欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • XRP7704ILB-F图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • XRP7704ILB-F 现货库存
  • 数量10 
  • 厂家DIODES 
  • 封装15+ 
  • 批号QFN40 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • XRP7704ILB-F图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • XRP7704ILB-F 现货库存
  • 数量5980 
  • 厂家DIODES 
  • 封装QFN40 
  • 批号新年份 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • XRP7704ILB-F图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • XRP7704ILB-F
  • 数量29807 
  • 厂家EXAR/艾科嘉 
  • 封装NA/ 
  • 批号23+ 
  • 原厂直销,现货供应,账期支持!
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • XRP7704ILB图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • XRP7704ILB
  • 数量36500 
  • 厂家EXAR/艾科嘉 
  • 封装QFN 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • XRP7704ILB-F图
  • 集好芯城

     该会员已使用本站13年以上
  • XRP7704ILB-F
  • 数量13596 
  • 厂家EXAR/艾科嘉 
  • 封装QFN40 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • XRP7704ILB-F图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • XRP7704ILB-F
  • 数量35000 
  • 厂家EXAR/艾科嘉 
  • 封装QFN40 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • XRP7704ILBTR-F图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • XRP7704ILBTR-F
  • 数量45108 
  • 厂家EXAR 
  • 封装QFN40 
  • 批号2023+ 
  • 绝对原装正品现货,全新深圳原装进口现货
  • QQ:364510898QQ:364510898 复制
    QQ:515102657QQ:515102657 复制
  • 0755-83777708“进口原装正品专供” QQ:364510898QQ:515102657
  • XRP7704ILB-F图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • XRP7704ILB-F
  • 数量5600 
  • 厂家Exar Corporation 
  • 封装40-WFQFN 裸露焊盘 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • XRP7704ILB-F图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • XRP7704ILB-F
  • 数量3377 
  • 厂家Exar 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • XRP7704ILB-F图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • XRP7704ILB-F
  • 数量6328 
  • 厂家EXAR 
  • 封装QFN-40 
  • 批号▉▉:2年内 
  • ▉▉¥55.6元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • XRP7704ILB-F图
  • 深圳市英德州科技有限公司

     该会员已使用本站2年以上
  • XRP7704ILB-F
  • 数量38200 
  • 厂家EXAR(艾科嘉) 
  • 封装 
  • 批号1年内 
  • 全新原装 货源稳定 长期供应 提供配单
  • QQ:2355734291QQ:2355734291 复制
  • -0755-88604592 QQ:2355734291
  • XRP7704ILB-F图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • XRP7704ILB-F
  • 数量31051 
  • 厂家DIODES 
  • 封装QFN40 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507168QQ:2355507168 复制
    QQ:2355507169QQ:2355507169 复制
  • 86-755-83219286 QQ:2355507168QQ:2355507169
  • XRP7704ILB-1004-F图
  • 上海意淼电子科技有限公司

     该会员已使用本站14年以上
  • XRP7704ILB-1004-F
  • 数量20000 
  • 厂家EXAR 
  • 封装原厂封装 
  • 批号23+ 
  • 原装现货热卖!请联系吴先生 13681678667
  • QQ:617677003QQ:617677003 复制
  • 15618836863 QQ:617677003
  • XRP7704ILB-F图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • XRP7704ILB-F
  • 数量10 
  • 厂家DIODES 
  • 封装QFN40 
  • 批号15+ 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:1435424310QQ:1435424310 复制
  • 0755-84507451 QQ:1435424310
  • XRP7704ILB图
  • 深圳市凯睿晟科技有限公司

     该会员已使用本站10年以上
  • XRP7704ILB
  • 数量3000 
  • 厂家EXAR/艾科嘉 
  • 封装QFN 
  • 批号24+ 
  • 百域芯优势 实单必成 可开13点增值税发票
  • QQ:2885648621QQ:2885648621 复制
  • 0755-23616725 QQ:2885648621
  • XRP7704ILB-F图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • XRP7704ILB-F
  • 数量660000 
  • 厂家Exar Corporation 
  • 封装40-WFQFN Exposed Pad 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • XRP7704ILBTR-1003-F图
  • 深圳市诚达吉电子有限公司

     该会员已使用本站2年以上
  • XRP7704ILBTR-1003-F
  • 数量7615 
  • 厂家EXAR 
  • 封装QFN40 
  • 批号2024+ 
  • 原装正品 一手现货 假一赔百
  • QQ:2881951980QQ:2881951980 复制
  • 15873513267 QQ:2881951980
  • XRP7704ILBTR-1003-F图
  • 深圳市隆鑫创展电子有限公司

     该会员已使用本站15年以上
  • XRP7704ILBTR-1003-F
  • 数量30000 
  • 厂家TI 
  • 封装SOP8 
  • 批号2022+ 
  • 电子元器件一站式配套服务QQ:122350038
  • QQ:2355878626QQ:2355878626 复制
    QQ:2850299242QQ:2850299242 复制
  • 0755-82812278 QQ:2355878626QQ:2850299242
  • XRP7704ILB-F图
  • 深圳市特拉特科技有限公司

     该会员已使用本站2年以上
  • XRP7704ILB-F
  • 数量35000 
  • 厂家EXAR 
  • 封装QFN40 
  • 批号22+ 
  • 原装现货,优势库存,当天可发货
  • QQ:709809857QQ:709809857 复制
  • 0755-82531732 QQ:709809857
  • XRP7704ILB-1002-F图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • XRP7704ILB-1002-F
  • 数量6500000 
  • 厂家MAXLINEAR 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • XRP7704ILB-F图
  • 深圳德田科技有限公司

     该会员已使用本站7年以上
  • XRP7704ILB-F
  • 数量
  • 厂家新年份 
  • 封装9600 
  • 批号 
  • 原装正品现货,可出样品!!!
  • QQ:229754250QQ:229754250 复制
  • 0755-83254070 QQ:229754250
  • XRP7704ILBTR-F图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • XRP7704ILBTR-F
  • 数量2014 
  • 厂家EXAR 
  • 封装QFN40 
  • 批号23+ 
  • 现货只售原厂原装可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • XRP7704ILB-F图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • XRP7704ILB-F
  • 数量5980 
  • 厂家DIODES 
  • 封装QFN40 
  • 批号新年份 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • XRP7704ILB图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • XRP7704ILB
  • 数量47832 
  • 厂家EXAR/艾科嘉 
  • 封装QFN 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • XRP7704ILB-F图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • XRP7704ILB-F
  • 数量12000 
  • 厂家Exar 
  • 封装TQFN-40 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • XRP7704ILB图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • XRP7704ILB
  • 数量20000 
  • 厂家EXAR 
  • 封装QFN40 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • XRP7704ILB图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • XRP7704ILB
  • 数量7800 
  • 厂家EXAR/艾科嘉 
  • 封装QFN-40 
  • 批号20+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • XRP7704ILBTR-1003-F图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • XRP7704ILBTR-1003-F
  • 数量30000 
  • 厂家EXAR 
  • 封装QFN40 
  • 批号23+ 
  • 代理全新原装现货,价格优势
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • XRP7704ILBTR-F图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • XRP7704ILBTR-F
  • 数量9400 
  • 厂家MaxLinear. Inc. 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • XRP7704ILB-F图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • XRP7704ILB-F
  • 数量65000 
  • 厂家EXAR 
  • 封装QFN40 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • XRP7704ILB-F图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • XRP7704ILB-F
  • 数量4153 
  • 厂家MaxLinear. Inc. 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • XRP7704ILBTR-1002-F图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • XRP7704ILBTR-1002-F
  • 数量3486 
  • 厂家MaxLinear. Inc. 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • XRP7704ILBTR-1003-F图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • XRP7704ILBTR-1003-F
  • 数量5019 
  • 厂家MaxLinear. Inc. 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • XRP7704ILB-1002-F图
  • 深圳市一线半导体有限公司

     该会员已使用本站15年以上
  • XRP7704ILB-1002-F
  • 数量7150 
  • 厂家MaxLinear. Inc. 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • XRP7704ILB-1003-F图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • XRP7704ILB-1003-F
  • 数量9515 
  • 厂家MaxLinear. Inc. 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • XRP7704ILB-1003-F图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • XRP7704ILB-1003-F
  • 数量1001 
  • 厂家EXAR 
  • 封装QFN-40 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:1415691092QQ:1415691092 复制
  • 133-5299-5145(微信同号) QQ:1415691092
  • XRP7704ILB-1002-F图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • XRP7704ILB-1002-F
  • 数量1001 
  • 厂家EXAR 
  • 封装QFN-40 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:97877805QQ:97877805 复制
  • 171-4729-0036(微信同号) QQ:97877805

产品型号XRP7704ILB-AAAA-F的Datasheet PDF文件预览

XRP7704  
Quad-Output Digital PWM Buck Controller  
September 2009  
REV 1.1.0  
KEY FEATURES  
GENERAL DESCRIPTION  
The XRP7704 is a quad-output pulse-width modulated  
(PWM) step-down DC-DC controller with a built-in LDO for  
standby power and GPIOs. The device provides a complete  
power management solution in one IC and is fully  
programmable via the included I2C serial interface.  
Independent Digital Pulse Width Modulator (DPWM)  
channels regulate output voltages and provide all required  
protection functions such as current limiting and over-voltage  
protection.  
ƒ
Four switching buck (step-down) controllers each with  
internal FET drivers  
ƒ
6.5V to 20V input voltage range – no additional voltage  
rails required  
ƒ
ƒ
ƒ
ƒ
Output voltages programmable from 0.9V to 5.1V  
Up to 6 reconfigurable GPIO pins  
Fully programmable via I2C interface  
Independent Digital Pulse Width Modulator (DPWM)  
channels with five coefficient PID control  
Each output voltage can be programmed from 0.9V to 5.1V  
without the need of an external voltage divider. The wide  
range of the programmable DPWM switching frequency  
(from 300 KHz to 1.5 MHz) enables the user to optimize  
between efficiency and component size. Input voltage range  
is from 6.5V to 20V.  
ƒ
High Integration: elimination of external circuits and  
components required for compensation, parameter  
adjustment and interface  
ƒ
Programmable DPWM frequency range (300 kHz to 1.5  
MHz) enables efficiency and component size optimization  
I2C bus interface is provided to program the IC as well as to  
communicate with the host for fault reporting and handling,  
power rail parameters monitoring, etc.  
ƒ
ƒ
Complete power monitoring and reporting  
Independently controlled start-up delay and ramp for each  
regulator, including soft start with a pre-biased load  
voltage  
The device offers a complete solution for soft-start and soft-  
stop. The start-up delay and ramp of each PWM regulator  
can be independently controlled. The device can start up a  
pre-biased PWM channel without causing large negative  
inductor current.  
ƒ
ƒ
Independently controlled soft-stop delay and ramp for  
each regulator with a programmable stop voltage  
Over-temperature protection (OTP) and Under Voltage  
Lockout (UVLO); per-channel over-current protection  
(OCP) and over-voltage protection (OVP)  
APPLICATIONS  
ƒ
ƒ
ƒ
ƒ
ƒ
Computing: Servers, Storage Systems  
ƒ
Built-in LDO (configurable to 3.3V or 5V) with over-current  
protection  
Consumer: Set-top box (STB), Game Systems  
Industrial: ATE, DC-DC converters, Video Processing  
Plasma Display Panel (PDP)  
ƒ
ƒ
Non-volatile memory for system configuration  
Configuration development tools  
Networking and Telecommunications Equipment  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (510) 668-7000 • FAX (510) 668-7017 • www.exar.com  
1
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
ABSOLUTE MAXIMUM RATINGS  
VIN1, VIN2…………………..…………………………….….. 22V  
LXx……………..………………………………………. -1V to 22V  
Logic Inputs……………………………………………............ 6V  
BSTx, GHx……...…………………………… ….…………… 27V  
Storage Temperature……………………..……. -65°C to 150 °C  
Thermal Resistance……………………………………... 18°C/W  
Lead Temperature (Soldering, 10 sec)…………………..300 °C  
These are stress ratings only and functional operation of the  
device at these ratings or any other above those indicated in  
the operation sections of the specifications below is not  
implied. Exposure to absolute maximum rating conditions for  
extended periods of time may affect reliability.  
VCCA, VCCD, LDOOUT, GLx, VOUTx…………………….……..6V  
AVDD, DVDD.……………………………………………………...2.0V  
ELECTRICAL SPECIFICATIONS  
Unless otherwise specified: Ta=Tj=25°C, 6.5VIN120V, 6.5VIN220V, ENABLE=HIGH, CGL=CGH=1nF.  
Those specifications denoted by a are guaranteed over the full operating temperature range, -40°C <Tj< 125°C.  
QUIESCENT CURRENT  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
CONDITIONS  
LDOOUT enabled (no load)  
No switching converter channels  
enabled  
I2C Communication Active  
Switching Frequency = 400kHz  
EN = 0V  
VIN1 = VIN2 = 12V  
4 channels running  
GH and GL = 1nF Load each  
VIN = 12V  
Switching Frequency = 300KHz  
VIN Supply Current in  
STANDBY  
9
mA  
VIN Supply Current in  
SHUTDOWN  
180  
28  
µA  
VIN Supply Current  
VIN Supply Current  
mA  
4 channels running  
GH and GL=1nF Load each  
VIN = 12V  
50  
mA  
Switching Frequency = 1MHz  
BUCK CONTROLLERS  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
CONDITIONS  
mV  
0.9 <= VOUT <= 2.5V  
-20  
20  
VOUT Regulation Accuracy  
mV  
2.6 <= VOUT <= 5.1V  
-40  
40  
0.9 <= VOUT <= 2.5V  
2.6 <= VOUT <= 5.1V  
Feedback Resolution  
Feedback Resolution  
5
mV  
mV  
10  
VOUT input voltage  
regulation range  
Programmable range of each  
channel.  
0.9  
5.1  
1
V
0.9 <= VOUT <= 2.5V  
2.6 <= VOUT <= 5.1V  
0.9 < VOUT <= 2.5V  
2.6 <= VOUT <= 5.1V  
VOUT set point resolution  
VOUT set point resolution  
VOUT Input Current  
50  
mV  
mV  
µA  
100  
VOUT Input Resistance  
120  
k  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
2
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
LOW DROP-OUT REGULATOR  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
CONDITIONS  
6.5 <= VIN1 <= 20V  
0mA < ILDOOUT < 100mA  
6.5 <= VIN1 <= 20V  
0mA < ILDOOUT < 100mA  
LDOOUT Output Voltage  
(LDO=LOW)  
LDOOUT Output Voltage  
(LDO=HIGH)  
LDOOUT Short Circuit  
Current Limit  
3.15  
3.3  
3.45  
V
4.75  
110  
5.0  
5.25  
220  
V
mA  
VLDOOUT =0V  
AUXILIARY ADCs  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
bit  
CONDITIONS  
ADC Resolution  
8
Linearity Error Integral  
Linearity Error Differential  
Input Dynamic Range VIN1  
Input Dynamic Range VIN2  
2
1
LSB  
LSB  
V
-1  
6.5  
6.5  
20  
20  
V
ISENSE ADC  
PARAMETER  
MIN  
TYP  
7
MAX  
UNITS  
bit  
CONDITIONS  
ADC Resolution  
ADC LSB  
5
mV  
Referred to the input  
Input Dynamic Range  
0
-320  
mV  
PWM GENERATORS and OSCILLATOR  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
CONDITIONS  
Steps defined in the table in the  
“PWM Switching Frequency  
Setting” Section below.  
Output frequency range  
300  
1500  
kHz  
Channel-to-channel phase  
shift step  
Channel-to-channel phase  
shift step  
90  
deg  
deg  
With 4 phase setting.  
With 3 phase setting.  
120  
Minimum On Time  
Minimum Off Time  
40  
ns  
ns  
1nF of gate capacitance.  
1nF of gate capacitance  
125  
CLOCK IN Synchronization  
Range  
%
-5  
5
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
3
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
Digital Input/Output Pins  
3.3V CMOS logic compatible. 5V tolerant, maximum rating of 6.0V  
PARAMETER  
Input Pin Low Level  
MIN  
TYP  
MAX  
UNITS  
CONDITIONS  
0.8  
V
V
Input Pin High Level  
Input Pin Leakage Current  
Input pin Capacitance  
Output Pin Low Level  
Output Pin High Level  
2.0  
10  
µA  
pF  
V
5
0.4  
ISINK = 1mA  
ISOURCE = 1mA  
ISOURCE = 0mA  
2.4  
V
Output Pin High Level (no  
load)  
3.3  
3.6  
V
I2C SPECIFICATION  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
KHz  
V
CONDITIONS  
I2C Speed  
400  
Based upon I2C Master Clock  
VIO = 3.3 V ±10%  
Input Pin Low Level, VIL  
Input Pin High Level, VIH  
0.3 VI0  
0.7 VIO  
V
VIO = 3.3 V ±10%  
Hysteresis of Schmitt Trigger  
inputs, Vhys  
Output Pin Low Level (open  
drain or collector), VOL  
0.05 VIO  
V
V
VIO = 3.3 V±10%  
0.4  
10  
ISINK = 3mA  
Input is between 0.1 VIO and 0.9  
VIO  
Input leakage current  
-10  
µA  
Output fall time from VIHmin to  
VILmax  
With a bus capacitance from 10  
pF to 400 pF  
20 + 0.1 Cb  
250  
10  
ns  
Capacitance for each I/O Pin  
pF  
Note  
1. Cb is the capacitance of one bus in pF  
GATE DRIVERS  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
CONDITIONS  
At 10% to 90% of full scale pulse.  
1nF Cload  
GH, GL Rise and Fall Time  
30  
ns  
GH, GL Pull-up On-State  
Output Resistance  
GH, GL Pull-down On-State  
Output Resistance  
3
3
GH, GL Pull-down Off-State  
Output Resistance  
50  
kΩ  
VIN=VCCD=0V.  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
4
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
XRP7704 INTERNAL BLOCK DIAGRAM  
BST1  
Channel 1  
GH1  
LX1  
Feedback  
ADC  
Digital  
PID  
Hybrid  
DPWM  
VOUT1  
Gate  
Driver  
GL1  
PreScaler  
Delay  
PGND1  
Vtar  
DAC  
SS & PD  
Current  
ADC 1  
2-CH  
MUX  
BST2  
Channel 2  
6
GH2  
LX2  
Feedback  
ADC  
Digital  
PID  
Hybrid  
DPWM  
VOUT2  
Gate  
Driver  
GL2  
PreScaler  
Dead  
Time  
PGND2  
Vtar  
DAC  
SS & PD  
VOUT3  
Channel 3  
VCCD  
Current  
ADC 2  
2-CH  
MUX  
VOUT4  
Channel 4  
VCC  
VDD  
Vout1  
Vout2  
Vout3  
Vout4  
Vtj  
Fault  
Handling  
PWR  
Good  
LDO  
GPIO  
I2C  
VREF  
OSC  
OTP  
GPIO 0-3  
SDA,SCL  
7-CH  
MUX  
AUX ADC  
CLOCK  
VIN2  
VIN1  
UVLO  
Configuration  
Registers  
LDOOUT  
STBY LR  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
5
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
XRP7704 PACKAGE OUTLINE – QFN  
AVDD  
DVDD  
GL2  
LX2  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
ENABLE  
DGND  
GH2  
3
BST2  
VCCD  
BST4  
GH4  
4
5
XRP7704  
TQFN  
6mm X 6mm  
6
7
LX4  
8
GL4  
9
Exposed Pad: AGND  
PGND4  
10  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
6
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
PIN DESCRIPTION  
QFN  
PIN NAME  
PIN #  
DESCRIPTION  
Power source for the internal linear regulators to generate VCCA, VDD and the  
Standby LDO (LDOOUT). Place a decoupling capacitor close to the controller IC.  
Also used in UVLO1 fault generation – if VIN1 falls below the user programmed  
limit, all channels are shut down. The VIN1 pin needs to be tied to VIN2 on the  
board with a short trace.  
39  
VIN1  
If the Vin2 pin voltage falls below the user programmed UVLO VIN2 level all  
channels are shut down. The VIN2 pin needs to be tied to VIN1 on the board with  
a short trace.  
Output of the internal 5V LDO. This voltage is internally used to power analog  
blocks.  
38  
37  
VIN2  
VCCA  
Note that a compensation capacitor should be used on this pin [see Application  
Note].  
Gate Drive input voltage. This is not an output voltage. This pin can be connected  
to VCCA to provide power for the Gate Drive.  
VCCD should be connected to VCCA with the shortest possible trace and  
decouple with a minimum 1uF capacitor.  
26  
VCCD  
Alternatively, VCCD could be connected to an external supply (not greater than  
5V).  
36,31,  
16,21  
PGND1-  
PGND4  
Power Ground. Ground connection for the low side gate driver.  
Output of the internal 1.8V LDO. A decoupling capacitor should be placed between  
AVDD and AGND close to the chip (with short traces).  
1
2
AVDD  
DVDD  
Input for powering the internal digital logic. This pin should be connected to  
AVDD.  
Digital Ground. This pin should be connected to the ground plane at the exposed  
pad with a separate trace.  
10  
11  
DGND  
AGND  
Analog Ground. This pin should be connected to the ground plane at the exposed  
pad with a separate trace.  
17,22,  
30,55  
Output pin of the low side gate driver. Connect directly to the respective gate of an  
external N-channel MOSFET.  
GL1-GL4  
GH1-GH4  
19,24,  
28,33  
Output pin of the high side gate driver. Connect directly to the respective gate of  
an external N-channel MOSFET.  
Lower supply rail for the high-side gate driver (GHx). Connect this pin to the  
switching node at the junction between the two external power MOSFETs and the  
inductor. These pins are also used to measure voltage drop across bottom  
MOSFETs in order to provide output current information to the control engine.  
High side driver supply pin(s). Connect BST to an external boost diode and a  
capacitor as shown in the front page diagram.  
34,29,  
23,18  
LX1-LX4  
32,27,  
20,25  
BST1-BST4  
The high side driver is connected between the BST pin and LX pin.  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
7
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
These pins can be configured as inputs or outputs to implement custom flags,  
power good signals and enable/disable controls. A GPIO pin can also be  
GPIO0-GPIO3 programmed as an input clock synchronizing IC to external clock. Refer to the  
“GPIO Pins” Section and the “External Clock Synchronization” Section for more  
information.  
3,4,5,6  
7,8  
GPIO4_SDA, I2C serial interface communication pins. These pins can be re-programmed to  
GPIO5_SCL  
VOUT1-  
perform GPIO functions in applications when I2C bus is not used.  
Voltage sense.  
12,13,  
14,15  
VOUT4  
Connect to the output of the corresponding power stage.  
Output of the Standby LDO. It can be configured as a 5V or 3.3V output. A  
compensation capacitor should be used on this pin [see Application Note].  
If ENABLE is pulled high, the chip powers up (logic reset, registers configuration  
loaded, etc.). If pulled low for longer than 100us, the XRP7704 is placed into  
shutdown.  
40  
LDOOUT  
ENABLE  
AGND  
9
Analog Ground.  
Connect to analog ground (as noted above for pin 11).  
Exposed  
PAD  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
8
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
ORDERING INFORMATION  
Part Number  
Junction Temperature Range  
Package  
XRP7704ILB-AAAA-F.......................-40oC to +125oC......................................... Lead Free 40 PIN 6 x 6 mm TQFN  
XRP7704ILBTR-AAAA-F..................-40oC to +125oC................Lead Free 40 PIN 6 x 6 mm TQFN, Tape and Reel  
The “AAAA” Suffix will differentiate the configuration of a specific customer.  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
9
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
APPLICATION INFORMATION, Typical Performance Data  
at TA = 25°C, unless otherwise specified.  
12Vin Combined Efficiency: 5V, 3V3, 1V8 & 1V @ 5A  
12Vin Efficiency: Single Channel  
300kHz - Channels not in use are disabled  
FET: Si4944; Inductor: 744314xxx 7x7x5mm  
300kHz PWM Frequency  
FETs: Si4944; Inductor: 744314xxx 7x7x5mm  
12Vin Efficiency: Single Channel  
1MHz - Channels not in use are disabled  
FET: FDS8984; Inductor:744310200 7x7x3mm  
12Vin Efficiency: Single Channel  
300kHz - Channels not in use are disabled  
FET: FDS8984; Inductor:744310200 7x7x3mm  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
10  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
APPLICATION INFORMATION (Cont)  
CH1:3.3V CH2:5V CH3:1V CH4:1.8V  
Simultaneous Start-up Configuration  
CH1:3.3V CH2:5V CH3:1V CH4:1.8V  
Simultaneous Soft-Stop  
CH1:5V CH2:3.3V CH3:1.8V CH4:1.2V  
Sequential Soft-Stop Configuration  
Vout Shutdown = 0.8V, 3A load  
CH1:3.3V CH2:5V CH3:1V CH4:1.8V  
Sequential Start-up Configuration  
CH1: Vout (5V)  
Startup into 3V prebias - 5V output  
CH1:3.3V CH2:5V CH3:1V CH4:1.8V  
Sequential Soft-Stop Configuration  
Vout Shutdown = 0.8V, No load  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
11  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
APPLICATION INFORMATION (Cont)  
CH1:Iout (1A/div) CH2: Vout (3.3V)  
Temperature Regulation  
1.8 V out (+/- 1% Vo window)  
Load Transient Response  
Temperature Regulation  
1.0 V out (+/- 1% Vo window)  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
12  
XRP7704  
Quad-Output Digital PWM Buck Controller  
REV 1.1.0  
- Frequency and Synchronization Capability  
o Selectable switching frequency between 300kHz and  
1.5MHz  
Features and Benefits  
General DPWM Benefits:  
- Eliminate temperature and time variations associated with  
passive components in:  
o Each output can be programmed to any one of 4 possible  
phases  
o Both internal clock and DPWM clock can be synchronized  
to external sources  
o ‘Master’, ‘Slave’ and ‘Stand-alone’ Configurations are  
possible  
o Output set point  
o Feedback compensation  
o Frequency set point  
o Under voltage lock out  
o Input voltage measurement  
o Gate drive dead time  
- Internal MOSFET Drivers  
o Internal FET drivers (3Ω) for each Channel  
o Built-In Automatic Dead-time adjustment  
o 30ns Rise and Fall times  
- Tighter parameter tolerances including operating frequency set  
point  
o Soft-start into a pre-biased load and Soft-stop with  
programmable endpoint voltage  
- Easy configuration and re-configuration for different VOUT, Iout,  
Cout, and Inductor selection by simply changing internal PID  
coefficients. No need to change external passives for a new  
output specification.  
- Higher integration: Many external circuits can be handled by  
monitoring or modifying internal registers  
4 Independent DPWM channels in a small package  
- Selectable DPWM frequency and Controller Clock  
Frequency  
- GUI (Graphical User Interface) Design and Configuration  
Software:  
o In its simplest form only VIN, VOUT, and Iout for each  
channel is required. The XRP7704 Configuration  
Software can generate all parts for a system bill of  
material including: Input Capacitor, FETs, Inductor and  
Output Capacitor.  
o Tool calculates configuration register content based upon  
customer requirements. PID coefficients for correct loop  
response (for automatic or customized designs) can be  
generated and sent to the device.  
Other Benefits:  
- A single voltage is needed for regulation [no External LDO  
required].  
- I2C interface allows:  
o Configurations can be saved and/or recalled  
o GPIOs can be configured easily and intuitively  
o Synchronization configuration can be adjusted  
o Interface can be used for real-time debugging and  
optimization  
o Communication with a System Controller or other Power  
Management devices for optimized system function  
o Access to modify or read internal registers that control or  
monitor:  
ƒ Output Current  
ƒ Input and Output Voltage  
ƒ Soft-Start/Soft-Stop Time  
ƒ ‘Power Good’  
ƒ Part Temperature  
ƒ Enable/Disable Outputs  
- Customizing XRP7704 with customer parameters  
o Once a configuration is finalized it can be sent to EXAR  
and can reside in pre-programmed parts that customers  
can order with an individual part number.  
o Allows parts to be used without I2C interface  
ƒ Over Current  
ƒ Over Voltage  
ƒ Temperature Faults  
System Benefits:  
- Reliability is enhanced via communication with the system  
controller which can obtain real time data on an output  
voltage, input voltage and current.  
- System processors can communicate with the XRP7704  
directly to obtain data or make adjustments to react to circuit  
conditions  
ƒ Adjusting fault limits and disabling/enabling faults  
- 6 Configurable GPIO pins, (4 if I2C is in use). Pins can be  
configured in several ways:  
o Fault reporting (including OCP, OVP, Temperature, Soft-  
Start in progress, Power Good)  
- A system processor could also be configured to log and  
analyze operating history, perform diagnostics and if required,  
take the supply off-line after making other system adjustments.  
o Allows a Logic Level interface with other non-digital IC’s or  
as logic inputs to other devices  
o Possible to configure as traditional ‘enable’ pin for all 4  
outputs  
-
If customer field service is a possibility for your end product,  
parameter reporting and history would provide additional  
capabilities for troubleshooting or aid in future system  
upgrades.  
o 2 GPIOs can be dedicated to the I2C Interface as required  
by the customers design  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
13  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
XRP7704 FUNCTIONAL DESCRIPTION AND OPERATION  
The XRP7704 is a quad-output digital pulse width modulation (DPWM) controller with integrated gate drivers for  
the use in synchronous buck switching regulators. Each output voltage can be programmed from 0.9V to 5.1V  
without the need of an external voltage divider. The wide range of the programmable DPWM switching frequency  
(from 300 KHz to 1.5 MHz) enables the user to optimize for efficiency or component sizes. The digital regulation  
loop requires no external passive components for network compensation. The loop performance does not need  
to be compromised due to component tolerance, aging, and operating condition. Each digital controller provides a  
number of safety features, such as over-current protection (OCP) and over-voltage protection (OVP). The chip  
also provides over-temperature protection (OTP) and under-voltage lock-out (UVLO) for two input voltage rails.  
The XRP7704 also has up to 6 GPIOs and a Standby Linear Regulator to provide standby power. An I2C bus  
interface is provided to program the IC as well as to communicate with the host for fault reporting and handling,  
power rail monitoring, channel enable and disable, Standby Low Drop-out Regulator voltage reconfiguration, and  
Standby LDO enable and disable.  
The XRP7704 offers a complete solution for soft-start and soft-stop. The delay and ramp of each PWM regulator  
can be independently controlled. When a pre-bias voltage is present, the device holds both high-side and low-side  
MOSFETs off until the reference voltage ramps up higher than the output voltage. As a result, large negative  
inductor current and output voltage disturbance are avoided. During soft-stop, the output voltage ramps down  
with a programmable slope until it reaches a pre-set stop voltage. This pre-set value can be programmed  
between within zero volts and the target voltage with the same set target voltage resolution (see shutdown  
waveforms in Applications).  
Register Types  
There are two types of registers in the XRP7704: read/write registers and read-only registers. The read/write  
registers are used for the control functions of the IC and can be programmed using configuration non-volatile  
memory (NVM) or through an I2C command. The read-only registers are for feedback functions such as  
error/warning flags and for reading the output voltage or current.  
Non-Volatile Configuration Memory  
The non-volatile memory (NVM) in XRP7704 stores the configuration data for the chip and all of the power rails.  
This memory is normally configured during manufacturing time. Once a specific bit of the NVM is programmed,  
that bit can never be reprogrammed again [i.e. one-time programmable]. During chip power up, the contents in  
the NVM are automatically transferred to the internal registers of the chip. Programmed cells have been verified to  
be permanent for at least 10 years and are highly reliable.  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
14  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
Chip Power-Up  
The figure below shows the power-up sequence of XRP7704 during the normal operation. The startup stage is  
divided into three phases. The first phase is the internal LDO power-up phase. The second phase is the  
configuration transfer phase. The third phase is chip ready phase. The power up sequence is less than 1ms.  
Phase 1  
Phase 2  
Phase 3  
VIN1  
ENABLE_PIN  
VCC  
VDD  
VDDOK  
SYS_RESET  
CONFIG_TRANSFER  
CHIP_READY  
Power up sequence  
Internal LDO Power-Up Phase – Phase 1  
When the ENABLE pin is set, internal VCC and VDD power up upon the power up of VIN1. Once the bandgap  
reference is stable and VCC and VDD fall into the acceptable range, an internal VDDOK flag is generated. A  
SYS_RESET remains low for a few clock cycles to reset all the internal registers. After that the internal  
CONFIGURATION_TRANSFER signal raises high and the chip transits to the second phase.  
Configuration Transfer Phase – Phase 2  
In this phase, the contents in the configuration memory are transferred to the internal registers. The internal  
oscillator switches to the programed switching frequency. The GPIO pins are properly configured as either inputs  
or outputs. If the chip is programmed to run in the I2C mode, GPIO4 and GPIO5 are configured to serve as SDA  
and SCL for the I2C bus. If chip is programmed to run in the NON-I2C mode, then these two pins can be used as  
GPIO4 and GPIO5 respectively.  
Chip Ready Phase – Phase 3  
In this phase, the chip is ready for normal operation. An internal CHIP_READY flag goes high and enables the I2C  
to acknowledge the Host’s serial commands. Channels that are configured as always-on channels are enabled.  
Channels that are configured to be enabled by GPIOs are also enabled if the respective GPIO is asserted.  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
15  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
Standby Low Drop-out Regulator  
This 100mA low drop-out regulator can be programmed as 3.3V or 5V in SET_STBLDO_EN_CONFIG register.  
Its output is seen on the LDOOUT Pin. This LDO is fully controllable via the Enable Pin (configured to turn on as  
soon as power is applied), a GPIO, and/or I2C communication.  
Enabling, Disabling and Reset  
The XRP7704 is enabled via raising the ENABLE Pin high. The chip can then be disabled by lowering the same  
ENABLE Pin. There is also the capability for resetting the Chip via an I2C SOFTRESET Command.  
For enabling a specific channel, there are several ways that this can be achieved. The chip can be configured to  
enable a channel at start-up as the default configuration residing in the non-volatile configuration memory of the  
IC. The channels can also be enabled using GPIO pins and/or an I2C Bus serial command. The registers that  
control the channel enable functions are the SET_EN_CONFIG and SET_CH_EN_I2C.  
Internal Gate Drivers  
The XRP7704 integrates Internal Gate Drivers for all 4 PWM channels. These drivers are optimized to drive both  
high-side and low side N-MOSFETs for synchronous operation. Both high side and low side drivers have the  
capability of driving 1 nF load with 30 ns rise and fall time. The drivers have built-in non-overlapping circuitry to  
prevent simultaneous conduction of the two MOSFETs.  
Fault Handling  
While the chip is operating there are four different types of fault handling:  
Under Voltage Lockout (UVLO) monitors the input voltage to the chip, and the chip will shutdown all  
channels if the voltage drops to critical levels.  
Over Temperature Protection (OTP) monitors the temperature of the chip, and the chip will shutdown all  
channels if the temperature rises to critical levels.  
Over Voltage Protection (OVP) monitors the voltage of channel and will shutdown the channel if it  
surpasses its voltage threshold.  
Over Current Protection (OCP) monitors the current of a channel, and will shutdown the channel if it  
surpasses its current threshold. The channel will be automatically restarted after a 200ms delay.  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
16  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
Under Voltage Lockout (UVLO)  
There are two locations where the under voltage can be sensed: VIN1 and VIN2. The SET_UVLO_WARN_VINx  
register that sets the under voltage warning set point condition at 100mV increments. When the warning threshold  
is reached, the Host is informed via a GPIO or by reading the READ_WARN_FLAG register.  
The SET_UVLO_TARG_VINx register that controls the under voltage fault set point condition at 100mV  
increments. This fault condition will be indicated in the READ_FAULT_WARN register.  
When an under voltage fault condition occurs (either on VIN1 or VIN2), the fault flag register is set and all of the  
XRP7704 outputs are shut down. The measured input voltages can be read back using the READ_VIN1 or  
READ_VIN2 register, and both registers have a resolution of 100mV per LSB. When the UVLO condition clears  
(voltage rises above the UVLO Warning Threshold), the chip can be configured to automatically restart.  
VIN1  
This is a multi-function pin that provides power to both the Standby Linear Regulator and internal linear regulators  
to generate VCCA, VDD, and the Standby LDO (LDOUT).  
It is also used as a UVLO detection pin. If Vin1 falls below its user programmed limit, all channels are shut down.  
VIN2  
VIN2 is required to be tied to VIN1 pin. It can be used as a UVLO detection pin. If VIN2 falls below its user  
programmed limit, all channels are shut down.  
Temperature Monitoring and Over Temperature Protection (OTP)  
Reading the junction temperature  
This register allows the user to read back the temperature of the IC. The temperature is expressed in Kelvin with  
a maximum range of 520K, a minimum of 200K, and an LSB of 5 degrees K. The temperature can be accessed  
by reading the READ_VTJ register.  
Over Temperature Warning  
There are also warning and fault flags that get set in the READ_OVV_UVLO_OVT_FLAG register. The warning  
threshold is configurable to 5 or 10 Degrees C below the fault threshold. When the junction temperature reaches  
5 or 10 Degrees C below the user defined set point, the over-temperature warning bit [OTPW] gets set in the  
READ_OVV_UVLO_OVT_FLAG register to warn the user that the IC might go into an over temperature condition  
(and shutdown all of the regulators).  
Over Temperature Fault  
If the over temperature condition occurs both the OTP and OTPW bits will be set in the  
READ_OVV_UVLO_OVT_FLAG register and the IC will shut down all channels (but I2C will remain operational).  
The actual over temperature threshold can be set by the user by using a 7bit SET_THERMAL_SHDN register  
with an LSB of 5K.  
If the over temperature fault condition clears, then the IC can be set to restart the chip automatically. The restart  
temperature threshold can be set by the SET_THERMAL_RESTART register.  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
17  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
Output Voltage Setting and Monitoring  
The Output Voltage setting is controlled by the SET_VOUT_TARGET_CHx register. This register allows the user  
to set the output voltage with a resolution of 50mV for output voltages between 0 and 2.5V and with a resolution  
of 100mV for output voltages between 2.6V and 5.1V. Output voltages higher than 5.1V can be achieved by  
adding an external voltage divider network. The output voltage of a particular channel can be read back using the  
READ_VOUTx register.  
Output Voltage from 0.9V to 5.1V  
Per the equation below, for values between 0.9V and 5.1V the output voltage is equal to the binary number stored  
in the SET_VOUT_TARGET_CHx register multiplied by 50mV. When programming an output voltage from 2.6V  
to 5.1V, odd binary values should be avoided. As a result, the set resolution for an output voltage higher than  
2.5V is 100mV.  
Output VOUT Higher Than 5.1V  
To set the output voltage higher than 5.1V, the user needs to add an external voltage divider. The resistors used  
in the voltage divider should be below 10k. The SET_VOUT_TARGET_CHx register should be set to 0x32  
which is equivalent to an output voltage of 2.5V without the external divider network. The output voltage regulation  
in this case might exceed 2% due to extra error from the resistor divider. R1 and R2 follow the definition below.  
External divider network for high output voltage  
Output Voltage Lower Than 0.9V  
The XRP7704 can be programmed to regulate an output voltage lower than 0.9V. However, in this case the  
specification of +-2% output voltage accuracy may be exceeded.  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
18  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
Over-Voltage Protection (OVP)  
The Over-Voltage Protection (OVP) SET_OVVP_REGISTER sets the over-voltage condition in predefined steps  
per channel. The over-voltage protection is always active even during soft-start condition. When the over-voltage  
condition is tripped, the controller will shut down the channel. When the channel is shut down the controller will  
then set corresponding OVP Fault bits in the READ_OVV_UVLO_OVT_FLAG register.  
The VOUT OVP Threshold is 150mV to 300mV above nominal VOUT for a Voltage Target of 2.5V or less. For  
the Voltage Target of 2.6V to 5.1V, the VOUT OVP Threshold is 300mV to 600mV.  
Once the over-voltage Channel is disabled, the controller will check the SET_FAULT_RESP_CONFIG_LB and  
SET_FAULT_RESP_CONFIG_HB to determine whether there are any “following” channels that need to be shut  
down. Any following channel will be disabled when the channel with the Over Voltage Fault is disabled. The  
channel(s) will remain disabled, until the Host takes action to enable the channel(s).  
Any of the fault and warning conditions can also be configured to be represented using the general purpose input  
output pins (GPIO) to use as an interface with non I2C compatible devices. For further information on this topic  
see the “GPIO Pins” Section.  
During OVP fault shutdown of the channel, the customer has the option to choose two types of shutdown for each  
channel. The first shutdown is ‘passive shutdown’ where the IC merely stops outputting pulses. The second  
shutdown is a ‘brute force’ shutdown where the GL remains on as the channel reaches its discharged voltage.  
Note that if the ‘brute force’ method is chosen, then GL will permanently remain high until the channel is re-  
enabled.  
Output Current Setting and Monitoring  
XRP7704 utilizes a low side MOSFET Rdson current sensing technique. The voltage drop on Rdson is measured  
by dedicated current ADC. The ADC results are compared to a maximum current threshold and an over-current  
warning threshold to generate the fault and warning flags.  
Maximum Output Current  
The maximum output current is set by the SET_VIOUT_MAX_CHx register and SET_ISENSE_PARAM_CHx  
register. The SET_VIOUT_MAX_CHx register is an 8 bit register. Bits [5:0] set the maximum current threshold  
and bits [7:6] set the over-current warning threshold. The LSB for the current limit register is 5 mV and the allowed  
voltage range is between 0 and 315mV. To calculate the maximum current limit, the user needs to provide the  
MOSFET Rdson. The maximum current can be calculated as:  
Where Kt is the temperature coefficient of the MOSFET Rdson; Vsense is the voltage across Rdson; IOUTMAX is  
the maximum output current.  
Over-Current Warning  
The XRP7704 also offers an Over-Current warning flag. This warning flag resides in the READ_OVC_FLAG  
register. The warning flag bit will be set when the output current gets to within a specified value of the output  
current limit threshold enabling the host to reduce power consumption. The SET_VIOUT_MAX_CHx register  
allows the warning flag threshold to be set 10mV, 20mV, 30mV or 40mV below VIOUT_MAX. The warning flag  
will be automatically cleared when the current drops below the warning threshold.  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
19  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
Over-Current Fault Handling  
When an over-current condition occurs, PWM drivers in the corresponding channels are disabled. After a 200ms  
timeout, the controller is re-powered and soft-start is initiated. When the over-current condition is reached the  
controller will check the SET_FAULT_RESP_CONFIG_LB and SET_FAULT_RESP_CONFIG_HB to determine  
whether there are any “following” channels that need to be similarly restarted. The controller will also set the fault  
flags in READ_OVC_FAULT_WARN register.  
Typically the over-current fault threshold would be set to 130-140% of the maximum desirable output current. This  
will help avoid any over-current conditions caused by transients that would shut down the output channel.  
Chip Operation and Configuration  
Soft-Start  
The SET_SS_RISE_CHx register is a 16 bit register which specifies the soft-start delay and the ramp  
characteristics for a specific channel. This register allows the customer to program the channel with a 250us step  
resolution and up to a maximum 16ms delay.  
Bits [15:10] specify the delay after enabling a channel but before outputting pulses; where each bit represents  
250us steps. Bits [9:0] specify the rise time of the channel; these 10 bits define the number of microseconds for  
each 50mV increment to reach the target voltage.  
Channel Power Up Sequence  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
20  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
Soft-Stop  
The SET_PD_FALL_CHx register is a 16 bit register. This register specifies the soft-stop delay and ramp (fall-  
time) characteristics for when the chip receives a channel disable indication from the Host to shutdown the  
channel.  
Bits [15:10] specify the delay after disabling a channel but before starting the shutdown of the channel; where  
each bit represents 250us steps. Bits [9:0] specify the fall time of the channel; these 10 bits define the number of  
microseconds for each 50mV increment to reach the discharge threshold.  
Channel Soft-Stop Sequence  
Power Good Flag  
The XRP7704 allows the user to set the upper and lower bound for a power good signal per channel. The  
SET_PWRG_TARG_MAX_CHx register sets the upper bound, the SET_PWRG_TARG_MIN_CHx register sets  
the lower bound. Each register has a 20mV LSB resolution. When the output voltage is within bounds the power  
good signal is asserted high. Typically the upper bound should be lower than the over-voltage threshold. In  
addition, the power good signal can be delayed by a programmable amount set in the SET_PWRGD_DLY_CHx  
register. The power good delay is only set after the soft-start period is finished. If the channel has a pre-charged  
condition that falls into the power good region, a power good flag is not set until the soft-start is finished.  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
21  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
PWM Switching Frequency  
The PWM switching frequency is set by choosing the corresponding oscillator frequency and clock divider ratio in  
the SET_SW_FREQUENCY register. Bits [6:4] set the oscillator frequency and bits [2:0] set the clock divider. The  
tables below summarize the available Main Oscillator and PWM switching frequency settings in the XRP7704.  
Main Oscillator Frequency  
SET_SW_FREQUENCY[6:4] 000  
001  
010  
011  
100  
101  
110  
111  
Main Oscillator Frequency  
Ts  
48MHz  
20.8ns  
44.8MHz 41.6MHz 38.4MHz 35.2MHz  
32MHz  
31.25ns  
28.8Mhz 25.6MHz  
22.3ns  
24ns  
26ns  
28.4ns  
34.7ns  
39ns  
PWM Switching Frequency  
SET_SW_FREQUENCY[6:4]  
SET_SW_FREQUENCY[2:0] 000  
001  
NA  
1.4MHz  
010  
NA  
1.3MHz  
011  
NA  
1.2MHz  
100  
NA  
1.1MHz  
101  
NA  
110  
NA  
111  
NA  
000  
001  
010  
011  
100  
101  
110  
111  
NA  
1.5MHz  
1.0MHz  
1.0MHz  
667KHz  
500KHz  
400KHz  
333KHz  
NA  
900KHz 800KHz  
600KHz 533KHz  
450KHz 400KHz  
360KHz 320KHz  
300KHz NA  
933KHz 867KHz 800KHz 733KHz  
750KHz 700KHz 650KHz 600KHz 550KHz  
600KHZ 560KHz 520KHz 480KHz 440KHz  
500KHz 467KHZ 433KHz 400KHz 367KHz  
429KHZ 400KHZ 370KHz 343KHz 314KHz  
375KHz 350KHz 325KHz 300KHz NA  
NA  
NA  
NA  
NA  
NA  
Setting the PWM switching frequency  
There are a number of options that could result in similar PWM switching frequency as shown above. In general,  
the chip consumes less power at lower oscillator frequency. When synchronization to external clock is needed,  
the user can choose the oscillator frequency to be within +/- 5% of the external clock frequency. A higher Main  
Oscillator frequency will not improve accuracy or any performance efficiency.  
PWM Switching Frequency Considerations  
There are several considerations when choosing the PWM switching frequency.  
Minimum On Time  
Minimum on time determines the minimum duty cycle at the specific switching frequency. The minimum on time  
for the XRP7704 is 40ns.  
As an example the minimum duty cycle is 4% for 1MHz PWM frequency. This is important since the minimum on  
time dictates the maximum conversion ratio that the PWM controller can achieve.  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
22  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
Maximum Duty Cycle  
The maximum duty cycle is dictated by the minimum required time to sample the current when the low side  
MOSFET is on. For the XRP7704, the minimum required sampling time is about 16 clock cycles at the main  
oscillator frequency. When calculating maximum duty cycle, the sampling time needs to be subtracted using the  
below equation. For example, if operating at 1MHz using the 32MHz main oscillator frequency, the maximum duty  
cycle would be:  
Maximum Duty Cycle% = (1 – ((16/clock frequency)*PWM frequency)) - 0.03) * 100 47%  
On the other hand, if the 48MHz main oscillator frequency was chosen for the 1MHz PWM frequency, the  
maximum duty cycle would be:  
Maximum Duty Cycle% = (1 – ((16/clock frequency)*PWM frequency) - 0.03) * 100 64%  
Therefore, it is best to choose the highest main oscillator frequency for a particular PWM frequency if duty cycle  
limit might be encountered. The maximum duty cycle for any PWM frequency can easily be determined using the  
following table:  
Main Osc. Frequency →  
48MHz  
44.8MHz 41.6MHz  
38.4MHz 35.2MHz  
32MHz  
28.8Mhz 25.6MHz  
Maximum Duty Cycle ↓  
PWM Frequency ↓  
47%  
64%  
72%  
77%  
80%  
83%  
85%  
1.5MHz  
1.0MHz  
750KHz  
600KHZ  
500KHz  
429KHZ  
375KHz  
1.4MHz 1.3MHz  
1.2MHz  
800KHz  
600KHz  
480KHz  
400KHz  
343KHz  
300KHz  
1.1MHz  
733KHz  
550KHz  
440KHz  
367KHz  
314KHz  
NA  
1.0MHz  
667KHz  
500KHz  
400KHz  
333KHz  
NA  
900KHz 800KHz  
600KHz 533KHz  
450KHz 400KHz  
360KHz 320KHz  
300KHz NA  
933KHz 867KHz  
700KHz 650KHz  
560KHz 520KHz  
467KHZ 433KHz  
400KHZ 370KHz  
350KHz 325KHz  
NA  
NA  
NA  
NA  
NA  
It is highly recommended that the maximum duty cycle obtained from the table above be programmed into each of  
the channels using the SET_DUTY_LIMITER_CHx register. This ensures that under all conditions (including  
faults), there will always be sufficient sampling time to measure the output current. When the duty cycle limit is  
reached, the output voltage will no longer regulate and will be clamped based on the maximum duty cycle limit  
setting.  
Efficiency  
The PWM Switching frequency plays an important role on overall power conversion efficiency. As the switching  
frequency increase, the switching losses also increase. Please see the APPLICATION INFORMATION, Typical  
Performance Data for further examples.  
Component Selection and Frequency  
Typically the components become smaller as the frequency increases, as long as the ripple requirements remain  
constant. At higher frequency the inductor can be smaller in value and have a smaller footprint while still  
maintaining the same current rating.  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
23  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
Frequency Synchronization Function and External Clock  
The user of the XRP7704 can choose to use an external source as the primary clock for the XRP7704. This  
function can be configured using the SET_SYNC_MODE_CONFIG register. This register sets the operation of the  
XRP7704 when an external clock is required. By selecting the appropriate bit combination the user can configure  
the IC to function as a master or a slave when two or more XRP7704s are used to convert power in a system.  
Automatic clock selection is also provided to allow operation even if the external clock fails by switching the IC  
back to an internal clock.  
External Clock Synchronization  
Even when configured to use an external clock, the chip initially powers up with its internal clock. The user can  
set the percent target that the frequency detector will use when comparing the internal clock with the clock  
frequency input on the GPIO pin. If the external clock frequency is detected to be within the window specified by  
the user, then a switchover will occur to the external clock. If the IC does not find a clock in the specified  
frequency target range then the external clock will not be used and the IC will run on the internal clock that was  
specified by the user. If the external clock fails the user can chose to have the internal clock take over, using the  
automatic switch back mode in the SET_SYNC_MODE_CONFIG register.  
CLK_IN  
GPIO1  
XRP7704  
Configured for  
external clock use  
XRP7704 Configured For External Clock Use  
Synchronized Operation as a Master and Slave Unit  
Two XRP7704s can be synchronized together. This Master-Slave configuration is described below.  
Master  
When the XRP7704 powers up as a master unit after the internal configuration memory is loaded the unit will  
send CLK_OUT and SYNC_OUT signals to the slave on the preconfigured GPIO pins  
Slave  
When powering in sync mode the slave unit will initially power up with its internal clock to transfer the  
configuration memory. Once this transfer occurs, then the unit is set to function as a slave unit. In turn the unit will  
take the external clock provided by the master to run as its main internal clock.  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
24  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
Master/Slave configure of the XRP7704  
External Clock Synchronization Master Slave combination  
When an external clock is used, the user will need to setup the master to also have an external clock in function.  
All of the same rules apply as in the External clock synchronization, Synchronized operation as a Slave unit  
section of this document. There are two ways of synchronizing this, either the external clock going to both  
Master/Slave CLK_IN, or CLK_IN can go to the Master, and the Master can synchronize SYNC_OUT and  
CLK_OUT to the Slave.  
CLK_IN  
CLK_IN  
GPIO1  
GPIO1  
GPIO2  
SYNC_IN  
SYNC_OUT  
GPIO2  
XRP7704  
Configured as a  
master with  
XRP7704  
configured  
as slave  
external clock sync  
External clock synchronization Master Slave combination  
Alternative External clock synchronization Master Slave combination  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
25  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
Phase Shift  
Each switching channel can be programmed to a phase shift of the multiples of 90 degrees [for a 4 phase  
configuration] or 120 degrees [for a 3 phase configuration]. Two or more of the channels can use the same phase  
shift, however, it is preferable to run each channel at separate phases.  
GPIO Pins  
The General Purpose Input Output (GPIO) Pins are the basic interface between the XRP7704 and the system.  
Although all of the stored data within the IC can be read back using the I2C bus it is sometimes convenient to  
have some of those internal register to be displayed and or controlled by a single data pin. Besides simple input  
output functions the GPIO pins can be configured to serve as external clock inputs. These pins can be  
programmed using OTP bits or can be programmed using the I2C bus. This GPIO_CONFIG register allows the  
user close to 100 different configuration functions that the GPIO can be programmed to do.  
NOTE: the GPIO Pins (and all I/Os) should NOT be driven without a 10K resistor when VIN is not being  
applied to the IC.  
GPIO Pins Polarity  
The polarity of the GPIO pin can be set by using the GPIO_ACT_POL register. This register allows any GPIO pin  
whether configured as an input or output to change polarity. Bits [5:0] are used to set the polarity of GPIO 0  
though 5. If the IC operates in I2C mode, then the commands for Bits [5:4] are ignored.  
Supply Rail Enable  
Each GPIO can be configured to enable a specific power rail for the system. The GPIOx_CFG register allows a  
GPIO to enable/disable any of the following rails controlled by the chip:  
A single buck power controller  
The Standby LDO  
Any mix of the Standby LDO and power controller(s)  
When the configured GPIO is asserted externally, the corresponding rails will be enabled, and they will be  
similarly disabled when the GPIO is de-asserted. This supply enabling/disabling can also be controlled through  
the I2C interface.  
Power Good Indicator  
The GPIO pins can be configured as Power Good indicators for one or more rails. The GPIO pin is asserted  
when all rails configured for this specific IO are within specified limits for regulation. This information can also be  
found in the READ_PWRGD_SS_FLAG status register.  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
26  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
Fault and Warning Indication  
The GPIOs can be configured to signal Fault or Warning conditions when they occur in the chip. Each GPIO can  
be configured to signal one of the following:  
OCP Fault on Channel 1 - 4  
OCP Warning on Channel 1 - 4  
OVP Fault on Channel 1 - 4  
UVLO Fault on VIN1 or VIN2  
UVLO Warning on VIN1 or VIN2  
Over Temperature Fault or Warning  
I2C Communication  
The I2C communication is standard 2-wire communication available between the Host and the IC. This interface  
allows for the full control, monitoring, and reconfiguration of the semiconductor.  
The I2C Slave address is saved in the NVM. Therefore, each customer can choose the 7-bit Slave Address which  
will work best in their design (in relation to any other I2C devices on the bus).  
External Component Selection  
Inductor Selection  
Select the Inductor for inductance L and saturation current Isat. Select an inductor with Isat higher than the  
programmed over current limit. Calculate inductance from:  
Where:  
VIN is the converter input voltage  
VOUT is the converter output voltage  
fs is the switching frequency  
Irip is the inductor peak-to-peak current ripple (nominally set to 30% of Iout)  
Keep in mind that a higher Irip results in a smaller inductance value which has the advantages of smaller size,  
lower DC equivalent resistance (DCR), and allows the use of a lower output capacitance to meet a given step  
load transient. A higher Irip, however, increases the output voltage ripple, requires higher saturation current limit,  
and increases critical conduction. Notice that this critical conduction current is half of Irip.  
Capacitor Selection  
Output Capacitor Selection  
Select the output capacitor for voltage rating, capacitance and Equivalent Series Resistance (ESR). Nominally the  
voltage rating is selected to be at least twice as large as the output voltage. Select the capacitance to satisfy the  
specification for output voltage overshoot/undershoot caused by the current step load. A sudden decrease in the  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
27  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
load current forces the energy surplus in the inductor to be absorbed by Cout. This causes an overshoot in output  
voltage that is corrected by power switch reduced duty cycle. Use the following equation to calculate Cout:  
(I2 I1)2  
Cout = L ⋅  
2
Vos2 Vout  
Where:  
L is the output inductance  
I2 is the step load high current  
I1 is the step load low current  
Vos is output voltage including the overshoot  
VOUT is the steady state output voltage  
Or it can be expressed approximately as:  
(I2 I1)2  
Cout = L ⋅  
2Vout ⋅ ΔV  
Here, ΔV =Vos Vout is the overshoot voltage deviation.  
Select ESR such that output voltage ripple (Vrip) specification is met. There are two components in Vrip. First  
component arises from the charge transferred to and from Cout during each cycle. The second component of Vrip  
is due to the inductor ripple current flowing through the output capacitor’s ESR. It can be calculated for Vrip:  
Where:  
Irip is the inductor ripple current  
fs is the switching frequency  
Cout is the output capacitance  
Note that a smaller inductor results in a higher Irip, therefore requiring a larger Cout and/or lower ESR in order to  
meet Vrip.  
Input Capacitor Selection  
Select the input capacitor for Voltage, Capacitance, ripple current, ESR and ESL. Voltage rating is nominally  
selected to be at least twice the input voltage. The RMS value of input capacitor current, assuming a low inductor  
ripple current, can be approximated as:  
Iin = Iout D(1D)  
Where:  
Iin is the RMS input current  
Iout is the DC output current  
D is the duty cycle  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
28  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
In general, the total input voltage ripple should be kept below 1.5% of VIN. The input voltage ripple also has two  
major components: the voltage drop on the main capacitor ΔVCin and the voltage drop due to ESR - ΔVESR . The  
contribution to Input voltage ripple by each term can be calculated from:  
IoutVout (Vin Vout )  
ΔVCin  
=
fsCinVin2  
ΔVESR = ESR (Iout + 0.5Irip )  
Total input voltage ripple is the sum of the above:  
ΔVTot = ΔVCin + ΔVESR  
Power MOSFETs Selection  
Selecting MOSFETs with lower Rdson reduces conduction losses at the expense of increased switching losses. A  
simplified expression for conduction losses is given by:  
Vout  
P
= Iout 2 Rdson  
cond  
Vin  
MOSFET’s junction temperature can be estimated from:  
Tj = 2Pcond Rthja + Tambient  
This assumes that the switching loss is the same as the conduction loss. Rthja is the total MOSFET thermal  
resistance from junction to ambient.  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
29  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
Package Drawing  
40 PIN 6x6mm TQFN  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
30  
XRP7704  
REV 1.1.0  
Quad-Output Digital PWM Buck Controller  
REVISION HISTORY  
DATE  
September 2009  
REVISION  
1.1.0  
DESCRIPTION  
Initial release  
For further assistance:  
Email:  
customersupport@exar.com  
EXAR Technical Documentation:  
http://www.exar.com/TechDoc/default.aspx?  
Exar Corporation  
Headquarters and  
Sales Office  
48720 Kato Road  
Fremont, CA 94538  
main: 510-668-7000  
fax: 510-668-7030  
EXAR Corporation reserves the right to make changes to the products contained in this publication in  
order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the  
use of any circuits described herein, conveys no license under any patent or other right, and makes no  
representation that the circuits are free of patent infringement. Charts and schedules contained here in  
are only for illustration purposes and may vary depending upon a user’s specific application. While the  
information in this publication has been carefully checked; no responsibility, however, is assumed for  
inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where  
the failure or malfunction of the product can reasonably be expected to cause failure of the life support  
system or to significantly affect its safety or effectiveness. Products are not authorized for use in such  
applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the  
risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of  
EXAR Corporation is adequately protected under the circumstances.  
EXAR CONFIDENTIAL. PROPRIETARY. DO NOT DISTRIBUTE OR COPY.  
31  
配单直通车
XRP7704ILB-AAAA-F产品参数
型号:XRP7704ILB-AAAA-F
是否Rohs认证: 符合
生命周期:Contact Manufacturer
IHS 制造商:MAXLINEAR INC
包装说明:,
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:5.65
模拟集成电路 - 其他类型:SWITCHING CONTROLLER
JESD-30 代码:S-XQCC-N40
JESD-609代码:e3
湿度敏感等级:3
端子数量:40
封装主体材料:UNSPECIFIED
封装形状:SQUARE
封装形式:CHIP CARRIER
峰值回流温度(摄氏度):260
认证状态:Not Qualified
表面贴装:YES
端子面层:MATTE TIN
端子形式:NO LEAD
端子位置:QUAD
处于峰值回流温度下的最长时间:40
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!