT (mA)  
Output Current:IOUT (mA)  
20/25  
XCL100/XCL101  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
4) Bypass Voltage vs. Output Current  
XCL101C331BR-G  
XCL101C501BR-G  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
VIN=5.0V  
CE=0V  
VIN=3.6V  
CE=0V  
-40  
-40  
Ta=25℃  
Ta=25℃  
85℃  
85℃  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Current: IOUT (mA)  
Output Current: IOUT (mA)  
5) Load Transient Response  
XCL101C331BR-G  
XCL101C331BR-G  
IOUT= 1.0mA50mA  
IOUT= 50mA1.0mA  
VOUT  
VOUT  
IOUT =50mA  
IOUT SW  
IOUT =50mA  
IOUT =1.0mA  
IOUT SW  
IOUT =1.0mA  
VBAT=VCE=1.8V, VOUT=3.3V, Ta=25, CIN=4.7μF, CL=10μF  
VOUT:50mV/Div, IOUT SW:1.0V/Div, Time:20μs  
VBAT=VCE=1.8V, VOUT=3.3V, Ta=25, CIN=4.7μF, CL=10μF  
VOUT:50mV/Div, IOUT SW:1.0V/Div, Time:20μs  
XCL101C501BR-G  
XCL101C501BR-G  
IOUT= 1.0mA50mA  
IOUT= 1.0mA50mA  
VOUT  
VOUT  
IOUT SW  
IOUT =50mA  
IOUT =50mA  
IOUT =1.0mA  
IOUT =1.0mA  
IOUT SW  
VBAT=VCE=3.0V, VOUT=5.0V, Ta=25, CIN=4.7μF, CL=10μF  
VOUT:50mV/Div, IOUT SW:1.0V/Div, Time:20μs  
VBAT=VCE=3.0V, VOUT=5.0V, Ta=25, CIN=4.7μF, CL=10μF  
VOUT:50mV/Div, IOUT SW:1.0V/Div, Time:20μs  
21/25  
XCL100/XCL101 Series  
PACKAGING INFORMATION  
For the latest package information go to, www.torexsemi.com/technical-support/packages  
PACKAGE  
CL-2025  
OUTLINE / LAND PATTERN  
CL-2025 PKG  
THERMAL CHARACTERISTICS  
CL-2025 Power Dissipation  
CL-2025-02  
CL-2025-02 PKG  
CL-2025-02 Power Dissipation  
22/25  
XCL100/XCL101  
Series  
MARKING RULE  
XCL101  
represents products series  
MARK  
1
PRODUCT SERIES  
XCL101******-G  
represents integer portion of the output voltage  
1
2
3
6
5
4
XCL101A*****  
XCL101C*****  
VOUT (V)  
1.x  
MARK  
VOUT (V)  
1.x  
MARK  
1
2
3
4
5
B
C
D
E
F
2.x  
2.x  
3.x  
3.x  
4.x  
4.x  
5.x  
5.x  
CL-2025/CL-2025-02  
represents the decimal part of output voltage  
VOUT(V)  
X.0  
MARK  
PRODUCT SERIES  
0
1
2
3
4
5
6
7
8
9
XCL101**0***-G  
XCL101**1***-G  
XCL101**2***-G  
XCL101**3***-G  
XCL101**4***-G  
XCL101**5***-G  
XCL101**6***-G  
XCL101**7***-G  
XCL101**8***-G  
XCL101**9***-G  
X.1  
X.2  
X.3  
X.4  
X.5  
X.6  
X.7  
X.8  
X.9  
Example (mark, )  
MARK  
XCL101A33***-G  
XCL101C28***-G  
XCL101A50***-G  
3
3
C
8
5
0
, represents production lot number  
0109, 0A0Z, 119Z, A1A9, AAAZ, B1ZZ in order.  
(G, I, J, O, Q, W excluded)  
* No character inversion used.  
23/25  
XCL100/XCL101 Series  
MARKING RULE  
XCL100  
represents products series  
MARK  
PRODUCT SERIES  
R
S
T
XCL100A**1/2/3/4/5/6/7/8/9/A/B/CE*-G  
XCL100B**1/2/3/4/5/6/7/8/9/A/B/CE*-G  
XCL100C**1/2/3/4/5/6/7/8/9/A/B/CE*-G  
1
2
3
6
5
4
represents output voltage  
MARK  
VOUT (V)  
MARK  
VOUT (V)  
2.4  
MARK  
VOUT (V)  
3.0  
1
2
3
4
5
6
1.8  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
7
8
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
D
E
F
4.7  
4.8  
4.9  
5.0  
-
1.9  
2.0  
2.1  
2.2  
2.3  
2.5  
2.6  
2.7  
2.8  
2.9  
3.1  
3.2  
3.3  
3.4  
9
A
B
C
H
K
CL-2025-02  
represents output voltage range and UVLO release voltage  
Output Voltage  
Range  
UVLO  
MARK  
PRODUCT SERIES  
XCL100***1**-G  
XCL100***2**-G  
XCL100***3**-G  
XCL100***4**-G  
XCL100***5**-G  
XCL100***6**-G  
XCL100***7**-G  
XCL100***8**-G  
XCL100***9**-G  
XCL100***A**-G  
XCL100***B**-G  
XCL100***C**-G  
Release Voltage  
0
1
1.83.4V  
3.55.0V  
1.83.4V  
3.55.0V  
1.83.4V  
3.55.0V  
1.83.4V  
3.55.0V  
1.83.4V  
3.55.0V  
1.83.4V  
3.55.0V  
1.83.4V  
3.55.0V  
1.83.4V  
3.55.0V  
1.83.4V  
3.55.0V  
1.83.4V  
3.55.0V  
1.83.4V  
3.55.0V  
1.83.4V  
3.55.0V  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
2.10  
2.20  
2.15  
2
3
4
5
6
7
8
9
A
B
C
D
E
F
H
K
L
M
N
P
R
S
, represents production lot number  
0109, 0A0Z, 119Z, A1A9, AAAZ, B1ZZ in order.  
(G, I, J, O, Q, W excluded)  
* No character inversion used.  
24/25  
XCL100/XCL101  
Series  
1. The product and product specifications contained herein are subject to change without notice to  
improve performance characteristics. Consult us, or our representatives before use, to confirm that  
the information in this datasheet is up to date.  
2. The information in this datasheet is intended to illustrate the operation and characteristics of our  
products. We neither make warranties or representations with respect to the accuracy or  
completeness of the information contained in this datasheet nor grant any license to any intellectual  
property rights of ours or any third party concerning with the information in this datasheet.  
3. Applicable export control laws and regulations should be complied and the procedures required by  
such laws and regulations should also be followed, when the product or any information contained in  
this datasheet is exported.  
4. The product is neither intended nor warranted for use in equipment of systems which require  
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss  
of human life, bodily injury, serious property damage including but not limited to devices or equipment  
used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and  
other transportation industry and 5) safety devices and safety equipment to control combustions and  
explosions. Do not use the product for the above use unless agreed by us in writing in advance.  
5. Although we make continuous efforts to improve the quality and reliability of our products;  
nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal  
injury and/or property damage resulting from such failure, customers are required to incorporate  
adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention  
features.  
6. Our products are not designed to be Radiation-resistant.  
7. Please use the product listed in this datasheet within the specified ranges.  
8. We assume no responsibility for damage or loss due to abnormal use.  
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex  
Semiconductor Ltd in writing in advance.  
TOREX SEMICONDUCTOR LTD.  
25/25  
配单直通车
XCKU5P-1FFVA676E产品参数
型号:XCKU5P-1FFVA676E
是否Rohs认证: 符合
生命周期:Active
IHS 制造商:XILINX INC
包装说明:BGA, BGA676,26X26,40
Reach Compliance Code:compliant
HTS代码:8542.39.00.01
Factory Lead Time:12 weeks
风险等级:5.8
JESD-30 代码:S-PBGA-B676
长度:27 mm
可配置逻辑块数量:27120
输入次数:304
逻辑单元数量:474600
输出次数:304
端子数量:676
最高工作温度:100 °C
最低工作温度:
组织:27120 CLBS
封装主体材料:PLASTIC/EPOXY
封装代码:BGA
封装等效代码:BGA676,26X26,40
封装形状:SQUARE
封装形式:GRID ARRAY
峰值回流温度(摄氏度):NOT SPECIFIED
可编程逻辑类型:FIELD PROGRAMMABLE GATE ARRAY
座面最大高度:3.52 mm
最大供电电压:0.876 V
最小供电电压:0.825 V
标称供电电压:0.85 V
表面贴装:YES
温度等级:OTHER
端子形式:BALL
端子节距:1 mm
端子位置:BOTTOM
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:27 mm
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!