欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • XTR101AG图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • XTR101AG 现货库存
  • 数量3500 
  • 厂家BURR-BROWN 
  • 封装DIP 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755-82556029 QQ:2881894392QQ:2881894393
  • XTR101AG图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • XTR101AG 现货库存
  • 数量
  • 厂家TI 
  • 封装CDIP SB (JD) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • XTR101AG图
  • 深圳市科雨电子有限公司

     该会员已使用本站8年以上
  • XTR101AG
  • 数量
  • 厂家TI 
  • 封装DIP-14 
  • 批号21+ 
  • ★体验愉快问购元件!!就找我吧!单价:959元
  • QQ:1415691092QQ:1415691092 复制
  • 133-5299-5145(微信同号) QQ:1415691092
  • XTR101AG图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • XTR101AG
  • 数量3000 
  • 厂家BB 
  • 封装DIP 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507162QQ:2355507162 复制
    QQ:2355507165QQ:2355507165 复制
  • 86-755-83616256 QQ:2355507162QQ:2355507165
  • XTR101AG图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • XTR101AG
  • 数量4675 
  • 厂家TI 
  • 封装14-CDIP(0.300,7.62mm) 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • XTR101AG图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • XTR101AG
  • 数量4675 
  • 厂家TI 
  • 封装14-CDIP(0.300,7.62mm) 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894393QQ:2881894393 复制
    QQ:2881894392QQ:2881894392 复制
  • 0755- QQ:2881894393QQ:2881894392
  • XTR101AG图
  • 深圳市正纳电子有限公司

     该会员已使用本站2年以上
  • XTR101AG
  • 数量10000 
  • 厂家TI/德州仪器 
  • 封装CDIP-SB-14 
  • 批号22+ 
  • 只做原装 欢迎询价???
  • QQ:2881664480QQ:2881664480 复制
  • 0755-82524192 QQ:2881664480
  • XTR101AG图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • XTR101AG
  • 数量3313 
  • 厂家BURR-BROWN 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • XTR101AG图
  • 深圳市集创讯科技有限公司

     该会员已使用本站5年以上
  • XTR101AG
  • 数量8500 
  • 厂家TI/德州仪器 
  • 封装CDIP-SB-14 
  • 批号24+ 
  • 原装进口正品现货,假一罚十价格优势
  • QQ:2885393494QQ:2885393494 复制
    QQ:2885393495QQ:2885393495 复制
  • 0755-83244680 QQ:2885393494QQ:2885393495
  • XTR101AG BG图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • XTR101AG BG
  • 数量1719 
  • 厂家BB 
  • 封装DIP 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • XTR101AG图
  • 深圳市正纳电子有限公司

     该会员已使用本站15年以上
  • XTR101AG
  • 数量5000 
  • 厂家TI/德州仪器 
  • 封装14-CDIP 
  • 批号21+ 
  • 原装电子元件/半导体&元器件供应商。批量样品支持
  • QQ:2881664480QQ:2881664480 复制
  • 0755-83532193 QQ:2881664480
  • XTR101AG图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • XTR101AG
  • 数量11249 
  • 厂家BB 
  • 封装 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • XTR101AG图
  • 北京罗彻斯特电子科技有限公司

     该会员已使用本站18年以上
  • XTR101AG
  • 数量50 
  • 厂家BB 
  • 封装 
  • 批号2001 
  • ★原装现货,微波军工停产芯片优势,可出售样品研发选型BOM配单服务
  • QQ:674627925QQ:674627925 复制
    QQ:372787046QQ:372787046 复制
  • 13261827936军工芯片优势 QQ:674627925QQ:372787046
  • XTR101AG图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • XTR101AG
  • 数量98500 
  • 厂家BB 
  • 封装原厂封装 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • XTR101AG图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • XTR101AG
  • 数量6500000 
  • 厂家TI 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • XTR101AG图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • XTR101AG
  • 数量12000 
  • 厂家BURR-BROWN 
  • 封装DIP-14 
  • 批号19+ 
  • 全新原装挺实单欢迎来撩/可开票
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • XTR101AG图
  • 深圳市芯脉实业有限公司

     该会员已使用本站11年以上
  • XTR101AG
  • 数量
  • 厂家TI 
  • 封装CDIP SB (JD) 
  • 批号新批次 
  • 新到现货、一手货源、当天发货、bom配单
  • QQ:2881512844QQ:2881512844 复制
  • 075584507705 QQ:2881512844
  • XTR101AG图
  • 深圳市龙腾新业科技有限公司

     该会员已使用本站17年以上
  • XTR101AG
  • 数量10000 
  • 厂家TI/德州仪器 
  • 封装14-CDIP 
  • 批号23+ 
  • 进口原装现货
  • QQ:562765057QQ:562765057 复制
    QQ:370820820QQ:370820820 复制
  • 0755-84509636 QQ:562765057QQ:370820820
  • XTR101AG/BG图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • XTR101AG/BG
  • 数量1980 
  • 厂家BB 
  • 封装CDIP 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • XTR101AG图
  • 集好芯城

     该会员已使用本站13年以上
  • XTR101AG
  • 数量15705 
  • 厂家TI 
  • 封装CDIP_SB (JD) 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • XTR101AG图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • XTR101AG
  • 数量70216 
  • 厂家BB 
  • 封装DIP 
  • 批号2023+ 
  • 绝对原装正品现货,全新深圳原装进口现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 美驻深办0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • XTR101AG图
  • 深圳市正信鑫科技有限公司

     该会员已使用本站12年以上
  • XTR101AG
  • 数量5957 
  • 厂家TI 
  • 封装原厂封装 
  • 批号22+ 
  • 原装正品★真实库存★价格优势★欢迎来电洽谈
  • QQ:1686616797QQ:1686616797 复制
    QQ:2440138151QQ:2440138151 复制
  • 0755-22655674 QQ:1686616797QQ:2440138151
  • XTR101AG图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站14年以上
  • XTR101AG
  • 数量16851 
  • 厂家TI/德州仪器 
  • 封装TI-2019 
  • 批号23+ 
  • 全新原装正品现货热卖
  • QQ:2885348339QQ:2885348339 复制
    QQ:2885348317QQ:2885348317 复制
  • 0755-82519391 QQ:2885348339QQ:2885348317
  • XTR101AG/BG图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • XTR101AG/BG
  • 数量2000 
  • 厂家BB 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • XTR101AG图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • XTR101AG
  • 数量34933 
  • 厂家TI/德州仪器 
  • 封装CDIP-SB-14 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • XTR101AG图
  • 深圳市意好科技有限公司

     该会员已使用本站15年以上
  • XTR101AG
  • 数量6050 
  • 厂家
  • 封装原厂 
  • 批号24+ 
  • 中华地区销售
  • QQ:2853107358QQ:2853107358 复制
    QQ:2853107357QQ:2853107357 复制
  • 0755-88608316 QQ:2853107358QQ:2853107357
  • XTR101AG图
  • 深圳市宇集芯电子有限公司

     该会员已使用本站6年以上
  • XTR101AG
  • 数量6800 
  • 厂家TI 
  • 封装N/A 
  • 批号23+ 
  • 一级代理进口原装现货、假一罚十价格合理
  • QQ:1157099927QQ:1157099927 复制
    QQ:2039672975QQ:2039672975 复制
  • 0755-2870-8773手机微信同号13430772257 QQ:1157099927QQ:2039672975
  • XTR101AG图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • XTR101AG
  • 数量21688 
  • 厂家BB 
  • 封装DIP-14 
  • 批号2020+ 
  • 全新原装进口现货特价热卖,长期供货
  • QQ:1327510916QQ:1327510916 复制
    QQ:1220223788QQ:1220223788 复制
  • 0755-28767101 QQ:1327510916QQ:1220223788
  • XTR101AG图
  • 深圳市凌创微科技有限公司

     该会员已使用本站12年以上
  • XTR101AG
  • 数量996 
  • 厂家TI 
  • 封装14-CDIP 
  • 批号21+ 
  • 凌创微只做原装正品,支持一站式BOM配单74HC273DB
  • QQ:2853313610QQ:2853313610 复制
  • 0755-82545354(BOM配单) QQ:2853313610
  • XTR101AG69S2HT8图
  • 深圳市芯柏然科技有限公司

     该会员已使用本站7年以上
  • XTR101AG69S2HT8
  • 数量23480 
  • 厂家TI 
  • 封装DIP 
  • 批号21+ 
  • 新到现货、一手货源、当天发货、价格低于市场
  • QQ:287673858QQ:287673858 复制
  • 0755-82533534 QQ:287673858
  • XTR101AG图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • XTR101AG
  • 数量15000 
  • 厂家Texas Instruments 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • XTR101AG图
  • 深圳市珩瑞科技有限公司

     该会员已使用本站2年以上
  • XTR101AG
  • 数量
  • 厂家21+ 
  • 封装12000 
  • 批号 
  • ███全新原装正品,可配单
  • QQ:2938238007QQ:2938238007 复制
    QQ:1840507767QQ:1840507767 复制
  • -0755-82578309 QQ:2938238007QQ:1840507767
  • XTR101AG图
  • 深圳市宇川湘科技有限公司

     该会员已使用本站6年以上
  • XTR101AG
  • 数量23000 
  • 厂家BB 
  • 封装DIP-14 
  • 批号23+ 
  • 原装正品现货,郑重承诺只做原装!
  • QQ:2885348305QQ:2885348305 复制
    QQ:2885348305QQ:2885348305 复制
  • 0755-84534256 QQ:2885348305QQ:2885348305
  • XTR101AG图
  • 深圳市驰天熠电子有限公司

     该会员已使用本站1年以上
  • XTR101AG
  • 数量33560 
  • 厂家TI(德州仪器) 
  • 封装CDIP-SB-14 
  • 批号23+ 
  • 全新原装,优势价格,支持配单
  • QQ:3003795629QQ:3003795629 复制
    QQ:534325024QQ:534325024 复制
  • 86-15802056765 QQ:3003795629QQ:534325024

产品型号XTR101AG的概述

XTR101AG芯片概述 XTR101AG是一款高性能、专为高精度测量与传感器应用设计的信号调节器芯片。这款集成电路主要用于将低电平的传感器信号转化为标准的电流输出,适合于各种工业测量和监控系统。XTR101AG的高灵敏度和宽动态范围使其在许多应用中成为理想选择,包括液位监控、压力测量以及温度传感器信号的处理等。 XTR101AG的详细参数 - 工作电压范围:4.5 V 至 36 V - 输出电流范围:0 μA 至 20 mA - 线性度:高达±0.1% - 温度漂移:≤ 10 ppm/°C - 输入阻抗:>10 MΩ - 功耗:典型值约为30 mW - 频率响应:DC至5 kHz - 工作温度范围:-40°C 至 +85°C - 封装类型:SOIC-8、TSSOP-8等 XTR101AG芯片广泛应用于要求较高性能的环境当中,尤其是在需要精确的电流输出至远程设备的场合。 厂家、包装与...

产品型号XTR101AG的Datasheet PDF文件预览

®
XTR101  
Precision, Low Drift  
4-20mA TWO-WIRE TRANSMITTER  
FEATURES  
INSTRUMENTATION AMPLIFIER INPUT  
Low Offset Voltage, 30µV max  
APPLICATIONS  
INDUSTRIAL PROCESS CONTROL  
Pressure Transmitters  
Low Voltage Drift, 0.75µV/°C max  
Low Nonlinearity, 0.01% max  
Temperature Transmitters  
Millivolt Transmitters  
TRUE TWO-WIRE OPERATION  
Power and Signal on One Wire Pair  
Current Mode Signal Transmission  
High Noise Immunity  
RESISTANCE BRIDGE INPUTS  
THERMOCOUPLE INPUTS  
RTD INPUTS  
CURRENT SHUNT (mV) INPUTS  
PRECISION DUAL CURRENT SOURCES  
AUTOMATED MANUFACTURING  
DUAL MATCHED CURRENT SOURCES  
WIDE SUPPLY RANGE: 11.6V to 40V  
–40°C to +85°C SPECIFICATION RANGE  
POWER/PLANT ENERGY SYSTEM  
SMALL 14-PIN DIP PACKAGE, CERAMIC  
MONITORING  
AND PLASTIC  
DESCRIPTION  
The XTR101 is a microcircuit, 4-20mA, two-wire  
transmitter containing a high accuracy instrumenta-  
tion amplifier (IA), a voltage-controlled output current  
source, and dual-matched precision current reference.  
This combination is ideally suited for remote signal  
conditioning of a wide variety of transducers such as  
thermocouples, RTDs, thermistors, and strain gauge  
bridges. State-of-the-art design and laser-trimming,  
wide temperature range operation and small size make  
it very suitable for industrial process control applica-  
tions. In addition, the optional external transistor al-  
lows even higher precision.  
IREF1  
Optional  
IREF2  
External  
10  
Transistor  
+VCC  
8
3
11  
e1  
5
6
12(1)  
XTR101  
Span  
B
The two-wire transmitter allows signal and power to  
be supplied on a single wire-pair by modulating the  
power supply current with the input signal source. The  
transmitter is immune to voltage drops from long runs  
and noise from motors, relays, actuators, switches,  
transformers, and industrial equipment. It can be used  
by OEMs producing transmitter modules or by data  
acquisition system manufacturers.  
4
e2  
+
9
(1)  
13  
E
14  
7
2
IOUT  
1
Optional  
Offset Null  
NOTE: (1) Pins 12 and 13 are used for optional BW control.  
International Airport Industrial Park  
Mailing Address: PO Box 11400, Tucson, AZ 85734  
FAXLine: (800) 548-6133 (US/Canada Only)  
• Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111  
Internet: http://www.burr-brown.com/  
Cable: BBRCORP  
Telex: 066-6491  
FAX: (520) 889-1510  
Immediate Product Info: (800) 548-6132  
©1986 Burr-Brown Corporation  
PDS-627G  
Printed in U.S.A. October, 1993  
SPECIFICATIONS  
ELECTRICAL  
At TA = +25°C, +VCC = 24VDC, and RL = 100with external transistor connected, unless otherwise noted  
XTR101AG  
TYP MAX  
XTR101BG  
TYP MAX  
XTR101AP  
TYP MAX  
XTR101AU  
TYP MAX  
PARAMETER  
CONDITIONS  
MIN  
MIN  
MIN  
MIN  
UNITS  
OUTPUT AND LOAD CHARACTERISTICS  
Current  
Linear Operating Region  
Derated Performance  
4
3.8  
20  
22  
mA  
mA  
Current Limit  
Offset Current Error  
vs Temperature  
Full Scale Output Current Error  
Power Supply Voltage  
28  
±3.9  
±10.5  
±20  
38  
±2.5  
±8  
±6  
±15  
±30  
31  
±8.5  
±10.5  
±30  
31  
±8.5  
±19  
mA  
µA  
ppm, FS/°C  
µA  
VDC  
I
OS, IO = 4mA  
IOS /T  
±10  
±20  
±40  
±40  
±19  
±20  
±60  
Full Scale = 20mA  
CC, Pins 7 and 8,  
Compliance(1)  
±15  
±30  
±60  
V
+11.6  
Load Resistance  
At VCC = +24V, IO = 20mA  
At VCC = +40V, IO = 20mA  
600  
1400  
600  
1400  
SPAN  
Output Current Equation  
Span Equation  
vs Temperature  
Untrimmed Error(2)  
Nonlinearity  
RS in , e1 and e2 in V  
RS in Ω  
Excluding TCR of RS  
εSPAN  
iO = 4mA + [0.016+ (40/RS)] (e2 – e1)  
S = [0.016+ (40/RS)]  
A/V  
ppm/°C  
%
±30  
–2.5  
±100  
0
0.01  
–5  
εNONLINEARITY  
%
Hysteresis  
Dead Band  
0
0
%
%
INPUT CHARACTERISTICS  
Impedance: Differential  
Common-Mode  
Voltage Range, Full Scale  
Offset Voltage  
vs Temperature  
Power Supply Rejection  
Bias Current  
vs Temperature  
Offset Current  
vs Temperature  
Common-Mode Rejection(4)  
Common-Mode Range  
0.4 || 3  
10 || 3  
G|| pF  
G|| pF  
V
µV  
µV/°C  
dB  
nA  
nA/°C  
nA  
nA/°C  
dB  
e = (e2 – e1)(3)  
VOS  
VOS/T  
0
1
±60  
±1.5  
±30  
±0.75  
±100  
±100  
±30  
±0.75  
125  
60  
0.30  
10  
±20  
±0.35  
122  
122  
VCC/PSRR = VOS Error  
110  
110  
IB  
IB/T  
IOSI  
IOSI/T  
DC  
150  
1
±30  
0.3  
±20  
0.1  
100  
90  
4
e1 and e2 with Respect  
to Pin 7  
6
V
CURRENT SOURCES  
Magnitude  
1
mA  
Accuracy  
VCC = 24V,  
V
PIN 8 – VPIN 10  
,
= 19V  
11  
R2 = 5k, Fig. 5  
±0.06  
±50  
±3  
±0.17  
±80  
±0.025 ±0.075  
±0.2  
±0.37  
±0.2  
±0.37  
%
ppm/°C  
ppm/V  
ppm/month  
V
vs Temperature  
vs VCC  
vs Time  
Compliance Voltage  
Ratio Match  
Accuracy  
vs Tempeature  
vs VCC  
±30  
±50  
±8  
With Respect to Pin 7  
Tracking  
(1 – IREF1/IREF2) X 100%  
0
V
– 3.5  
CC  
±0.014  
±0.06  
±15  
±0.009  
±0.04  
±0.031 ±0.088  
±0.031 ±0.088  
%
ppm/°C  
ppm/V  
ppm/month  
MΩ  
10  
±10  
±1  
20  
15  
15  
vs Time  
Output Impedance  
10  
TEMPERATURE RANGE  
Specification  
Operating  
–40  
–55  
–55  
+85  
+125  
+165  
–40  
–40  
–55  
+85  
+85  
+125  
–40  
–55  
+85  
+125  
°C  
°C  
°C  
Storage  
Same as XTR101AG.  
NOTES: (1) See Typical Performance Curves. (2) Span error shown is untrimmed and may be adjusted to zero. (3) e1 and e2 are signals on the –In and +In terminals  
with respect to the output, pin 7. While the maximum permissible e is 1V, it is primarily intended for much lower input signal levels, e.g., 10mV or 50mV full scale  
for the XTR101A and XTR101B grades respectively. 2mV FS is also possible with the B grade, but accuracy will degrade due to possible errors in the low value  
span resistance and very high amplification of offset, drift, and noise. (4) Offset voltage is trimmed with the application of a 5V common-mode voltage. Thus the  
associated common-mode error is removed. See Application Information section.  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes  
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change  
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant  
any BURR-BROWN product for use in life support devices and/or systems.  
®
XTR101  
2
PIN CONFIGURATION  
Top View  
DIP  
Top View  
SOIC  
1
2
3
4
5
6
7
8
Zero Adjust  
Zero Adjust  
–In  
16 Zero Adjust  
15 Bandwidth  
14 B Control  
13 IREF2  
1
2
3
4
5
6
7
Zero Adjust  
Zero Adjust  
–In  
14 Zero Adjust  
13 Bandwidth  
12 B Control  
SOL-16  
Surface-Mount  
+In  
DIP  
+In  
11  
10 IREF1  
IREF2  
Span  
12 IREF1  
Span  
Span  
11  
10 +VCC  
NC  
E
Span  
9
8
E
Out  
Out  
+VCC  
NC  
9
ABSOLUTE MAXIMUM RATINGS  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
Power Supply, +VCC ........................................................................... 40V  
Input Voltage, e1 or e2 ........................................................ VOUT, +VCC  
Storage Temperature Range, Ceramic ........................ –55°C to +165°C  
Plastic ............. –55°C to +125°C  
Lead Temperature (soldering 10s) G, P ...................................... +300°C  
(wave soldering, 3s) U .......................... +260°C  
Output Short-Circuit Duration ........................... Continuous +VCC to IOUT  
Junction Temperature ................................................................... +165°C  
ESD damage can range from subtle performance degrada-  
tion to complete device failure. Precision integrated circuits  
may be more susceptible to damage because very small  
parametric changes could cause the device not to meet its  
published specifications.  
PACKAGE/ORDERING INFORMATION  
PACKAGE  
DRAWING  
NUMBER(1)  
TEMPERATURE  
RANGE  
PRODUCT  
PACKAGE  
XTR101AG  
XTR101BG  
XTR101AP  
XTR101AU  
14-Pin Ceramic DIP  
14-Pin Ceramic DIP  
14-Pin Plastic DIP  
16-Lead SOIC  
169  
169  
010  
211  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
NOTE: (1) For detailed drawing and dimension table, please see end of data  
sheet, or Appendix C of Burr-Brown IC Data Book.  
®
3
XTR101  
TYPICAL PERFORMANCE CURVES  
At TA = +25°C, +VCC = 24VDC, unless otherwise noted.  
SPAN vs FREQUENCY  
80  
STEP RESPONSE  
25  
20  
15  
10  
CC = 0  
RS = 25Ω  
RS = ∞  
60  
40  
R
R
S = 100Ω  
S = 400Ω  
RS = 25Ω  
RS = 2kΩ  
RS = ∞  
20  
0
5
0
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
0
0.1  
1
200  
400  
600  
800  
1000  
Time (µs)  
FULL SCALE INPUT VOLTAGE vs RS  
R
S (k)  
0
2
4
6
8
COMMON-MODE REJECTION vs FREQUENCY  
0.08  
0.06  
0.04  
0.8  
0.6  
0.4  
120  
100  
80  
0 to 800mV and  
0 to 8kscale  
60  
40  
0.02  
0
0.2  
0
20  
0
0 to 80mV (low level signals)  
and 0 to 400scale  
0
100  
200  
300  
400  
1
10  
100  
1k  
10k  
100k  
RS ()  
Frequency (Hz)  
POWER SUPPLY REJECTION vs FREQUENCY  
BANDWIDTH vs PHASE COMPENSATION  
100k  
10k  
1k  
140  
120  
100  
80  
R
S = ∞  
R
S = 400Ω  
RS = 100Ω  
RS = 25Ω  
100  
10  
60  
40  
1
20  
0
0.1  
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Bandwidth Control, CC (pF)  
®
XTR101  
4
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, +VCC = 24VDC, unless otherwise noted.  
INPUT VOLTAGE NOISE DENSITY vs FREQUENCY  
INPUT CURRENT NOISE DENSITY vs FREQUENCY  
60  
50  
40  
30  
20  
6
5
4
3
2
10  
0
1
0
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
OUTPUT CURRENT NOISE DENSITY vs FREQUENCY  
6
5
4
3
2
1
0
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
THEORY OF OPERATION  
A simplified schematic of the XTR101 is shown in Figure 1.  
Basically the amplifiers, A1 and A2, act as a single power  
supply instrumentation amplifier controlling a current source,  
A3 and Q1. Operation is determined by an internal feedback  
loop. e1 applied to pin 3 will also appear at pin 5 and  
similarly e2 will appear at pin 6. Therefore the current in RS,  
the span setting resistor, will be IS = (e2 – e1)/RS = eIN/RS.  
This current combines with the current, I3, to form I1. The  
circuit is configured such that I2 is 19 times I1. From this  
point the derivation of the transfer function is straightfor-  
ward but lengthy. The result is shown in Figure 1.  
since IO is unipolar e2 must be kept larger than e1; i.e., e2 ≥  
e1 or eIN 0. Also note that in order not to exceed the output  
upper range limit of 20mA, eIN must be kept less than 1V  
when RS = and proportionately less as RS is reduced.  
INSTALLATION AND  
OPERATING INSTRUCTIONS  
BASIC CONNECTION  
The basic connection of the XTR101 is shown in Figure 1.  
A difference voltage applied between input pins 3 and 4 will  
cause a current of 4-20mA to circulate in the two-wire  
output loop (through RL, VPS, and D1). For applications  
requiring moderate accuracy, the XTR101 operates very  
cost-effectively with just its internal drive transistor. For  
more demanding applications (high accuracy in high gain)  
an external NPN transistor can be added in parallel with the  
internal one. This keeps the heat out of the XTR101 package  
Examination of the transfer function shows that IO has a  
lower range-limit of 4mA when eIN = e2 – e1 = 0V. This 4mA  
is composed of 2mA quiescent current exiting pin 7 plus  
2mA from the current sources. The upper range limit of IO is  
set to 20mA by the proper selection of RS based on the upper  
range limit of eIN. Specifically RS is chosen for a 16mA  
output current span for the given full scale input voltage  
span; i.e., (0.016 + 40/RS)(eIN full scale) = 16mA. Note that  
®
5
XTR101  
eIN  
RS  
+
(e1)  
(e2)  
IS  
5
6
I3  
I4  
R3  
R4  
1.25kΩ  
1.25kΩ  
+VCC  
A1  
+VCC  
A2  
+VCC  
8
D1  
(e1)  
IB1  
–In3  
eIN  
IB2  
VPS  
+In4  
(e2)  
100µA  
IO  
7
+
Q1  
+VCC  
eL  
+VCC  
A3  
RL  
2mA  
I1  
R
1kΩ  
1
R
2
52.6Ω  
I2  
IO  
Voltage Controlled  
Current Source  
10  
IREF1  
11  
IREF2  
2.5kΩ  
IO = 4mA + (0.016 + 40/RS) eIN, eIN = e2 – e1  
FIGURE 1. Simplified Schematic of the XTR101.  
and minimizes thermal feedback to the input stage. Also in  
such applications where eIN full scale is small (<50mV) and  
tions shown in Figure 2. Thus the 2N2222 will safely  
operate below its 400mW rating at the upper temperature  
of +85°C. Heat sinking the 2N2222 will result in greatly  
reduced accuracy improvement and is not recommended.  
RSPAN is small (<150), caution should be taken to consider  
errors from the external span circuit plus high amplification  
of offset drift and noise.  
2. TIP29B in the TO-220 package. This transistor will  
operate over the specified temperature and output voltage  
range without a series collector resistor. Heat sinking the  
TIP29B will result in slightly less accuracy improvement.  
It can be done, however, when mechanical constraints  
require it.  
OPTIONAL EXTERNAL TRANSISTOR  
The optional external transistor, when used, is connected in  
parallel with the XTR101’s internal transistor. The purpose  
is to increase accuracy by reducing heat change inside the  
XTR101 package as the output current spans from 4-20mA.  
Under normal operating conditions, the internal transistor is  
never completely turned off as shown in Figure 2. This  
maintains frequency stability with varying external transis-  
tor characteristics and wiring capacitance. The actual “cur-  
rent sharing” between internal and external transistors is  
dependent on two factors: (1) relative geometry of emitter  
areas and (2) relative package dissipation (case size and  
thermal conductivity). For best results, the external device  
should have a larger base-emitter area and smaller package.  
It will, upon turn on, take about [0.95 (IO – 3.3mA)]mA.  
However, it will heat faster and take a greater share after a  
few seconds.  
ACCURACY WITH AND  
WITHOUT EXTERNAL TRANSISTOR  
The XTR101 has been tested in a circuit using an external  
transistor. The relative difference in accuracy with and  
without an external transistor is shown in Figure 3. Notice  
that a dramatic improvement in offset voltage change with  
supply voltage is evident for any value of load resistor.  
MAJOR POINTS TO  
CONSIDER WHEN USING THE XTR101  
1. The leads to RS should be kept as short as possible to  
reduce noise pick-up and parasitic resistance.  
Although any NPN of suitable power rating will operate  
with the XTR101, two readily available transistors are  
recommended.  
2. +VCC should be bypassed with a 0.01µF capacitor as close  
to the unit as possible (pin 8 to 7).  
3. Always keep the input voltages within their range of  
linear operation, +4V to +6V (e1 and e2 measured with  
respect to pin 7).  
1. 2N2222 in the TO-18 package. For power supply volt-  
ages above 24V, a 750, 1/2W resistor should be con-  
nected in series with the collector. This will limit the  
power dissipation to 377mW under the worst-case condi-  
®
XTR101  
6
4mA  
20mA  
16mA  
+VCC  
8
750(2)  
12V, 200mW  
3.5mA  
0.5mA  
B
QEXT 23.6V, 377mW  
2N2222(1)  
12  
XTR101  
QINT 18mW  
Other Suitable Types  
Package  
Type  
VPS  
40V  
9
E
TO-225  
TO-220  
TO-220  
2N4922  
TIP29B  
TIP31B  
210Ω  
3.47V, 60mW  
1.5mA  
Quiescent  
0.95V, 17mW  
IOUT  
52.6Ω  
7
11  
Short Circuit  
Worst Case  
RL  
250Ω  
10  
1mA  
1mA  
2mA  
18mA  
20mA  
NOTES: (1) An external transistor is used in the maufacturing test circuit for testing electrical specifications.  
(2) This resistor is required for the 2N2222 with VPS > 24V to limit power dissipation.  
FIGURE 2. Power Calculation of XTR101 with External Transistor.  
1500  
1250  
1000  
750  
30  
25  
20  
15  
10  
60  
50  
40  
30  
20  
Span = IO = 16mA  
Without external transistor  
VPS – 11.6V  
20mA  
RL max =  
L = 600  
R
Operating  
Region  
500  
L = 1k  
R
With external transistor  
RL = 600Ω  
250  
0
5
0
10  
0
RL = 1kΩ  
RL = 100Ω  
0
10  
20  
30  
40  
50  
60  
10  
20  
30  
40  
VCC (V)  
Power Supply Voltage, VPS (V)  
FIGURE 3. Thermal Feedback Due to Change in Output  
Current.  
FIGURE 4. Power Supply Operating Range.  
4. The maximum input signal level (eINFS) is 1V with RS = ∞  
6. Always choose RL (including line resistance) so that the  
voltage between pins 7 and 8 (+VCC) remains within the  
11.6V to 40V range as the output changes between the  
4-20mA range (see Figure 4).  
and proportionally less as RS decreases.  
5. Always return the current references (pins 10 and 11) to  
the output (pin 7) through an appropriate resistor. If the  
references are not used for biasing or excitation, connect  
them together to pin 7. Each reference must have between  
0V and +(VCC – 4V) with respect to pin 7.  
7. It is recommended that a reverse polarity protection diode  
(D1 in Figure 1) be used. This will prevent damage to the  
XTR101 caused by a momentary (e.g., transient) or long  
term application of the wrong polarity of voltage between  
pins 7 and 8.  
®
7
XTR101  
8. Consider PC board layout which minimizes parasitic  
capacitance, especially in high gain.  
Figure 6 shows a similar connection for a resistive trans-  
ducer. The transducer could be excited either by one (as  
shown) or both current sources. Also, the offset adjustment  
has higher resolution compared to Figure 5.  
SELECTING RS  
RSPAN is chosen to that a given full scale input span eINFS  
CMV AND CMR  
will result in the desired full scale output span of IOFS  
,
The XTR101 is designed to operate with a nominal 5V  
common-mode voltage at the input and will function prop-  
erly with either input operating over the range of 4V to 6V  
with respect to pin 7. The error caused by the 5V CMV is  
already included in the accuracy specifications.  
[(0.016 ) + (40/RS)] eIN = IO = 16mA.  
Solving for RS:  
40  
RS =  
(1)  
IO/eIN – 0.016  
If the inputs are biased at some other CMV then an input  
offset error term is (CMV – 5)/CMRR; CMR is in dB,  
CMRR is in V/V.  
For example, if eINFS = 100mV for IOFS = 16mA,  
40  
40  
RS =  
=
=
16mA/100mV) – 0.016  
0.16 – 0.016  
SIGNAL SUPPRESSION AND ELEVATION  
40  
In some applications it is desired to have suppressed zero  
range (input signal elevation) or elevated zero range (input  
signal suppression). This is easily accomplished with the  
XTR101 by using the current sources to create the suppres-  
sion/elevation voltage. The basic concept is shown in Fig-  
ures 7 and 8(a). In this example the sensor voltage is derived  
from RT (a thermistor, RTD, or other variable resistance  
element) excited by one of the 1mA current sources. The  
other current source is used to create the elevated zero range  
voltage. Figures 8(b), (c) and (d) show some of the possible  
circuit variations. These circuits have the desirable feature  
of noninteractive span and suppression/elevation adjust-  
ments. Note: It is not recommended to use the optional offset  
voltage null (pins 1, 2 and 14) for elevation/suppression.  
This trim capability is used only to null the amplifier’s input  
offset voltage. In many applications the already low offset  
voltage (typically 20µV) will not need to be nulled at all.  
Adjusting the offset voltage to nonzero values will disturb  
the voltage drift by ±0.3µV/°C per 100µV or induced offset.  
= 278Ω  
0.144  
See Typical Performance Curves for a plot of RS vs eINFS  
.
Note that in order not to exceed the 20mA upper range limit,  
eIN must be less than 1V when RS = and proportionately  
smaller as RS decreases.  
BIASING THE INPUTS  
Because the XTR operates from a single supply both e1 and  
e2 must be biased approximately 5V above the voltage at pin  
7 to assure linear response. This is easily done by using one  
or both current sources and an external resistor R2. Figure 5  
shows the simplest case— a floating voltage source e'2. The  
2mA from the current sources flows through the 2.5kΩ  
value of R2 and both e1 and e2 are raised by the required 5V  
with respect to pin 7. For linear operation the constraint is  
+4V e1 +6V  
+4V e2 +6V  
The offset adjustment is used to remove the offset voltage of  
the input amplifier. When the input differential voltage (eIN)  
equals zero, adjust for 4mA output.  
D1  
11  
e1  
3
5
10  
8
1mA 1mA  
11  
D1  
10  
e1  
3
5
+
eIN  
RS  
8
XTR101  
0.01µF  
6
+
+
24V  
RL  
eL  
4-20 mA  
eIN  
+
RS  
2mA  
4
7
XTR101  
Adj.  
6
+
14  
2
e2  
0.01µF  
+
+
24V  
RL  
+
100kΩ  
1
Offset  
Adjust  
eL  
e2  
RT  
1MΩ  
7
e2  
R2  
14  
+
1
2
4
2.5kΩ  
1MΩ  
+
IO  
40  
RS  
e'2  
IO = 4mA + (0.016  
+
)eIN  
2mA  
+5V  
Offset  
Adjust  
0.01µF  
Alternate circuitry  
shown in Figure 8.  
eIN = e'2 = 1mA X RT  
R2  
2.5kΩ  
40  
RS  
0.01µF  
IO = 4mA + (0.016  
IN = e2  
+
)eIN  
e
2mA  
+5V  
FIGURE 6. Basic Connection for Resistive Source.  
FIGURE 5. Basic Connection for Floating Voltage Source.  
®
XTR101  
8
at the transducer. Thus the XTR101 is, in general, very  
suitable for individualized and special purpose applications.  
20  
15  
10  
Span Adjust  
EXAMPLE 1  
RTD Transducer shown in Figure 9.  
Given a process with temperature limits of +25°C and  
+150°C, configure the XTR101 to measure the temperature  
with a platinum RTD which produces 100at 0°C and  
200at +266°C (obtained from standard RTD tables).  
Transmit 4mA for +25°C and 20mA for +150°C.  
Elevated  
Zero  
Range  
Suppressed  
Zero  
Range  
5
0
COMPUTING RS:  
– 0 +  
eIN (V)  
The sensitivity of the RTD is R/T = 100/266°C. When  
excited with a 1mA current source for a 25°C to 150°C range  
(i.e., 125°C span), the span of eIN is 1mA X (100/266°C)  
X 125°C = 47mV = eIN.  
FIGURE 7. Elevation and Suppression Graph.  
40  
From equation 1, RS =  
IO/eIN – 0.016Ω  
1mA  
1mA  
+
1mA  
1mA  
+
eIN  
eIN  
40  
40  
RS =  
=
= 123.3Ω  
16mA/47mV – 0.016  
0.3244  
+
+
e'2  
+
RT  
V4  
R4  
e'2  
Span adjustment (calibration) is accomplished by trimming  
RS.  
RT  
+
V4  
R4  
COMPUTING R4:  
At +25°C, e'2 = 1mA (RT + RT)  
100Ω  
2mA  
2mA  
e
V
IN = (e'2 –V4)  
4 = 1mA X R4  
e'2 = 1mA X RT  
eIN = (e'2 +V4)  
4 = 1mA X R4  
e'2 = 1mA X RT  
V
= 1mA [100+  
X 25°C]  
266°C  
(a) Elevated Zero Range  
(b) Suppressed Zero Range  
= 1mA (109.4) = 109.4mV  
In order to make the lower range limit of 25°C correspond  
to the output lower range limit of 4mA, the input circuitry  
shown in Figure 9 is used.  
2mA  
2mA  
+
eIN  
eIN  
+
e'2  
+
eIN, the XTR101 differential input, is made 0 at 25°C or  
+
V4  
e'2 25°C – V4 = 0  
R4  
+
+
V4  
R4  
e'2  
thus, V4 = e'2 25°C = 109.4mV  
V4  
109.4mV  
1mA  
R4 =  
=
= 109.4Ω  
2mA  
2mA  
1mA  
e
IN = (e'2 –V4)  
e
IN = (e'2 +V4)  
V4 = 2mA X R4  
V4 = 2mA X R4  
COMPUTING R2 AND CHECKING CMV:  
At +25°C, e'2 = 109.4mV  
At +150°C, e'2 = 1mA (RT + RT)  
100Ω  
(c) Elevated Zero Range  
(d) Suppressed Zero Range  
FIGURE 8. Elevation and Suppression Circuits.  
APPLICATION INFORMATION  
= 1mA [100+(  
X 150°C)]  
266°C  
The small size, low offset voltage and drift, excellent linear-  
ity, and internal precision current sources, make the XTR101  
ideal for a variety of two-wire transmitter applications. It can  
be used by OEMs producing different types of transducer  
transmitter modules and by data acquisition systems manu-  
facturers who gather transducer data. Current mode trans-  
mission greatly reduces noise interference. The two-wire  
nature of the device allows economical signal conditioning  
= 156.4mV  
Since both e'2 and V4 are small relative to the desired 5V  
common-mode voltage, they may be ignored in computing  
R2 as long as the CMV is met.  
R2 = 5V/2mA = 2.5kΩ  
e2 min = 5V + 0.1094V  
The +4V to +6V CMV  
e2 max = 5V + 0.1564V  
requirement is met.  
e1 = 5V + 0.1094V  
®
9
XTR101  
1mA  
D
1mA  
e1  
3
D1  
11  
R5  
2kΩ  
10  
11  
8
3
10  
8
5
eIN  
+
R6  
51Ω  
RS  
XTR101  
+
e1  
0.01µF  
eIN  
6
4
XTR101  
+
+
24V  
RL  
eL  
Thermocouple  
TTC  
+
7
+
R4  
e2  
RT  
V4  
7
4
+
+
e2  
+
e'2  
0.01µF  
VTC  
+
V4  
R4  
R2  
2.5kΩ  
Temperature T2 = TD  
Temperature T1  
0.01µF  
FIGURE 10. Thermocouple Input Circuit with Two  
Temperature Regions and Diode (D) Cold  
Junction Compensation.  
FIGURE 9. Circuit for Example 1.  
EXAMPLE 2  
With eIN = 0 and VTC = –1.28mV,  
V4 = e1 + eIN – VTC  
Thermocouple Transducer shown in Figure 10.  
Given a process with temperature (T1) limits of 0°C and  
+1000°C, configure the XTR101 to measure the temperature  
with a type J thermocouple that produces a 58mV change for  
1000°C change. Use a semiconductor diode for a cold  
junction compensation to make the measurement relative to  
0°C. This is accomplished by supplying a compensating  
voltage, VR6, equal to that normally produced by the thermo-  
couple with its “cold junction” (T2) at ambient. At a typical  
ambient of +25°C this is 1.28mV (obtained from standard  
thermocouple tables with reference junction of 0°C). Trans-  
mit 4mA for T1 = 0°C and 20mA for T1 = +1000°C. Note:  
eIN = e2 – e1 indicates that T1 is relative to T2.  
= 14.9mV + 0V – (–1.28mV)  
1mA (R4) = 16.18mV  
R4 = 16.18Ω  
COLD JUNCTION COMPENSATION:  
The temperature reference circuit is shown in Figure 11.  
The diode voltage has the form  
IDIODE  
KT  
q
VD  
=
ln  
ISAT  
ESTABLISHING RS:  
Typically at T2 = +25°C, VD = 0.6V and VD/T =  
–2mV/°C. R5 and R6 form a voltage divider for the diode  
voltage VD. The divider values are selected so that the  
gradient VD/T equals the gradient of the thermocouple at  
the reference temperature. At +25°C this is approximately  
52µV/°C (obtained from standard thermocouple table);  
therefore,  
The input full scale span is 58mV (eINFS = 58mV).  
RS is found from equation (1)  
40  
RS =  
IO/eIN – 0.016  
R6  
(2)  
40  
40  
TC/T = VD/T  
=
=
= 153.9Ω  
R5 + R6  
16mA/58mV – 0.016  
0.2599  
R6  
52µV/°C = 2000µV/°C  
SELECTING R4:  
R4 is chosen to make the output 4mA at TTC = 0°C (VTC  
R5 + R6  
=
–1.28mV) and TD = +25°C (VD = 0.6V). A circuit is shown  
in Figure 10.  
R5 is chosen as 2kto be much larger than the resistance of  
the diode. Solving for R6 yields 51.  
VTC will be –1.28mV when TTC = 0°C and the reference  
junction is at +25°C. e1 must be computed for the condition  
of TD = +25°C to make eIN = 0V.  
THERMOCOUPLE BURN-OUT INDICATION  
In process control applications it is desirable to detect when  
a thermocouple has burned out. This is typically done by  
forcing the two-wire transmitter current to either limit when  
VD 25°C = 600mV  
e1 25°C = 600mV (51/2051) = 14.9mV  
eIN = e2 – e1 = VTC + V4 – e1  
®
XTR101  
10  
0.0047µF  
1mA  
R5  
1mA  
(1)  
R3  
11  
3
+
V5  
1mA  
R1  
+
VD  
C2  
D
XTR101  
+
R6  
V6  
(1)  
R4  
4
13  
+
12  
C1  
R2  
FIGURE 11. Cold Junction Compensation Circuit.  
NOTE: (1) R3 and R4 should be equal if used.  
2
e2  
e2  
+
INPUT STAGE  
the thermocouple impedance goes very high. The circuits of  
Figures 16 and 17 inherently have down scale indication.  
When the impedance of the thermocouple gets very large  
(open) the bias current flowing into the + input (large  
impedance) will cause IO to go to its lower range limit value  
(about 3.8mA). If up scale indication is desired the circuit of  
Figure 18 should be used. When the TC opens the output will  
go to its upper range limit value (about 25mA or higher).  
Internally eNOISE RTI  
=
OUTPUT STAGE  
Gain  
FIGURE 12. Optional Filtering.  
APPLICATION CIRCUITS  
Voltage  
Reference  
OPTIONAL INPUT OFFSET VOLTAGE TRIM  
MC1403A  
+
The XTR101 has provisions for nulling the input offset  
voltage associated with the input amplifiers. In many appli-  
cations the already low offset voltages (30µV max for the B  
grade, 60µV max for the A grade) will not need to be nulled  
at all. The null adjustment can be done with a potentiometer  
at pins 1, 2 and 14 as shown in Figures 5 and 6. Either of  
these two circuits may be used. NOTE: It is not recom-  
mended to use this input offset voltage nulling capability for  
elevation or suppression. See the Signal Suppression and  
Elevation section for the proper techniques.  
VR = 2.5V  
100pF  
V+  
XTR101  
IO  
OPA27  
(4-20mA)  
V–  
R1  
125Ω  
R2  
500Ω  
IO(1) (0-20mA)  
OPTIONAL BANDWIDTH CONTROL  
Low-pass filtering is recommended where possible and can  
be done by either one of two techniques shown in Figure 12.  
C2 connected to pins 3 and 4 will reduce the bandwidth with  
a cutoff frequency given by,  
VR  
R2  
R1  
NOTE: (1) IO = 1 +  
IO  
= 1.25 IO – 5mA  
R2  
Other conversions are readily achievable by  
changing the reference and ratio of R1 to R2.  
15.9  
fCO  
=
(R1 + R2 + R3 + R4) (C2 + 3pF)  
FIGURE 13. 0-20mA Output Converter.  
This method has the disadvantage of having fCO vary with  
R1, R2, R3, R4, and it may require large values of R3 and R4.  
The other method, using C1, will use smaller values of  
capacitance and is not a function of the input resistors. It is,  
however, more subject to nonlinear distortion caused by  
slew rate limiting. This is normally not a problem with the  
slow signals associated with most process control transduc-  
ers. The relationship between C1 and fCO is shown in the  
Typical Performance Curves.  
®
11  
XTR101  
2mA  
0.9852mA  
1.0147mA  
1.8kΩ  
R
R
LM129  
6.9V  
Voltage  
Ref  
300Ω  
RS  
XTR101  
R
R
+
0.01µF  
4.7kΩ  
FIGURE 14. Bridge Input, Voltage Excitation.  
1mA  
This circuit has down  
scale burn-out indication.  
2mA  
R
R
R
1mA  
300Ω  
Type J  
+
R
RS  
20Ω  
RTD  
100Ω  
XTR101  
RS  
XTR101  
15Ω  
Zero  
Adjust  
J
+
2.5kΩ  
+
2.2kΩ  
FIGURE 15. Bridge Input, Current Excitation.  
FIGURE 16. Thermocouple Input with RTD Cold Junction  
Compensation.  
1mA  
1mA  
This circuit has down  
scale burn-out indication.  
1mA  
2kΩ  
This circuit has up  
1mA  
scale burn-out indication.  
+
Type J  
+
20Ω  
51Ω  
RS  
RS  
RTD  
XTR101  
XTR101  
20Ω  
100Ω  
15Ω  
Zero  
Adjust  
+
2.5kΩ  
+
Zero  
Adjust  
2.5kΩ  
FIGURE 17. Thermocouple Input with Diode Cold Junction  
Compensation.  
FIGURE 18. Thermocouple Input with RTD Cold Junction  
Compensation.  
®
XTR101  
12  
11  
I1  
I2  
10  
+VCC  
8
+VCC  
3
OPA21  
VREF  
Out  
R1  
R2  
XTR101  
15V  
0.01µF  
4
+
7
2.5kΩ  
VREF = ImA R2  
FIGURE 19. Dual Precision Current Sources Operated From One Supply.  
Isolation  
Barrier  
+15V  
1µF  
P+  
+V2  
C2  
1kΩ  
8
V+  
E
722  
–V2  
1µF  
C1 +V1 –V1  
V–  
4-20mA  
+
30V  
+15V  
eIN  
XTR101  
7
1MΩ  
15  
10  
+
+
–15V  
1MΩ  
12  
7
9
2
4
3
250Ω  
ISO100  
(1)  
VOUT  
+1V to +5V  
8
IREF2  
17  
16  
18  
NOTE: (1) Can be shifted and amplified  
using ISO100 current sources.  
IREF1  
FIGURE 20. Isolated Two-Wire Current Loop.  
®
13  
XTR101  
DETAILED ERROR ANALYSIS  
The ideal output current is  
A. AT THE LOWER RANGE VALUE (T = +25°C).  
σO = IOS RTO = ±6µA  
iO IDEAL = 4mA + K eIN  
VCC  
σI = VOSI + (IB1 R + IOS1 R4) +  
PSRR  
K is the span (gain) term, (0.016+ (40/RS))  
(3)  
(e1 + e2)/2 – 5V  
In the XTR101 there are three major components of error:  
+
CMRR  
1. σO = errors associated with the output stage.  
2. σS = errors associated with span adjustment.  
3. σI = errors associated with the input stage.  
R = RT 25°C – R4 = 109.4 – 109 0  
VCC = (24 X 0.005) + 4mA (250+ 100) + 0.6V  
= 120mV + 1400mV + 600mV  
= 2120mV  
The transfer function including these errors is  
iO ACTUAL = (4mA + σO) + K (1 + σS)(eIN + σI)  
(4)  
When this expression is expanded, second order terms  
(σS σ1) dropped, and terms collected, the result is  
e1 = (2mA X 2.5k) + (1mA X 109) = 5.109V  
e2 = (2mA X 2.5k) + (1mA X 109.4)  
= 5.1094V  
iO ACTUAL = (4mA + σO) + K eIN + KσI + KσS eIN  
(5)  
(e1 + e2)/2 – 5 = 0.1092V  
PSRR= 3.16 X 105 for 110dB  
CMRR = 31.6 X 103 for 90dB  
The error in the output current is iO ACTUAL – iO IDEAL and  
can be found by subtracting equations (5) and (3).  
iO ERROR = σO + Kσ1 + KσS eIN  
(6)  
σ1 = 30µV + (150nA X 0 + 20nA X 109)  
This is a general error expression. The composition of each  
component of error depends on the circuitry inside the  
XTR101 and the particular circuit in which it is applied. The  
circuit of Figure 9 will be used to illustrate the principles.  
2120mV  
3.16 X 105  
0.1092V  
3.16 X 103  
+
+
(10)  
= 30µV + 2.18µV + 6.7µV + 3.46µV  
= 42.34µV  
1. σO = IOS RTO  
2. σS = εNONLINEARITY + εSPAN  
(7)  
(8)  
(9)  
σS = εNONLIN + εSPAN  
VCC  
= 0.0001 + 0 (assumes trim of RS)  
IO error = σO + K σI + K σS eIN  
3. σI = VOSI + (IB1 + R4 – IB2 RT) +  
PSRR  
(e1 + e2)/2 – 5V  
+
40  
RS  
40  
K = 0.016 +  
= 0.016 +  
= 0.340  
CMRR  
123.3Ω  
The term in parentheses may be written in terms of offset  
current and resistor mismatches as IB1 R + IOS' R4.  
eIN = e2 – V4 = IREF1 RT 25°C – IREF2 R4  
since RT 25°C = R4,  
VOSI* = input offset voltage  
IB1*, IB2* = input bias current  
IOSI* = input offset current  
eIN = (IREF1 – IREF2) R4 = 0.4µA X 109Ω  
= 43.6µV  
I
OS RTO* = output offset current error  
R = RT – R4 = mismatch in resistor  
VCC = change supply voltage between  
pins 7 and 8 away from 24V nominal  
PSRR* = power supply rejection ratio  
Since the maximum mismatch of the current references is  
0.04% of 1mA = 0.4µA,  
IO error = 6µA + (0.34 X 42.34µV) + (0.34  
X
0.0001 X 43.6µV) = 6µA + 14.40µA + 0.0015µA  
= 20.40µA  
CMRR* = common-mode rejection ratio  
εNONLIN* = span nonlinearity  
20.40µA  
εSPAN* = span equation error. Untrimmed error  
= 5% max. May be trimmed to zero.  
% error =  
X 100%  
16mA  
Items marked with an asterisk (*) can be found in the  
Electrical Specifications.  
0.13% of span at lower range value.  
B. AT THE UPPER RANGE VALUE (T = +150°C).  
R = RT 150°C – R4 = 156.4 – 109.4 = 47Ω  
VCC = (24 X 0.005) + 20mA (250+ 100) +  
0.6V = 7720mV  
EXAMPLE 3  
The circuit in Figure 9 with the XTR101BG specifications  
and the following conditions: RT = 109.4at 25°C, RT =  
156.4at 150°C, IO = 4mA at 25°C, IO = 20mA at 150°C,  
RS = 123.3, R4 = 109, RL = 250, RLINE = 100, VDI  
=
e1 = 5.109V  
0.6V, VPS = 24V ±0.5%. Determine the % error at the upper  
and lower range values.  
e2 = (2mA X 2.5k) + (1mA X 156.4) = 5.156V  
(e1 + e2)/2 – 5V = 0.1325V  
®
XTR101  
14  
σO = 6µA  
Upper Range: From equation (11), the predominant errors  
are IOS RTO (6µA), VOS RTI (30µV), and IB (150nA), max, B  
grade. Both IOS and VOS can be trimmed to zero; however,  
the result is an error of 0.09% of span instead of 0.19% span.  
σ1 = 30µV + (150nA X 47+ 20nA X 190)  
7720mV  
3.16 X 105  
0.1325V  
3.16 X 103  
+
+
= 30µV + 9.23µV + 24µV + 4.19µV  
= 67.42µV  
RECOMMENDED HANDLING  
PROCEDURES FOR INTEGRATED CIRCUITS  
All semiconductor devices are vulnerable, in varying  
degrees, to damage from the discharge of electrostatic  
energy. Such damage can cause performance degradation or  
failure, either immediate or latent. As a general practice, we  
recommend the following handling procedures to reduce the  
risk of electrostatic damage.  
σS = 0.0001  
eIN = e'2 – V4 = IREF1 RT 150°C – IREF2 R4  
= (1mA X 156.4) – (1mA X 109) = 47mV  
IO error = σO + K σI + K σS eIN = 6µA +  
(0.34 X 67.42µV) + (0.34 X 0.0001  
X 47000µV) = 6µA + 22.92µA + 1.60µA  
= 30.52µA  
1. Remove the static-generating materials, such as untreated  
plastic, from all areas that handle microcircuits.  
30.52µA  
2. Ground all operators, equipment, and work stations.  
% error =  
X 100%  
16mA  
= 0.19% of span at upper range value.  
3. Transport and ship microcircuits, or products incorporat  
ing microcircuits, in static-free, shielded containers.  
4. Connect together all leads of each device by means of a  
conductive material, when the device is not connected  
into a circuit.  
CONCLUSIONS  
Lower Range: From equation (10) it is observed that the  
predominant error term is the input offset voltage (30µV for  
the B grade). This is of little consequence in many applica-  
tions. VOS RTI can, however, be nulled using the pot shown  
in Figures 5 and 6. The result is an error of 0.06% of span  
instead of 0.13% if span.  
5. Control relative humidity to as high a value as practical  
(50% recommended).  
®
15  
XTR101  
配单直通车
XTR101AG产品参数
型号:XTR101AG
是否Rohs认证: 不符合
生命周期:Transferred
IHS 制造商:BURR-BROWN CORP
包装说明:CERAMIC, DIP-14
Reach Compliance Code:unknown
风险等级:5.89
放大器类型:INSTRUMENTATION AMPLIFIER
最大平均偏置电流 (IIB):0.15 µA
最小共模抑制比:90 dB
最大输入失调电流 (IIO):0.03 µA
最大输入失调电压:60 µV
JESD-30 代码:R-CDIP-T14
JESD-609代码:e0
最大非线性:0.01%
功能数量:1
端子数量:14
最高工作温度:85 °C
最低工作温度:-40 °C
封装主体材料:CERAMIC, METAL-SEALED COFIRED
封装形状:RECTANGULAR
封装形式:IN-LINE
认证状态:Not Qualified
供电电压上限:40 V
标称供电电压 (Vsup):24 V
表面贴装:NO
温度等级:INDUSTRIAL
端子面层:Tin/Lead (Sn/Pb)
端子形式:THROUGH-HOLE
端子位置:DUAL
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!