欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • ZSSC3154BA3V
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • ZSSC3154BA3V图
  • 集好芯城

     该会员已使用本站13年以上
  • ZSSC3154BA3V
  • 数量1068 
  • 厂家Renesas Electronics America Inc. 
  • 封装 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • ZSSC3154BA3V图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • ZSSC3154BA3V
  • 数量6328 
  • 厂家IDT-集成器 
  • 封装QFN-32 
  • 批号▉▉:2年内 
  • ▉▉¥32一一有问必回一一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • ZSSC3154BA3V图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • ZSSC3154BA3V
  • 数量660000 
  • 厂家RENESAS(瑞萨)/IDT 
  • 封装VFQFPN-32(5x5) 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • ZSSC3154BA3V图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • ZSSC3154BA3V
  • 数量10394 
  • 厂家Renesas Electronics America Inc. 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • ZSSC3154BA3V图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • ZSSC3154BA3V
  • 数量6500000 
  • 厂家RENESAS(瑞萨电子) 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483

产品型号ZSSC3154BE3R的Datasheet PDF文件预览

ZSSC3154  
Automotive Sensor Signal  
Conditioner with Dual Analog Output  
Datasheet  
Benefits  
Brief Description  
Bridge sensor signal validation for safety  
applications via two antivalent analog outputs or  
via half-bridge sensor measurement output  
The ZSSC3154 is an integrated circuit for highly  
accurate amplification and sensor-specific correction  
of a bridge sensor signal. Up to two temperature  
sensors can also be read in parallel.  
Simultaneous measurement of sensor signals,  
including temperature signal for compensation  
and for temperature output  
The circuitry provides different configurations of the  
analog outputs to show two measurement results  
simultaneously. This also allows generating a com-  
plementary bridge sensor signal, which is often a  
requirement in safety-relevant applications.  
Efficient use of non-calibrated elements for  
bridge sensors and temperature sensors without  
external trimming components  
Single-pass end-of-line calibration algorithm  
minimizes production costs  
The ZSSC3154 can measure and process two exter-  
nal temperature sensors to compensate the temper-  
ature drift of the bridge sensor signal and to output a  
separate temperature signal.  
Excellent EMC/ESD robustness and AEC-Q100  
qualification  
An integrated calibration microcontroller with an on-  
chip EEPROM performs the digital compensation of  
the sensor offset, the sensitivity, the temperature  
drift, and the nonlinearity of a sensor signal.  
Available Support  
Evaluation Kit  
Application Notes  
Calculation Tools  
The single-pass, digital end-of-line calibration com-  
bined with the integrated broken-chip detection sup-  
ports automatic and highly efficient mass production.  
Physical Characteristics  
Supply voltage: 4.5 to 5.5V  
Features  
Maximum supply voltage: 7.7V  
Differential bridge sensor input  
Input span: 1.8 to 267mV/V  
Half-bridge sensor or temperature sensor input  
ADC resolution: 14 bit  
Digital compensation of offset, gain, nonlinearity,  
and temperature dependency  
Output resolution: > 12 bit from 10% to 90%  
Operating temperature range: -40°C to 150°C  
Package: QFN32 (5x5mm; wettable flank) or die  
Two analog outputs; behavior programmable by  
EEPROM configuration  
Sequential analog output mode provides two  
measurement values at one output pin  
ZSSC3154 Basic Circuit  
On-chip diagnostic and safety features including  
sensor connection diagnostic and broken-chip  
detection  
DFBH  
VTN2  
VDDA  
VSSA  
SDA  
SCL  
VTN1  
2 EEPROM words for arbitrary user data  
Multiple configurable output options  
VBR_T  
VDD  
VDDE  
AOUT1  
AOUT2  
VSSE  
VCC  
AOUT1  
AOUT2  
GND  
VBP  
VBR_B  
VBN  
© 2016 Integrated Device Technology, Inc.  
1
January 22, 2016  
ZSSC3154  
Automotive Sensor Signal  
Datasheet  
Conditioner with Dual Analog Output  
ZSSC3154 Block Diagram  
External  
Temperature  
Sensor 2  
Conditioning Coefficients  
External  
Temperature  
Sensor 1  
I2C™*  
EEPROM  
RAM  
I2C™*  
DAC  
Temperature  
Sensor Select  
Gain  
Factor  
Offset  
Shift  
ADC  
Mode  
Diagnostic Fault  
Band Mode  
AOUT2  
AOUT1  
BAMP  
BAMP  
MUX  
PGA  
ADC  
CMC  
OWI  
(Digital  
Data IO)  
Analog Front-End AFE  
Conditioning Calculation  
Conditioning Formula  
ROM  
ZACwire™  
Sensor  
Bridge  
Internal  
Temperature  
Sensor  
Interfaces  
Digital Core  
* I2C™ is a trademark of NXP.  
Ordering Information  
Product Sales Code  
ZSSC3154BA1B  
ZSSC3154BA1C  
ZSSC3154BA3R  
ZSSC3154BE3R  
ZSSC3154KIT  
Description  
Package  
ZSSC3154 Die – Temperature Range -40 to 125°C  
ZSSC3154 Die – Temperature Range -40 to 125°C  
Wafer  
Sawn on frame  
Reel  
ZSSC3154 QFN32 (5x5 mm; wettable flank) – Temperature Range -40 to 125 °C  
ZSSC3154 QFN32 (5x5 mm; wettable flank) – Temperature Range -40 to 150 °C  
Reel  
Kit  
ZSSC3154 SSC Evaluation Kit: Communication Board, SSC Board, Sensor  
Replacement Board, 5 QFN32 samples (software can be downloaded from the  
product page www.IDT.com/ZSSC3154)  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
www.IDT.com/go/support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
www.IDT.com  
DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance  
specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The  
information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an  
implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property  
rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be  
reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the  
property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated  
Device Technology, Inc. All rights reserved.  
© 2016 Integrated Device Technology, Inc.  
2
January 22, 2016  
ZSSC3154 Datasheet  
Contents  
1
Electrical Characteristics.................................................................................................................................. 5  
1.1  
Absolute Maximum Ratings....................................................................................................................... 5  
Operating Conditions................................................................................................................................. 5  
Electrical Parameters ................................................................................................................................ 6  
1.2  
1.3  
1.3.1  
1.3.2  
Supply Current and System Operation Conditions............................................................................. 6  
Analog Front-End Characteristics....................................................................................................... 6  
Temperature Measurement ................................................................................................................ 7  
Sensor Diagnostic Tasks .................................................................................................................... 7  
A/D Conversion................................................................................................................................... 8  
D/A Conversion and Analog Outputs (Pins AOUT1 and AOUT2) ...................................................... 8  
System Response............................................................................................................................... 9  
1.3.3  
1.3.4  
1.3.5  
1.3.6  
1.3.7  
1.4  
1.4.1  
1.4.2  
1.4.3  
Interface Characteristics and EEPROM.................................................................................................. 10  
I2CTM Interface .................................................................................................................................. 10  
ZACwireTM One Wire Interface.......................................................................................................... 10  
EEPROM........................................................................................................................................... 10  
2
Circuit Description .......................................................................................................................................... 11  
2.1  
Signal Flow .............................................................................................................................................. 11  
Application Modes ................................................................................................................................... 12  
System Control ........................................................................................................................................ 13  
2.2  
2.3  
2.3.1  
2.3.2  
2.4  
2.4.1  
2.4.2  
2.4.3  
Main System Tasks........................................................................................................................... 13  
General Working Modes ................................................................................................................... 13  
Normal Operation Mode .......................................................................................................................... 13  
Startup Phase ................................................................................................................................... 13  
Measurement Cycle .......................................................................................................................... 14  
Conditioning Calculation ................................................................................................................... 14  
2.5  
2.6  
2.7  
2.8  
Bridge Sensor Measurement................................................................................................................... 15  
Temperature Measurement..................................................................................................................... 15  
Half-Bridge Sensor Measurement........................................................................................................... 15  
Analog Front End..................................................................................................................................... 16  
2.8.1  
2.8.2  
2.8.3  
2.9  
2.9.1  
2.9.2  
2.9.3  
Programmable Gain Amplifier........................................................................................................... 16  
Offset Compensation ........................................................................................................................ 17  
Analog-to-Digital Converter............................................................................................................... 18  
Signal Outputs ......................................................................................................................................... 18  
Analog Output ................................................................................................................................... 18  
Sequential Analog Output................................................................................................................. 19  
Digital Output .................................................................................................................................... 19  
2.10 Serial Digital Interfaces............................................................................................................................ 19  
2.11 Failsafe Features..................................................................................................................................... 20  
© 2016 Integrated Device Technology, Inc.  
3
January 22, 2016  
ZSSC3154 Datasheet  
2.12 Overvoltage and Short Circuit Protection................................................................................................ 20  
Application Circuits and External Components.............................................................................................. 21  
3
3.1  
3.2  
Application Circuit Examples................................................................................................................... 21  
External Components.............................................................................................................................. 22  
4
5
6
7
8
9
ESD Protection and EMC Specification ......................................................................................................... 22  
Pin Configuration and Package...................................................................................................................... 23  
Reliability and RoHS Conformity.................................................................................................................... 25  
Ordering Information ...................................................................................................................................... 25  
Related Documents........................................................................................................................................ 25  
Glossary ......................................................................................................................................................... 26  
10 Document Revision History............................................................................................................................ 27  
List of Figures  
Figure 2.1 Block Diagram of the ZSSC3154...................................................................................................... 11  
Figure 2.2 Example of Measurement Cycle with Bridge Sensor Signal and Temperature Measurement ........14  
Figure 2.3 Sequential Analog Output—Example Sequence if the DFBH Pin is Unconnected..........................19  
Figure 3.1 Application Circuit with Two Analog Outputs and Diagnostic Fault Band Level Low.......................21  
Figure 3.2 Application Circuit with Two Analog Outputs and Diagnostic Fault Band Level High ......................21  
Figure 5.1 Pin Map and Pad Position of the ZSSC3154.................................................................................... 24  
List of Tables  
Table 1.1  
Table 1.2  
Table 1.3  
Table 1.4  
Table 2.1  
Table 2.2  
Table 2.3  
Table 3.1  
Table 5.1  
Absolute Maximum Ratings................................................................................................................ 5  
Operating Conditions.......................................................................................................................... 5  
Electrical Parameters.......................................................................................................................... 6  
Interface Characteristics and EEPROM ........................................................................................... 10  
Adjustable Gains and Resulting Sensor Signal Spans and Common Mode Ranges ......................16  
Extended Analog Offset Compensation Ranges (XZC) ...................................................................17  
ADC Resolution versus Output Resolution and Sample Rate..........................................................18  
Dimensioning of External Components for the Application Examples .............................................22  
Pin Configuration .............................................................................................................................. 23  
© 2016 Integrated Device Technology, Inc.  
4
January 22, 2016  
ZSSC3154 Datasheet  
1 Electrical Characteristics  
1.1 Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. The ZSSC3154 might not function or be operable above  
the recommended operating conditions. Stresses exceeding the absolute maximum ratings might also damage  
the device. In addition, extended exposure to stresses above the recommended operating conditions might affect  
device reliability. IDT does not recommend designing to the “Absolute Maximum Ratings.”  
Parameters apply in operating temperature range and without time limitations.  
Table 1.1 Absolute Maximum Ratings  
No.  
Parameter  
Symbol  
Conditions  
To VSSE  
To VSSE  
Min  
-0.3  
-0.3  
Max  
7.7  
Unit  
V
1.1.1  
1.1.2  
Supply voltage 1)  
VDDE  
Voltage at pins  
VAOUT1  
,
7.7  
V
AOUT1 and AOUT2 1)  
VAOUT2  
VDDA  
VDD  
Analog supply voltage 1)  
Digital supply voltage 1)  
To VSSA  
To VSSA  
To VSSA  
-0.3  
-0.3  
-0.3  
6.5  
6.5  
V
V
V
1.1.3  
1.1.4  
1.1.5  
Voltage at all analog and  
digital pins 1)  
VAIO  
,
VDDA +0.3  
VDIO  
Storage temperature  
TSTG  
-55  
150  
°C  
1.1.6  
1)  
Refer to ZSSC3154 Application Note – Power Management for a description of the protection features.  
1.2 Operating Conditions  
Table 1.2 Operating Conditions  
No.  
Parameter  
Symbol  
VDDE  
POR_off  
TAMB  
Conditions  
To VSSE  
Min  
Nominal  
Max  
5.5  
Unit  
V
1.2.1  
1.2.2  
1.2.3  
Supply voltage 1)  
4.5  
3.3  
-40  
-40  
5
Power-On-Reset threshold  
Ambient temperature  
VDDA to VSSA  
4.1  
V
EEPROM programming  
cycles specification  
depends on temperature  
(refer to section 1.4.3)  
125  
150  
°C  
°C  
Extended ambient  
temperature – part number  
ZSSC3154BE3R only  
TAMB_E  
1.2.4  
Bridge resistance 2) 3)  
RBR  
1
10  
kΩ  
1)  
2)  
Refer to ZSSC3154 Application Note – Power Management for detailed specifications.  
Symmetric behavior and identical electrical properties (especially the low pass characteristic) of both sensor inputs are required. Unsymmetrical  
conditions of the sensor and/or external components connected to the sensor input pins can generate a failure in signal operation.  
3)  
No measurement in mass production; parameter is guaranteed by design and/or quality observation.  
© 2016 Integrated Device Technology, Inc.  
5
January 22, 2016  
 
 
 
 
 
 
ZSSC3154 Datasheet  
1.3 Electrical Parameters  
All parameter values are valid under the operating conditions specified in section 1.2 (except as noted) and with  
the oscillator frequency within the specified range (fOSC). All voltages are referenced to VSSA.  
Note: See important notes at the end of Table 1.3.  
Table 1.3 Electrical Parameters  
No.  
Parameter  
Symbol  
Conditions  
Min  
Nominal  
Max  
Unit  
1.3.1  
1.3.1.1  
Supply Current and System Operation Conditions  
Supply current  
IS  
Excluding bridge supply  
current and excluding  
output current at pins  
AOUT1 and AOUT2;  
oscillator adjusted  
10  
mA  
(typical fOSC = 2.6MHz)  
1.3.1.2  
1.3.1.3  
Supply voltage sensor  
bridge (internally at VDDA  
and VSSA)  
VVBR  
VVBR = VVBR_T - VVBR_B  
VDDA  
– 0.3V  
VDDA  
3.2  
RBR ≥ 1k(see 1.2.4)  
VVBR_T is the voltage at the  
VBR_T pin and VVBR_B is  
the voltage at VBR_B pin  
Oscillator Frequency 1)  
fOSC  
Guaranteed adjustment  
range (see the ZSSC3154  
Application Note–Oscillator  
Frequency Adjustment)  
2.6  
2.9  
MHz  
1.3.2  
Analog Front-End Characteristics  
1.3.2.1  
Input span  
VIN_SPAN  
Analog gain: 2.8 to 420;  
EMC robust for  
1
267  
mV/V  
VIN_SPAN 6mV/V  
1.3.2.2  
1.3.2.3  
Analog offset  
compensation range  
OC  
Depends on gain  
adjustment  
(refer to section 2.8.2)  
3.88  
VIN_SPAN  
Parasitic differential input  
offset current 1)  
IIN_OFF_85°C  
-25°C to 85°C ambient  
-4  
4
nA  
nA  
nA  
IIN_OFF_125°C -40°C to 125°C ambient  
IIN_OFF_150°C -40°C to 150°C ambient  
-10  
-20  
+10  
+20  
Part number  
ZSSC3154BE3R only  
1.3.2.4  
1.3.2.5  
Common mode  
input range  
VIN_CM  
Depends on gain  
0.29  
0.65  
12  
VVBR  
adjustment; XZC off  
(refer to section 2.8.1);  
VVBR according to 1.3.1.2  
Input capacitance  
CIN  
Capacitance at pins VBP  
and VBN to VSSA  
10  
nF  
© 2016 Integrated Device Technology, Inc.  
6
January 22, 2016  
 
 
 
 
 
 
 
ZSSC3154 Datasheet  
No.  
Parameter  
Symbol  
Conditions  
Min  
Nominal  
Max  
Unit  
1.3.3  
Temperature Measurement  
(Refer to section 2.4.3)  
1.3.3.1  
1.3.3.2  
1.3.3.3  
1.3.3.4  
Internal temperature diode  
sensitivity  
STTSI  
ATSED  
ITSED  
Raw values, without  
conditioning calculation  
26  
-18  
10  
38  
-12  
40  
LSB14  
/K  
External temperature  
diode channel gain  
Sensor at pins VTN1 or  
VTN2  
LSB14  
/mV  
External temperature  
diode bias current  
Sensor at pins VTN1 or  
VTN2  
20  
µA  
External temperature  
diode input range 1)  
VTSED  
Related to VVBR_T which is  
the voltage at the VBR_T  
pin; sensor at pins VTN1  
or VTN2  
0.2  
1.0  
V
1.3.3.5  
1.3.3.6  
External temperature  
resistor channel gain  
ATSER  
At VDDE = 5V;  
sensor at pins VTN1 or  
VTN2  
-13  
0.3  
-9  
LSB14  
/mV  
External temperature  
resistor input range 1)  
VTSER  
Related to VVBR_T which is  
the voltage at the VBR_T  
pin; sensor at pins VTN1  
or VTN2  
1.4  
V
1.3.4  
Sensor Diagnostic Tasks  
Sensor connection loss  
detection threshold  
RSCC_TH  
20  
100  
1.2  
kΩ  
1.3.4.1  
Maximum input capaci-  
tance for sensor connec-  
tion check with sensor  
aging check enabled  
CIN_SCC/SAC  
1
nF  
1.3.4.2  
1.3.4.3  
Maximum input capaci-  
tance for sensor connec-  
tion check with sensor  
short check enabled  
CIN_SCC/SSC If input capacitance is  
greater than 1nF the  
10  
12  
nF  
sensor connection check  
high-capacitor mode must  
be enabled.  
1.3.4.4  
Sensor input short  
detection threshold  
RSSC_TH  
50  
800  
© 2016 Integrated Device Technology, Inc.  
7
January 22, 2016  
 
 
 
 
ZSSC3154 Datasheet  
No.  
Parameter  
Symbol  
Conditions  
Min  
Nominal  
Max  
Unit  
1.3.5  
A/D Conversion  
(Refer to section 2.8.3)  
1.3.5.1  
1.3.5.2  
ADC resolution 1)  
DNL 1)  
rADC  
14  
Bit  
DNLADC  
fOSC = 2.6MHz; best fit;  
complete AFE; VADC_IN  
according to 1.3.5.4  
0.95  
LSB  
1.3.5.3  
INL  
INLADC  
fOSC = 2.6MHz; best fit;  
complete AFE; VADC_IN  
according to 1.3.5.4  
3
8
LSB  
VVBR  
Bit  
1.3.5.4  
1.3.6  
ADC input range  
VADC_IN  
VVBR according to 1.3.1.2  
0.1  
0.9  
D/A Conversion and Analog Outputs (Pins AOUT1 and AOUT2)  
1.3.6.1  
DAC resolution  
rDAC  
Analog output;  
12  
VOUT = 10% to 90% of VDAC  
VDAC = VVDDE-VVSSE  
;
;
1.3.6.2  
Output current  
sink and source  
IOUT_SRC/SINK Analog output;  
VOUT = 10% to 90% of VDAC  
1.3  
mA  
VDAC = VVDDE-VVSSE  
1.3.6.3  
1.3.6.4  
Short circuit current  
Output signal range  
Output slew rate 1)  
IOUT_SHORT  
AOUT1 or AOUT2 to  
VDDE/VSSE  
-25  
0.046  
0.1  
25  
mA  
VOUT_RANGE Ratiometric to  
VDAC = VVDDE-VVSSE  
0.954  
VDAC  
1.3.6.5  
1.3.6.6  
SROUT  
CLOAD 60nF  
V/µs  
Output resistance in  
diagnostic mode  
ROUT_DIAG  
Diagnostic fault band:  
150  
VDFBL < 4% of VDAC  
if the DFBH pin is  
unconnected;  
VDFBH > 96% of VDAC  
if the DFBH pin is  
connected to VSSA;  
VDFBL is the low diagnostic  
level and VDFBH is the high  
diagnostic level for  
indicating faults  
1.3.6.7  
Load capacitance 1)  
CLOAD  
C3 + CLOAD_AOUT1 and  
C4 + CLOAD_AOUT2  
60  
nF  
(refer to section 3)  
© 2016 Integrated Device Technology, Inc.  
8
January 22, 2016  
 
 
 
ZSSC3154 Datasheet  
No.  
Parameter  
DNL  
Symbol  
DNLOUT  
INLOUT  
Conditions  
Min  
-0.95  
-8  
Nominal  
Max  
0.95  
8
Unit  
LSB  
LSB  
1.3.6.8  
1.3.6.9  
INL  
Best fit, rDAC = 12-Bit  
-40°C TAMB 125°C  
1.3.6.10 INL (Part number  
INLOUT_150°C Best fit, rDAC = 12-Bit  
-12  
12  
LSB  
ZSSC3154BExxx only)  
125°C < TAMB 150°C  
1.3.6.11 Output leakage current  
at 125°C  
IOUT  
_
In case of power or  
ground loss  
-25  
-40  
25  
40  
µA  
µA  
µA  
LEAK  
1.3.6.12 Output leakage current  
at 150°C  
IOUT  
_
In case of power or  
ground loss  
LEAK_150°C  
1.3.6.13 Internal pull-up current  
at pin DFBH to VDDA 1)  
IDFBH_PULLUP For diagnostic output LOW  
at AOUT1 and AOUT2, do  
50  
not connect the DFBH pin.  
For diagnostic output  
HIGH at AOUT1 and  
AOUT2, connect the DFBH  
pin to VSSA.  
1.3.7  
System Response  
1.3.7.1  
Startup time 1)  
tSTARTUP  
Time to first valid output  
after power-on;  
20  
ms  
fOSC = 2.6MHz;  
ROM check disabled  
1.3.7.2  
1.3.7.3  
Response time 1)  
Bandwidth 1)  
tRESPONSE  
100% input step  
1
ms  
In comparison to analog  
sensor signal conditioners  
1
kHz  
1.3.7.4  
1.3.7.5  
Ratiometricity error  
RE  
Maximum error for  
VDDE = 5V to 4.5V or  
to 5.5V  
1000  
ppm  
Overall failure 2)  
AFE + ADC  
FALL_85°C  
FALL_125°C  
FALL_150°C  
-20°C to 85°C  
0.5  
1.0  
% FSO 3)  
% FSO  
% FSO  
TAMB = -40°C to 125°C  
Deviation from ideal line  
including INL, gain, offset,  
and temperature impacts;  
no sensor caused effects.  
-40°C to 150°C  
1.25  
Part number  
ZSSC3154BE3R only.  
fOSC = 2.6MHz, XZC off,  
related to digital value  
1)  
2)  
3)  
No measurement in mass production, parameter is guaranteed by design and/or quality observation.  
If XZC is active, an additional overall failure of maximum 25ppm/K for XZC = 31. Failure decreases linearly for XZC < 31.  
FSO = Full Scale Output.  
© 2016 Integrated Device Technology, Inc.  
9
January 22, 2016  
 
 
 
ZSSC3154 Datasheet  
1.4 Interface Characteristics and EEPROM  
Table 1.4 Interface Characteristics and EEPROM  
No.  
1.4.1  
Parameter  
Symbol  
Conditions  
Min  
Nominal  
Max  
Unit  
I2CTM* Interface  
(Refer to ZSSC3154 Functional Description for timing details.)  
1.4.1.1  
1.4.1.2  
1.4.1.3  
1.4.1.4  
1.4.1.5  
1.4.1.6  
I2C™ voltage level HIGH 1)  
I2C™ voltage level LOW 1  
VI2C_HIGH  
0.8  
VDDA  
VDDA  
VDDA  
pF  
VI2C_LOW  
0.2  
0.15  
400  
400  
100  
Slave output level LOW 1) VI2C_LOW_OUT Open drain, IOL < 2mA  
SDA load capacitance 1)  
SCL clock frequency 1)  
Internal pull-up resistor 1)  
CI2C_SDA  
fI2C  
fOSC 2MHz  
kHz  
RI2C_PULLUP  
25  
kΩ  
1.4.2  
ZACwireTM One Wire Interface  
(OWI at pin AOUT1)  
1.4.2.1  
1.4.2.2  
1.4.2.3  
1.4.2.4  
1.4.3  
OWI voltage level HIGH 1)  
VOWI_IN_H  
VOWI_IN_L  
0.8  
VDDA  
VDDA  
VDDA  
ms  
OWI voltage level LOW 1)  
Slave output level LOW 1)  
Start window 1)  
0.2  
0.15  
30  
VOWI_OUT_L  
Open drain, IOL < 4mA  
tOWI_STARTWIN fOSC = Nominal  
EEPROM  
1.4.3.1  
Ambient temperature for  
EEPROM programming  
TAMB_EEP  
-40  
125  
°C  
1.4.3.2  
Write cycles 1)  
nEEP_WRI_85°C TAMB_EEP 85°C  
nEEP_WRI_125°C TAMB_EEP 125°C  
1000  
100  
1.4.3.3  
1.4.3.4  
Read cycles 1), 2), 3)  
Data retention 1)  
nEEP_READ  
TAMB 150°C  
8 x 108  
tEEP_RETENTION Temperature Profile: 4)  
15  
a
100000h at 55°C  
30000h at 125°C  
3000h at 150°C  
1.4.3.5  
Programming time 1)  
tEEP_WRI  
Per written word  
12  
ms  
1)  
2)  
3)  
4)  
No measurement in mass production; parameter is guaranteed by design and/or quality observation.  
Valid for the dice. Note: additional package and temperature range causes restrictions.  
Specification is valid for conditions when EEPROM reading only occurs during the start-up phase in Normal Operation Mode.  
Over lifetime and valid for the dice. Use the IDT Temperature Profile Calculation Sheet for temperature stress calculation.  
Note that the package causes additional restrictions.  
* I2C™ is a trademark of NXP.  
© 2016 Integrated Device Technology, Inc.  
10  
January 22, 2016  
 
 
 
 
 
 
 
 
ZSSC3154 Datasheet  
2 Circuit Description  
2.1 Signal Flow  
The ZSSC3154 signal path consists of the analog front-end (AFE), the digital signal processing unit, two analog  
output stages, the one-wire interface (OWI) and an overvoltage protection circuitry. Based on a differential  
structure, the bridge inputs VBP and VBN are handled by two signal lines, each with a dynamic range sym-  
metrical to the common mode potential (analog ground equal to VDDA/2). Therefore, it is possible to amplify  
positive and negative input signals within the common mode range of the signal input. The input signals are  
selected by the input multiplexer.  
Figure 2.1 Block Diagram of the ZSSC3154  
External  
Temperature  
Sensor 2  
Conditioning Coefficients  
External  
Temperature  
Sensor 1  
I2C™  
EEPROM  
RAM  
I2C™  
DAC  
Temperature  
Sensor Select  
Gain  
Factor  
Offset  
Shift  
ADC  
Mode  
Diagnostic Fault  
Band Mode  
AOUT2  
AOUT1  
BAMP  
BAMP  
MUX  
PGA  
ADC  
CMC  
OWI  
(Digital  
Data IO)  
Analog Front-End AFE  
Conditioning Calculation  
Conditioning Formula  
ROM  
ZACwireTM  
Sensor  
Bridge  
Internal  
Temperature  
Sensor  
Interfaces  
Digital Core  
PGA  
Programmable Gain Amplifier  
Multiplexer  
MUX  
ADC  
Analog-to-Digital Converter  
Calibration Microcontroller  
CMC  
ROM  
Read-Only Memory for Correction Formula and Algorithm  
RAM  
Volatile Memory for Configuration and Conditioning Coefficients  
EEPROM  
DAC  
Non-volatile Memory for Configuration and Conditioning Coefficients  
Digital-to-Analog Converter  
BAMP  
I2CTM  
Output Buffer Amplifier  
I2C™ Digital Interface  
ZACwireTM  
Digital One-Wire Interface  
© 2016 Integrated Device Technology, Inc.  
11  
January 22, 2016  
 
 
 
ZSSC3154 Datasheet  
The multiplexer (MUX) transmits the signals from either the bridge sensor or from the selected temperature  
sensor to the analog-to-digital converter (ADC) in a defined sequence. The temperature sensors can either be  
external diodes, external thermistors (RTD), or an internal diode selected by EEPROM configuration. The  
differential signal from the bridge sensors is pre-amplified by the programmable gain amplifier (PGA). The ADC  
converts these signals into digital values.  
The digital signal correction is processed in the calibration microcontroller (CMC) using a ROM-resident correction  
formula and sensor-specific coefficients stored in the EEPROM during calibration. The configuration data and the  
correction parameters can be programmed into the EEPROM by digital one-wire communication at the main  
output pin or by digital communication via the I2C™ interface. During the calibration procedure the digital interface  
can provide measurement values as well.  
The conditioned bridge sensor signal is always output as a continuous analog signal at the main output pin.  
Depending on the programmed configuration, there are several output modes for the second analog output pin;  
e.g., output the inverse bridge sensor signal, output the conditioned temperature signal, or output the half-bridge  
sensor signal.  
2.2 Application Modes  
For each application, a configuration set must be established by programming the on-chip EEPROM for the  
following modes:  
Sensor channel  
. Input range: Select the gain adjustment of the analog front-end (AFE) with respect to the maximum  
sensor signal span and the zero point of the A/D conversion.  
. Analog sensor offset compensation (XZC): If required, this compensates large sensor offsets; e.g., if the  
sensor offset voltage is near to or larger than the sensor span.  
. Resolution/response time: Configure the A/D converter resolution. These settings influence the sampling  
rate and the signal integration time, and therefore the noise immunity.  
Temperature  
. Temperature measurement for the calibration: Select the internal or external temperature sensor for the  
compensation of temperature-related bridge sensor signal deviations.  
. Temperature measurement for the temperature output: Select the internal or external temperature  
sensor for the temperature measurement.  
Output  
. Output signals: Assign the measured and conditioned signals to the second analog output;  
e.g., inverse bridge sensor signal, temperature signal, or half-bridge sensor signal.  
. Output mode: Select the output mode for the second analog output; e.g., continuous signal or sequential  
analog output.  
© 2016 Integrated Device Technology, Inc.  
12  
January 22, 2016  
 
ZSSC3154 Datasheet  
2.3 System Control  
2.3.1  
Main System Tasks  
The calibration microcontroller (CMC) is the central system control unit and supports the following tasks and  
features:  
Manage the startup sequence  
Control the measurement cycle regarding to the EEPROM-stored configuration data  
Process the signal conditioning calculation (16-bit calculation for the measured signals using the  
ROM-resident signal conditioning formulas and the EEPROM-stored conditioning coefficients)  
Assign the conditioned output values to the analog outputs and control the output behavior  
Process the communication requests received via the digital interfaces  
Perform failsafe tasks and indicate detected errors by setting analog outputs to the diagnostic fault band  
2.3.2  
General Working Modes  
The ZSSC3154 supports three different working modes:  
Normal Operation Mode (NOM) – for continuous processing of the signal conditioning  
Command Mode (CM) – for configuration and calibration and for access to all internal registers  
Diagnostic Mode (DM) – for failure messages  
2.4 Normal Operation Mode  
A configured and calibrated ZSSC3154 starts the Normal Operation Mode (NOM) immediately after power-on if  
there is no communication request within a startup window (refer to the ZSSC3154 Functional Description for  
details). It consists of a startup phase, the measurement cycle, the conditioning calculation, and the analog output  
for the sensor signals.  
2.4.1  
Startup Phase  
After power-on, the startup phase is processed, which includes  
Settling of the internal supply voltages including the reset of the circuitry  
System start and configuration, EEPROM readout, and signature check  
ROM check, if enabled  
Processing the measurement cycle start routine including all measurements to provide the configured  
output signals  
One-wire communication window  
If an error is detected during the startup phase, the Diagnostic Mode (DM) is activated and the analog output at  
the AOUT1 and AOUT2 pins remains in the diagnostic fault band range.  
After the startup phase, the continuously running measurement and sensor signal conditioning cycle is started,  
and the analog or digital output of the conditioned sensor signals is activated.  
© 2016 Integrated Device Technology, Inc.  
13  
January 22, 2016  
 
 
 
 
 
ZSSC3154 Datasheet  
2.4.2  
Measurement Cycle  
The measurement cycle is controlled by the CMC. Depending on EEPROM settings, the multiplexer (MUX)  
selects the following input signals in a defined sequence:  
Differential bridge sensor signal  
Conditioning temperature for bridge sensor signal conditioning calculation  
Temperature sensor signal  
Single-ended half-bridge sensor signal measured against an internal reference voltage  
Internal offset of the analog front end (auto-zero compensation)  
Diagnostic signals  
The cycle diagram in Figure 2.2 shows the basic structure of the measurement cycle. After power-on, the startup  
routine is processed, which performs all required measurements to expedite acquiring an initial valid conditioned  
sensor output. After the startup routine, the normal measurement cycle runs.  
Figure 2.2 Example of Measurement Cycle with Bridge Sensor Signal and Temperature Measurement  
(For detailed descriptions of various possible cycle configurations, refer to the ZSSC3154 Functional Description.)  
Measurement Cycle with Bridge Signal and Temperature Output  
CTAZ CT BRAZ  
Startup  
18  
BR  
TAZ  
BR  
T
BR BISTAZ BR  
BIST  
BR SSCP BR SSCN BR BRAZ BR CTAZ BR  
CT  
Measurements  
per Cycle  
Measurement Cycle  
Measurement Cycle Phases  
Main Signals Measurement  
Safety Functions Measurement  
Analog Output Updated  
Bridge Sensor Signal  
Temperature Signal  
Bridge Sensor  
BR  
Temperature  
Measurement  
AFE Built-In Self-Test  
Measurement  
Sensor Short Check  
Positive-Biased Measurement  
T
BIST  
SSCP  
SSCN  
Measurement  
Bridge Sensor  
BRAZ  
Temperature  
Auto-Zero Measurement  
AFE Built-In Self-Test  
Auto-Zero Measurement  
Sensor Short Check  
Negative-Biased Measurement  
TAZ  
BISTAZ  
Auto-Zero Measurement  
Calibration Temperature  
CT  
Calibration Temperature  
Auto-Zero Measurement  
CTAZ  
Measurement  
2.4.3  
Conditioning Calculation  
The digitalized value for the bridge signal and, if selected, for the temperature or the half-bridge signal are  
processed with the conditioning formulas to remove offset and temperature dependency and to compensate  
nonlinearity. The result is a non-negative 15-bit value in the range [0; 1).  
© 2016 Integrated Device Technology, Inc.  
14  
January 22, 2016  
 
 
 
ZSSC3154 Datasheet  
2.5 Bridge Sensor Measurement  
The ZSSC3154's main task is measuring a differential bridge sensor signal. The signal path is ratiometric and fully  
differential. The ratiometric reference voltage VREF is equal (VBR_T – VBR_B). The internal offset of the analog front-  
end is eliminated by an auto-zero compensation.  
The bridge sensor signal value is processed by a conditioning calculation to correct the temperature-dependent  
gain and to compensate the temperature-dependent offset and the nonlinearity up to 3rd order. The conditioning  
coefficients are stored in the EEPROM. For a detailed description of the bridge signal conditioning formula refer to  
the ZSSC3154 Functional Description.  
2.6 Temperature Measurement  
The ZSSC3154 supports different methods for acquiring temperature data needed for the conditioning of the  
sensor signal as well as for a separate temperature measurement:  
an internal pn-junction temperature sensor,  
an external pn-junction temperature sensor connected to the sensor top potential (pin VBR_T), or  
an external resistive half-bridge temperature sensor connected at the top with 1:10 resistance ratio.  
Recommend resistive sensors are Pt1000, Pt10000, and Cu or Ni based positive-temperature-coefficient resistive  
temperature devices (PTC RTDs); e.g., KTY series.  
The internal offset of the analog-front end is eliminated by an auto-zero compensation.  
The temperature value is processed by a conditioning calculation to correct the gain and to compensate the offset  
and the 2nd order nonlinearity. The conditioning coefficients are stored in the EEPROM. For a detailed description  
of the temperature conditioning formula, refer to the ZSSC3154 Functional Description.  
2.7 Half-Bridge Sensor Measurement  
The ZSSC3154 supports measuring a half-bridge sensor signal referenced to an internal reference potential. The  
signal path is ratiometric and fully differential. The ratiometric reference voltage VREF is equal (VVBR_T - VVBR_B).  
The half-bridge sensor signal value is processed by a conditioning calculation to correct the temperature-  
dependent gain and to compensate the temperature-dependent offset and the 2nd order nonlinearity. The  
conditioning coefficients are stored in the EEPROM. For a detailed description of the half-bridge signal  
conditioning formula, refer to the ZSSC3154 Functional Description.  
© 2016 Integrated Device Technology, Inc.  
15  
January 22, 2016  
 
 
 
ZSSC3154 Datasheet  
2.8 Analog Front End  
The analog front-end (AFE) consists of the multiplexer (MUX), the programmable gain amplifier (PGA), and the  
analog-to-digital converter (ADC).  
2.8.1  
Programmable Gain Amplifier  
Table 2.1 shows the adjustable gains, the corresponding sensor signal input spans, and the common mode range  
limits.  
Table 2.1 Adjustable Gains and Resulting Sensor Signal Spans and Common Mode Ranges  
Input Common Mode Range  
VIN_CM [% VDDA] 2)  
PGA Gain  
aIN  
Maximum Input Span  
VIN_SPAN [mV/V] 1)  
XZC = Off  
XZC = On  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
Not applicable  
420  
280  
210  
140  
105  
70  
1.8  
2.7  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
32 to 57  
3.6  
5.4  
7.1  
10.7  
14.3  
21.4  
28.5  
53.75  
80  
52.5  
35  
26.3  
14  
9.3  
7
107  
267  
2.8  
1)  
2)  
Recommended maximum internal signal range is 80% of supply voltage.  
Span is calculated by the following formula: VIN_SPAN = 0.8 (VVBR_T – VVBR_B) / aIN.  
Refer to section 2.8.2 for an explanation of the analog offset compensation.  
Recommendation: To achieve the best stability and linearity performance of the AFE, operate the PGA in a  
voltage range within 10% to 90% of the ratiometric reference voltage VREF = (VVBR_T – VVBR_B). The gain must be  
selected to guarantee this constraint for the entire operating temperature range of the application and for the  
specified sensor bridge tolerances.  
© 2016 Integrated Device Technology, Inc.  
16  
January 22, 2016  
 
 
 
ZSSC3154 Datasheet  
2.8.2  
Offset Compensation  
The ZSSC3154 supports two methods for sensor offset compensation:  
Digital offset correction is processed during the signal conditioning calculation by the calibration micro-  
controller (CMC).  
Extended analog offset compensation (XZC) is achieved by adding a compensation voltage into the analog  
signal path. This removes large offsets up to 300% of signal span and prevents overdriving the analog  
signal path.  
Table 2.2 Extended Analog Offset Compensation Ranges (XZC)  
PGA Gain  
aIN  
Maximum  
Input Span  
Offset Shift / XZC Step  
Maximum Offset Shift  
[mV/V]  
Maximum Offset Shift  
(XZC = ±31)  
[% VIN_SPAN  
]
VIN_SPAN [mV/V]  
[% VIN_SP  
388  
237  
388  
237  
388  
237  
388  
237  
161  
388  
237  
161  
26  
]
420  
280  
210  
140  
105  
70  
1.8  
2.7  
12.5  
7.6  
7.8  
7.1  
15.5  
14.2  
31  
3.6  
12.5  
7.6  
5.4  
7.1  
12.5  
7.6  
10.7  
14.3  
21.4  
28.5  
53.6  
80  
28  
52.5  
35  
12.5  
7.6  
62  
57  
26.3  
14  
5.2  
52  
12.5  
7.6  
233  
207  
194  
78  
10  
7
107  
267  
5.2  
2.8  
0.83  
© 2016 Integrated Device Technology, Inc.  
17  
January 22, 2016  
 
 
ZSSC3154 Datasheet  
2.8.3  
Analog-to-Digital Converter  
The analog-to-digital converter is implemented using the full differential switched-capacitor technique. The A/D  
resolution is 14-bit. The ADC operates in the second order configuration. The conversion is largely insensitive to  
short-term and long-term instabilities of the clock frequency. The ADC must be configured for the following  
features:  
Adjustable A/D conversion time and integration phase length  
Adjustable A/D conversion input voltage range  
Table 2.3 ADC Resolution versus Output Resolution and Sample Rate  
Bridge Sensor Signal  
ADC Resolution  
rADC  
Averaged Bandwidth  
fOSC = Nominal  
ADC Resolution  
Integration Phase  
Sample Rate  
fOSC = Nominal  
10-bit  
9-bit  
8-bit  
7-bit  
0.60kHz  
1.13kHz  
2.03kHz  
2.54kHz  
225Hz  
425Hz  
765Hz  
955Hz  
14-bit  
2.9 Signal Outputs  
2.9.1  
Analog Output  
ZSSC3154 provides two analog outputs at the AOUT1 and AOUT2 pins. The analog output behavior and the  
assignment of the several conditioned sensor signals to the analog outputs are configurable:  
Conditioned bridge sensor signal is always assigned to and continuously output at the AOUT1 pin.  
Conditioned temperature signal can be assigned to the analog output at the AOUT2 pin.  
Conditioned half-bridge signal can be assigned to the analog output at the AOUT2 pin.  
A function of the conditioned bridge sensor signal can be assigned to the analog output at the AOUT2 pin.  
A sequential analog output mode can be assigned to the analog output at the AOUT2 pin. The sequence of  
output signals includes the diagnostic fault band HIGH and LOW level, the conditioned temperature or the  
half-bridge signal, and a function of the conditioned bridge sensor signal (refer to section 2.9.2).  
Both analog outputs support low-pass filtering of the assigned conditioned sensor signals.  
Both analog outputs can support diagnostic procedures of the application by providing a power-on  
diagnostic output waveform.  
For a detailed description of analog output modes and their configuration, refer to the ZSSC3154 Functional  
Description.  
© 2016 Integrated Device Technology, Inc.  
18  
January 22, 2016  
 
 
 
 
ZSSC3154 Datasheet  
2.9.2  
Sequential Analog Output  
The sequential analog output mode allows the analog output of two conditioned sensor signals at the AOUT2 pin.  
The sequence of output signals includes both the low and high diagnostic fault band levels (DFB Low and DFB  
High, respectively) for synchronization and for a repeated verification of diagnostic levels. This is followed by  
output of the conditioned temperature or half-bridge signal to provide the second signal. The last transmission in  
the sequence is a function of the conditioned bridge sensor signal for verification of the analog output at the  
AOUT1 pin.  
Figure 2.3 Sequential Analog Output—Example Sequence if the DFBH Pin is Unconnected  
Function f() of Bridge Sensor Signal:  
Output 2nd Signal:  
Bridge Sensor Signal  
Temperature Sensor Signal  
Half-Bridge Sensor Signal  
V
AOUT2  
in % (VDDE-VSSE)  
1 - Bridge Sensor Signal  
1/2 Bridge Sensor Signal  
1/2 (1 - Bridge Sensor Signal)  
100  
96  
Output  
Output  
Output  
f( Bridge Sensor Signal )  
f( Bridge Sensor Signal )  
f(Bridge Sensor Signal)  
4
0
tSTARTUP ≤τSEQ  
4τSEQ  
τSEQ τSEQ τSEQ  
4τSEQ  
τSEQ τSEQ τSEQ  
4τSEQ  
t
2.9.3  
Digital Output  
The ZSSC3154 contains a serial digital I2CTM interface that supports digital readout of the conditioned sensor  
signals with a resolution of 13 bits as described in section 2.10.  
2.10 Serial Digital Interfaces  
The ZSSC3154 contains both a serial digital I2CTM interface and a ZACwireTM interface for one-wire  
communication (OWI). The digital interfaces allow configuration and calibration of the sensor module. OWI  
communication can be used to perform an end-of-line calibration via the analog output pin AOUT1 of a completely  
assembled sensor module. The I2CTM interface provides the readout of the conditioned sensor signal data during  
normal operation mode.  
For a detailed description of the digital serial interfaces and the communication protocols, refer to the ZSSC3154  
Functional Description.  
© 2016 Integrated Device Technology, Inc.  
19  
January 22, 2016  
 
 
 
 
ZSSC3154 Datasheet  
2.11 Failsafe Features  
ZSSC3154 provides various failsafe tasks to control the proper function of the device and the connected sensors:  
Observation of sensors: bridge sensor aging, connection, and short check; temperature sensor check  
Observation of analog front-end (AFE): AFE built-in self-test; AFE overdrive control  
Observation of digital control unit: oscillator-fail detection; watchdog; arithmetic check  
Observation of memory content: EEPROM and ROM signatures, RAM and registers parity checks  
Observation of chip: supply power and ground loss, broken-chip check  
For a detailed description of failsafe tasks and their configuration, refer to ZSSC3154 Functional Description.  
When a failure is detected, the Diagnostic Mode (DM) is activated. The AOUT1 and AOUT2 analog outputs are  
set to the diagnostic fault band (DFB). The DFB output level must be selected by the wiring of the DFBH pin. If the  
DFBH pin is open, the outputs are switched to the diagnostic fault band level LOW. If the DFBH pin is connected  
to VSSA, the outputs are switched to the diagnostic fault band level HIGH. The selected DFB mode should match  
the connected load resistances at the analog outputs to reduce power loss if the diagnostic mode is activated.  
2.12 Overvoltage and Short Circuit Protection  
The ZSSC3154 is designed for a 5V (±10%) supply provided by an electronic control unit (ECU). Internal sub-  
assemblies are supplied and protected by integrated voltage regulators and limiters up to a supply voltage of  
7.7V. The two analog output stages are protected by current limiters against short circuits to an external supply or  
ground. These functions are described in detail in ZSSC3154 Application Note – Power Management.  
ZSSC3154 protection features are guaranteed without time limit when the device is operated in the application  
circuits shown in section 3.  
© 2016 Integrated Device Technology, Inc.  
20  
January 22, 2016  
 
 
ZSSC3154 Datasheet  
3 Application Circuits and External Components  
3.1 Application Circuit Examples  
Figure 3.1 Application Circuit with Two Analog Outputs and Diagnostic Fault Band Level Low  
DFBH  
VTN2  
VDDA  
VSSA  
Temp. Sensor2  
Temp. Sensor1  
C1  
100nF  
SDA  
SCL  
VTN1  
VBR_T  
VDD  
VDDE  
AOUT1  
AOUT2  
VSSE  
VCC  
AOUT1  
AOUT2  
GND  
C2  
100nF  
VBP  
VBR_B  
VBN  
C3  
C4  
15nF 15nF  
Sensor Bridge  
Figure 3.2 Application Circuit with Two Analog Outputs and Diagnostic Fault Band Level High  
DFBH  
VTN2  
VDDA  
VSSA  
Temp. Sensor2  
Temp. Sensor1  
C1  
100nF  
SDA  
SCL  
VTN1  
VBR_T  
VDD  
VDDE  
AOUT1  
AOUT2  
VSSE  
VCC  
AOUT1  
AOUT2  
GND  
C2  
100nF  
VBP  
VBR_B  
VBN  
C3  
C4  
15nF 15nF  
Sensor Bridge  
© 2016 Integrated Device Technology, Inc.  
21  
January 22, 2016  
 
 
 
 
ZSSC3154 Datasheet  
3.2 External Components  
For the application circuit examples, refer to section 3.1.  
Table 3.1 Dimensioning of External Components for the Application Examples  
No.  
Component  
Symbol  
Condition  
Min  
Typical  
Max  
Unit  
3.2.1  
Capacitor  
C1  
Vmax 10V  
100  
nF  
3.2.2  
3.2.3  
3.2.4  
Capacitor  
Capacitor  
Capacitor  
C2  
C3  
C4  
Vmax 16V  
Vmax 16V  
Vmax 16V  
100  
15  
nF  
nF  
nF  
15  
The capacitor values are examples and must be adapted to the requirements of the application, in particular to  
the EMC requirements.  
4 ESD Protection and EMC Specification  
All pins have an ESD protection of >2000V according to the Human Body Model (HBM). The VDDE, VSSE,  
AOUT1 and AOUT2 pins have an additional ESD protection of >4000V (HBM).  
The level of ESD protection has been tested with devices in QFN32 5x5 packages during the product  
qualification. The ESD test follows the Human Body Model with 1.5kOhm/100pF based on MIL883, Method  
3015.7.  
The EMC performance regarding external disturbances as well as EMC emission is documented in the  
ZSSC3154 Application Note – Power Management.  
© 2016 Integrated Device Technology, Inc.  
22  
January 22, 2016  
 
 
 
ZSSC3154 Datasheet  
5 Pin Configuration and Package  
The ZSSC3154 is available in a QFN32 (5mm x 5mm) green package.  
Table 5.1 Pin Configuration  
Pin No  
Die  
Pin No  
Pin Name  
Description  
Notes  
QFN32 5x5  
1
2
1
VDDA  
VSSA  
SDA  
Positive Analog Supply Voltage  
Negative Analog Supply Voltage  
I²C™ Clock  
Internal analog power supply  
Internal analog ground  
Analog input, internal pull-up  
Analog I/O, internal pull-up  
Internal digital power supply  
Power supply, protected up to 7.7V  
Analog I/O, protected up to 7.7V  
Ground  
2
3
3
4
4
SCL  
I²C™ Data I/O  
6
5
VDD  
Positive Digital Supply Voltage  
Positive External Supply Voltage  
Analog Output 2  
7
10  
12  
14  
16  
21  
22  
23  
24  
25  
26  
27  
VDDE  
AOUT2  
VSSE  
AOUT1  
DFBH  
VTN2  
VBN  
8
9
External Ground  
10  
11  
12  
13  
14  
15  
16  
17  
Analog Output 1  
Analog I/O, protected up to 7.7V  
Analog Input, internal pull-up  
Analog I/O  
Diagnostic Fault Band Mode Select  
External Temperature Sensor 2  
Negative Bridge Sensor Input  
Negative Bridge Supply Voltage (Bottom)  
Positive Bridge Sensor Input  
Positive Bridge Supply Voltage (Top)  
External Temperature Sensor 1  
Analog input  
VBR_B  
VBP  
Analog I/O  
Analog input  
VBR_T  
VTN1  
Analog I/O  
Analog I/O  
© 2016 Integrated Device Technology, Inc.  
23  
January 22, 2016  
 
 
ZSSC3154 Datasheet  
Figure 5.1 Pin Map and Pad Position of the ZSSC3154  
24 23 22 21 20 19 18 17  
VBP  
AOUT1  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
VBR_T  
VTN1  
Package QFN32 (5mm x 5mm)  
(with wettable flank)  
VSSE  
AOUT2  
VDDE  
Package  
QFN32 5x5  
The backside of the package  
(the “exposed pad”)  
is electrically connected  
to the potential VSSA.  
1
2
3
4
5
6
7
8
VBR_B VBN  
VTN2 DFBH  
Delivery as Die (3.10mm x 2.98mm)  
The backside of the chip is electrically  
connected to the potential VSSA.  
Drawing is not true to scale.  
For exact bond pad positions, refer to  
ZSSC3154 Technical Note –  
Die Dimensions and Pads.  
VDDA VSSA SDA  
SCL  
VPP VDD  
© 2016 Integrated Device Technology, Inc.  
24  
January 22, 2016  
 
ZSSC3154 Datasheet  
6 Reliability and RoHS Conformity  
The ZSSC3154 is qualified according to the AEC-Q100 standard, operating temperature grade 0.  
The IC complies with the RoHS directive and does not contain hazardous substances.  
The complete RoHS declaration update can be downloaded at www.IDT.com.  
7 Ordering Information  
Product Sales Code  
ZSSC3154BA1B  
ZSSC3154BA1C  
ZSSC3154BA3R  
ZSSC3154BE3R  
ZSSC3154KIT  
Description  
Package  
ZSSC3154 Die – Temperature Range -40 to 125°C  
ZSSC3154 Die – Temperature Range -40 to 125°C  
Wafer  
Sawn on frame  
ZSSC3154 QFN32 (5x5 mm; wettable flank) – Temperature Range -40 to 125 °C Reel  
ZSSC3154 QFN32 (5x5 mm; wettable flank) – Temperature Range -40 to 150 °C Reel  
ZSSC3154 SSC Evaluation Kit: Communication Board, SSC Board, Sensor  
Replacement Board, 5 QFN32 samples (software can be downloaded from the  
product page www.IDT.com/ZSSC3154)  
Kit  
8 Related Documents  
Note: Documents marked with an asterisk (*) require a login account for access on the web.  
Document  
ZSSC3154 Functional Description  
ZSSC3154 Application Note – Power Management  
ZSSC3154 Application Note –  
Oscillator Frequency Adjustment  
IDT Temperature Profile Calculation Spreadsheet *  
Visit the ZSSC3154 product page www.IDT.com/ZSSC3154 or contact your nearest sales office for the latest  
version of these documents.  
© 2016 Integrated Device Technology, Inc.  
25  
January 22, 2016  
 
 
 
 
 
ZSSC3154 Datasheet  
9 Glossary  
Term  
ADC  
AEC  
AFE  
Description  
Analog-to-Digital Converter  
Automotive Electronics Council  
Analog Front-End  
AOUT  
BAMP  
BR  
Analog Output  
Buffer Amplifier  
Bridge Sensor  
CM  
Command Mode  
CMC  
CMOS  
DAC  
DFB  
DM  
Calibration Microcontroller  
Complementary Metal Oxide Semiconductor  
Digital-to-Analog Converter  
Diagnostic Fault Band Mode  
Diagnostic Mode  
DNL  
EEPROM  
EMC  
ESD  
FSO  
I/O  
Differential Nonlinearity  
Electrically Erasable Programmable Read Only Memory  
Electromagnetic Compatibility  
Electrostatic Discharge  
Full Scale Output  
Input/Output  
I²CTM  
Inter-Integrated Circuit, serial two-wire data bus, trademark of NXP  
Integral Nonlinearity  
INL  
LSB  
Least Significant Bit  
MSB  
MUX  
NOM  
PGA  
PTC  
RAM  
RISC  
ROM  
RTD  
SAC  
Most Significant Bit  
Multiplexer  
Normal Operation Mode  
Programmable Gain Amplifier  
Positive-Temperature Coefficient  
Random-Access Memory  
Reduced Instruction Set Computer  
Read Only Memory  
Resistance Temperature Device  
Sensor Aging Check  
© 2016 Integrated Device Technology, Inc.  
26  
January 22, 2016  
 
ZSSC3154 Datasheet  
Term  
SCC  
SSC  
XZC  
Description  
Sensor Connection Check  
Sensor Short Check  
Extended Zero Compensation, analog offset compensation  
10 Document Revision History  
Revision  
Date  
June 8, 2012  
June 14, 2012  
Description  
1.00  
First release.  
1.10  
Specification of input capacitance added (see 1.3.2.5, 1.3.4.2, 1.3.4.3).  
Minor edits.  
1.20  
1.30  
1.31  
June 18, 2013  
August 29, 2013  
March 6, 2014  
Update for description of external resistive half-bridge temperature sensor and addition  
of recommended resistive sensors for temperature measurement in section 2.6.  
Update for contact information and images for cover and headers.  
Corrected AFE input signal range given in footnote 1 for Table 2.1.  
Added oscillator frequency specification fOSC in section 1.3.1, and added note before  
Table 1.3 stating the specifications are valid if fOSC is within the specified range.  
Addition of extended temperature range. Maximum temperature range is now -40°C to  
140°C for new part code ZSSC3154BE3R. Related updates for temperature range  
specifications and parasitic differential input offset current specification in Table 1.2 and  
Table 1.3.  
Updates for overall failure at +140°C in Table 1.3.  
Updates for EEPROM read cycles at +140°C and EEPROM data retention at +150°C  
in Table 1.4.  
Update for addition of power-on reset (POR) specifications in Table 1.2.  
Update for delivery form availability. PQFN32 is now available for delivery only on reels;  
it is not available in trays. Reel part number and size have changed.  
Update for kit description in part ordering table: DVD is no longer included in kit because  
software is now downloaded from the product page www.IDT.com/ZSSC3154 to ensure  
user has the latest version.  
Updates for cover imagery.  
1.32  
1.40  
March 24, 2014  
April 28, 2014  
Updates for maximum operational range added to 150°C product capability  
Updates for specifications at 150°C for parasitic differential input offset current, INL,  
output leakage current, and overall failure %FSO.  
Update for conditions for read cycles specification.  
Addition of die dimensions and notes that QFN32 package has wettable flanks.  
Correction for specification 1.3.2.3.  
Update for contact information.  
1.41  
August 27, 2014  
January 22, 2016  
Minor edits for die information.  
Changed to IDT branding.  
© 2016 Integrated Device Technology, Inc.  
27  
January 22, 2016  
 
ZSSC3154 Datasheet  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
www.IDT.com/go/support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
www.IDT.com  
DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance  
specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The  
information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an  
implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property  
rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be  
reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the  
property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated  
Device Technology, Inc. All rights reserved.  
© 2016 Integrated Device Technology, Inc.  
28  
January 22, 2016  
配单直通车
ZSSC3170DA2T产品参数
型号:ZSSC3170DA2T
生命周期:Transferred
IHS 制造商:ZENTRUM MIKROELEKTRONIK DRESDEN AG
Reach Compliance Code:compliant
风险等级:5.84
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!