欢迎访问ic37.com |
会员登录 免费注册
发布采购

HCPL-2231 参数 Datasheet PDF下载

HCPL-2231图片预览
型号: HCPL-2231
PDF下载: 下载PDF文件 查看货源
内容描述: 低输入电流逻辑门光电耦合器 [Low Input Current Logic Gate Optocouplers]
分类和应用: 光电输出元件
文件页数/大小: 11 页 / 205 K
品牌: HP [ HEWLETT-PACKARD ]
 浏览型号HCPL-2231的Datasheet PDF文件第3页浏览型号HCPL-2231的Datasheet PDF文件第4页浏览型号HCPL-2231的Datasheet PDF文件第5页浏览型号HCPL-2231的Datasheet PDF文件第6页浏览型号HCPL-2231的Datasheet PDF文件第7页浏览型号HCPL-2231的Datasheet PDF文件第8页浏览型号HCPL-2231的Datasheet PDF文件第10页浏览型号HCPL-2231的Datasheet PDF文件第11页  
Notes:  
output pulse. The tPHL propagation  
delay is measured from the 50% point  
on the trailing edge of the input pulse  
to the 1.3 V point on the trailing edge  
of the output pulse.  
5. When the peaking capacitor is omitted,  
propagation delay times may increase  
by 100 ns.  
6. CML is the maximum rate of rise of the  
common mode voltage that can be  
sustained with the output voltage in the  
logic low state (VO < 0.8 V). CMH is  
the maximum rate of fall of the  
common mode voltage that can be  
sustained with the output voltage in the  
logic high state (VO > 2.0 V).  
7. Use of a 0.1 µF bypass capacitor  
connected between pins 5 and 8 is  
recommended.  
8. In accordance with UL1577, each  
optocoupler is proof tested by applying  
an insulation test voltage 3000 V rms  
for one second (leakage detection  
current limit, II-O 5 µA). This test is  
performed before the 100% production  
test for partial discharge (Method b)  
shown in the VDE 0884 Insulation  
Characteristics Table, if applicable.  
1. Derate total package power dissipa-  
tion, PT, linearly above 70°C free air  
temperature at a rate of 4.5 mW/°C.  
2. Duration of output short circuit time  
should not exceed 10 ms.  
3. Device considered a two-terminal  
device: pins 1, 2, 3, and 4 shorted  
together and pins 5, 6, 7, and 8  
shorted together.  
4. The tPLH propagation delay is  
measured from the 50% point on the  
leading edge of the input pulse to the  
1.3 V point on the leading edge of the  
1.0  
5
0
V
T
= 4.5 V  
V
I
= 4.5 V  
CC  
= 25 °C  
CC  
= 0 mA  
V
= 4.5 V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
CC  
I = 5 mA  
F
-1  
-2  
-3  
-4  
A
F
4
3
V
= 6.4 mA  
O
V
= 2.7 V  
O
I
= -2.6 mA  
OH  
2
1
0
-5  
-6  
V
= 2.4 V  
O
-7  
-8  
I
= 6.4 mA  
0.5  
OL  
0.1  
0
-60 -40 -20  
0
20 40 60 80 100  
0
1.0  
1.5  
2.0  
-60 -40 -20  
0
20 40 60 80 100  
T
– TEMPERATURE – °C  
I
– INPUT CURRENT – mA  
T
– TEMPERATURE – °C  
A
F
A
Figure 1. Typical Logic Low Output  
Voltage vs. Temperature.  
Figure 2. Typical Logic High Output  
Current vs. Temperature.  
Figure 3. Output Voltage vs. Forward  
Input Current.  
V
CC  
PULSE GEN.  
t
= t = 5 ns  
r
f
OUTPUT V  
MONITORING  
NODE  
f = 100 kHz  
10 % DUTY  
CYCLE  
O
5 V  
HCPL-2200  
V
V
= 5 V  
O
1
2
3
4
8
7
6
5
CC  
619  
D
1
I
F
INPUT  
MONITORING  
NODE  
D
D
D
2
3
4
C
15 pF  
=
2
GND  
5 kΩ  
1000  
R
1
C
=
1
T
= 25 °C  
120 pF  
A
100  
10  
I
F
+
THE PROBE AND JIG CAPACITANCES  
ARE INCLUDED IN C AND  
V
F
C
.
1
2
R
2.15 k1.10 k681 Ω  
1.0  
I
I
(ON) 1.6 mA 3 mA  
5 mA  
F
0.1  
0.01  
ALL DIODES ARE 1N916 OR 1N3064.  
I
(ON)  
F
INPUT I  
F
50 % I (ON)  
F
0 mA  
0.001  
1.1  
1.2  
1.3  
1.4  
1.5  
t
t
PHL  
PLH  
V
– FORWARD VOLTAGE – V  
V
F
OH  
OUTPUT  
1.3 V  
V
O
V
OL  
Figure 4. Typical Input Diode Forward  
Characteristic.  
Figure 5. Test Circuit for t  
, t  
, t , and t .  
PLH PHL r f  
1-128