欢迎访问ic37.com |
会员登录 免费注册
发布采购

IDT72V255LA20TF 参数 Datasheet PDF下载

IDT72V255LA20TF图片预览
型号: IDT72V255LA20TF
PDF下载: 下载PDF文件 查看货源
内容描述: 3.3伏的CMOS SuperSync FIFO 8,192 ×18 16,384 ×18 [3.3 VOLT CMOS SuperSync FIFO 8,192 x 18 16,384 x 18]
分类和应用: 先进先出芯片
文件页数/大小: 27 页 / 436 K
品牌: IDT [ INTEGRATED DEVICE TECHNOLOGY ]
 浏览型号IDT72V255LA20TF的Datasheet PDF文件第1页浏览型号IDT72V255LA20TF的Datasheet PDF文件第2页浏览型号IDT72V255LA20TF的Datasheet PDF文件第4页浏览型号IDT72V255LA20TF的Datasheet PDF文件第5页浏览型号IDT72V255LA20TF的Datasheet PDF文件第6页浏览型号IDT72V255LA20TF的Datasheet PDF文件第7页浏览型号IDT72V255LA20TF的Datasheet PDF文件第8页浏览型号IDT72V255LA20TF的Datasheet PDF文件第9页  
IDT72V255LA/72V265LA 3.3 VOLT CMOS SuperSync FIFO™
8,192 x 18, 16,384 x 18
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
DESCRIPTION (CONTINUED)
There are two possible timing modes of operation with these devices: IDT
Standard mode and First Word Fall Through (FWFT) mode.
In
IDT Standard mode,
the first word written to an empty FIFO will not appear
on the data output lines unless a specific read operation is performed. A read
operation, which consists of activating
REN
and enabling a rising RCLK edge,
will shift the word from internal memory to the data output lines.
In
FWFT mode,
the first word written to an empty FIFO is clocked directly
to the data output lines after three transitions of the RCLK signal. A
REN
does
not have to be asserted for accessing the first word. However, subsequent
words written to the FIFO do require a LOW on
REN
for access. The state of
the FWFT/SI input during Master Reset determines the timing mode in use.
For applications requiring more data storage capacity than a single FIFO
can provide, the FWFT timing mode permits depth expansion by chaining
FIFOs in series (i.e. the data outputs of one FIFO are connected to the
corresponding data inputs of the next). No external logic is required.
These FIFOs have five flag pins,
EF/OR
(Empty Flag or Output Ready),
FF/IR
(Full Flag or Input Ready),
HF
(Half-full Flag),
PAE
(Programmable
Almost-Empty flag) and
PAF
(Programmable Almost-Full flag). The
EF
and
FF
functions are selected in IDT Standard mode. The
IR
and
OR
functions
are selected in FWFT mode.
HF, PAE
and
PAF
are always available for use,
irrespective of timing mode.
PAE
and
PAF
can be programmed independently to switch at any point in
memory. (See Table I and Table II.) Programmable offsets determine the flag
switching threshold and can be loaded by two methods: parallel or serial. Two
default offset settings are also provided, so that
PAE
can be set to switch at 127
or 1,023 locations from the empty boundary and the
PAF
threshold can be set
at 127 or 1,023 locations from the full boundary. These choices are made with
the
LD
pin during Master Reset.
For serial programming,
SEN
together with
LD
on each rising edge of
WCLK, are used to load the offset registers via the Serial Input (SI). For parallel
programming,
WEN
together with
LD
on each rising edge of WCLK, are used
to load the offset registers via Dn.
REN
together with
LD
on each rising edge
of RCLK can be used to read the offsets in parallel from Qn regardless of
whether serial or parallel offset loading has been selected.
During Master Reset (MRS) the following events occur: The read and write
pointers are set to the first location of the FIFO. The FWFT pin selects IDT
Standard mode or FWFT mode. The
LD
pin selects either a partial flag default
setting of 127 with parallel programming or a partial flag default setting of 1,023
with serial programming. The flags are updated according to the timing mode
and default offsets selected.
The Partial Reset (PRS) also sets the read and write pointers to the first
location of the memory. However, the timing mode, partial flag programming
method, and default or programmed offset settings existing before Partial Reset
remain unchanged. The flags are updated according to the timing mode and
offsets in effect.
PRS
is useful for resetting a device in mid-operation, when
reprogramming partial flags would be undesirable.
The Retransmit function allows data to be reread from the FIFO more than
once. A LOW on the
RT
input during a rising RCLK edge initiates a retransmit
operation by setting the read pointer to the first location of the memory array.
If, at any time, the FIFO is not actively performing an operation, the chip will
automatically power down. Once in the power down state, the standby supply
current consumption is minimized. Initiating any operation (by activating control
inputs) will immediately take the device out of the power down state.
The IDT72V255LA/72V265LA are fabricated using IDT’s high speed
submicron CMOS technology.
PARTIAL RESET (PRS)
WRITE CLOCK (WCLK)
WRITE ENABLE (WEN)
LOAD (LD)
DATA IN (D
0
- D
n
)
SERIAL ENABLE(SEN)
FIRST WORD FALL THROUGH/SERIAL INPUT
(FWFT/SI)
FULL FLAG/INPUT READY (FF/IR)
PROGRAMMABLE ALMOST-FULL (PAF)
MASTER RESET (MRS)
READ CLOCK (RCLK)
READ ENABLE (REN)
OUTPUT ENABLE (OE)
DATA OUT (Q
0
- Q
n
)
IDT
72V255LA
72V265LA
RETRANSMIT (RT)
EMPTY FLAG/OUTPUT READY (EF/OR)
PROGRAMMABLE ALMOST-EMPTY (PAE)
HALF FULL FLAG (HF)
4672 drw 03
Figure 1. Block Diagram of Single 8,192 x 18 and 16,384 x 18 Synchronous FIFO
3