欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • XPC107APX66LD
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • XPC107APX66LD图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • XPC107APX66LD
  • 数量3865 
  • 厂家FREESCALE 
  • 封装BGA 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • XPC107APX66LD图
  • 深圳市励创源科技有限公司

     该会员已使用本站2年以上
  • XPC107APX66LD
  • 数量35600 
  • 厂家MOT 
  • 封装BGA 
  • 批号21+ 
  • 诚信经营,原装现货,假一赔十,欢迎咨询15323859243
  • QQ:815442201QQ:815442201 复制
    QQ:483601579QQ:483601579 复制
  • -0755-82711370 QQ:815442201QQ:483601579
  • XPC107APX66LD图
  • 深圳市亿智腾科技有限公司

     该会员已使用本站8年以上
  • XPC107APX66LD
  • 数量16680 
  • 厂家Freescal 
  • 封装BGA 
  • 批号16+ 
  • 假一赔十★全新原装现货★★特价供应★工厂客户可放款
  • QQ:799387964QQ:799387964 复制
    QQ:2777237833QQ:2777237833 复制
  • 0755-82566711 QQ:799387964QQ:2777237833
  • XPC107APX66LD图
  • 深圳市浩兴林电子有限公司

     该会员已使用本站16年以上
  • XPC107APX66LD
  • 数量5000 
  • 厂家MOTOROLA 
  • 封装SMD 
  • 批号2017+ 
  • 优势库存现货,部分无铅
  • QQ:382716594QQ:382716594 复制
    QQ:351622092QQ:351622092 复制
  • 0755-82532799 QQ:382716594QQ:351622092
  • XPC107APX66LD图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • XPC107APX66LD
  • 数量15000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号XPC107APX66LD的Datasheet PDF文件预览

Advance Information  
MPC107EC/D  
Rev. 4, 7/2003  
MPC107  
PCI Bridge/Memory Controller  
Hardware Specifications  
This document provides an overview of the MPC107 PCI bridge/memory controller  
(PCIB/MC) for high-performance embedded systems. The MPC107 is a cost-effective,  
general-purpose PCIB/MC for applications using PCI in networking infrastructure,  
telecommunications, and other embedded markets. It can be used in applications such as  
network routers and switches, mass storage subsystems, network appliances, and print and  
imaging systems.  
This document describes pertinent electrical and physical characteristics of the MPC107. For  
functional characteristics of the processor, refer to the MPC107 PCI Bridge/Memory  
Controller Users Manual (MPC107UM/D).  
This document contains the following topics:  
Topic  
Page  
1
Section 1.1, “Overview”  
Section 1.2, “Features”  
2
Section 1.3, “General Parameters”  
Section 1.4, “Electrical and Thermal Characteristics”  
Section 1.5, “Package Description”  
Section 1.6, “PLL Configuration”  
Section 1.7, “System Design Information”  
Section 1.8, “Document Revision History”  
Section 1.9, “Ordering Information”  
4
4
29  
37  
37  
44  
47  
To locate any published errata or updates for this document, refer to the web site at  
http://www.motorola.com/semiconductors.  
1.1 Overview  
The MPC107 integrates a PCI bridge, memory controller, DMA controller, PIC timers, a  
message unit with an Intelligent Input/Output (I O) message controller, and an  
2
2
Inter-Integrated Circuit (I C) controller. The integration reduces the overall packaging  
requirements and the number of discrete devices required for an embedded system.  
Figure 1 shows the major functional units within the MPC107. Note that this is a conceptual  
block diagram intended to show basic features rather than an attempt to show how these  
features are physically implemented.  
Features  
60x Interface  
Additional Features:  
• Programmable I/O  
with Watchpoint  
• JTAG/COP Interface  
• Power Management  
MPC107  
60x Bus Interface (64- or 32-Bit Data Bus)  
Peripheral Logic Block  
Data Bus  
Data (64-Bit)  
Address  
(64- or 32-Bit)  
with 8-Bit Parity  
or ECC  
Data Path  
(32-Bit)  
ECC Controller  
Message  
Unit  
(with I2O)  
Memory/ROM/  
Port X Control/  
Address  
Central  
Memory  
Controller  
Control  
Unit  
DMA  
Controller  
Configuration  
Registers  
SDRAM_SYNC_IN  
I2C  
I2C  
SDRAM Clocks  
CPU Clocks  
Controller  
DLL  
PLL  
PCI Bus  
Interface Unit  
PCI_SYNC_IN  
PIC  
5 Direct/  
16 Serial  
Interrupts  
Address  
Translator  
PCI  
Arbiter  
Interrupt  
Controller/  
Timers  
Fanout  
Buffers  
PCI Bus  
Clocks  
OSC_IN  
32-Bit  
Five  
PCI Interface Request/Grant  
Pairs  
Figure 1. MPC107 Block Diagram  
1.2 Features  
The MPC107 provides an integrated high-bandwidth, high-performance interface for up to two 60x  
processors, the PCI bus, and main memory. This section summarizes the major features of the MPC107, as  
follows:  
Memory interface  
— 64-/32-bit 100-MHz bus  
— Programmable timing supporting either FPM DRAM, EDO DRAM, or SDRAM  
— High-bandwidth bus (32-/64-bit data bus) to DRAM  
— Supports one to eight banks of 4-, 16-, 64-, or 128-Mbit memory devices, and up to four banks  
of 256-Mbit SDRAM devices  
— Supports 1-Mbyte to 1-Gbyte DRAM memory  
— 144 Mbytes of ROM space  
— 8-, 32-, or 64-bit ROM  
— Write buffering for PCI and processor accesses  
— Supports normal parity, read-modify-write (RMW), or ECC  
— Data-path buffering between memory interface and processor  
2
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Features  
— Low-voltage TTL logic (LVTTL) interfaces  
— Port X: 8-, 32-, or 64-bit general-purpose I/O port using ROM controller interface with  
programmable address strobe timing  
32-bit PCI interface operating up to 66 MHz  
— PCI 2.1-compliant  
— PCI 5.0-V tolerance  
— Support for PCI locked accesses to memory  
— Support for accesses to PCI memory, I/O, and configuration spaces  
— Selectable big- or little-endian operation  
— Store gathering of processor-to-PCI write and PCI-to-memory write accesses  
— Memory prefetching of PCI read accesses  
— Selectable hardware-enforced coherency  
— PCI bus arbitration unit (five request/grant pairs)  
— PCI agent mode capability  
— Address translation unit  
— Some internal configuration registers accessible from PCI  
Two-channel integrated DMA controller (writes to ROM/Port X not supported)  
— Supports direct mode or chaining mode (automatic linking of DMA transfers)  
— Supports scatter gathering—read or write discontinuous memory  
— Interrupt on completed segment, chain, and error  
— Local-to-local memory  
— PCI-to-PCI memory  
— PCI-to-local memory  
— PCI memory-to-local memory  
Message unit  
— Two doorbell registers  
— An extended doorbell register mechanism that facilitates interprocessor communication  
through interrupts in a dual-local-processor system  
— Two inbound and two outbound messaging registers  
— I O message controller  
2
2
I C controller with full master/slave support (except broadcast all)  
Programmable interrupt controller (PIC)  
— Five hardware interrupts (IRQs) or 16 serial interrupts  
— Four programmable timers  
Integrated PCI bus, CPU, and SDRAM clock generation  
Programmable PCI bus, 60x, and memory interface output drivers  
Dynamic power management supporting 60x nap, doze, and sleep modes  
Programmable input and output signals with watchpoint capability  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
3
General Parameters  
Built-in PCI bus performance monitor facility  
Debug features  
— Error injection/capture on data path  
— IEEE 1149.1 (JTAG)/test interface  
Processor interface  
— Supports up to two PowerPC microprocessors with 60x bus interface  
— Supports various operating frequencies and bus divider ratios  
— 32-bit address bus, 64-/32-bit data bus supported at 100 MHz  
— Supports full memory coherency  
— Supports optional local bus slave  
— Decoupled address and data buses for pipelining of 60x accesses  
— Store gathering on 60x-to-PCI writes  
— Concurrent transactions on 60x and PCI buses supported  
1.3 General Parameters  
The following list provides a summary of the general parameters of the MPC107:  
Technology  
Die size  
0.29 µm CMOS, five-layer metal  
2
50 mm  
Transistor count  
Logic design  
Package  
0.96 million  
Fully-static  
Surface mount 503 flip chip plastic ball grid array (FC-PBGA)  
Core power supply  
2.5 V ± 5% V DC (nominal; see Table 2 for recommended operating  
conditions)  
I/O power supply  
3.0 to 3.6 V DC  
1.4 Electrical and Thermal Characteristics  
This section provides the AC and DC electrical specifications and thermal characteristics for the MPC107.  
1.4.1 DC Electrical Characteristics  
The following sections describe the absolute maximum ratings, recommended operating conditions, DC  
electrical specifics, characteristics of the output drivers, power consumption estimates, and thermal  
characteristics for the MPC107.  
4
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Electrical and Thermal Characteristics  
1.4.1.1 Absolute Maximum Ratings  
The tables in this section describe the MPC107 DC electrical characteristics. Table 1 provides the absolute  
maximum ratings.  
Table 1. Absolute Maximum Ratings  
Characteristic 1  
Supply voltage—core  
Symbol  
Range  
Unit  
Notes  
VDD  
GVDD  
BVDD  
OVDD  
AVDD/LAVDD  
LVDD  
–0.3 to 2.75  
–0.3 to 3.6  
–0.3 to 3.6  
–0.3 to 3.6  
–0.3 to 2.75  
–0.3 to 5.4  
–0.3 to 3.6  
0 to 105  
V
V
Supply voltage—memory bus drivers  
Supply voltage—processor bus drivers  
Supply voltage—PCI and standard I/O buffers  
Supply voltage—PLLs and DLL  
Supply voltage—PCI reference  
Input voltage  
V
V
V
V
Vin  
V
2
Operational die-junction temperature range  
Storage temperature range  
Tj  
°C  
°C  
Tstg  
–55 to 150  
Notes:  
1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only,  
and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device  
reliability or cause permanent damage to the device.  
2. PCI inputs with LVDD = 5 V ± 5% V DC may be correspondingly stressed at voltages exceeding LVDD + 0.5 V DC.  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
5
Electrical and Thermal Characteristics  
1.4.1.2 Recommended Operating Conditions  
Table 2 provides the recommended and tested operating conditions for the MPC107. Proper device  
operation outside of these conditions is not guaranteed.  
Table 2. Recommended Operating Conditions  
Recommended  
Characteristic  
Symbol  
Unit  
Notes  
Value  
Supply voltage  
VDD  
2.5 ± 5%  
3.3 ± 5%  
3.3 ± 5%  
2.5 ± 5%  
3.3 ± 0.3  
2.5 ± 5%  
2.5 ± 5%  
5.0 ± 5%  
3.3 ± 0.3  
0 to 3.6 or 5.75  
0 to 3.6  
V
V
V
4
6
6
Supply voltages for memory bus drivers  
Supply voltages for processor bus drivers  
GVDD  
BVDD  
I/O buffer supply for PCI and standard  
PLL supply voltage  
OVDD  
AVDD  
LAVDD  
LVDD  
V
V
4
5
DLL supply voltage  
V
5
PCI reference  
V
7, 8  
7, 8  
1, 2  
3
V
Input voltage  
PCI inputs  
Vin  
Tj  
V
All other inputs  
V
Die-junction temperature  
0 to 105  
°C  
Notes:  
1. PCI pins are designed to withstand LVDD + 0.5 V DC when LVDD is connected to a 5.0-V DC power supply.  
2. PCI pins are designed to withstand LVDD + 0.5 V DC when LVDD is connected to a 3.3-V DC power supply.  
Cautions:  
3. Input voltage (Vin) must not be greater than the supply voltage (VDD/AVDD/LAVDD) by more than 2.5 V at all times,  
including during power-on reset.  
4. OVDD must not exceed VDD/AVDD/LAVDD by more than 1.8 V at any time, including during power-on reset. This  
limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.  
5. VDD/AVDD/LAVDD must not exceed OVDD by more than 0.6 V at any time, including during power-on reset. This  
limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.  
6. BVDD/GVDD must not exceed VDD/AVDD/LAVDD by more than 1.8 V at any time, including during power-on reset.  
This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.  
7. LVDD must not exceed VDD/AVDD/LAVDD by more than 5.4 V at any time, including during power-on reset. This  
limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.  
8. LVDD must not exceed OVDD by more than 3.6 V at any time, including during power-on reset. This limit may be  
exceeded for a maximum of 20 ms during power-on reset and power-down sequences.  
6
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Electrical and Thermal Characteristics  
Figure 2 shows supply voltage sequencing and separation cautions.  
LVDD @ 5 V  
5 V  
8
7
Note 1  
3.3 V  
2.5 V  
8
OVDD/BVDD/GVDD/(LVDD @ 3.3 V - - - -)  
VDD/AVDD/LAVDD  
7
4, 6  
5
100 µs  
VDD Stable  
PLL  
Relock  
Time 2  
0
Time  
Voltage  
Regulator  
Delay  
HRESET  
Asserted 255  
External Memory  
Clock Cycles 2  
Power Supply Ramp Up  
Reset  
Configuration Pins  
9 External Memory  
Clock Cycles Setup Time 3  
VM = 1.4 V  
5
HRESET  
Maximum Rise Time Must be Less Than  
One External Memory Clock Cycle 4  
VM = 1.4 V  
HRESET_CPU  
Notes:  
1. Numbers associated with waveform separations correspond to caution numbers listed in Table 2.  
2. Refer to Table 8 for additional information on PLL relock and reset signal assertion timing requirements.  
3. Refer to Table 9 for additional information on reset configuration pin setup timing requirements.  
4. HRESET must transition from a logic 0 to a logic 1 in less than one SDRAM_SYNC_IN clock cycle for the  
device to be in the non-reset state.  
5. HRESET_CPU negates 217 memory clock cycles after HRESET negates.  
Figure 2. Supply Voltage Sequencing and Separation Cautions  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
7
Electrical and Thermal Characteristics  
Figure 3 shows the undershoot and overshoot voltage for the MPC107 memory interface.  
4 V  
GVDD + 5%  
GVDD  
VIH  
GND  
GND – 0.3 V  
VIL  
GND – 1.0 V  
Not to Exceed 10%  
of tSDRAM_CLK  
Figure 3. Overshoot/Undershoot Voltage  
Figure 4 and Figure 5 show the undershoot/overshoot voltage of the PCI interface for 3.3- and 5-V signals,  
respectively.  
11 ns  
(Min)  
+7.1 V  
Overvoltage  
Waveform  
7.1 V p-to-p  
(Min)  
0 V  
4 ns  
(Max)  
4 ns  
(Max)  
62.5 ns  
+3.6 V  
Undervoltage  
Waveform  
7.1 V p-to-p  
(Min)  
–3.5 V  
Figure 4. Maximum AC Waveforms for 3.3-V Signaling  
8
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Electrical and Thermal Characteristics  
11 ns  
(Min)  
+7.1 V  
Overvoltage  
Waveform  
7.1 V p-to-p  
(Min)  
0 V  
4 ns  
(Max)  
4 ns  
(Max)  
62.5 ns  
+3.6 V  
Undervoltage  
Waveform  
7.1 V p-to-p  
(Min)  
–3.5 V  
Figure 5. Maximum AC Waveforms for 5-V Signaling  
1.4.1.3 DC Electrical Specifications  
Table 3 provides the DC electrical characteristics for the MPC107.  
Table 3. DC Electrical Specifications  
At recommended operating conditions (See Table 2)  
Characteristics  
Input high voltage  
Conditions 1  
Symbol  
Min  
Max  
Unit Notes  
PCI only  
PCI only  
VIH  
VIL  
VIH  
VIH  
VIL  
0.65 × OVDD  
LVDD  
V
V
V
V
V
2, 3  
Input low voltage  
Input high voltage  
2.0  
0.3 × OVDD  
All other pins (GVDD = 3.3 V)  
All other pins (BVDD = 2.5 V)  
2
2
1.7  
Input low voltage  
All inputs except  
PCI_SYNC_IN  
GND  
0.8  
PCI_SYNC_IN input high  
voltage  
CVIH  
CVIL  
IL  
2.4  
GND  
0.4  
±70  
±10  
V
V
PCI_SYNC_IN input low  
voltage  
Input leakage current for  
pins using DRV_PCI driver @ LVDD = 4.75 V  
0.5 V Vin 2.7 V  
µA  
µA  
V
4
4
5
5
Input leakage current all  
others  
LVDD = 3.6 V (GVDD 3.465 V)  
IL  
Output high voltage  
IOH = driver dependent  
(GVDD = 3.3 V)  
VOH  
2.4  
Output low voltage  
IOL = driver dependent  
(GVDD = 3.3 V)  
VOL  
0.4  
V
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
9
Electrical and Thermal Characteristics  
Table 3. DC Electrical Specifications (continued)  
At recommended operating conditions (See Table 2)  
Characteristics  
Conditions 1  
Symbol  
Min  
Max  
Unit Notes  
Output high voltage  
IOH = driver dependent  
(BVDD = 2.5 V)  
VOH  
1.85  
V
5
All outputs except  
CPU_CLK[0:2]  
IOH = driver dependent  
(BVDD = 2.5 V)  
CPU_CLK[0:2] only  
VOH  
2.0  
V
V
5
5
Output low voltage  
I
OL = driver dependent  
VOL  
0.4  
(BVDD = 2.5 V)  
All outputs except  
CPU_CLK[0:2]  
IOL = driver dependent  
(BVDD = 2.5 V)  
CPU_CLK[0:2] only  
VOL  
0.3  
7.0  
V
5
6
Capacitance  
Vin = 0 V, f = 1 MHz  
Cin  
pF  
Notes:  
1. These specifications are for the default driver strengths indicated in Table 4.  
2. See Figure 17 for pins with internal pull-up resistors.  
3. The minimum input high voltage is not compliant with the PCI Local Bus Specification (Rev 2.1), which specifies  
0.5 × OVDD for minimum input high voltage.  
4. Leakage current is measured on input and output pins in the high-impedance state. The leakage current is  
measured for nominal OVDD/LVDD and VDD or both OVDD/LVDD and VDD must vary in the same direction.  
5. See Table 4 for the typical drive capability of a specific signal pin based on the type of output driver associated  
with that pin as listed in Table 17.  
6. Capacitance is periodically sampled rather than 100% tested.  
10  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Electrical and Thermal Characteristics  
1.4.1.4 Output Driver Characteristics  
Table 4 provides information on the characteristics of the output drivers referenced in Table 17. The values  
are from the MPC107 IBIS model (v1.1) and are not tested. For additional detailed information, see the  
complete IBIS model listing at http://www.motorola.com/semiconductors.  
Table 4. Drive Capability of MPC107 Output Pins  
Programmable  
Supply  
Driver Type  
Output Impedance  
IOH  
IOL  
Unit  
Notes  
Voltage  
()  
DRV_CPU  
20  
BVDD = 3.3 V  
BVDD = 2.5 V  
BVDD = 3.3 V  
BVDD = 2.5 V  
OVDD = 3.3 V  
OVDD = 3.3 V  
GVDD = 3.3 V  
GVDD = 3.3 V  
GVDD = 3.3 V  
GVDD = 3.3 V  
GVDD = 3.3 V  
GVDD = 3.3 V  
36.6  
21.4  
18.6  
10.8  
12.0  
6.1  
18.1  
15.6  
9.2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
2, 5  
3, 6, 7  
2, 5  
40 (default)  
7.9  
3, 6, 7  
1, 4  
DRV_PCI  
25  
50 (default)  
8 (default)  
13.3  
12.4  
6.3  
1, 4  
DRV_CPU_CLK  
DRV_MEM_CTRL  
DRV_MEM_CLK  
DRV_PCI_CLK  
89.0  
55.8  
36.6  
18.6  
36.6  
18.6  
42.3  
26.4  
18.1  
9.2  
2, 5  
2, 5  
20  
2, 5  
40  
2, 5  
DRV_MEM_DATA  
20 (default)  
40  
18.1  
9.2  
2, 5  
2, 5  
Notes:  
1. For DRV_PCI, IOH read from the IBIS listing in the pull-up mode, I(Min) column, at the 0.33-V label by interpolating  
between the 0.3- and 0.4-V table entries’ current values which corresponds to the PCI VOH = 2.97 = 0.9 × OVDD  
(OVDD = 3.3 V), where table entry voltage = OVDD – PCI VOH  
2. For all others with GVDD or BVDD = 3.3 V, IOH read from the IBIS listing in the pull-up mode, I(Min) column, at the  
0.9-V table entry which corresponds to the VOH = 2.4 V, where table entry voltage = G/BVDD – VOH  
.
.
3. For all others with BVDD = 2.5 V, IOH read from the IBIS listing in the pull-up mode, I(Min) column, at the 0.65-V  
table entry by interpolating between the 0.6- and 0.7-V table entries’ current values which corresponds to the  
VOH = 1.85 V, where table entry voltage = BVDD – VOH  
.
4. For DRV_PCI, IOL read from the IBIS listing in the pull-down mode, I(Min) column, at 0.33 V = PCI VOL  
=
0.1 × OVDD (OVDD = 3.3 V) by interpolating between the 0.3-and 0.4-V table entries.  
5. For all others with GVDD or BVDD = 3.3 V, IOL read from the IBIS listing in the pull-down mode, I(Min) column, at  
the 0.4-V table entry.  
6. For all others with BVDD = 2.5 V, IOL read from the IBIS listing in the pull-down mode, I(Min) column, at the 0.4-V  
table entry.  
7. For BVDD = 2.5 V, the IOH and IOL values are estimated from the io_mem_data_XX_2.5 and  
io_mem_addr_XX_2.5 sections of the IBIS model, where XX = driver output impedance (20 or 40 ).  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
11  
Electrical and Thermal Characteristics  
1.4.1.5 Power Characteristics  
Table 5 provides the preliminary power consumption estimates for the MPC107. Power consumption on the  
PLL supply pin (AV ) and the DLL supply pin (LAV ) < 15 mW. This information is based on  
DD  
DD  
characterization data.  
Table 5. Power Consumption  
PCI_SYNC_IN/Core Frequency (MHz)  
25/50  
33/33  
33/66  
66/100  
VDD  
Mode  
Unit  
Notes  
VDD  
I/O  
VDD  
I/O  
VDD  
I/O  
I/O  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Typical  
468  
176  
139  
79  
923  
697  
744  
718  
351  
118  
93  
759  
636  
693  
677  
644  
235  
185  
102  
1087  
800  
420  
841  
933  
350  
276  
138  
1122  
915  
970  
939  
mW  
mW  
mW  
mW  
1, 2  
1, 2  
1, 2  
1, 2  
Doze  
Nap  
Sleep  
Notes:  
45  
1. Power is measured with VDD = 2.625 V, GVDD = OVDD = BVDD = 3.45 V at 0°C and one DIMM populated in test  
system.  
2. All clock drivers enabled.  
1.4.1.6 Thermal Characteristics  
Table 6 provides the package thermal characteristics for the MPC107. Refer to Section 1.7, “System Design  
Information,” for more details about thermal management.  
Table 6. FC-PBGA Package Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Notes  
Junction-to-ambient natural convection  
(Single-layer board—1s)  
R
30  
°C/W  
1, 2  
JA  
θ
Junction-to-ambient natural convection  
(Four-layer board—2s2p)  
R
26  
25  
22  
°C/W  
°C/W  
°C/W  
1, 3  
1, 3  
1, 3  
JMA  
JMA  
JMA  
θ
θ
θ
Junction-to-ambient (@200 ft/min)  
(Single-layer board—1s)  
R
R
Junction-to-ambient (@200 ft/min)  
(Four-layer board—2s2p)  
Junction-to-board  
Junction-to-case  
Notes:  
R
R
20  
°C/W  
°C/W  
4
5
JB  
JC  
θ
<0.1  
θ
1. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface without thermal grease.  
12  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Electrical and Thermal Characteristics  
1.4.2 AC Electrical Characteristics  
This section provides the AC electrical characteristics for the MPC107. After fabrication, functional parts  
are sorted by maximum core frequency as shown in Table 7 and Section 1.4.2.1, “Clock AC Specifications,”  
and tested for conformance to the AC specifications for that frequency. The core frequency is determined  
by the bus (PCI_SYNC_IN) clock frequency and the settings of the PLL_CFG[0:3] signals. Parts are sold  
by maximum processor core frequency; see Section 1.9, “Ordering Information.”  
Table 7 provides the operating frequency information for the MPC107.  
Table 7. Operating Frequency 1  
At recommended operating conditions (See Table 2) with LV = 3.3 V ± 0.3 V  
DD  
66 MHz  
100 MHz  
Characteristic 2  
Unit  
Min  
25  
Max  
Min  
Max  
Core (memory bus/processor bus) frequency  
PCI input frequency (PCI_SYNC_IN)  
Notes:  
66  
25  
100  
MHz  
MHz  
12.5–66  
1. See Section 1.9.2, “Part Numbers Not Fully Addressed by This Document,” for information on the 133-MHz part  
offering.  
2. The PCI_SYNC_IN frequency and PLL_CFG[0:3] settings must be chosen such that the resulting peripheral  
logic/memory bus frequency, CPU (core) frequency, and PLL (VCO) frequencies do not exceed their respective  
maximum or minimum operating frequencies. Refer to the PLL_CFG[0:3] signal description in Section 1.6, “PLL  
Configuration,” for valid PLL_CFG[0:3] settings and PCI_SYNC_IN frequencies.  
1.4.2.1  
Clock AC Specifications  
Table 8 provides the clock AC timing specifications as defined in Section 1.4.2.2, “Input AC Timing  
Specifications.” These specifications are for the default driver strengths indicated in Table 4.  
Table 8. Clock AC Timing Specifications  
At recommended operating conditions (See Table 2) with LV = 3.3 V ± 0.3 V  
DD  
Num  
Characteristics and Conditions  
Min  
Max  
Unit  
Notes  
1a Frequency of operation (PCI_SYNC_IN)  
1b PCI_SYNC_IN cycle time  
12.5  
80  
40  
6
66  
15  
MHz  
ns  
ns  
%
7
7
1
2,3 PCI_SYNC_IN rise and fall times  
2.0  
60  
4
PCI_SYNC_IN duty cycle measured at 1.4 V  
5a PCI_SYNC_IN pulse width high measured at 1.4 V  
5b PCI_SYNC_IN pulse width low measured at 1.4 V  
9
ns  
ns  
ps  
ps  
ps  
ps  
ps  
µs  
2
2
6
9
7
PCI_SYNC_IN jitter  
<150  
500  
350  
350  
150  
100  
9a PCI_CLK[0:4] skew (pin-to-pin)  
9b SDRAM_CLK[0:3] skew (pin-to-pin)  
9c CPU_CLK[0:2] skew (pin-to-pin)  
9d SDRAM_CLK[0:3]/CPU_CLK[0:2] jitter  
10 Internal PLL relock time  
2, 3, 5  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
13  
Electrical and Thermal Characteristics  
Table 8. Clock AC Timing Specifications (continued)  
At recommended operating conditions (See Table 2) with LV = 3.3 V ± 0.3 V  
DD  
Num  
Characteristics and Conditions  
Min  
Max  
Unit  
Notes  
15 DLL lock range with DLL_STANDARD = 1 (default)  
16 DLL lock range with DLL_STANDARD = 0  
17 Frequency of operation (OSC_IN)  
18 OSC_IN cycle time  
See Figure 8  
See Figure 9  
12.5  
ns  
ns  
6
6
7
7
4
66  
15  
5
MHz  
ns  
80  
40  
19 OSC_IN rise and fall times  
ns  
20 OSC_IN duty cycle measured at 1.4 V  
21 OSC_IN frequency stability  
Notes:  
60  
100  
%
ppm  
1. Rise and fall times for the PCI_SYNC_IN input are measured from 0.4 to 2.4 V.  
2. Specification value at maximum frequency of operation.  
3. Relock time is guaranteed by design and characterization. Relock time is not tested.  
4. Rise and fall times for the OSC_IN input are guaranteed by design and characterization. OSC_IN input rise and  
fall times are not tested.  
5. Relock timing is guaranteed by design. PLL-relock time is the maximum amount of time required for PLL lock after  
a stable VDD and PCI_SYNC_IN are reached during the reset sequence. This specification also applies when the  
PLL has been disabled and subsequently re-enabled during sleep mode. Also note that HRESET must be held  
asserted for a minimum of 255 bus clocks after the PLL-relock time during the reset sequence.  
6. DLL_STANDARD is bit 7 of the PMC2 register <72>. N is a non-zero integer (1 or 2). Tclk is the period of one  
SDRAM_SYNC_OUT clock cycle in ns. tloop is the propagation delay of the DLL synchronization feedback loop  
(PC board runner) from SDRAM_SYNC_OUT to SDRAM_SYNC_IN in ns; 6.25 inches of loop length (unloaded  
PC board runner) corresponds to approximately 1 ns of delay. See Figure 8 and Figure 9 for DLL locking ranges.  
7. See Table 18 for PCI_SYNC_IN input frequency range for specific PLL_CFG[0:3] settings.  
14  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Electrical and Thermal Characteristics  
Figure 6 shows PCI_SYNC_IN input clock timing, Figure 7 illustrates how the clock specifications in  
Table 8 relate to the MPC107 clocking. Figure 8 and Figure 9 shows the DLL locking range loop delay.  
1
5a  
5b  
2
3
CVIH  
VM  
VM  
VM  
PCI_SYNC_IN  
CVIL  
VM = Midpoint Voltage (1.4 V)  
Figure 6. PCI_SYNC_IN Input Clock Timing Diagram  
MPC107  
CPU_CLK[0:2] Specs. 9c, 9d  
Specs. 15,16  
SDRAM_CLK[0:3]  
DLL  
Specs. 9b, 9d  
Spec. 10  
PLL  
SDRAM_SYNC_OUT  
SDRAM_SYNC_IN  
sys_logic_clk  
PCI_SYNC_IN  
Specs. 1–7  
PCI_SYNC_OUT  
OSC_IN  
Specs. 17–23  
Spec. 9a  
PCI_CLK[0:4]  
Core Logic  
Note: Specification numbers are from Table 8.  
Figure 7. Clock Subsystem Block Diagram  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
15  
Electrical and Thermal Characteristics  
50  
45  
Tclk = 1.8 × Tloop + 27.9 ns  
40  
35  
30  
25  
20  
15  
10  
5
Tclk = 2.2 × Tloop + 11.88 ns  
Tclk = 0.6 × Tloop + 9.27 ns  
Tclk = 0.7 × Tloop + 3.96 ns  
0
0
5
10  
15  
Tloop Propagation Delay Time (ns)  
Figure 8. DLL Locking Range Loop Delay (DLL_STANDARD = 0)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Tclk = 0.9 × Tloop + 13.95 ns  
Tclk = 1.1 × Tloop + 5.94 ns  
Tclk = 0.45 × Tloop + 6.98 ns  
Tclk = 0.55 × Tloop + 2.97 ns  
0
0
5
10  
15  
Tloop Propagation Delay Time (ns)  
Figure 9. DLL Locking Range Loop Delay (DLL_STANDARD = 1)  
16  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Electrical and Thermal Characteristics  
1.4.2.2 Input AC Timing Specifications  
Table 9 provides the input AC timing specifications. See Figure 10 and Figure 11.  
Table 9. Input AC Timing Specifications  
At recommended operating conditions (see Table 2) with LV = 3.3 V ± 0.3 V  
DD  
Num  
Characteristic  
Min  
Max  
Unit  
Notes  
10a PCI input signals valid to PCI_SYNC_IN (input setup)  
3.0  
2.0  
ns  
ns  
ns  
ns  
ns  
ns  
2, 3  
1, 3  
10b Memory interface signals valid to SDRAM_SYNC_IN (input setup)  
10c PIC, misc. debug input signals valid to SDRAM_SYNC_IN (input setup)  
10d I2C input signals valid to SDRAM_SYNC_IN (input setup)  
10e Mode select inputs valid to HRESET (input setup)  
2.0  
1, 3  
2.0  
1, 3  
9 × tCLK  
2.0  
3, 4, 5  
1, 3  
10f 60x processor interface signals valid to SDRAM_SYNC_IN  
(input setup)  
11a1 PCI_SYNC_IN (SDRAM_SYNC_IN) to inputs invalid (input hold)  
1.0  
0.5  
ns  
ns  
2, 3  
1, 3  
11a2 Memory interface signals SDRAM_SYNC_IN to inputs invalid  
(input hold)  
11a3 60x processor interface signals SDRAM_SYNC_IN to inputs invalid  
(input hold)  
0
0
ns  
ns  
1, 3  
11b HRESET to mode select inputs invalid (input hold)  
1, 3, 5  
Notes:  
1. All memory, processor, and related interface input signal specifications are measured from the TTL level (0.8 or  
2.0 V) of the signal in question to the VM = 1.4 V of the rising edge of the memory bus clock, SDRAM_SYNC_IN.  
SDRAM_SYNC_IN is the same as PCI_SYNC_IN in 1:1 mode, but is twice the frequency in 2:1 mode  
(processor/memory bus clock rising edges occur on every rising and falling edge of PCI_SYNC_IN). See  
Figure 10.  
2. All PCI signals are measured from OVDD/2 of the rising edge of PCI_SYNC_IN to 0.4 × OVDD of the signal in  
question for 3.3-V PCI signaling levels. See Figure 11.  
3. Input timings are measured at the pin.  
4. tCLK is the time of one SDRAM_SYNC_IN clock cycle.  
5. All mode select input signal specifications are measured from the TTL level (0.8 or 2.0 V) of the signal in question  
to the VM = 1.4 V of the rising edge of the HRESET signal. See Figure 12.  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
17  
Electrical and Thermal Characteristics  
Figure 10 shows input-output timing referenced to SDRAM_SYNC_IN and Figure 11 the input-output  
timing referenced to PCI_SYNC_IN.  
PCI_SYNC_IN  
SDRAM_SYNC_IN  
(Shown in 2:1 Mode)  
VM  
VM  
VM  
10b-d  
13b  
14b  
11a  
12b-d  
2.0 V  
2.0 V  
Memory  
Inputs/Outputs  
0.8 V  
0.8 V  
Input Timing  
Output Timing  
VM = Midpoint Voltage (1.4 V)  
Figure 10. Input-Output Timing Diagram Referenced to SDRAM_SYNC_IN  
OVDD ÷ 2  
OVDD ÷ 2  
OVDD ÷ 2  
PCI_SYNC_IN  
10a  
13a  
14a  
12a  
11a  
0.615 × OV  
0.285 × OV  
DD  
DD  
PCI  
Inputs/Outputs  
0.4 × OV  
DD  
Input Timing  
Output Timing  
Figure 11. Input-Output Timing Diagram Referenced to PCI_SYNC_IN  
Figure 12 shows input timing for mode select signals.  
VM  
HRESET  
10e  
11b  
2.0 V  
0.8 V  
Mode Pins  
VM = Midpoint Voltage (1.4 V)  
Figure 12. Input Timing Diagram for Mode Select Signals  
18  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Electrical and Thermal Characteristics  
1.4.2.3 Output AC Timing Specification  
Table 10 provides the processor bus AC timing specifications for the MPC107. See Figure 10 and Figure 11.  
Table 10. Output AC Timing Specifications  
At recommended operating conditions (see Table 2) with LV = 3.3 V ± 0.3 V  
DD  
Num  
Characteristic 3, 6  
Min  
Max  
Unit  
Notes  
12a PCI_SYNC_IN to output valid, 66 MHz PCI, with SDMA4  
pulled-down to logic 0 state (see Figure 11)  
6.0  
ns  
2, 4  
PCI_SYNC_IN to output valid, 33 MHz PCI, with SDMA4 in the  
default logic 1 state (see Figure 11)  
11.0  
ns  
2, 4  
12b Memory interface signals, SDRAM_SYNC_IN to output valid  
5.5  
5.5  
ns  
ns  
1
1
12b1 Memory interface signal, CKE (100-MHz device),  
SDRAM_SYNC_IN to output valid  
12b2 Memory interface signal, CKE (66-MHz device), SDRAM_SYNC_IN  
to output valid  
6.0  
ns  
1
12c PIC, misc. debug signals, SDRAM_SYNC_IN to valid  
12d I2C, SDRAM_SYNC_IN to output valid  
9.0  
5.0  
5.5  
ns  
ns  
ns  
ns  
1
1
1
12e 60x Processor interface signals, SDRAM_SYNC_IN to output valid  
13a Output hold, 66 MHz PCI, with SDMA4 and SDMA3 pulled down to  
logic 0 states (see Table 11)  
1.0  
2, 4, 5  
Output hold, 33 MHz PCI, with SDMA4 in the default logic 1 state  
and SDMA3 pulled down to logic 0 state (see Table 11)  
2.0  
ns  
2, 4, 5  
13b Output hold (for all others)  
1
14.0  
4.0  
ns  
ns  
ns  
1
2, 4  
1
14a PCI_SYNC_IN to output high impedance (Toff for PCI)  
14b SDRAM_SYNC_IN to output high impedance (for all others)  
Notes:  
1. All memory and related interface output signal specifications are specified from the VM = 1.4 V of the rising edge of  
the memory bus clock, SDRAM_SYNC_IN to the TTL level (0.8 or 2.0 V) of the signal in question.  
SDRAM_SYNC_IN is the same as PCI_SYNC_IN in 1:1 mode, but is twice the frequency in 2:1 mode  
(processor/memory bus clock rising edges occur on every rising and falling edge of PCI_SYNC_IN). See  
Figure 10.  
2. All PCI signals are measured from OVDD/2 of the rising edge of PCI_SYNC_IN to 0.285*OVDD or 0.615*OVDD of  
the signal in question for 3.3-V PCI signaling levels. See Figure 11.  
3. All output timings assume a purely resistive 50-load (see Figure 13). Output timings are measured at the pin;  
time-of-flight delays must be added for trace lengths, vias, and connectors in the system.  
4. PCI bused signals are composed of the following signals: LOCK, IRDY, C/BE[0:3], PAR, TRDY, FRAME, STOP,  
DEVSEL, PERR, SERR, AD[0:31], REQ[4:0], GNT[4:0], IDSEL, and INTA.  
5. PCI hold times can be varied; see Section 1.4.2.4, “PCI Signal Output Hold Timing,” for information on  
programmable PCI output hold times. The values shown for item 13a are for PCI compliance.  
6. These specifications are for the default driver strengths indicated in Table 4.  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
19  
Electrical and Thermal Characteristics  
Figure 13 shows the AC test load for the MPC107.  
Output Measurements are Made at the Device Pin  
Output  
Pin  
Z0 = 50 Ω  
OVDD/2  
RL = 50 Ω  
Figure 13. AC Test Load for the MPC107  
1.4.2.4 PCI Signal Output Hold Timing  
In order to meet minimum output hold specifications relative to PCI_SYNC_IN for both 33 and 66 MHz  
PCI systems, the MPC107 has a programmable output hold delay for PCI signals. The initial value of the  
output hold delay is determined by the values on the SDMA4 and SDMA3 reset configuration signals.  
Further output hold delay values are available by programming the PCI_HOLD_DEL value of the PMCR2  
configuration register.  
Table 11 describes the bit values for the PCI_HOLD_DEL values in PMCR2.  
Table 11. Power Management Configuration Register 2—0x72  
Reset  
Value  
Bit  
Name  
Description  
6–4  
PCI_HOLD_DEL  
xx0  
PCI output hold delay values relative to PCI_SYNC_IN. The initial  
values of bits 6 and 5 are determined by the reset configuration pins  
SDMA4 and SDMA3, respectively. As these two pins have internal  
pull-up resistors, the default value after reset is 0b110.  
While the minimum hold times are guaranteed at shown values,  
changes in the actual hold time can be made by incrementing or  
decrementing the value in these bit fields of this register via software  
or hardware configuration. The increment is in approximately  
400-picosecond steps. Lowering the value in the 3-bit field decreases  
the amount of output hold available.  
000 66 MHz PCI. Pull-down SDMA4 configuration pin with a 2-kor  
less value resistor. This setting guarantees the minimum output  
hold (item 13a) and the maximum output valid (item 12a) times  
as specified in Figure 10 are met for a 66-MHz PCI system. See  
Figure 14.  
001  
010  
011  
100 33 MHz PCI. This setting guarantees the minimum output hold  
(item 13a) and the maximum output valid (item 12a) times as  
specified in Figure 10 are met for a 33-MHz PCI system. See  
Figure 14.  
101  
110 (Default if reset configuration pins left unconnected)  
111  
20  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Electrical and Thermal Characteristics  
Figure 14 shows the PCI_HOLD_DEL effect on output valid and hold time.  
OVDD ÷ 2  
OVDD ÷ 2  
PCI_SYNC_IN  
12a, 8 ns for 33 MHz PCI  
PCI_HOLD_DEL = 100  
13a, 2 ns for 33 MHz PCI  
PCI_HOLD_DEL = 100  
PCI Inputs/Outputs  
33 MHz PCI  
12a, 6 ns for 66 MHz PCI  
PCI_HOLD_DEL = 000  
13a, 1 ns for 66 MHz PCI  
PCI_HOLD_DEL = 000  
PCI Inputs/Outputs  
66 MHz PCI  
As PCI_HOLD_DEL  
Values Decrease  
PCI Inputs  
and Outputs  
As PCI_HOLD_DEL  
Values Increase  
Output Valid  
Output Hold  
Note: Diagram not to scale.  
Figure 14. PCI_HOLD_DEL Effect on Output Valid and Hold Time  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
21  
Electrical and Thermal Characteristics  
2
1.4.2.5 I C AC Timing Specifications  
2
Table 12 provides the I C input AC timing specifications for the MPC107.  
Table 12. I2C Input AC Timing Specifications  
At recommended operating conditions (see Table 2) with LV = 3.3 V ± 0.3 V  
DD  
Num  
Characteristic  
Min  
Max  
Unit  
Notes  
1
2
Start condition hold time  
4.0  
CLKs  
CLKs  
1, 2  
Clock low period (the time before  
MPC107 will drive SCL low as a  
transmitting slave after detecting SCL  
low as driven by an external master)  
8.0 + (16 × 2FDR[4:2]) × (5 –  
4({FDR[5],FDR[1]} == b'10) –  
3({FDR[5],FDR[1]} == b'11) –  
2({FDR[5],FDR[1]} == b'00) –  
1({FDR[5],FDR[1]} == b'01))  
1, 2, 4, 5  
3
4
5
6
SCL/SDA rise time (from 0.5 to 2.4 V)  
Data hold time  
0
1
1
ms  
ns  
2
SCL/SDA fall time (from 2.4 to 0.5 V)  
5.0  
ms  
Clock high period (time needed to  
either receive a data bit or generate a  
START or STOP)  
CLKs  
1, 2, 5  
7
8
Data setup time  
3.0  
4.0  
ns  
3
Start condition setup time (for repeated  
start condition only)  
CLKs  
1, 2  
9
Stop condition setup time  
4.0  
CLKs  
1, 2  
Notes:  
1. Units for these specifications are in SDRAM_CLK/CPU_CLK units.  
2. The actual values depend on the setting of the digital filter frequency sampling rate (DFFSR) bits in the frequency  
divider register I2CFDR. Therefore, the noted timings in this table are all relative to qualified signals. The qualified  
SCL and SDA are delayed signals from what is seen in real time on the I2C bus. The qualified SCL, SDA signals  
are delayed by the SDRAM_CLK/CPU_CLK clock times DFFSR times two plus one SDRAM_CLK/CPU_CLK  
clock. The resulting delay value is added to the value in this table (where this note is referenced). See Figure 16.  
3. Timing is relative to the sampling clock (not SCL).  
4. FDR[n] refers to the frequency divider register (FDR) I2CFDR bit n.  
5. Input clock low and high periods in combination with the FDR value in the frequency divider register (I2CFDR)  
determine the maximum I2C input frequency. See Figure 13.  
22  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Electrical and Thermal Characteristics  
2
Table 13 provides the I C frequency divider register (I2CFDR) information for the MPC107.  
Table 13. MPC107 Maximum I2C Input Frequency  
Maximum I2C Input Frequency 1  
FDR Hex 2  
Divider 3 (Dec)  
SDRAM_CLK/ SDRAM_CLK/ SDRAM_CLK/ SDRAM_CLK/  
CPU_CLK  
@ 25 MHz  
CPU_CLK  
@ 33 MHz  
CPU_CLK  
@ 50 MHz  
CPU_CLK  
@ 100 MHz  
20, 21  
160, 192  
862  
555  
409  
324  
1.13 MHz  
733  
1.72 MHz  
1.11 MHz  
819  
3.44 MHz  
2.22 MHz  
1.63 MHz  
1.29 MHz  
22, 23, 24, 25  
0, 1  
224, 256, 320, 384  
288, 320  
540  
2, 3, 26, 27, 28, 29 384, 448, 480, 512,  
640, 768  
428  
649  
4, 5  
576, 640  
229  
177  
302  
234  
458  
354  
917  
709  
6, 7, 2A, 2B, 2C, 2D 768, 896, 960, 1024,  
1280, 1536  
8, 9  
1152, 1280  
121  
92  
160  
122  
243  
185  
487  
371  
A, B, 2E, 2F, 30, 31 1536, 1792, 1920,  
2048, 2560, 3072  
C, D  
2304, 2560  
62  
47  
83  
62  
125  
95  
251  
190  
E, F, 32, 33, 34, 35 3072, 3584, 3840,  
4096, 5120, 6144  
10, 11  
4608, 5120  
32  
24  
42  
31  
64  
48  
128  
96  
12, 13, 36, 37, 38,  
39  
6144, 7168, 7680,  
8192, 10240, 12288  
14, 15  
9216, 10240  
16  
12  
21  
16  
32  
24  
64  
48  
16, 17, 3A, 3B, 3C, 12288, 14336, 15360,  
3D  
16384, 20480, 24576  
18, 19  
18432, 20480  
8
6
10  
8
16  
12  
32  
24  
1A, 1B, 3E, 3F  
24576, 28672, 30720,  
32768  
1C, 1D  
1E, 1F  
Notes:  
36864, 40960  
49152, 61440  
4
3
5
4
8
6
16  
12  
1. Values are in kHz, unless otherwise specified.  
2. FDR Hex and Divider (Dec) values are listed in corresponding order.  
3. Multiple Divider (Dec) values will generate the same input frequency, but each Divider (Dec) value will generate a  
unique output frequency as shown in Table 14.  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
23  
Electrical and Thermal Characteristics  
2
Table 14 provides the I C output AC timing specifications for the MPC107.  
Table 14. I2C Output AC Timing Specifications  
At recommended operating conditions (see Table 2) with LV = 3.3 V ± 0.3 V  
DD  
Num  
Characteristic  
Min  
Max  
Unit  
Notes  
1
Start condition hold time  
(FDR[5] == 0) × (DFDR/16)/2N + (FDR[5]  
== 1) × (DFDR/16)/2M  
CLKs  
1, 2, 5  
2
3
Clock low period  
DFDR/2  
CLKs  
ms  
1, 2, 5  
3
SCL/SDA rise time (from 0.5 to  
2.4 V)  
4
Data hold time  
8.0 + (16 × 2FDR[4:2]) × (5 –  
4({FDR[5],FDR[1]} == b'10)–  
3({FDR[5],FDR[1]} == b'11) –  
2({FDR[5],FDR[1]} == b'00) –  
1({FDR[5],FDR[1]} == b'01))  
CLKs  
1, 2, 5  
5
SCL/SDA fall time (from 2.4 to  
0.5 V)  
<5  
ns  
4
6
7
Clock high time  
DFDR/2  
CLKs  
CLKs  
1, 2, 5  
1, 5  
Data setup time (MPC107 as a  
master only)  
(DFDR/2) – (Output data hold time)  
8
Start condition setup time (for  
repeated start condition only)  
DFDR + (Output start condition hold time)  
4.0  
CLKs  
CLKs  
1, 2, 5  
1, 2  
9
Stop condition setup time  
Notes:  
1. Units for these specifications are in SDRAM_CLK/CPU_CLK units.  
2. The actual values depend on the setting of the digital filter frequency sampling rate (DFFSR) bits in the frequency  
divider register I2CFDR. Therefore, the noted timings in this table are all relative to qualified signals. The qualified  
SCL and SDA are delayed signals from what is seen in real time on the I2C bus. The qualified SCL, SDA signals  
are delayed by the SDRAM_CLK/CPU_CLK clock times DFFS times two plus one SDRAM_CLK/CPU_CLK clock.  
The resulting delay value is added to the value in this table where this note is referenced). See Figure 16.  
3. Since SCL and SDA are open-drain type outputs, which the MPC107 can only drive low, the time required for SCL  
or SDA to reach a high level depends on external signal capacitance and pull-up resistor values.  
4. Specified at a nominal 50 pF load.  
5. DFDR is the decimal divider number indexed by FDR[5:0] value. Refer to the I2C Interface chapter’s serial bit clock  
frequency divider selections table. FDR[n] refers to the frequency divider register I2CFDR bit n. N is equal to a  
variable number that would make the result of the divide (data hold time value) equal to a number less than 16. M  
is equal to a variable number that would make the result of the divide (data hold time value) equal to a number less  
than 9.  
24  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Electrical and Thermal Characteristics  
2
Figure 15 through Figure 18 show I C timings.  
2
VM  
VM  
SCL  
SDA  
6
4
1
Figure 15. I2C Timing Diagram I  
3
5
VH  
VM  
SCL  
SDA  
VL  
8
9
Figure 16. I2C Timing Diagram II  
DFFSR Filter Clock  
SDA  
7
Input Data Valid  
Note: DFFSR filter clock is the SDRAM_CLK/CPU_CLK clock times DFFSR value.  
Figure 17. I2C Timing Diagram III  
VM  
SCL/SDArealtime  
Delay  
SCL/SDAqualified  
VM  
Note: The delay is the local memory clock times DFFSR times two plus one local memory clock.  
Figure 18. I2C Timing Diagram IV (Qualified Signal)  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
25  
Electrical and Thermal Characteristics  
1.4.2.6 PIC Serial Interrupt Mode AC Timing Specifications  
Table 15 provides the PIC serial interrupt mode AC timing specifications for the MPC107.  
Table 15. PIC Serial Interrupt Mode AC Timing Specifications  
At recommended operating conditions (see Table 2) with LV = 3.3 V ± 0.3 V  
DD  
Num  
Characteristic  
S_CLK frequency  
Min  
Max  
Unit  
Notes  
1
2
3
4
5
1/14 SDRAM_SYNC_IN  
1/2 SDRAM_SYNC_IN  
MHz  
%
1
S_CLK duty cycle  
S_CLK output valid time  
Output hold time  
40  
0
60  
6
ns  
ns  
S_FRAME, S_RST output valid  
time  
1 sys_logic_clk period + 6  
ns  
2
2
2
6
7
S_INT input setup time to  
S_CLK  
1 sys_logic_clk period + 2  
0
ns  
ns  
S_INT inputs invalid (hold time)  
to S_CLK  
Notes:  
1. See the MPC107 PCI Bridge/Memory Controller User’s Manual for a description of the PIC interrupt control  
register (ICR) describing S_CLK frequency programming.  
2. S_RST, S_FRAME, and S_INT shown in Figure 19 and Figure 20 depict timing relationships to sys_logic_clk and  
S_CLK and do not describe functional relationships between S_RST, S_FRAME, and S_INT. See the MPC107  
PCI Bridge/Memory Controller User’s Manual for a complete description of the functional relationships between  
these signals.  
3. The sys_logic_clk waveform is the clocking signal of the internal peripheral logic from the output of the peripheral  
logic PLL; sys_logic_clk is the same as SDRAM_SYNC_IN when the SDRAM_SYNC_OUT to SDRAM_SYNC_IN  
feedback loop is implemented and the DLL is locked. See the MPC107 PCI Bridge/Memory Controller User’s  
Manual for a complete clocking description.  
Figure 18 and Figure 19 show the PIC serial interrupt mode output and input timing diagrams, respectively.  
VM  
VM  
VM  
sys_logic_clk  
3
4
VM  
S_CLK  
VM  
5
4
S_FRAME  
S_RST  
VM  
VM  
Figure 19. PIC Serial Interrupt Mode Output Timing Diagram  
26  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Electrical and Thermal Characteristics  
VM  
S_CLK  
S_INT  
7
6
Figure 20. PIC Serial Interrupt Mode Input Timing Diagram  
1.4.2.7 IEEE 1149.1 (JTAG) AC Timing Specifications  
Table 16 provides the JTAG AC timing specifications for the MPC107 while in the JTAG operating mode.  
Table 16. JTAG AC Timing Specification (Independent of PCI_SYNC_IN)  
At recommended operating conditions (see Table 2) with LV = 3.3 V ± 0.3 V  
DD  
Num  
Characteristic 1  
TCK frequency of operation  
Min  
Max  
Unit  
Notes  
0
40  
20  
0
25  
3
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
TCK cycle time  
2
TCK clock pulse width measured at 1.5 V  
TCK rise and fall times  
3
4
TRST setup time to TCK falling edge  
TRST assert time  
10  
10  
5
30  
30  
15  
15  
2
5
6
7
Boundary scan input data setup time  
Boundary scan input data hold time  
TCK to output data valid  
3
3
4
4
15  
0
8
9
TCK to output high impedance  
TMS, TDI data setup time  
TMS, TDI data hold time  
0
10  
5
11  
15  
0
12  
TCK to TDO data valid  
13  
TCK to TDO high impedance  
0
Notes:  
1. Timings are independent of the system clock (PCI_SYNC_IN).  
2. TRST is an asynchronous signal. The setup time is for test purposes only.  
3. Non-test (other than TDI and TMS) signal input timing with respect to TCK.  
4. Non-test (other than TDO) signal output timing with respect to TCK.  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
27  
Electrical and Thermal Characteristics  
Figure 21 shows the JTAG clock input timing diagram.  
1
2
2
VM  
VM  
VM  
TCK  
3
3
VM = Midpoint Voltage  
Figure 21. JTAG Clock Input Timing Diagram  
Figure 22 shows the JTAG TRST timing diagram.  
TCK  
4
TRST  
5
Figure 22. JTAG TRST Timing Diagram  
Figure 23 shows the JTAG boundary scan timing diagram.  
TCK  
6
7
Data Inputs  
Input Data Valid  
8
9
Data Outputs  
Data Outputs  
Output Data Valid  
Figure 23. JTAG Boundary Scan Timing Diagram  
28  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Package Description  
Figure 24 shows the test access port timing diagram.  
TCK  
10  
11  
TDI, TMS  
Input Data Valid  
12  
TDO  
Output Data Valid  
13  
TDO  
Figure 24. Test Access Port Timing Diagram  
1.5 Package Description  
This section details the MPC107 package parameters, pin assignments, and dimensions.  
1.5.1 Package Parameters  
The MPC107 uses a 33 mm × 33 mm, 503-pin flip chip plastic ball grid array (FC-PBGA) package. The  
plastic package parameters are as provided in the following list.  
Package outline  
Interconnects  
33 mm × 33 mm  
503  
Pitch  
1.27 mm  
Solder attach  
62 Sn/36 Pb/2 Ag  
Solder balls  
62 Sn/36 Pb/2 Ag  
Solder ball diameter  
Maximum module height  
Co-planarity specification  
Maximum force  
0.60–0.90 mm  
2.75 mm  
0.20 mm  
6.0 lbs. total, uniformly distributed over package (5.4 grams/ball)  
1.5.2 Pin Assignments and Package Dimensions  
Figure 25 shows the top surface, side profile, and pinout for the MPC107, 503 FC-PBGA package.  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
29  
Package Description  
Bottom View  
Side View  
MILLIMETERS  
DIM  
A
MIN  
MAX  
2.75  
0.70  
1.20  
0.80  
0.90  
0.90  
A1  
A2  
A3  
A4  
b
0.50  
1.00  
0.82  
0.60  
D
33 BSC  
30.48 BSC  
NOTES:  
D1  
D2  
D3  
D4  
e
1. DIMENSIONS AND TOLERANCING PER  
ASME Y14.5M-1994.  
12.50  
2. DIMENSIONS IN MILLIMETERS.  
3. MAXIMUM SOLDER BALL DIAMETER  
MEASURED PARALLEL TO DATUM A.  
4. DIMENSIONS DEFINE THE AREA  
OCCUPIED BY THE DIE AND UNDERFILL.  
ACTUAL SIZE OF THIS AREA MAY BE  
SMALLER THAN SHOWN.  
3.43  
5.00  
1.27 BSC  
E
33 BSC  
E1  
E2  
E3  
E4  
30.48 BSC  
14.50  
3.43  
9.00  
Figure 25. MPC107 Package Dimensions and Pinout Assignments  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
30  
MOTOROLA  
Package Description  
1.5.3 Pinout Listings  
Table 17 provides the pinout listing for the MPC107, 503 FC-PBGA package.  
Table 17. MPC107 Pinout Listing  
Supply  
Voltage  
Output  
Notes  
Name  
Pin Number  
Type  
Driver Type  
60x Processor Interface Signals  
A[0:31]  
AE22, AE16, AA14, AE17,  
I/O  
BVDD  
DRV_CPU  
4
AD21, AD14, AD20, AB16,  
AB20, AB15, AA20, AD13, Y15,  
AE12, AD15, AB9, AB14, AA8,  
AC13, Y12, Y11, AE15, AE13,  
AA16, Y13, AB8, AD12, AE10,  
AB13, Y9, Y8, AD9  
AACK  
ARTRY  
BG0  
AC7  
Output  
I/O  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
DRV_CPU  
DRV_CPU  
DRV_CPU  
DRV_CPU  
Y7  
15  
10  
AE11  
AD11  
AB17  
Y14  
Output  
Output  
Input  
Input  
I/O  
BG1  
BR0  
BR1  
CI  
AD16  
AC10  
AD10  
AB10  
DRV_CPU  
DRV_CPU  
DRV_CPU  
DRV_CPU  
DRV_CPU  
DBG0  
DBG1  
DBGLB  
DH[0:31]  
Output  
Output  
Output  
I/O  
P1, R1, P2, T4, T1, T3, R4, P6,  
U6, V5, V2, T5, U1, R6, W1, V4,  
W2, U4, T2, V6, W3, W5, Y1, Y2,  
Y4, Y5, AA1, AA2, AA4, AB1,  
AB3, AB4  
4
4
4
DL[0:31]  
AA7, W6, AB6, AA6, AB5, AC4,  
AD3, AB7, AE1, W4, N6, M1, N3,  
N4, N5, N1, M2, R2, V1, P5, P4,  
N2, U2, AE4, AE6, AE2, AE3,  
AE7, AD5, AB2, AC2, AC1  
I/O  
I/O  
BVDD  
DRV_CPU  
DRV_CPU  
DP[0:7]  
GBL  
AE9, AD6, AD8, AD1, AE8, AD7,  
AD4, AE5  
BVDD  
AD17  
Y17  
I/O  
Input  
I/O  
BVDD  
BVDD  
BVDD  
BVDD  
DRV_CPU  
LBCLAIM  
TA  
AE14  
AE21  
DRV_CPU  
DRV_CPU  
15  
TBST  
I/O  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
31  
Package Description  
Table 17. MPC107 Pinout Listing (continued)  
Supply  
Output  
Driver Type  
Name  
Pin Number  
Type  
Notes  
Voltage  
TEA  
AB11  
AA10  
Output  
I/O  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
DRV_CPU  
DRV_CPU  
DRV_CPU  
DRV_CPU  
DRV_CPU  
TS  
15  
4
TSIZ[0:2]  
TT[0:4]  
WT  
AE19,AD18,AB18  
AD19,AC19,AB19,AA19,AA18  
AC16  
I/O  
I/O  
4
I/O  
PCI Interface Signals  
AD[31:0]  
N23, N21, M20, M21, M22, M24,  
I/O  
OVDD  
DRV_PCI  
4, 11  
M25, L20, L22, K25, K24, K23,  
K21, J20, J24, J25, H20, F24,  
E25, F21, E24, E22, D25, A25,  
B25, A23, B23, B22, C22, C25,  
D23, D21  
C/BE[3:0]  
DEVSEL  
FRAME  
GNT[4:0]  
IDSEL  
INTA  
L24, J22, G22, A24,  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
DRV_PCI  
DRV_PCI  
DRV_PCI  
DRV_PCI  
4, 11  
6, 11  
6, 11  
4, 11  
G23  
G20  
I/O  
T24, P22, P21, R22, N20  
Output  
Input  
Output  
I/O  
L25  
V21  
DRV_PCI  
DRV_PCI  
6, 11, 12  
6, 11  
6
IRDY  
H24  
LOCK  
G21  
Input  
I/O  
PAR  
G24  
DRV_PCI  
DRV_PCI  
11  
PERR  
G25  
I/O  
6, 11, 13  
10  
REQ[4:0]  
SERR  
W25, V25, U25, T25, T23  
Input  
I/O  
F25  
H21  
H25  
DRV_PCI  
DRV_PCI  
DRV_PCI  
6, 11, 12  
6, 11  
6, 11  
STOP  
I/O  
TRDY  
I/O  
Memory Interface Signals  
AS  
A4  
Output  
GVdd  
GVdd  
DRV_MEM_CTRL  
DRV_MEM_CTRL  
CAS/DQM[0:7]  
A2, B1, A11, A10, B3, C2, F12,  
D11  
Output  
4
CKE  
FOE  
A12  
A13  
Output  
I/O  
GVdd  
GVdd  
DRV_MEM_CTRL  
DRV_MEM_CTRL  
1
1, 2  
32  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Package Description  
Table 17. MPC107 Pinout Listing (continued)  
Supply  
Output  
Notes  
Name  
MDH[0:31]  
Pin Number  
Type  
Voltage  
Driver Type  
M6, L4, L6, K2, K4, K5, J4, J6,  
H4, H5, G3, G5, G6, F5, F1, E1,  
B14, D15, B15, E16, D16, C16,  
D18, D17, B17, F18, E19, E20,  
B19, B20, B21, A22  
I/O  
GVDD  
DRV_MEM_DATA  
4
MDL[0:31]  
M5, L1, L2, K1, K3, J1, J2, H1,  
H2, H6, G2, G4, F4, G1, F2, E2,  
F14, F15, A16, F17, B16, A17,  
A18, A19, B18, E18, D19, F19,  
A20, C19, D20, A21  
I/O  
GVDD  
DRV_MEM_DATA  
3, 4  
PAR/AR[0:7]  
RAS/CS[0:7]  
D2, C1, A15, A14, D1, D3, F13,  
C13  
I/O  
GVDD  
GVDD  
DRV_MEM_DATA  
DRV_MEM_ADDR  
4
4
E6, C4, D5, E4, C10, F11, B10,  
B11  
Output  
RCS0  
D10  
B9  
B5  
D7  
A9  
A8  
D4  
I/O  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
DRV_MEM_ADDR  
DRV_MEM_DATA  
DRV_MEM_ADDR  
DRV_MEM_ADDR  
DRV_MEM_ADDR  
DRV_MEM_ADDR  
DRV_MEM_ADDR  
DRV_MEM_ADDR  
1, 2  
RCS1  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
RCS2  
RCS3  
SDBA0  
SDBA1  
SDCAS  
SDMA [13:0]  
1, 2  
1
E10, F9, D9, F8, E8, D8, B8, E7,  
C7, B7, A7, B6, A6, A5  
4, 5  
SDRAS  
WE  
B4  
A3  
Output  
Output  
GVDD  
GVDD  
DRV_MEM_ADDR  
DRV_MEM_ADDR  
1
PIC Control Signals  
INT  
Y22  
U24  
C24  
T21  
U20  
V22  
Output  
Input  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
DRV_CPU  
16  
IRQ_0/S_INT  
IRQ_1/S_CLK  
IRQ_2/S_RST  
IRQ_3/S_FRAME  
IRQ_4/L_INT  
DRV_PCI  
DRV_PCI  
DRV_PCI  
DRV_PCI  
I/O  
I/O  
I/O  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
33  
Package Description  
Table 17. MPC107 Pinout Listing (continued)  
Supply  
Output  
Driver Type  
Name  
Pin Number  
Type  
Notes  
Voltage  
I2C Control Signals  
SCL  
SDA  
AB25  
AB24  
I/O  
I/O  
OVDD  
OVDD  
DRV_CPU  
DRV_CPU  
8, 12  
8, 12  
Clock Signals  
CKO  
V20  
Output  
Output  
Input  
OVDD  
BVDD  
OVDD  
OVDD  
OVDD  
OVDD  
GVDD  
GVDD  
GVDD  
DRV_PCI  
DRV_CPU_CLK  
CPU_CLK[0:2]  
OSC_IN  
AA12, AA13, AB12  
U22  
4
4
PCI_CLK [0:4]  
PCI_SYNC_IN  
PCI_SYNC_OUT  
SDRAM_CLK [0:3]  
SDRAM_SYNC_IN  
SDRAM_SYNC_OUT  
R25, P24, R24, N24, N25  
Output  
Input  
DRV_MEM_CTRL  
P20  
P25  
Output  
Output  
Input  
DRV_MEM_CTRL  
DRV_MEM_CTRL  
D14, D13, E12, E14  
4
E13  
D12  
Output  
DRV_MEM_CTRL  
Miscellaneous Signals  
HRESET  
HRESET_CPU  
MCP  
AA23  
AB21  
AE20  
AC25  
AE18  
M4  
Input  
Output  
Output  
Input  
OVDD  
BVDD  
OVDD  
OVDD  
BVDD  
BVDD  
BVDD  
DRV_CPU  
DRV_CPU  
10, 12  
12, 16  
NMI  
QACK  
Output  
Input  
DRV_CPU  
10  
10  
QREQ  
SRESET  
Y18  
Output  
DRV_CPU  
Test/Configuration Signals  
PLL_CFG[0:3]  
TCK  
AC22, AD23, AD22, AE23  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
Output  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
GVDD  
OVDD  
OVDD  
OVDD  
2,4  
W24  
Y25  
W23  
AA25  
V24  
D6  
7, 10  
7, 10  
TDI  
TDO  
DRV_PCI  
TEST  
7, 10  
8
TEST1  
TEST2  
TMS  
9
Y24  
W22  
W21  
7,10  
TRIG_IN  
TRIG_OUT  
DRV_CPU  
10  
34  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Package Description  
Table 17. MPC107 Pinout Listing (continued)  
Supply  
Output  
Notes  
Name  
Pin Number  
Type  
Voltage  
Driver Type  
TRST  
AA24  
AE24  
Input  
OVDD  
7, 10, 14  
Power and Ground Signals  
AVDD  
GND  
Input  
AA21, AB22, AC11, AC14, AC17,  
AC20, AC23, AC3, AC5, AC8,  
AD24, AE25, C12, C15, C18,  
C21, C23, C3, C6, C9, E3, F10,  
F16, F20, F23, F6, G11, G13,  
G15, G18, G8, H19, H3, H7, J23,  
K20, K6, L19, L3, L7, M23, N19,  
N7, P3, R19, R23, R7, T20, T6,  
U3, V19, V23, V7, W11, W13,  
W15, W18, W8, Y10, Y16, Y19,  
Y20, Y3, Y6  
Input  
GVDD  
B2, C5, C8, C11, C14, C17, C20,  
E5, E9, E11, E15, E17, F3, G7,  
G9, G12, G14, G17, G19, J3, J5,  
J7, L5, M3, M7  
Input  
LAVDD  
LVDD  
F7  
Input  
Input  
Input  
D22, F22, H22, K22, N22, T22  
OVDD  
B24, E21, E23, H23, J19, J21,  
L21, L23, M19, P19, P23, R21,  
U19, U21, U23, Y23  
BVDD  
P7, R3, R5, U5, U7, V3, W7, W9,  
W12, W14, W17, AA3, AA5, AA9,  
AA11, AA15, AA17, AC6, AC9,  
AC12, AC15, AC18, AC21, AD2  
Input  
Input  
VDD  
K19, W16, T19, G10, G16, K7,  
T7, W10, W19, W20, Y21, AA22,  
AB23, AC24, AD25  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
35  
Package Description  
Table 17. MPC107 Pinout Listing (continued)  
Supply  
Output  
Driver Type  
Name  
Pin Number  
Type  
Notes  
Voltage  
Manufacturing Pins  
FTP[2:3]  
MTP[1:2]  
Notes:  
R20, D24  
B12, B13  
I/O  
I/O  
OVDD  
GVDD  
DRV_PCI  
4, 8  
4, 9  
DRV_MEM_CTRL  
1. This pin has an internal pull-up resistor which is enabled only when the MPC107 is in reset state. The value of the  
internal pull-up resistor is not guaranteed, but is sufficient to ensure that a logic 1 is read into configuration bits  
during reset.  
2. This pin is a reset configuration pin.  
3. MDL[0] is a reset configuration pin and has an internal pull-up resistor which is enabled only when the MPC107 is  
in the reset state.The value of the internal pull-up resistor is not guaranteed, but is sufficient to ensure that a  
logic 1 is read into configuration bits during reset.  
4. Multi-pin signals such as AD[0:31] or DL[0:31] have their physical package pin numbers listed in order  
corresponding to the signal names. Ex: AD0 is on pin D21, AD1 is on pin D23, ..., AD31 is on pin N23.  
5. SDMA[10:1] are reset configuration pins and have internal pull-up resistors which are enabled only when the  
MPC107 is in the reset state.The values of the internal pull-up resistors is not guaranteed, but are sufficient to  
ensure that logic 1s are read into the configuration bits during reset.  
6. Recommend a weak pull-up resistor (2–10 k) be placed on this PCI control pin to LVDD  
.
7. VIH and VIL for these signals are the same as the PCI VIH and VIL entries in Table 3.  
8. Recommend a weak pull-up resistor (2–10 k) be placed on this pin to OVDD  
9. Recommend a weak pull-up resistor (2–10 k) be placed on this pin to GVDD  
.
.
10. This pin has an internal pull-up resistor; the value of the internal pull-up resistor is not guaranteed, but is sufficient  
to prevent unused inputs from floating.  
11. This pin is affected by programmable PCI_HOLD_DEL parameter, see Section 1.4.2.4, “PCI Signal Output Hold  
Timing.”  
12. This pin is an open drain signal.  
13. This pin is a sustained three-state pin as defined by the PCI Local Bus Specification.  
14. See Section 1.7.3, “Connection Recommendations,” for additional information on this pin.  
15. Recommend a weak pull-up resistor (2–10 k) be placed on this pin to BVDD  
.
16. If BVDD = 2.5 V ± 5%, this microprocessor interface pin needs to be DC voltage level shifted from OVDD (3.3 V  
± 0.3 V) to 2.5 V ± 5%; this can typically be accomplished with a two resistor voltage divider circuit since the  
signal is an output only signal.  
36  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
PLL Configuration  
1.6 PLL Configuration  
The MPC107 internal PLL is configured by the PLL_CFG[0:3] signals. For a given PCI_SYNC_IN (PCI  
bus) frequency, the PLL configuration signals set the core/memory/processor PLL (VCO) frequency of  
operation for the PCI-to-core/memory/processor frequency multiplying, if any. All valid PLL  
configurations for the MPC107 are shown in Table 18. Range values are shown rounded down to the nearest  
whole number (decimal place accuracy removed) for clarity.  
Table 18. MPC107 Bridge Controller PLL Configuration  
66 MHz Part  
100 MHz Part  
PCI_  
SYNC_IN  
Range  
PCI_  
SYNC_IN  
Range  
PCI:Core  
Ratio  
VCO  
Multiplier  
Ref  
PLL_CFG[0:3] 2  
Core/Mem/  
CPU Range  
(MHz)  
Core/Mem/  
CPU Range  
(MHz)  
(MHz)  
(MHz)  
1
0001  
0010  
0011  
0101  
1000  
1001  
1010  
1100  
1101  
1111  
25 4–33 5  
13 4–16 5  
25–33  
26–34  
25 4–50 5  
13 4–25 5  
25–50  
26–50  
1
4
2
2
4
3
Bypass  
Bypass  
Bypass  
Bypass  
5
25 4–33 7  
17 4–22 7  
34 4–44 7  
13 4–16 7  
20 4–26 7  
50 4–66 6  
Clock off 3  
50–66  
51–66  
25 4–50 7  
17 4–33 7  
33 4–66 6  
13 4–25 7  
20 4–40 7  
50 4–66 6  
Clock off 3  
50–100  
50–100  
50–100  
52–100  
50–100  
50–66  
2
3
2
2
8
9
51–66  
1.5  
4
2
A
52–64  
2
C
D
50–65  
2.5  
1
2
50–66  
2
F
Not usable  
Not usable  
Off  
Off  
Notes:  
1. PLL_CFG[0:3] settings not listed (0000, 0100, 0110, 0111, 1011, and 1110) are reserved.  
2. In PLL bypass mode, the PCI_SYNC_IN input signal clocks the internal core directly, the PLL is disabled, and the  
PCI:core mode is set for 1:1 mode operation. The AC timing specifications given in this document do not apply in  
PLL bypass mode.  
3. In clock off mode, no clocking occurs inside the MPC107 regardless of the PCI_SYNC_IN input.  
4. Limited due to minimum memory VCO (100 MHz).  
5. Limited due to maximum memory VCO = (2x maximum memory bus speed).  
6. Limited by maximum PCI bus speed (66 MHz).  
7. Limited by maximum memory bus speed.  
1.7 System Design Information  
This section provides electrical and thermal design recommendations for successful application of the  
MPC107.  
1.7.1 PLL Power Supply Filtering  
The AV  
and LAV  
power signals are provided on the MPC107 to provide power to the peripheral  
DD  
DD  
logic/memory bus PLL and the SDRAM clock delay-locked loop (DLL), respectively. To ensure stability  
of the internal clocks, the power supplied to the AV and LAV input signals should be filtered of any  
DD  
DD  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
37  
System Design Information  
noise in the 500-kHz to 10-MHz resonant frequency range of the PLLs. A separate circuit similar to the one  
shown in Figure 26 using surface mount capacitors with minimum effective series inductance (ESL) is  
recommended for each of the AV and LAV power signal pins. Consistent with the recommendations  
DD  
DD  
of Dr. Howard Johnson in High Speed Digital Design: A Handbook of Black Magic (Prentice Hall, 1993),  
multiple small capacitors of equal value are recommended over using multiple values.  
The circuits should be placed as close as possible to the respective input signal pins to minimize noise  
coupled from nearby circuits. Routing directly as possible from the capacitors to the input signal pins with  
minimal inductance of vias is important but proportionately less critical for the LAV pin.  
DD  
10 Ω  
VDD  
AVDD or LAVDD  
2.2 µF  
2.2 µF  
Low ESL Surface Mount Capacitors  
GND  
Figure 26. PLL Power Supply Filter Circuit  
1.7.2 Decoupling Recommendations  
Due to the MPC107 dynamic power management feature, large address and data buses, and high operating  
frequencies, the MPC107 can generate transient power surges and high frequency noise in its power supply,  
especially while driving large capacitive loads. This noise must be prevented from reaching other  
components in the MPC107 system, and the MPC107 itself requires a clean, tightly regulated source of  
power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each  
V
, OV , GV , and LV pin of the MPC107. It is also recommended that these decoupling capacitors  
DD  
DD DD DD  
receive their power from separate V , OV , GV , and GND power planes in the PCB, utilizing short  
DD  
DD  
DD  
traces to minimize inductance. These capacitors should have a value of 0.1 µF. Only ceramic SMT (surface  
mount technology) capacitors should be used to minimize lead inductance, preferably 0508 or 0603,  
oriented such that connections are made along the length of the part.  
In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB,  
feeding the V , OV , GV , BV , and LV planes to enable quick recharging of the smaller chip  
DD  
DD  
DD  
DD  
DD  
capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the  
quick response time necessary. They should also be connected to the power and ground planes through two  
vias to minimize inductance. Suggested bulk capacitors: 100–330 µF (AVX TPS tantalum or Sanyo  
OSCON).  
1.7.3 Connection Recommendations  
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal  
level. Unused active low inputs should be tied to OV . Unused active high inputs should be connected to  
DD  
GND. All NC (no-connect) signals must remain unconnected.  
Power and ground connections must be made to all external V , OV , GV , LV , BV , and GND  
DD  
DD  
DD  
DD  
DD  
pins of the MPC107.  
The PCI_SYNC_OUT signal is intended to be routed halfway out to the PCI devices and then returned to  
the PCI_SYNC_IN input of the MPC107.  
The SDRAM_SYNC_OUT signal is intended to be routed halfway out to the SDRAM devices and then  
returned to the SDRAM_SYNC_IN input of the MPC107. The trace length may be used to skew or adjust  
38  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
System Design Information  
the timing window as needed. Refer to Motorola Application Note AN1849/D, MPC107 Design Guide, for  
more information on this topic.  
The TRST signal must be asserted during reset to ensure proper initialization and operation of the MPC107.  
It is recommended that the TRST signal be connected to the system HRESET signal or pulled down with a  
100-to 1-kresistor.  
1.7.4 Pull-Up/Pull-Down Resistor Requirements  
The data bus input receivers are normally turned off when no read operation is in progress; therefore, they  
do not require pull-up resistors on the bus. The processor data bus signals are: DH[0:31], DL[0:31], and  
DP[0:7]. The memory data bus signals are: MDH[0:31], MDL[0:31], and PAR/AR[0:7].  
If the 32-bit data bus mode is selected, the input receivers of the unused data and parity bits (DL[0:31],  
DP[4:7], MDL[0:31], and PAR[4:7]) will be disabled, and their outputs will drive logic zeros when they  
would otherwise normally be driven. For this mode, these pins do not require pull-up resistors, and should  
be left unconnected by the system to minimize possible output switching.  
It is recommended that ARTRY, TA, and TS have weak pull-up resistors (2–10 k) connected to BV  
.
DD  
It is recommended that MTP[1:2] and TEST2 have weak pull-up resistors (2–10 k) connected to GV  
.
DD  
It is recommended that the following signals be pulled up to OV with weak pull-up resistors (2–10 k):  
DD  
SDA, SCL, TEST1, and FTP[2:3].  
It is recommended that the following PCI control signals be pulled up to LV with weak pull-up resistors  
DD  
(2–10 k): DEVSEL, FRAME, IRDY, LOCK, PERR, SERR, STOP, TRDY, and INTA. The resistor values  
may need to be adjusted stronger to reduce induced noise on specific board designs.  
The following pins have internal pull-up resistors enabled at all times: REQ[0:4], TCK, TDI, TMS, TRST,  
BR1, HRESET_CPU, QACK, SRESET, TEST, and TRIG_OUT. See Table 17 for more information.  
The following pins have internal pull-up resistors enabled only while device is in the reset state: MDL0,  
FOE, RCS0, SDRAS, SDCAS, CKE, SDBAO, and SDMA[10:1]. See Table 17 for more information.  
The following pins are reset configuration pins: MDL0, FOE, RCS0, SDBAO, SDMA[10:1], and  
PLL_CFG[0:3]. These pins are sampled during reset to configure the device.  
Any other unused active-low input pins should be tied to a logic one level via weak pull-up resistors  
(2–10 k) to the appropriate power supply listed in Figure 17. Unused active-high input pins should be tied  
to GND via weak pull-down resistors (2–10 k).  
1.7.5 Thermal Management Information  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
× P )  
D
J
A
θJA  
where  
T = ambient temperature for the package (°C)  
A
R
= junction-to-ambient thermal resistance (°C/W)  
θJA  
P = power dissipation in the package (W)  
D
The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy  
estimation of thermal performance. Table 6 has four junction-to-ambient thermal resistances (R or  
θJA  
R
). Two test boards are used: single-signal-layer (1s) and four-layer boards with two internal planes  
θJMA  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
39  
System Design Information  
(2s2p). Which value is closer to the application depends on the system board thermal resistance and the  
density of other high-power dissipation components.  
To illustrate the process, determine the junction temperature based on the values provided in Table 6 for an  
MPC107 that is mounted on a board with many internal planes using arbitrary values. If the MPC107 is  
doing most of the power dissipation, use R  
of 26°C/W given in Table 6. The ambient temperature near  
θJMA  
the device is 45°C. Suppose the total typical power dissipation at 100 MHz core frequency is 2.1 W (see  
Table 5). The junction temperature is:  
T = 45 + (2.1 × 26) = 100°C.  
J
If this value is less than the maximum junction temperature noted in Table 1, the MPC107 will not need a  
heat sink. If the ambient temperature is higher or the power dissipation is higher because of faster bus speed,  
the device will probably need a heat sink.  
The MPC107 may need a heat sink depending on the system. This section provides thermal management  
information for the flip chip plastic ball grid array (FC-PBGA) package for air-cooled applications. Proper  
thermal control design is primarily dependent on the system-level design—the heat sink, airflow, and  
thermal interface material. To reduce the die-junction temperature, heat sinks may be attached to the  
package by several methods—spring clip to holes in the printed-circuit board or package, and mounting clip  
and screw assembly (see Figure 27); however, due to the potential large mass of the heat sink, attachment  
through the printed-circuit board is suggested. The force of the heat sink on the die should not exceed 6 lb.  
The heat sink surface must be flat without protrusions and must be parallel with the die as the heat sink is  
brought into contact to avoid chipping the edges of the die and the heat sink. Because of the small contact  
area of the heat sink, it is suggested that the mounting force be centered over the die.  
FC-PBGA Package  
Heat Sink  
Heat Sink  
Clip  
Thermal Interface Material  
Printed-Circuit Board  
Figure 27. Package Exploded Cross-Sectional View with Several Heat Sink Options  
The board designer can choose between several types of heat sinks to place on the MPC107. There are  
several commercially available heat sinks for the MPC107 provided by the following vendors:  
Aavid Thermalloy  
603-224-9988  
80 Commercial St.  
Concord, NH 03301  
Internet: www.aavidthermalloy.com  
40  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
System Design Information  
408-749-7601  
Alpha Novatech  
473 Sapena Ct. #15  
Santa Clara, CA 95054  
Internet: www.alphanovatech.com  
International Electronic Research Corporation (IERC) 818-842-7277  
413 North Moss St.  
Burbank, CA 91502  
Internet: www.ctscorp.com  
Tyco Electronics  
Chip Coolers™  
P.O. Box 3668  
Harrisburg, PA 17105-3668  
Internet: www.chipcoolers.com  
800-522-6752  
603-635-5102  
Wakefield Engineering  
33 Bridge St.  
Pelham, NH 03076  
Internet: www.wakefield.com  
Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal  
performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost.  
1.7.6 Internal Package Conduction Resistance  
For the exposed-die packaging technology, shown in Figure 3, the intrinsic conduction thermal resistance  
paths are as follows:  
The die junction-to-case (actually top-of-die, since silicon die is exposed) thermal resistance  
The die junction-to-ball thermal resistance  
Figure 28 depicts the primary heat transfer path for a package with an attached heat sink mounted to a  
printed-circuit board.  
External Resistance  
Radiation  
Convection  
Heat Sink  
Thermal Interface Material  
Die/Package  
Die Junction  
Package/Leads  
Internal Resistance  
Printed-Circuit Board  
Radiation  
Convection  
External Resistance  
(Note the internal versus external package resistance.)  
Figure 28. FC-PBGA Package with Heat Sink Mounted to a Printed-Circuit Board  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
41  
System Design Information  
Heat generated on the active side of the chip is conducted through the silicon, then through the heat sink  
attach material (or thermal interface material), and finally to the heat sink, where it is removed by forced-air  
convection.  
Because the silicon thermal resistance is quite small for a first-order analysis, the temperature drop in the  
silicon may be neglected. Thus, the thermal interface material and the heat sink conduction/convective  
thermal resistances are the dominant terms.  
1.7.6.1 Thermal Interface Materials  
A thermal interface material is recommended at the package lid-to-heat sink interface to minimize the  
thermal contact resistance. For those applications where the heat sink is attached by spring clip mechanism,  
Figure 29 shows the thermal performance of three thin-sheet thermal-interface materials (silicone,  
graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure.  
As shown, the performance of these thermal interface materials improves with increasing contact pressure.  
The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare joint results  
in a thermal resistance approximately seven times greater than the thermal grease joint.  
Silicone Sheet (0.006 in.)  
Bare Joint  
2
Floroether Oil Sheet (0.007 in.)  
Graphite/Oil Sheet (0.005 in.)  
Synthetic Grease  
1.5  
1
0.5  
0
0
10  
20  
30  
Contact Pressure (psi)  
Figure 29. Thermal Performance of Select Thermal Interface Material  
40  
50  
60  
70  
80  
Often, heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board  
(see Figure 28). Therefore, the synthetic grease offers the best thermal performance, considering the low  
interface pressure and is recommended. Of course, the selection of any thermal interface material depends  
on many factors—thermal performance requirements, manufacturability, service temperature, dielectric  
properties, cost, etc.  
42  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
System Design Information  
The board designer can choose between several types of thermal interface. Heat sink adhesive materials  
should be selected based upon high conductivity, yet adequate mechanical strength to meet equipment  
shock/vibration requirements. There are several commercially available thermal interfaces and adhesive  
materials provided by the following vendors:  
Chomerics, Inc.  
781-935-4850  
77 Dragon Ct.  
Woburn, MA 01888-4014  
Internet: www.chomerics.com  
Dow-Corning Corporation  
Dow-Corning Electronic Materials  
2200 W. Salzburg Rd.  
800-248-2481  
Midland, MI 48686-0997  
Internet: www.dow.com  
Shin-Etsu MicroSi, Inc.  
10028 S. 51st St.  
Phoenix, AZ 85044  
888-642-7674  
800-347-4572  
888-246-9050  
Internet: www.microsi.com  
The Bergquist Company  
th  
18930 West 78 St.  
Chanhassen, MN 55317  
Internet: www.bergquistcompany.com  
Thermagon Inc.  
4707 Detroit Ave.  
Cleveland, OH 44102  
Internet: www.thermagon.com  
The following section provides a heat sink selection example using one of the commercially available heat  
sinks.  
1.7.6.2 Thermal Interface Materials  
For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:  
T = T + T + (θ + θ + θ ) × P  
d
j
i
r
jc  
int  
sa  
where:  
T = die-junction temperature  
j
T = inlet cabinet ambient temperature  
i
T = air temperature rise within the computer cabinet  
r
θ = junction-to-case thermal resistance  
jc  
θ
θ
= adhesive or interface material thermal resistance  
= heat sink base-to-ambient thermal resistance  
int  
sa  
P = power dissipated by the device  
d
During operation, the die-junction temperatures (T ) should be maintained less than the value specified in  
j
Table 1. The temperature of air cooling the component greatly depends on the ambient inlet air temperature  
and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (T )  
i
may range from 30° to 40°C. The air temperature rise within a cabinet (T ) may be in the range of 5° to  
r
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
43  
Document Revision History  
10°C. The thermal resistance of the thermal interface material (θ ) is typically about 1.5°C/W. For  
int  
example, assuming a T of 60°C, a T of 5°C, a FC-PBGA package θ = 0.1, and a typical power  
a
r
jc  
consumption (P ) of 2.1 W, the following expression for T is obtained:  
d
j
Die-junction temperature: T = 60°C + 5°C + (0.1°C/W + 1.5°C/W + θ ) × 2.1 W  
j
sa  
For this example, a θ value of 17.4°C/W or less is required to maintain the die junction temperature below  
sa  
the maximum value of Table 1. Though the die junction-to-ambient and the heat sink-to-ambient thermal  
resistances are a common figure-of-merit used for comparing the thermal performance of various  
microelectronic packaging technologies, one should exercise caution when only using this metric in  
determining thermal management because no single parameter can adequately describe three-dimensional  
heat flow. The final die-junction operating temperature is not only a function of the component-level  
thermal resistance, but the system-level design and its operating conditions. In addition to the component's  
power consumption, a number of factors affect the final operating die-junction temperature—airflow, board  
population (local heat flux of adjacent components), heat sink efficiency, heat sink attach, heat sink  
placement, next-level interconnect technology, system air temperature rise, altitude, etc.  
1.7.7 References  
Semiconductor Equipment and Materials International  
805 East Middlefield Rd.  
Mountain View, CA 94043  
(415) 964-5111  
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at  
800-854-7179 or 303-397-7956.  
JEDEC specifications are available on the WEB at http://www.jedec.org.  
1.8 Document Revision History  
Table 19 provides a revision history for this hardware specification.  
Table 19. Document Revision History  
Rev. No.  
Substantive Changes  
Preliminary release with some TBDs in the spec tables  
0.0  
0.1  
Removed references to CBGA packaging.  
Removed references to BVdd = 2.5 V and GVdd = 2.5 V until device characterization is complete.  
Corrected Power Supply Ramp Up range in Figure 2 to show Vdd being stable before 100 microsecond  
PLL Relock time.  
Modified Table 4:  
• Filled in current values from IBIS model.  
• Changed DRV_STD to DRV_CPU and changed OVdd to BVdd.  
Added Note 10, referencing power consumption on PLL supply voltage pins to Table 5.  
Updated Table 6 PBGA package thermal characteristics.  
Corrected DLL Lock Range (DLL_EXTEND=1) equation in Table 8.  
Modified Figure 6 reducing Tloop Propagation Delay Time from 40 ns to 15 ns.  
Modified Figure 22 for PBGA packaging.  
Updated Table 17, its notes, and corresponding text in Section 1.7.4.  
Modified Note 5 of Table 18, reducing maximum memory VCO frequency from 225 to 200 MHz.  
Updated the affected PLL_CFG[0-3] entries (0001 and 0010) in the table.  
Revised Section 1.7.5, for PBGA packaging.  
44  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Document Revision History  
Table 19. Document Revision History (continued)  
Rev. No.  
Substantive Changes  
0.2  
Lowered PCI Input Frequency (PCI_SYNC_IN) in Table 7 from 25 to 12.5 MHz, see Table 18 for specific  
details on applicability of lower input frequency.  
Modified Table 8:  
• Completed specification numbering.  
• Combined PCI_SYNC_IN jitter specifications 7 and 8, into specification 7.  
• Added specification 9d.  
• Updated values for specifications 7, 9b, and 9c.  
• Deleted OSC_IN Jitter (Cycle-to-Cycle) specification.  
• Added Note 8 to specifications 1a, 1b, 17, and 18; updated the Min part of these specifications to  
correspond to the lower PCI 12.5 MHz input frequency.  
Added Figure 5.  
Replaced Input AC Timing TBDs in Table 9 with values.  
Replaced Output AC Timing TBDs for specifications 12c, 12d, 12e, and 14a in Table 10 with values.  
Replaced Figure 22 with Motorola standard packaging drawing for 503-pin PBGA.  
Updated Table 18:  
• Lowered input frequency on Refs 2 and C.  
• Ref A is changed to reserved.  
• Ref 8 is changed to usable for 66 MHz devices.  
0.3  
Removed references to the suspend (power-saving) mode.  
In Section 1.3, technology reference updated from 0.35 µm to 0.29 µm CMOS.  
Updated Figure 2 and Note 5 to indicate only HRESET must transition to a logic 1 in one clock cycle for  
the device to be in the non-reset state.  
Modified Table 3:  
• Changed minimum Input High Voltage, for PCI only from 0.5*OVdd to 0.65*OVdd and added Note 6.  
• Changed condition on Input Low Voltage, VIL, from All inputs except OSC_IN to All inputs except  
PCI_SYNC_IN.  
• Replaced minimum CVIH formula, 0.5*OVdd, with 2.4 V value.  
• Replaced maximum CVIL formula, 0.3*OVdd, with 0.4 V value.  
Updated IBIS model version from v1.0 to v1.1, changed LVdd references to OVdd in Table 4 and notes,  
changed Notes 3 and 4 for the values to be read from the IBIS model’s I(Min) column, and updated the  
IOL column values.  
Replaced most TBDs in Table 5 for with new preliminary power consumption estimates.  
Deleted specs 22 and 23 from Table 8; they were DC levels covered in Table 3.  
Replaced TBDs in Table 10 for spec 14b.  
Separated CKE output valid timing from spec 12b (added 12b1 and 12b2) dependent on device’s  
maximum operating frequency; see Table 10.  
Replaced TBDs in Table 15 for specs 3, 5, and 6.  
Modified Table 17:  
• Renamed SUSPEND pin (V24) to TEST1 and moved it from the Miscellaneous Signals group to the  
Test/Configuration Signals group. Added notes about pulling it up to OVdd.  
• Renamed RTC pin (D6) to TEST2 and moved it from the Memory Interface Signals group to the  
Test/Configuration Signals group. Added notes about pulling it up to GVdd.  
• Added Note 14 for TRST pin.  
• Added Note 6 for INTA pin. Also added INTA to LVdd pull-up list in Section 1.7.4.  
Deleted Note 1 from Table 18; adjusted remaining note numbers.  
Added paragraph in Section 1.7.3 for TRST connection.  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
45  
Document Revision History  
Table 19. Document Revision History (continued)  
Substantive Changes  
Added BVdd = 2.5 V information to document.  
Rev. No.  
0.4  
Updated Table 4 and associated notes.  
Updated specific operating conditions at the top of the following tables: Table 7 through Table 10,  
Table 12, and Table 14 through Table 16.  
Replaced Figure 22, with a clearer diagram of the 503 PBGA package.  
Modified Table 17:  
• Added Note 15 for BVdd pull-ups to the following pins: ARTRY, TA, and TS.  
• Added Note 16 for INT signal in BVdd = 2.5 V applications.  
• Changed AACK pin type from I/O to output.  
• Changed Output Driver Type from DRV_MEM_DATA to DRV_MEM_ADDR on the following pins:  
FOE, RCS0, RCS2, and RCS3.  
• Deleted RTC signal (D6) from Memory Interface Signals group, since it is now TEST2 in the  
Test/Configuration Signals group.  
Added PLL_CFG[0-3] = 0000 to Note 1 of Table 18 for reserved settings.  
Added BVdd pull-up information to Section 1.7.4.  
0.5  
Separated VOH and VOL DC specs for CPUCLK[0–2] signals at BVdd = 2.5 V from the other output pins’  
DC levels.  
Updated Table 8 with correct DLL_extend default value.  
Reversed vector ordering for the PCI Interface Signals in Table 17: C/BE[0–3] changed to C/BE[3–0],  
AD[0–31] changed to AD[31–0], GNT[0–3] changed to GNT[3–0], and REQ[0–3] changed to REQ[3–0].  
The package pin number orderings were also reversed, meaning that pin functionality did not change.  
For example, AD0 is still on signal D21, AD1 is still on signal D23, ..., AD31 is still on signal N23. This  
change makes the vectored PCI signals in this hardware specification consistent with the PCI local bus  
specification and the MPC107 PCI Bridge/Memory Controller User’s Manual vector ordering.  
0.6  
1
Updated Table 5 to include the maximum numbers.  
Corrected solder attach and ball information in Section 1.5.1 to 62 Sn/36 Pb/2 Ag.  
Table 17: Changed the voltage supply information for the MCP signal from BVDD to OVDD. Changed  
the note for MCP signal to match the supply voltage information.  
Added Cautions to Table 2, in place of voltage sequencing requirement.  
Removed voltage sequencing note from Figure 2.  
Updated Table 5 with most recent power characterization data.  
Updated Table 6 to include more thermal characteristics.  
Updated definitions of DLL_Extend in Table 8, items 15 and 16.  
Updated locations of DLL_Extend in Figure 6.  
Table 17: Changed the driver type for DBG0, DBG1, and DBGLB to DRV_CPU—these signals are 60x  
signals. Changed signal name CPUCLK[0-2} to CPU_CLK[0:2] to correct signal name CPU_CLK[0:2].  
Updated driver strengths of signals to be consistent with the user’s manual.  
Removed Section 1.7.2.  
In Section 1.7.4, removed MCP from the list of pins requiring pull-up resistors.  
In Sections 1.7.5 and 1.7.6, added information on thermal management and internal package  
conduction resistance.  
Changed format of Section 1.9.  
In Section 1.9.2, added information about available part number specifications.  
2
Table 2, updated cautions.  
Figure 2, updated notes.  
Section 1.4.1.5, replaced last sentence in first paragraph.  
Table 7, added notes.  
Figure 22, updated case drawing.  
Section 1.7.5 through Section 1.7.6.2, replaced these sections with updated information.  
46  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Ordering Information  
Table 19. Document Revision History (continued)  
Substantive Changes  
Rev. No.  
3
Changed definition of DLL_EXTEND to DLL_STANDARD.  
Inserted new Figures 4 and 5 (overshoot/undershoot for PCI).  
Updated Figure 8 (old Figure 6) and added Figure 9 (new charts for DLL locking ranges).  
4
Table 8, updated parameters for DLL locking rows (15 and 16) and note 6.  
1.9 Ordering Information  
Ordering information for the parts fully covered by this specification document is provided in Section 1.9.1,  
“Part Numbers Fully Addressed by This Document.” Section 1.9.2, “Part Numbers Not Fully Addressed by  
This Document,” lists the part numbers which do not fully conform to the specifications of this document.  
These special part numbers require an additional document called a part number specification.  
1.9.1 Part Numbers Fully Addressed by This Document  
Table 20 provides the Motorola part numbering nomenclature for the MPC107. Note that the individual part  
numbers correspond to a maximum processor core frequency. For available frequencies, contact your local  
Motorola sales office. In addition to the processor frequency, the part numbering scheme also includes an  
application modifier which may specify special application conditions. Each part number also contains a  
revision code which refers to the die mask revision number. The revision level can be determined by reading  
the Revision ID register at address offset 0x08.  
Table 20. Part Numbering Nomenclature  
XPC  
nnn  
x
xx  
nnn  
x
x
Product  
Code  
Part  
Identifier  
Process  
Descriptor  
Frequency 2  
(MHz)  
Application  
Modifier  
Package 1  
Revision Level  
XPC  
107  
A
PX = PBGA  
100  
L: 2.5 V ± 125 mV C:1.3; Rev. ID:0x13  
0° to 105°C D:1.4; Rev. ID:0x14  
Notes:  
1. See Section 1.5, “Package Description,” for more information on available package types.  
2. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this  
specification support all core frequencies. Additionally, parts addressed by part number specifications may support  
other maximum core frequencies.  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
47  
Ordering Information  
1.9.2 Part Numbers Not Fully Addressed by This Document  
Parts with application modifiers or revision levels not fully addressed in this specification document are  
described in separate part number specifications which supplement and supersede this document; see  
Table 21.  
Table 21. Part Numbers Addressed by XPC107APXnnnWx Series Part Number Specification  
(Document Order No. MPC107APXPNS/D)  
XPC  
nnn  
A
Px  
nnn  
x
W
Product  
Code  
Part  
Identifier  
Part  
Modifier  
Frequency  
(MHz)  
Package  
Process Descriptor  
Revision Level  
XPC  
107  
A
PX = PBGA  
133  
W: 2.7 V ± 100 mV  
D:1.4; Rev. ID:0x14  
0° to 85°C  
1.9.3 Part Marking  
Parts are marked as the example shown in Figure 30.  
MPC107A  
PXnnnC  
MMMMMM  
ATWLYYWWA  
107  
FC-PBGA  
Notes:  
MMMMMM is the 6-digit mask number.  
ATWLYYWWA is the traceability code.  
CCCCC is the country of assembly. This space is left blank if parts are assembled in the United States.  
Figure 30. Motorola Part Marking for PBGA Devices  
48  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Ordering Information  
THIS PAGE INTENTIONALLY LEFT BLANK  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
49  
Ordering Information  
THIS PAGE INTENTIONALLY LEFT BLANK  
50  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
MOTOROLA  
Ordering Information  
THIS PAGE INTENTIONALLY LEFT BLANK  
MOTOROLA  
MPC107 PCI Bridge/Memory Controller Hardware Specifications  
51  
.
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution  
P.O. Box 5405, Denver, Colorado 80217  
1-480-768-2130  
(800) 521-6274  
JAPAN:  
Motorola Japan Ltd.  
SPS, Technical Information Center  
3-20-1, Minami-Azabu Minato-ku  
Tokyo 106-8573 Japan  
Information in this document is provided solely to enable system and software implementers to use  
Motorola products. There are no express or implied copyright licenses granted hereunder to design  
or fabricate any integrated circuits or integrated circuits based on the information in this document.  
81-3-3440-3569  
ASIA/PACIFIC:  
Motorola Semiconductors H.K. Ltd.  
Silicon Harbour Centre, 2 Dai King Street  
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong  
852-26668334  
Motorola reserves the right to make changes without further notice to any products herein.  
Motorola makes no warranty, representation or guarantee regarding the suitability of its products  
for any particular purpose, nor does Motorola assume any liability arising out of the application or  
use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be provided in  
Motorola data sheets and/or specifications can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including “Typicals” must be validated  
for each customer application by customer’s technical experts. Motorola does not convey any  
license under its patent rights nor the rights of others. Motorola products are not designed,  
intended, or authorized for use as components in systems intended for surgical implant into the  
body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the Motorola product could create a situation where personal injury or death may  
occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was  
negligent regarding the design or manufacture of the part.  
TECHNICAL INFORMATION CENTER:  
(800) 521-6274  
HOME PAGE:  
www.motorola.com/semiconductors  
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office.  
digital dna is a trademark of Motorola, Inc. The PowerPC name is a trademark of IBM Corp. and  
used under license. All other product or service names are the property of their respective owners.  
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
© Motorola, Inc. 2003  
MPC107EC/D  
配单直通车
XPC107APX66LD产品参数
型号:XPC107APX66LD
是否Rohs认证: 不符合
生命周期:Obsolete
IHS 制造商:MOTOROLA INC
包装说明:33 X 33 MM, PLASTIC, BGA-503
Reach Compliance Code:unknown
HTS代码:8542.39.00.01
风险等级:5.83
地址总线宽度:32
边界扫描:YES
总线兼容性:PCI; I2C; 60X PROCESSOR
最大时钟频率:66 MHz
外部数据总线宽度:64
JESD-30 代码:S-PBGA-B503
长度:33 mm
湿度敏感等级:1
I/O 线路数量:64
端子数量:503
封装主体材料:PLASTIC/EPOXY
封装代码:BGA
封装形状:SQUARE
封装形式:GRID ARRAY
峰值回流温度(摄氏度):225
认证状态:Not Qualified
座面最大高度:2.75 mm
最大供电电压:2.625 V
最小供电电压:2.375 V
标称供电电压:2.5 V
表面贴装:YES
技术:CMOS
端子形式:BALL
端子节距:1.27 mm
端子位置:BOTTOM
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:33 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!