欢迎访问ic37.com |
会员登录 免费注册
发布采购

3820 参数 Datasheet PDF下载

3820图片预览
型号: 3820
PDF下载: 下载PDF文件 查看货源
内容描述: 单片8位CMOS微机 [SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER]
分类和应用: 计算机
文件页数/大小: 66 页 / 1084 K
品牌: MITSUBISHI [ Mitsubishi Group ]
 浏览型号3820的Datasheet PDF文件第4页浏览型号3820的Datasheet PDF文件第5页浏览型号3820的Datasheet PDF文件第6页浏览型号3820的Datasheet PDF文件第7页浏览型号3820的Datasheet PDF文件第9页浏览型号3820的Datasheet PDF文件第10页浏览型号3820的Datasheet PDF文件第11页浏览型号3820的Datasheet PDF文件第12页  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
FUNCTIONAL DESCRIPTION  
Central Processing Unit (CPU)  
The 3820 group uses the standard 740 family instruction set. Re-  
fer to the table of 740 family addressing modes and machine in-  
structions or the SERIES 740 <Software> User’s Manual for de-  
tails on the instruction set.  
Machine-resident 740 family instructions are as follows:  
The FST and SLW instruction cannot be used.  
The STP, WIT, MUL, and DIV instruction can be used.  
CPU Mode Register  
The CPU mode register is allocated at address 003B16.  
The CPU mode register contains the stack page selection bit and  
the internal system clock selection bit.  
7
0
CPU mode register  
(
CPUM (CM) : address 003B16)  
Processor mode bits  
b1 b0  
0
0
1
1
0
1
0
1
: Single-chip mode  
:
:
:
Not available  
Stack page selection bit  
0
1
: 0 RAM in the zero page is used as stack area  
: 1 RAM in page 1 is used as stack area  
Not used (returns “1” when read)  
(Do not write “0” to this bit)  
Port XC switch bit  
0
1
: I/O port  
: XCIN, XCOUT  
Main clock ( XIN–XOUT) stop bit  
0
1
: Oscillating  
: Stopped  
Main clock division ratio selection bit  
0
1
: f(XIN)/2 (high-speed mode)  
: f(XIN)/8 (middle-speed mode)  
Internal system clock selection bit  
0
1
: XIN-XOUT selected (middle-/high-speed mode)  
: XCIN-XCOUT selected (low-speed mode)  
Fig. 1 Structure of CPU mode register  
10  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
MEMORY  
Zero Page  
Special Function Register (SFR) Area  
The Special Function Register area in the zero page contains con-  
trol registers such as I/O ports and timers.  
The 256 bytes from addresses 000016 to 00FF16 are called the  
zero page area. The internal RAM and the special function regis-  
ters (SFR) are allocated to this area.  
The zero page addressing mode can be used to specify memory  
and register addresses in the zero page area. Access to this area  
with only 2 bytes is possible in the zero page addressing mode.  
RAM  
RAM is used for data storage and for stack area of subroutine  
calls and interrupts.  
Special Page  
ROM  
The 256 bytes from addresses FF0016 to FFFF16 are called the  
special page area. The special page addressing mode can be  
used to specify memory addresses in the special page area. Ac-  
cess to this area with only 2 bytes is possible in the special page  
addressing mode.  
The first 128 bytes and the last 2 bytes of ROM are reserved for  
device testing and the rest is user area for storing programs.  
Interrupt Vector Area  
The interrupt vector area contains reset and interrupt vectors.  
RAM area  
Address  
XXXX16  
RAM size  
(bytes)  
000016  
SFR area  
192  
256  
384  
512  
640  
768  
896  
1024  
00FF16  
013F16  
01BF16  
023F16  
02BF16  
033F16  
03BF16  
043F16  
Zero page  
004016  
LCD display RAM area  
005416  
010016  
RAM  
XXXX16  
Reserved area  
Not used  
044016  
ROM area  
Address  
YYYY16  
Address  
ZZZZ16  
ROM size  
(bytes)  
YYYY16  
Reserved ROM area  
(128 bytes)  
4096  
8192  
F00016  
E00016  
D00016  
C00016  
B00016  
A00016  
900016  
800016  
F08016  
E08016  
D08016  
C08016  
B08016  
A08016  
908016  
808016  
12288  
16384  
20480  
24576  
28672  
32768  
ZZZZ16  
ROM  
FF0016  
FFDC16  
Special page  
Interrupt vector area  
Reserved ROM area  
FFFE16  
FFFF16  
Fig. 2 Memory map diagram  
11  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Port P0 (P0)  
Timer X (low-order) (TXL)  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
001016  
001116  
001216  
001316  
001416  
001516  
001616  
001716  
001816  
001916  
001A16  
001B16  
001C16  
001D16  
001E16  
001F16  
002016  
002116  
002216  
002316  
002416  
002516  
002616  
002716  
002816  
002916  
002A16  
002B16  
002C16  
002D16  
002E16  
002F16  
003016  
003116  
003216  
003316  
003416  
003516  
003616  
003716  
003816  
003916  
003A16  
003B16  
003C16  
003D16  
003E16  
003F16  
Port P0 direction register (P0D)  
Port P1 (P1)  
Timer X (high-order) (TXH)  
Timer Y (low-order) (TYL)  
Timer Y (high-order) (TYH)  
Timer 1 (T1)  
Port P1 direction register (P1D)  
Port P2 (P2)  
Port P2 direction register (P2D)  
Port P3 (P3)  
Timer 2 (T2)  
Timer 3 (T3)  
Timer X mode register (TXM)  
Timer Y mode register (TYM)  
Timer 123 mode register (T123M)  
φ output control register (CKOUT)  
Port P4 (P4)  
Port P4 direction register (P4D)  
Port P5 (P5)  
Port P5 direction register (P5D)  
Port P6 (P6)  
Port P6 direction register (P6D)  
Port P7 (P7)  
Port P7 direction register (P7D)  
PULL register A (PULLA)  
PULL register B (PULLB)  
Watchdog timer control register (WDTCON)  
Segment output enable register (SEG)  
LCD mode register (LM)  
Transmit/Receive buffer register (TB/RB)  
Serial I/O1 status register (SIO1STS)  
Serial I/O1 control register (SIO1CON)  
UART control register (UARTCON)  
Baud rate generator (BRG)  
Interrupt edge selection register (INTEDGE)  
CPU mode register (CPUM)  
Interrupt request register 1(IREQ1)  
Interrupt request register 2(IREQ2)  
Interrupt control register 1(ICON1)  
Interrupt control register 2(ICON2)  
Serial I/O2 control register (SIO2CON)  
Serial I/O2 register (SIO2)  
Fig.3 Memory map of special function register (SFR)  
12  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
I/O PORTS  
7
0
PULL register A  
(PULLA : address 0016 16  
Direction Registers (ports P2, P41–P47, and  
P5–P7)  
)
P0  
P1  
P2  
P3  
P7  
0
0
0
0
0
–P0  
–P1  
–P2  
–P3  
, P7  
7
7
7
7
1
pull-down  
pull-down  
pull-up  
The 3820 group has 43 programmable I/O pins arranged in seven  
I/O ports (ports P0–P2 and P4–P7). The I/O ports P2, P41–P47,  
and P5–P7 have direction registers which determine the input/out-  
put direction of each individual pin. Each bit in a direction register  
corresponds to one pin, each pin can be set to be input port or  
output port.  
pull-down  
pull-up  
Not used (return "0" when read)  
When “0” is written to the bit corresponding to a pin, that pin be-  
comes an input pin. When “1” is written to that bit, that pin be-  
comes an output pin.  
7
0
PULL register B  
(PULLB : address 0017 16  
)
P4  
P4  
P5  
P5  
P6  
1
4
0
4
0
–P4  
–P4  
–P5  
–P5  
, P6  
3
7
3
7
1
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
If data is read from a pin set to output, the value of the port output  
latch is read, not the value of the pin itself. Pins set to input are  
floating. If a pin set to input is written to, only the port output latch  
is written to and the pin remains floating.  
Not used (return "0" when read)  
0 : Disable  
1 : Enable  
Direction Registers (ports P0 and P1)  
Ports P0 and P1 have direction registers which determine the in-  
put /output direction of each individual port.  
Note : The contents of PULL register A  
and PULL register B do not affect  
Each port in a direction register corresponds to one port, each  
port can be set to be input or output.  
ports programmed as the output ports.  
Fig. 4 Structure of PULL register A and PULL register B  
When “0” is written to the bit 0 of a direction register, that port be-  
comes an input port. When “1” is written to that port, that port be-  
comes an output port.  
Bits 1 to 7 of ports P0 and P1 direction registers are not used.  
Ports P3 and P40  
These ports are only for input.  
Pull-up/Pull-down Control  
By setting the PULL register A (address 001616) or the PULL reg-  
ister B (address 001716), ports except for port P40 can control ei-  
ther pull-down or pull-up (pins that are shared with the segment  
output pins for LCD are pull-down; all other pins are pull-up) with a  
program.  
However, the contents of PULL register A and PULL register B do  
not affect ports programmed as the output ports.  
13  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Pin  
Name  
Input/Output  
I/O Format  
CMOS compatible  
input level  
Non-Port Function  
Related SFRs  
PULL register A  
Segment output  
enable register  
PULL register A  
Segment output  
enable register  
PULL register A  
Interrupt control  
register 2  
Diagram No.  
P00/SEG24–  
P07/SEG31  
Input/output,  
individual ports  
Port P0  
LCD segment output  
CMOS 3-state output  
CMOS compatible  
input level  
(1)  
P10/SEG32–  
P17/SEG39  
Input/output,  
individual ports  
Port P1  
Port P2  
Port P3  
LCD segment output  
CMOS 3-state output  
CMOS compatible  
input level  
Key input(Key-on  
wake up) interrupt  
input  
Input/output,  
individual bits  
P20 – P27  
(2)  
CMOS 3-state output  
PULL register A  
Segment output  
enable register  
P30/SEG16–  
P37/SEG23  
CMOS compatible  
input level  
Input  
Input  
LCD segment output  
(3)  
(4)  
(5)  
CMOS compatible  
input level  
P40  
PULL register B  
φ output control  
register  
P41/ φ  
φ clock output  
PULL register B  
Interrupt edge selection  
register  
P42/INT0,  
P43/INT1  
Port P4  
CMOS compatible  
input level  
Input/output,  
individual bits  
External interrupt input  
(2)  
CMOS 3-state output  
P44/RXD  
PULL register B  
Serial I/O1 control register  
Serial I/O1 status register  
UART control register  
(6)  
(7)  
P45/TXD  
Serial I/O1 function I/O  
Serial I/O2 function I/O  
P46/SCLK1  
P47/SRDY1  
P50/SIN2  
(8)  
(9)  
(10)  
(11)  
(12)  
(13)  
PULL register B  
Serial I/O2 control  
register  
P51/SOUT2  
P52/SCLK2  
P53/SRDY2  
PULL register B  
P54/CNTR0  
P55/CNTR1  
P56/TOUT  
CMOS compatible  
input level  
Timer I/O  
(14)  
(10)  
(15)  
Input/output,  
individual bits  
Timer X mode register  
PULL register B  
Port P5  
CMOS 3-state output  
Timer I/O  
Timer Y mode register  
PULL register B  
Timer output  
Timer 123 mode register  
PULL register B  
P57/INT2  
External interrupt input  
Interrupt edge  
(2)  
selection register  
PULL register B  
External interrupt input  
Real time port  
Timer X mode register  
Interrupt edge  
CMOS compatible  
input level  
P60/INT3/RTP0  
Input/output,  
individual bits  
function output  
(16)  
Port P6  
Port P7  
selection register  
PULL register B  
CMOS 3-state output  
Real time port  
function output  
P61/RTP1  
P70/XCOUT  
P71/XCIN  
Timer X mode register  
CMOS compatible  
input level  
Sub-clock  
generating circuit  
I/O  
(17)  
(18)  
Input/output,  
individual bits  
PULL register A  
CPU mode register  
CMOS 3-state output  
COM  
SEG  
0
-COM  
3
Common  
Segment  
output  
output  
LCD common output  
LCD segment output  
LCD mode register  
(19)  
(20)  
0
-SEG15  
Note : Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction.  
When an input level is at an intermediate potential, a current will flow from VCC to VSS through the input-stage gate.  
14  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(1)Ports P0,P1  
(2)Ports P2,P42,P43,P57  
V
L2/VL3  
Pull-up control  
V
L1/VSS  
Segment output enable bit  
(Note)  
Direction register  
Direction register  
Data bus  
Port latch  
Data bus  
Port latch  
Key input (Key-on wake up) interrupt input  
INT –INT interrupt input  
0
2
Pull-down control  
Segment output enable bit  
Note. Bit 0 of port P0 direction register and  
port P1 direction register.  
(3)Ports P30–P37  
(4)Port P4  
0
VL2/VL3  
Data bus  
V
L1/VSS  
Data bus  
Pull-down control  
Segment output enable bit  
(6)Port P4  
4
(5)Port P4  
1
Pull-up control  
Pull-up control  
Serial I/O1 enable bit  
Reception enable bit  
Direction register  
Direction register  
Port latch  
Data bus  
Data bus  
Port latch  
φ output control bit  
φ
Serial I/O1 input  
(8)Port P4  
6
(7)Port P4  
5
Serial I/O1 synchronization clock  
selection bit  
Pull-up control  
Pull-up control  
Serial I/O1 enable bit  
P4  
5
/T  
X
D P-channel output disable bit  
Serial I/O1 mode selection bit  
Serial I/O1 enable bit  
Serial I/O1 enable bit  
Transmission enable bit  
Direction register  
Direction register  
Port latch  
Data bus  
Port latch  
Data bus  
Serial I/O1 clock output  
Serial I/O1 output  
Serial I/O1 clock input  
Fig. 5 Port block diagram (1)  
15  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(9) Port P4  
7
(10) Ports P50,P5  
5
Pull-up control  
Pull-up control  
Serial I/O1 mode selection bit  
Serial I/O1 enable bit  
S
RDY1 output enable bit  
Direction register  
Direction register  
Data bus  
Port latch  
Data bus  
Port latch  
Serial I/O2 input  
Serial I/O1 ready output  
CNTR  
1
interrupt input  
(11) Port P5  
1
(12) Port P5  
2
Pull-up control  
Internal synchronization clock  
select bits  
Pull-up control  
Serial I/O2 port selection bit  
Serial I/O2 transmit completion signal  
Serial I/O2 port selection bit  
Direction register  
Direction register  
Port latch  
Data bus  
Data bus  
Port latch  
Serial I/O2 clock output  
Serial I/O2 output  
Serial I/O2 clock input  
(13) Port P5  
3
(14) Port P5  
4
Pull-up control  
Pull-up control  
S
RDY2 output enable bit  
Direction register  
Direction register  
Data bus  
Port latch  
Data bus  
Port latch  
Timer X operating mode bit  
Serial I/O2 ready output  
(Pulse output mode selection)  
Timer output  
CNTR0 interrupt input  
(15) Port P5  
6
(16) Ports P60, P61  
Pull-up control  
Pull-up control  
Direction register  
Direction register  
Data bus  
Data bus  
Port latch  
Port latch  
T
OUT output control bit  
Timer output  
Real time port control bit  
Data for real time port  
INT  
3
interrupt input  
Except P6  
1
Fig. 6 Port block diagram (2)  
16  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(17) Port P7  
0
(18) Port P71  
Port selection/Pull-up control  
Port selection/Pull-up control  
Port XC switch bit  
Port XC switch bit  
Direction register  
Direction register  
Data bus  
Port latch  
Port latch  
Data bus  
Oscillation circuit  
Port P71  
Sub-clock generating circuit input  
Port XC switch bit  
(19) COM  
0
–COM3  
(20) SEG0 – SEG15  
VL2/VL3  
The voltage applied to the sources of  
P-channel and N-channel transistors  
is the controlled voltage by the bias  
value.  
VL3  
VL1/VSS  
VL2  
VL1  
The gate input signal of each transistor is  
controlled by the LCD duty ratio and the  
bias value.  
VSS  
Fig. 7 Port block diagram (3)  
17  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
INTERRUPTS  
Interrupt Operation  
Interrupts occur by sixteen sources: seven external, eight internal,  
When an interrupt is received, the contents of the program counter  
and processor status register are automatically stored into the  
stack. The interrupt disable flag is set to inhibit other interrupts  
from interfering.The corresponding interrupt request bit is cleared  
and the interrupt jump destination address is read from the vector  
table into the program counter.  
and one software.  
Interrupt Control  
Each interrupt is controlled by an interrupt request bit, an interrupt  
enable bit, and the interrupt disable flag except for the software in-  
terrupt set by the BRK instruction. An interrupt occurs if the corre-  
sponding interrupt request and enable bits are “1” and the inter-  
rupt disable flag is “0”.  
Notes on Use  
When the active edge of an external interrupt (INT0–INT3, CNTR0,  
or CNTR1) is changed, the corresponding interrupt request bit  
may also be set. Therefore, please take following sequence;  
(1) Disable the external interrupt which is selected.  
(2) Change the active edge selection.  
Interrupt enable bits can be set or cleared by software.  
Interrupt request bits can be cleared by software, but cannot be  
set by software.  
The BRK instruction cannot be disabled with any flag or bit. The I  
(interrupt disable) flag disables all interrupts except the BRK in-  
struction interrupt.  
(3) Clear the interrupt request bit which is selected to “0”.  
(4) Enable the external interrupt which is selected.  
Table 1. Interrupt vector addresses and priority  
Interrupt Request  
Remarks  
Vector Addresses (Note 1)  
Interrupt Source  
Reset (Note 2)  
INT0  
Priority  
High  
Low  
Generating Conditions  
1
2
FFFD16  
FFFC16  
At reset  
Non-maskable  
At detection of either rising or  
falling edge of INT0 input  
At detection of either rising or  
falling edge of INT1 input  
At completion of serial I/O1  
data reception  
External interrupt  
FFFB16  
FFF916  
FFF716  
FFFA16  
FFF816  
FFF616  
(active edge selectable)  
External interrupt  
INT1  
3
4
(active edge selectable)  
Serial I/O1  
receive  
Valid when serial I/O1 is selected  
At completion of serial I/O1  
transmit shift or when transmit  
buffer register is empty  
Serial I/O1  
transmit  
5
FFF516  
FFF416  
Valid when serial I/O1 is selected  
Timer X  
Timer Y  
Timer 2  
Timer 3  
6
7
8
9
FFF316  
FFF116  
FFEF16  
FFED16  
FFF216  
FFF016  
FFEE16  
FFEC16  
At timer X underflow  
At timer Y underflow  
At timer 2 underflow  
At timer 3 underflow  
At detection of either rising or  
falling edge of CNTR0 input  
At detection of either rising or  
falling edge of CNTR1 input  
At timer 1 underflow  
External interrupt  
CNTR0  
10  
FFEB16  
FFEA16  
(active edge selectable)  
External interrupt  
CNTR1  
Timer 1  
INT2  
11  
12  
13  
FFE916  
FFE716  
FFE516  
FFE816  
FFE616  
FFE416  
(active edge selectable)  
At detection of either rising or  
falling edge of INT2 input  
At detection of either rising or  
falling edge of INT3 input  
At falling of conjunction of input  
level for port P2 (at input mode)  
At completion of serial I/O2  
data transmission or reception  
External interrupt  
(active edge selectable)  
External interrupt  
INT3  
14  
15  
16  
17  
FFE316  
FFE116  
FFDF16  
FFDD16  
FFE216  
FFE016  
FFDE16  
FFDC16  
(active edge selectable)  
External interrupt  
Key input  
(Key-on wake up)  
(valid when an “L” level is applied)  
Serial I/O2  
Valid when serial I/O2 is selected  
Non-maskable software interrupt  
BRK instruction  
At BRK instruction execution  
Notes 1: Vector addresses contain interrupt jump destination addresses.  
2: Reset function in the same way as an interrupt with the highest priority.  
18  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Interrupt request bit  
Interrupt enable bit  
Interrupt disable flag (I)  
Interrupt request  
BRK instruction  
Reset  
Fig. 8 Interrupt control  
7
0
Interrupt edge selection register  
(INTEDGE : address 003A16  
)
INT  
INT  
INT  
INT  
0
interrupt edge selection bit  
interrupt edge selection bit  
interrupt edge selection bit  
interrupt edge selection bit  
1
2
3
0 : Falling edge active  
1 : Rising edge active  
Not used (return “0” when read)  
7
0
7 0  
Interrupt request register 2  
(IREQ2 : address 003D16  
Interrupt request register 1  
)
(IREQ1 : address 003C16  
)
INT  
INT  
0
interrupt request bit  
interrupt request bit  
CNTR  
0
interrupt request bit  
interrupt request bit  
1
CNTR  
1
Serial I/O1 receive interrupt request bit  
Serial I/O1 transmit interrupt request bit  
Timer X interrupt request bit  
Timer 1 interrupt request bit  
INT  
INT  
2
3
interrupt request bit  
interrupt request bit  
Timer Y interrupt request bit  
Key input interrupt request bit  
Serial I/O2 interrupt request bit  
Not used (returns “0” when read)  
Timer 2 interrupt request bit  
Timer 3 interrupt request bit  
0 : No interrupt request issued  
1 : Interrupt request issued  
7
0
Interrupt control register 1  
7
0
0
Interrupt control register 2  
(ICON2 : address 003F16  
(ICON1 : address 003E16  
)
)
CNTR  
0
1
interrupt enable bit  
interrupt enable bit  
INT  
INT  
0
1
interrupt enable bit  
interrupt enable bit  
CNTR  
Timer 1 interrupt enable bit  
Serial I/O1 receive interrupt enable bit  
Serial I/O1 transmit interrupt enable bit  
Timer X interrupt enable bit  
INT  
INT  
2
3
interrupt enable bit  
interrupt enable bit  
Key input interrupt enable bit  
Serial I/O2 interrupt enable bit  
Not used (returns “0” when read)  
(Do not write “1” to this bit)  
Timer Y interrupt enable bit  
Timer 2 interrupt enable bit  
Timer 3 interrupt enable bit  
0 : Interrupts disabled  
1 : Interrupts enabled  
Fig. 9 Structure of interrupt-related registers  
19  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
An example of using a key input interrupt is shown in Figure 9,  
where an interrupt request is generated by pressing one of the  
keys consisted as an active-low key matrix which inputs to ports  
P20–P23.  
Key Input Interrupt (Key-on Wake Up)  
A key input interrupt request is generated by applying “L” level to  
any pin of port P3 that have been set to input mode. In other  
words, it is generated when AND of input level goes from “1” to “0”.  
Port PXx  
"L" level output  
PULL register A  
Bit 2 = "1"  
Key input interrupt request  
Port P2  
7
direction register = "1"  
✽ ✽  
✽ ✽  
✽ ✽  
✽ ✽  
Port P2  
latch  
7
6
5
4
P2  
7
output  
output  
Port P2  
direction register = "1"  
6
Port P2  
latch  
P2  
6
Port P2  
direction register = "1"  
5
Port P2  
latch  
P2  
5
output  
output  
Port P2  
direction register = "1"  
4
Port P2  
latch  
P24  
Port P2  
3
direction register = "0"  
Port P2  
Input reading circuit  
✽ ✽  
Port P2  
latch  
3
P2  
3
input  
input  
input  
input  
Port P2  
2
direction register = "0"  
✽ ✽  
Port P2  
latch  
2
P2  
2
Port P2  
1
direction register = "0"  
✽ ✽  
Port P2  
latch  
1
P21  
Port P2  
0
direction register = "0"  
✽ ✽  
Port P2  
latch  
0
P20  
P-channel transistor for pull-up  
✽ ✽ CMOS output buffer  
Fig. 10 Connection example when using key input interrupt and port P2 block diagram  
20  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Read and write operation on 16-bit timer must be performed for  
both high and low-order bytes. When reading a 16-bit timer, read  
the high-order byte first. When writing to a 16-bit timer, write the  
low-order byte first. The 16-bit timer cannot perform the correct op-  
eration when reading during the write operation, or when writing  
during the read operation.  
TIMERS  
The 3820 group has five timers: timer X, timer Y, timer 1, timer 2,  
and timer 3. Timer X and timer Y are 16-bit timers, and timer 1,  
timer 2, and timer 3 are 8-bit timers.  
All timers are down count timers. When the timer reaches “0016”,  
an underflow occurs at the next count pulse and the correspond-  
ing timer latch is reloaded into the timer and the count is contin-  
ued. When a timer underflows, the interrupt request bit corre-  
sponding to that timer is set to “1”.  
Real time port  
control bit "1"  
Data bus  
Q
D
P60 data for real time port  
P60  
Latch  
P6  
0
direction register  
"0"  
P6 latch  
Real time port 0  
control bit "1"  
Q
D
P61 data for real time port  
P6  
1
1
Latch  
Real time port  
control bit "0"  
P6  
direction register  
f(XIN)/16  
"0"  
P6 latch  
Timer X mode register  
write signal  
1
"1"  
(f(XCIN)/16 in low-speed mode*)  
Timer X stop  
control bit  
Timer X write  
control bit  
Timer X operat-  
CNTR0 active  
edge switch bit  
ing mode bit  
"00","01","11"  
Timer X (low) latch (8) Timer X (high) latch (8)  
Timer X  
interrupt  
request  
"0"  
P54/CNTR0  
Timer X (high) (8)  
Timer X (low) (8)  
"10"  
"1"  
Pulse width  
CNTR  
0
measurement  
interrupt  
request  
CNTR  
0
active  
Pulse output mode  
mode  
edge switch bit  
"0"  
"1"  
S
Q
Q
Timer Y operating mode bit  
"00","01","10"  
T
CNTR  
1
P54 direction register  
Pulse width HL continuously measurement mode  
interrupt  
request  
P54 latch  
"11"  
Rising edge detection  
Falling edge detection  
Pulse output mode  
f(XIN)/16  
Period  
measurement mode  
(f(XCIN)/16 in low-speed mode*)  
Timer Y stop  
control bit  
CNTR1 active  
edge switch bit  
Timer Y (low) latch (8) Timer Y (high) latch (8)  
"00","01","11"  
Timer Y  
interrupt  
request  
"0"  
P55/CNTR1  
Timer Y (low) (8)  
Timer Y (high) (8)  
"10"Timer Y operating  
mode bit  
"1"  
f(XIN)/16  
(f(XCIN)/16 in low-speed mode*)  
Timer 1  
interrupt  
request  
Timer 2 write  
control bit  
Timer 2 count source  
selection bit  
Timer 1 count source  
selection bit  
"0"  
Timer 2 latch (8)  
Timer 1 latch (8)  
Timer 1 (8)  
"0"  
Timer 2  
interrupt  
request  
Timer 2 (8)  
X
CIN  
"1"  
"1"  
f(XIN)/16  
(f(XCIN)/16 in low-speed mode*)  
T
OUT output  
T
OUT output  
control bit  
active edge  
switch bit "0"  
S
Q
Q
P56/TOUT  
T
"1"  
P56 latch  
Timer 3 latch (8)  
"0"  
P56  
direction register  
Timer 3  
interrupt  
request  
T
OUT output control bit  
f(XIN)/16(f(XCIN)/16 in low-speed mode*)  
Timer 3 (8)  
"1"  
Timer 3 count  
source selection  
bit  
* Internal clock φ = XCIN/2.  
Fig. 11 Timer block diagram  
21  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timer X  
Note on CNTR0 Interrupt Active Edge Selec-  
Timer X is a 16-bit timer that can be selected in one of four modes  
and can be controlled the timer X write and the real time port by  
setting the timer X mode register.  
tion  
CNTR0 interrupt active edge depends on the CNTR0 active edge  
switch bit.  
Timer mode  
Real Time Port Control  
The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode).  
While the real time port function is valid, data for the real time port  
are output from ports P60 and P61 each time the timer X  
underflows. (However, after rewriting a data for real time port, if the  
real time port control bit is changed from “0” to “1”, data is output  
without the timer X.) If the data for the real time port is changed  
while the real time port function is valid, the changed data are out-  
put at the next underflow of timer X.  
Pulse output mode  
Each time the timer underflows, a signal output from the CNTR0  
pin is inverted. Except for this, the operation in pulse output mode  
is the same as in timer mode. When using a timer in this mode, set  
the corresponding port P54 direction register to output mode.  
Before using this function, set the corresponding port direction  
registers to output mode.  
Event counter mode  
The timer counts signals input through the CNTR0 pin.  
Except for this, the operation in event counter mode is the same  
as in timer mode. When using a timer in this mode, set the corre-  
sponding port P54 direction register to input mode.  
7
0
Timer X mode register  
(TXM : address 002716)  
Pulse width measurement mode  
The count source is f(XIN)/16 (or f(XCIN)/16 in low-speed mode. If  
CNTR0 active edge switch bit is “0”, the timer counts while the in-  
put signal of CNTR0 pin is at “H”. If it is “1”, the timer counts while  
the input signal of CNTR0 pin is at “L”. When using a timer in this  
mode, set the corresponding port P54 direction register to input  
mode.  
Timer X write control bit  
0 : Write value in latch and counter  
1 : Write value in latch only  
Real time port control bit  
0 : Real time port function invalid  
1 : Real time port function valid  
P60 data for real time port  
0 : "L" level output  
1 : "H" level output  
P61 data for real time port  
0 : "L" level output  
1 : "H" level output  
Timer X operating mode bits  
b5 b4  
Timer X Write Control  
If the timer X write control bit is “0”, when the value is written in the  
address of timer X, the value is loaded in the timer X and the latch  
at the same time.  
0 0 : Timer mode  
If the timer X write control bit is “1”, when the value is written in the  
address of timer X, the value is loaded only in the latch. The value  
in the latch is loaded in timer X after timer X underflows.  
If the value is written in latch only, unexpected value may be set in  
the high-order counter when the writing in high-order latch and the  
underflow of timer X are performed at the same timing.  
0 1 : Pulse output mode  
1 0 : Event counter mode  
1 1 : Pulse width measurement mode  
CNTR0 active edge switch bit  
• CNTR0 interrupt  
0 : Falling edge active  
1 : Rising edge active  
• Pulse output mode  
0 : Start at initial level "H" output  
1 : Start at initial level "L" output  
• Event counter mode  
0 : Rising edge active  
1 : Falling edge active  
• Pulse width measurement mode  
0 : Measure "H" level width  
1 : Measure "L" level width  
Timer X stop control bit  
0 : Count start  
1 : Count stop  
Fig. 12 Structure of timer X mode register  
22  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timer Y  
Timer Y is a 16-bit timer that can be selected in one of four modes.  
7
0
Timer Y mode register  
(TYM : address 002816  
Timer mode  
)
The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode).  
Not used (return "0" when read)  
Timer Y operating mode bits  
b5 b4  
Period measurement mode  
0 0 : Timer mode  
CNTR1 interrupt request is generated at rising/falling edge of  
CNTR1 pin input signal. Simultaneously, the value in timer Y latch  
is reloaded in timer Y and timer Y continues counting down. /Ex-  
cept for the above-mentioned, the operation in period measure-  
ment mode is the same as in timer mode.  
0 1 : Period measurement mode  
1 0 : Event counter mode  
1 1 : Pulse width HL continuously  
measurement mode  
CNTR  
• CNTR  
1
active edge switch bit  
interrupt  
1
The timer value just before the reloading at rising/falling of CNTR1  
pin input signal is retained until the timer Y is read once after the  
reload.  
0 : Falling edge active  
1 : Rising edge active  
• Period measurement mode  
0 : Measure falling edge to falling edge  
1 : Measure rising edge to rising edge  
• Event counter mode  
The rising/falling timing of CNTR1 pin input signal is found by  
CNTR1 interrupt. When using a timer in this mode, set the corre-  
sponding port P55 direction register to input mode.  
0 : Rising edge active  
1 : Falling edge active  
Timer Y stop control bit  
0 : Count start  
1 : Count stop  
Event counter mode  
The timer counts signals input through the CNTR1 pin.  
Except for this, the operation in event counter mode is the same  
as in timer mode. When using a timer in this mode, set the corre-  
sponding port P55 direction register to input mode.  
Fig. 13 Structure of timer Y mode register  
Pulse width HL continuously measurement mode  
CNTR1 interrupt request is generated at both rising and falling  
edges of CNTR1 pin input signal. Except for this, the operation in  
pulse width HL continuously measurement mode is the same as in  
period measurement mode. When using a timer in this mode, set  
the corresponding port P55 direction register to input mode.  
Note on CNTR1 Interrupt Active Edge Selec-  
tion  
CNTR1 interrupt active edge depends on the CNTR1 active edge  
switch bit. However, in pulse width HL continuously measurement  
mode, CNTR1 interrupt request is generated at both rising and  
falling edges of CNTR1 pin input signal regardless of the setting of  
CNTR1 active edge switch bit.  
23  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timer 1, Timer 2, Timer 3  
7
0
Timer 1, timer 2, and timer 3 are 8-bit timers. The count source for  
each timer can be selected by timer 123 mode register. The timer  
latch value is not affected by a change of the count source. How-  
ever, because changing the count source may cause an inadvert-  
ent count down of the timer. Therefore, rewrite the value of timer  
whenever the count source is changed.  
Timer 123 mode register  
(T123M :address 002916)  
TOUT output active edge switch bit  
0 : Start at "H" output  
1 : Start at "L" output  
TOUT output control bit  
0 : TOUT output disabled  
1 : TOUT output enabled  
Timer 2 write control bit  
0 : Write value in latch and counter  
1 : Write value in latch only  
Timer 2 count source selection bit  
0 : Timer 1 underflow  
1 : f(XIN)/16  
(Middle-/high-speed mode)  
f(XCIN)/16  
(Low-speed mode)(Note)  
Timer 3 count source selection bit  
0 : Timer 1 underflow  
1 : f(XIN)/16  
Timer 2 Write Control  
If the timer 2 write control bit is “0”, when the value is written in the  
address of timer 2, the value is loaded in the timer 2 and the latch  
at the same time.  
If the timer 2 write control bit is “1”, when the value is written in the  
address of timer 2, the value is loaded only in the latch. The value  
in the latch is loaded in timer 2 after timer 2 underflows.  
(Middle-/high-speed mode)  
f(XCIN)/16  
(Low-speed mode)(Note)  
Timer 1 count source selection bit  
0 : f(XIN)/16  
(Middle-/high-speed mode)  
f(XCIN)/16  
(Low-speed mode)(Note)  
1 : f(XCIN)  
Timer 2 Output Control  
When the timer 2 (TOUT) is output enabled, an inversion signal  
from pin TOUT is output each time timer 2 underflows.  
In this case, set the port P56 shared with the port TOUT to the out-  
put mode.  
Not used (return "0" when read)  
Note : Internal clock φ is f (XCIN)/2 in the low-speed mode.  
Note on Timer 1 to Timer 3  
When the count source of timer 1 to 3 is changed, the timer count-  
ing value may be changed large because a thin pulse is generated  
in count input of timer. If timer 1 output is selected as the count  
source of timer 2 or timer 3, when timer 1 is written, the counting  
value of timer 2 or timer 3 may be changed large because a thin  
pulse is generated in timer 1 output.  
Fig. 14 Structure of timer 123 mode register  
Therefore, set the value of timer in the order of timer 1, timer 2 and  
timer 3 after the count source selection of timer 1 to 3.  
24  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
SERIAL I/O1  
Clock Synchronous Serial I/O1 Mode  
Serial I/O1 can be used as either clock synchronous or asynchro-  
nous (UART) serial I/O1. A dedicated timer (baud rate generator)  
is also provided for baud rate generation.  
Clock synchronous serial I/O1 mode can be selected by setting  
the mode selection bit of the serial I/O1 control register to “1”.  
For clock synchronous serial I/O1, the transmitter and the receiver  
must use the same clock. If an internal clock is used, transfer is  
started by a write signal to the TB/RB (address 001816).  
Data bus  
Serial I/O1 control register  
Address 001A16  
Address 001816  
Receive buffer register (RB)  
Receive buffer full flag (RBF)  
Receive shift register  
Serial I/O receive interrupt request (RI)  
P44/RXD  
Shift clock  
Clock control circuit  
P46/SCLK1  
Serial I/O1 synchronization  
clock selection bit  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
1/4  
f(XIN  
)
Baud rate generator  
Address 001C16  
1/4  
Clock control circuit  
P47/SRDY1  
Falling-edge detector  
F/F  
Shift clock  
Transmit shift register shift completion flag (TSC)  
Transmit interrupt source selection bit  
P45/TXD  
Transmit shift register  
Transmit buffer register (TB)  
Serial I/O transmit interrupt request (TI)  
Transmit buffer empty flag (TBE)  
Serial I/O1 status register  
Address 001916  
Address 001816  
Data bus  
Fig. 15 Block diagram of clock synchronous serial I/O1  
Transfer shift clock  
(1/2 to 1/2048 of the internal  
clock, or an external clock)  
Serial output TxD  
Serial input RxD  
D
D
0
0
D
D
1
1
D
D
2
2
D
D
3
3
D
D
4
4
D
D
5
5
D
D
6
6
D
D
7
7
Receive enable signal SRDY1  
Write signal to receive/transmit  
buffer register (address 001816  
)
RBF = 1  
TSC = 1  
TBE = 0  
TBE = 1  
TSC = 0  
Overrun error (OE)  
detection  
Notes 1 : The serial I/O1 transmit interrupt (TI) can be selected to occur either when the transmit buffer register has emptied (TBE=1)  
or after the transmit shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the  
serial I/O1 control register.  
2 : If data is written to the transmit buffer register when TSC=0, the transmit clock is generated continuously and serial data is  
output continuously from the TxD pin.  
3 : The serial I/O1 receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1” .  
Fig. 16 Operation of clock synchronous serial I/O1 function  
25  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ter, but the two buffers have the same address in memory. Since  
the shift register cannot be written to or read from directly, transmit  
data is written to the transmit buffer register, and receive data is  
read from the receive buffer register.  
Asynchronous Serial I/O1 (UART) Mode  
Clock asynchronous serial I/O1 mode (UART) can be selected by  
clearing the serial I/O1 mode selection bit of the serial I/O1 control  
register to “0”.  
The transmit buffer register can also hold the next data to be  
transmitted, and the receive buffer register can hold a character  
while the next character is being received.  
Eight serial data transfer formats can be selected, and the transfer  
formats used by a transmitter and receiver must be identical.  
The transmit and receive shift registers each have a buffer regis-  
Data bus  
Address 001816  
Receive buffer register(RB)  
Character length selection bit  
Serial I/O1 control register Address 001A16  
Receive buffer full flag (RBF)  
Serial I/O receive interrupt request (RI)  
OE  
P44/RXD  
STdetector  
7 bits  
8 bits  
Receive shift register  
1/16  
UART control register  
Address 001B16  
PE FE SP detector  
Clock control circuit  
Serial I/O1 synchronization clock selection bit  
P46/SCLK1  
f(XIN)  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
1/4  
Baud rate generator  
Address 001C16  
ST/SP/PA generator  
1/16  
Transmit shift register shift completion flag (TSC)  
Transmit interrupt source selection bit  
P45/TXD  
Transmit shift register  
Serial I/O1 status register  
Character length selection bit  
Transmit buffer empty flag (TBE)  
Transmit buffer register(TB)  
Address 001816  
Address 001916  
Serial I/O1 status register  
Data bus  
Fig. 17 Block diagram of UART serial I/O1  
Transmit or receive clock  
Transmit buffer register  
write signal  
TBE=0  
TSC=0  
TBE=1  
TBE=0  
TSC=1✽  
SP  
TBE=1  
Serial output TXD  
ST  
D0  
D1  
ST  
D0  
D1  
SP  
Generated at 2nd bit in 2-stop-bit mode  
1 start bit  
7 or 8 data bits  
1 or 0 parity bit  
1 or 2 stop bit (s)  
Receive buffer register  
read signal  
RBF=0  
RBF=1  
SP  
RBF=1  
SP  
ST  
Serial input RXD  
D0  
D1  
ST  
D0  
D1  
Notes 1: Error flag detection occurs at the same time that the RBF flag becomes "1" (at 1st stop bit, during reception).  
2: The transmit interrupt (TI) can be selected to occur when either the TBE or TSC flag becomes "1", depending on the setting of the transmit interrupt  
source selection bit (TIC) of the serial I/O1 control register.  
3: The serial I/O1 receive interrupt (RI) is set when the RBF flag becomes "1".  
4: After data is written to the transmit buffer register when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0.  
Fig. 18 Operation of UART serial I/O1 function  
26  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Serial I/O1 Control Register (SIO1CON) 001A16  
The serial I/O1 control register contains eight control bits for the  
serial I/O1 function.  
UART Control Register (UARTCON) 001B16  
The UART control register consists of four control bits (bits 0 to 3)  
which are valid when asynchronous serial I/O is selected and set  
the data format of an data transfer. One bit in this register (bit 4) is  
always valid and sets the output structure of the P45/TXD pin.  
Serial I/O1 Status Register (SIO1STS) 001916  
The read-only serial I/O1 status register consists of seven flags  
(bits 0 to 6) which indicate the operating status of the serial I/O  
function and various errors.  
Three of the flags (bits 4 to 6) are valid only in UART mode.  
The receive buffer full flag (bit 1) is cleared to “0” when the receive  
buffer is read.  
If there is an error, it is detected at the same time that data is  
transferred from the receive shift register to the receive buffer reg-  
ister, and the receive buffer full flag is set. A write to the serial I/O  
status register clears all the error flags OE, PE, FE, and SE (bit 3  
to bit 6, respectively). Writing “0” to the serial I/O enable bit SIOE  
(bit 7 of the Serial I/O Control Register) also clears all the status  
flags, including the error flags.  
All bits of the serial I/O1 status register are initialized to “0” at re-  
set, but if the transmit enable bit (bit 4) of the serial I/O control reg-  
ister has been set to “1”, the transmit shift register shift completion  
flag (bit 2) and the transmit buffer empty flag (bit 0) become “1”.  
Transmit Buffer/Receive Buffer Register (TB/  
RB) 001816  
The transmit buffer register and the receive buffer register are lo-  
cated at the same address. The transmit buffer register is write-  
only and the receive buffer register is read-only. If a character bit  
length is 7 bits, the MSB of data stored in the receive buffer regis-  
ter is “0”.  
Baud Rate Generator (BRG) 001C16  
The baud rate generator determines the baud rate for serial trans-  
fer.  
The baud rate generator divides the frequency of the count source  
by 1/(n + 1), where n is the value written to the baud rate genera-  
tor.  
27  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
7
0
0
7
Serial I/O1 status register  
Serial I/O1 control register  
(SIO1STS : address 0019 16  
)
(SIO1CON : address 001A 16  
BRG count source selection bit (CSS)  
0: f(XIN  
)
Transmit buffer empty flag (TBE)  
0: Buffer full  
1: Buffer empty  
)
1: f(XIN)/4  
Serial I/O1 synchronization clock selection bit (SCS)  
•In clock synchronous mode  
0 : BRG output/4  
Receive buffer full flag (RBF)  
0: Buffer empty  
1: Buffer full  
1 : External clock input  
•In UART mode  
0 : BRG output/16  
1 : External clock input/16  
Transmit shift register shift completion flag (TSC)  
0: Transmit shift in progress  
1: Transmit shift completed  
S
0: P4  
1: P4  
RDY1 output enable bit (SRDY)  
Overrun error flag (OE)  
0: No error  
1: Overrun error  
7
S
S
RDY1 pin operates as I/O port P4  
7
7
RDY1 pin operates as signal output pin SRDY1  
(SRDY1 signal indicates receive enable state)  
Parity error flag (PE)  
0: No error  
1: Parity error  
Transmit interrupt source selection bit (TIC)  
0: When transmit buffer has emptied  
1: When transmit shift operation is completed  
Framing error flag (FE)  
0: No error  
1: Framing error  
Transmit enable bit (TE)  
0: Transmit disabled  
1: Transmit enabled  
Summing error flag (SE)  
0: OE U PE U FE =0  
1: OE U PE U FE =1  
Receive enable bit (RE)  
0: Receive disabled  
1: Receive enabled  
Not used (returns “1” when read)  
Serial I/O1 mode selection bit (SIOM)  
0: Clock asynchronous serial I/O1 (UART) mode  
1: Clock synchronous serial I/O1 mode  
7
0
UART control register  
(UARTCON : address 001B 16  
Serial I/O1 enable bit (SIOE)  
0: Serial I/O1 disabled  
)
Character length selection bit (CHAS)  
0: 8 bits  
1: 7 bits  
(pins P4  
1: Serial I/O1 enabled  
(pins P4 –P4 operate as serial I/O1 pins)  
4–P47 operate as I/O pins)  
4
7
Parity enable bit (PARE)  
0: Parity checking disabled  
1: Parity checking enabled  
Parity selection bit (PARS)  
0: Even parity  
1: Odd parity  
Stop bit length selection bit (STPS)  
0: 1 stop bit  
1: 2 stop bits  
P45/TXD P-channel output disable bit (POFF)  
0: CMOS output (in output mode)  
1: N-channel open-drain output (in output mode)  
Not used (return“1” when read)  
Fig. 19 Structure of serial I/O1 control registers  
28  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
SERIAL I/O2  
b7  
b0  
Serial I/O2 control register  
The serial I/O2 function can be used only for clock synchronous  
(SIO2CON : address 001D16  
)
serial I/O.  
Internal synchronization clock select bits  
For clock synchronous serial I/O2 the transmitter and the receiver  
must use the same clock. If the internal clock is used, transfer is  
started by a write signal to the serial I/O2 register.  
b2 b1 b0  
0 0 0: f(XIN)/8  
0 0 1: f(XIN)/16  
0 1 0: f(XIN)/32  
0 1 1: f(XIN)/64  
1 0 0:  
1 0 1:  
Do not set  
Serial I/O2 Control Register (SIO2CON) 001D16  
The serial I/O2 control register contains 7 bits which control vari-  
ous serial I/O functions.  
1 1 0: f(XIN)/128  
1 1 1: f(XIN)/256  
Serial I/O2 port selection bit  
0: I/O port  
1: SOUT2,SCLK2 signal output  
S
RDY2 output enable bit  
0: I/O port  
1: SRDY2 signal output  
Transfer direction selection bit  
0: LSB first  
1: MSB first  
Synchronization clock selection bit  
0: External clock  
1: Internal clock  
Not used (returns “0” when read)  
Fig. 20 Structure of serial I/O2 control register  
Internal synchronization  
clock select bits  
1/8  
1/16  
Data bus  
1/32  
X
IN  
1/64  
1/128  
1/256  
P53 latch  
Synchronization clock  
selection bit  
"0"  
"1"  
P5  
3
/SRDY2  
S
RDY2  
Synchronization circuit  
"1"  
SRDY2 output enable bit  
"0"  
External clock  
P52 latch  
"0"  
P5  
P5  
2
1
/SCLK2  
/SOUT2  
Serial I/O2  
interrupt request  
Serial I/O counter 2 (3)  
"1"  
Serial I/O2 port selection bit  
P51  
latch  
"0"  
"1"  
Serial I/O2 port selection bit  
Serial I/O shift register 2 (8)  
P50/SIN2  
Fig. 21 Block diagram of serial I/O2 function  
29  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Transfer clock (Note 1)  
Serial I/O2 register  
write signal  
(Note 2)  
Serial I/O2 output  
SOUT2  
D
2
D
0
D
1
D
3
D
4
D
5
D
6
D7  
Serial I/O2 input SIN2  
Receive enable signal SRDY2  
Serial I/O2 interrupt request bit set  
Notes 1: When the internal clock is selected as the transfer clock, the divide ratio can be selected by setting bits 0 to 2 of the serial  
I/O2 control register.  
2: When the internal clock is selected as the transfer clock, the S OUT2 pin goes to high impedance after transfer completion.  
Fig. 22 Timing of serial I/O2 function  
30  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
the segment output enable register and the LCD display RAM, the  
LCD drive control circuit starts reading the display data automati-  
cally, performs the bias control and the duty ratio control, and dis-  
plays the data on the LCD panel.  
LCD DRIVE CONTROL CIRCUIT  
The 3820 group has the built-in Liquid Crystal Display (LCD) drive  
control circuit consisting of the following.  
LCD display RAM  
Segment output enable register  
Table 2. Maximum number of display pixels at each  
duty ratio  
LCD mode register  
Selector  
Timing controller  
Duty ratio  
2
Maximum number of display pixel  
80 dots  
Common driver  
Segment driver  
or 8 segment LCD 10 digits  
120 dots  
Bias control circuit  
3
4
A maximum of 40 segment output pins and 4 common output pins  
can be used.  
or 8 segment LCD 15 digits  
160 dots  
Up to 160 pixels can be controlled for LCD display. When the LCD  
enable bit is set to “1” after data is set in the LCD mode register,  
or 8 segment LCD 20 digits  
7
0
Segment output enable register  
(SEG : address 003816)  
Segment output enable bit 0  
0 : Input ports P30–P37  
1 : Segment output SEG16–SEG23  
Segment output enable bit 1  
0 : I/O ports P00, P01  
1 : Segment output SEG24,SEG25  
Segment output enable bit 2  
0 : I/O ports P02–P07  
1 : Segment output SEG26–SEG31  
Segment output enable bit 3  
0 : I/O ports P10,P11  
1 : Segment output SEG32,SEG33  
Segment output enable bit 4  
0 : I/O port P12  
1 : Segment output SEG34  
Segment output enable bit 5  
0 : I/O ports P13–P17  
1 : Segment output SEG35–SEG39  
Not used (return "0" when read)  
(Do not write "1" to this bit)  
0
7
LCD mode register  
(LM : address 003916)  
Duty ratio selection bits  
0 0 : Not available  
0 1 : 2 (use COM0,COM1)  
1 0 : 3 (use COM0–COM2)  
1 1 : 4 (use COM0–COM3)  
Bias control bit  
0 : 1/3 bias  
1 : 1/2 bias  
LCD enable bit  
0 : LCD OFF  
1 : LCD ON  
Not used (returns "0" when read)  
(Do not write "1" to this bit)  
LCD circuit divider division ratio selection bits  
0 0 : LCDCK count source  
0 1 : 2 division of LCDCK count source  
1 0 : 4 division of LCDCK count source  
1 1 : 8 division of LCDCK count source  
LCDCK count source selection bit (Note)  
0 : f(XCIN)/32  
1 : f(XIN)/8192  
Note : LCDCK is a clock for a LCD timing controller.  
Fig. 23 Structure of segment output enable register and LCD mode register  
31  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Fig. 24 Block diagram of LCD controller/driver  
32  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 3. Bias control and applied voltage to VL1–VL3  
Bias Control and Applied Voltage to LCD  
Power Input Pins  
Bias value  
Voltage value  
To the LCD power input pins (VL1–VL3), apply the voltage shown in  
VL3=VLCD  
1/3 bias  
Table 3 according to the bias value.  
VL2=2/3 VLCD  
VL1=1/3 VLCD  
VL3=VLCD  
Select a bias value by the bias control bit (bit 2 of the LCD mode  
register).  
1/2 bias  
VL2=VL1=1/2 VLCD  
Common Pin and Duty Ratio Control  
The common pins (COM0–COM3) to be used are determined by  
duty ratio.  
Note 1 : VLCD is the maximum value of supplied voltage for the  
LCD panel.  
Select duty ratio by the duty ratio selection bits (bits 0 and 1 of the  
LCD mode register).  
Table 4. Duty ratio control and common pins used  
Duty  
ratio  
Duty ratio selection bit  
Common pins used  
Bit 1  
0
Bit 0  
1
2
COM0, COM1 (Note 1)  
COM0–COM2 (Note 2)  
COM0–COM3  
3
4
1
1
0
1
Notes 1 : COM2 and COM3 are open  
2 : COM3 is open  
Contrast control  
Contrast control  
V
V
V
L3  
V
V
V
L3  
R1  
R4  
L2  
L1  
L2  
L1  
R2  
R3  
R5  
R4 = R5  
R1 = R2 = R3  
1/2 bias  
1/3 bias  
Fig. 25 Example of circuit at each bias  
33  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
LCD Display RAM  
LCD Drive Timing  
Address 004016 to 005316 is the designated RAM for the LCD dis-  
play. When “1” are written to these addresses, the corresponding  
segments of the LCD display panel are turned on.  
The LCDCK timing frequency (LCD drive timing) is generated in-  
ternally and the frame frequency can be determined with the fol-  
lowing equation;  
(frequency of count source for LCDCK)  
f(LCDCK)=  
(divider division ratio for LCD)  
f(LCDCK)  
Frame frequency=  
duty ratio  
Bit  
7
6
5
4
3
2
1
0
Address  
COM  
3
COM  
2
COM  
1
COM  
0
COM  
3
COM  
2
COM  
1
COM0  
004016  
SEG  
SEG  
SEG  
SEG  
SEG  
0
2
4
6
8
SEG  
SEG  
SEG  
SEG  
SEG  
1
3
5
7
9
004116  
004216  
004316  
004416  
004516  
004616  
SEG10  
SEG12  
SEG14  
SEG16  
SEG18  
SEG20  
SEG22  
SEG24  
SEG26  
SEG28  
SEG30  
SEG32  
SEG34  
SEG36  
SEG38  
SEG11  
SEG13  
004716  
004816  
004916  
004A16  
004B16  
004C16  
004D16  
004E16  
004F16  
005016  
005116  
005216  
005316  
SEG15  
SEG17  
SEG19  
SEG21  
SEG23  
SEG25  
SEG27  
SEG29  
SEG31  
SEG33  
SEG35  
SEG37  
SEG39  
Fig. 26 LCD display RAM map  
34  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Internal logic  
LCDCK timing  
1/4 duty  
Voltage level  
VL3  
COM0  
COM1  
COM2  
COM3  
SEG0  
VL2=VL1  
VSS  
VL3  
VSS  
OFF  
ON  
OFF  
ON  
COM3  
COM3  
COM2  
COM1  
COM0  
COM2  
COM1  
COM0  
1/3 duty  
COM0  
COM1  
COM2  
VL3  
VL2=VL1  
VSS  
VL3  
VSS  
SEG0  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM0  
COM0  
COM2  
COM1  
COM2  
COM1  
COM0  
COM2  
1/2 duty  
VL3  
VL2=VL1  
VSS  
COM0  
COM1  
SEG0  
VL3  
VSS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM0  
COM1  
COM1  
COM0  
COM1  
COM0  
COM1  
COM0  
Fig. 27 LCD drive waveform (1/2 bias)  
35  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Internal logic  
LCDCK timing  
1/4 duty  
Voltage level  
VL3  
VL2  
VL1  
VSS  
COM0  
COM1  
COM2  
COM3  
SEG0  
VL3  
VSS  
OFF  
ON  
OFF  
ON  
COM3  
COM3  
COM2  
COM1  
COM0  
COM2  
COM1  
COM0  
1/3 duty  
COM0  
COM1  
COM2  
VL3  
VL2  
VL1  
VSS  
VL3  
SEG0  
VSS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM0  
COM2  
COM1  
COM0  
COM2  
COM2  
COM1  
COM0  
1/2 duty  
VL3  
VL2  
VL1  
VSS  
COM0  
COM1  
SEG0  
VL3  
VSS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM1  
COM0  
COM1  
COM0  
COM1  
COM0  
COM1  
COM0  
Fig. 28 LCD drive waveform (1/3 bias)  
36  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
WATCHDOG TIMER  
Then the program executes from the reset vector address.  
Usually, a program is designed so that data can be written into the  
watchdog timer control register before the watchdog timer H  
underflows. If data is not written once into the watchdog timer con-  
trol register, the watchdog timer does not function.  
The watchdog timer gives a mean of returning to the reset status  
when a program cannot run on a normal loop (for example, be-  
cause of a software run-away).  
The watchdog timer consists of an 8-bit watchdog timer L and a 6-  
bit watchdog timer H.  
At execution of the STP instruction, both clock and watchdog timer  
stops. At the same time that the stop mode is released, the watch-  
dog timer restarts a count (Note). On the other hand, at execution  
of the WIT instruction, the watchdog timer does not stop.  
Initial Value of Watchdog Timer  
At reset or when writing data into the watchdog timer control reg-  
ister, the watchdog timer H is set to “3F16” and the watchdog timer  
L is set to “FF16”. As a write instruction, it is possible to use any in-  
struction that can cause a write signal such as STA, LDM and  
CLB. Write data except bit 7 has no significance and the above  
value is set independently.  
The time from execution of writing to the watchdog timer control  
register until an underflow of the watchdog timer register H is as  
follows: (When bit 7 of the watchdog timer control register is “0”)  
Middle / High-speed mode (f(XIN)=8 MHz).................. 32.768 ms  
Low-speed mode (f(XCIN)=32 kHz) ..................................... 8.19 s  
Note: During the stop release wait time [XIN (or XCIN) : about 8200  
clock cycles], the watchdog timer counts.  
Watchdog Timer Operation  
The watchdog timer stops at reset and starts a countdown by writ-  
ing to the watchdog timer control register. When the watchdog  
timer H underflows, an internal reset occurs, and the reset status  
is released after waiting the reset release time.  
Accordingly, does not underflow the watchdog timer H.  
When writing to  
watchdog timer  
control register  
Data bus  
XCIN  
When writing to  
watchdog timer control  
set “FF16”  
register  
set “3F16”  
“0”  
“1”  
Internal system  
Watchdog timer L (8)  
clock selection bit  
(Note)  
Watchdog timer H (6)  
“1”  
1/16  
Watchdog timer H  
count source selection bit  
“0”  
XIN  
Undefined instruction  
Reset  
Reset circuit  
Reset release wait time (about 8200 XIN clock cycles)  
Note: This bit is bit 7 of CPU mode register. It selects the mode (middle/high-speed or low-speed)  
Internal reset  
RESET  
Fig. 29 Watchdog timer block diagram  
7
0
Watchdog timer control register  
(WDTCON : address 003716  
)
Watchdog timer H bits (read only)  
Not used (returns “1” when read)  
Watchdog timer H count source selection bit  
0 : Underflow from watchdog timer L  
1 : f(XIN)/16 or f(XCIN)/16  
Fig. 30 Structure of watchdog timer control register  
37  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
φ CLOCK OUTPUT FUNCTION  
The internal system clock φ can be output from port P41 by setting  
the φ output control register. Set bit 1 of the port P4 direction reg-  
ister to when outputting φ clock.  
7
0
φ output control register  
(CKOUT : address 002A16  
)
φ output control bit  
0 : Port function  
1 : φ clock output  
Not used (return “0” when read)  
Fig. 31 Structure of φ output control register  
38  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
RESET CIRCUIT  
Address  
Register contents  
0016  
To reset the microcomputer, RESET pin should be held at an “L”  
level for 2 µs or more. Then the RESET pin is returned to an “H”  
level (the power source voltage should be between 2.5 V and  
5.5 V, and the oscillation should be stable), reset is released. In or-  
der to give the XIN clock time to stabilize, internal operation does  
not begin until after 8200 XIN clock cycles (timer 1 and timer 2 are  
connected together and 512 cycles of f(XIN)/16) are complete. Af-  
ter the reset is completed, the program starts from the address  
contained in address FFFD16 (high-order byte) and address  
FFFC16 (low-order byte).  
(000116) • • •  
(
(
(
(
(
(
(
(
)
)
)
1
2
3
4
5
6
7
8
Port P0 direction register  
Port P1 direction register  
Port P2 direction register  
(000316) • • •  
0016  
(000516) • • •  
(000916) • • •  
0016  
0016  
) Port P4 direction register  
(000B16) • • •  
(000D16) • • •  
(000F16) • • •  
(001616) • • •  
(001716) • • •  
(001916) • • •  
(001A16) • • •  
(001B16) • • •  
(001D16) • • •  
(002016) • • •  
(002116) • • •  
(002216) • • •  
(002316) • • •  
(002416) • • •  
(002516) • • •  
(002616) • • •  
(002716) • • •  
(002816) • • •  
(002916) • • •  
(002A16) • • •  
(003716) • • •  
Port P5 direction register  
Port P6 direction register  
Port P7 direction register  
0016  
0016  
0016  
)
)
)
0
1
1
0
0
1
0
0
1
0
1
0
0
0
1
0
0
1
0
0
) PULL register A  
Make sure that the reset input voltage is less than 0.5 V for VCC of  
2.5 V (Extended operating temperature version: the reset input  
voltage is less than 0.6V for VCC of 3.0V).  
( 9 )  
(10)  
(11)  
(12)  
(13)  
PULL register B  
0016  
Serial I/O1 status register  
Serial I/O1 control register  
UART control register  
Serial I/O2 control register  
0
0
0016  
0
0
0016  
FF16  
FF16  
FF16  
FF16  
FF16  
0116  
FF16  
0016  
0016  
0016  
0016  
(14) Timer X (low-order)  
Power on  
(15)  
(16)  
(17)  
(18)  
(19)  
Timer X (high-order)  
Timer Y (low-order)  
Timer Y (high-order)  
Timer 1  
(Note)  
Power source  
voltage  
RESET  
VCC  
0V  
Reset input  
voltage  
0.2VCC  
0V  
Timer 2  
Note. Reset release voltage : VCC = 2.5V  
(Extended operating temperature version : 3.0V)  
(20) Timer 3  
(21)  
Timer X mode register  
(22) Timer Y mode register  
(23) Timer 123 mode register  
RESET  
VCC  
Power source voltage  
detection circuit  
(24)  
(25)  
(26)  
(27)  
(28)  
φ output control register  
1
0
0
0
1
1
1
0
1
1
1
0
1
0
Watchdog timer control register  
Segment output enable register (003816) • • •  
0016  
0016  
0016  
LCD mode register  
(003916) • • •  
Interrupt edge selection register (003A16) • • •  
(29) CPU mode register  
(003B16) • • •  
(003C16) • • •  
0
1
Interrupt request register 1  
Interrupt request register 2  
(30)  
(31)  
0016  
0016  
0016  
0016  
Fig. 32 Example of reset circuit  
(003D16) • • •  
(32) Interrupt control register 1  
(003E16) • • •  
(33)  
(34)  
Interrupt control register 2 (003F16) • • •  
Processor status register  
(PS)  
1
(35) Program counter  
(PC  
H
)
)
Contents of address FFFD16  
Contents of address FFFC16  
(PC  
L
Note.  
: Undefined  
The contents of all other registers and RAM are undefined  
at poweron reset, so they must be initialized by software.  
Fig. 33 Internal state of microcomputer immediately after re-  
set  
39  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
XIN  
φ
RESET  
Internal reset  
Reset address from  
vector table  
Address  
Data  
?
?
?
?
ADH, ADL  
FFFC  
FFFD  
ADH  
ADL  
SYNC  
Notes 1 : XIN and φ are in the relation : f(XIN) = 8 f(φ)  
Notes 2 : A question mark (?) indicates an undefined status that depens on the previous status.  
XIN : about 8200  
clock cycles  
Fig. 34 Reset sequence  
40  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
CLOCK GENERATING CIRCUIT  
Oscillation Control  
The 3820 group has two built-in oscillation circuits. An oscillation  
circuit can be formed by connecting a resonator between XIN and  
XOUT (XCIN and XCOUT). Use the circuit constants in accordance  
with the resonator manufacturer's recommended values. No exter-  
nal resistor is needed between XIN and XOUT since a feed-back re-  
sistor exists on-chip. However, an external feed-back resistor is  
needed between XCIN and XCOUT.  
Stop mode  
If the STP instruction is executed, the internal clock φ stops at an  
“H” level, and XIN and XCIN oscillators stop. Timer 1 is set to “FF16”  
and timer 2 is set to “0116”.  
Either XIN or XCIN divided by 16 is input to timer 1 as count  
source, and the output of timer 1 is connected to timer 2.  
The bits of the timer 123 mode register except bit 4 are cleared to  
“0”. Set the timer 1 and timer 2 interrupt enable bits to disabled  
(“0”) before executing the STP instruction.  
To supply a clock signal externally, input it to the XIN pin and make  
the XOUT pin open. The sub-clock XCIN-XCOUT oscillation circuit  
cannot directly input clocks that are externally generated. Accord-  
ingly, be sure to cause an external resonator to oscillate.  
Immediately after poweron, only the XIN oscillation circuit starts  
oscillating, and XCIN and XCOUT pins function as I/O ports. The  
pull-up resistor of XCIN and XCOUT pins must be made invalid to  
use the sub-clock.  
Oscillator restarts at reset or when an external interrupt is re-  
ceived, but the internal clock φ is not supplied to the CPU until  
timer 2 underflows. This allows time for the clock circuit oscillation  
to stabilize.  
Wait mode  
If the WIT instruction is executed, the internal clock φ stops at an  
“H” level. The states of XIN and XCIN are the same as the state be-  
fore the executing the WIT instruction. The internal clock restarts  
at reset or when an interrupt is received. Since the oscillator does  
not stop, normal operation can be started immediately after the  
clock is restarted.  
Frequency Control  
Middle-speed mode  
The internal clock φ is the frequency of XIN divided by 8.  
After reset, this mode is selected.  
High-speed mode  
The internal clock φ is half the frequency of XIN.  
Low-speed mode  
The internal clock φ is half the frequency of XCIN.  
A low-power consumption operation can be realized by stopping  
XCIN  
XCOUT  
XIN  
XOUT  
the main clock XIN in this mode. To stop the main clock, set bit 5  
of the CPU mode register to “1”.  
Rf  
Rd  
When the main clock XIN is restarted, set enough time for oscil-  
lation to stabilize by programming.  
Note: If you switch the mode between middle/high-speed and low-  
speed, stabilize both XIN and XCIN oscillations. The suffi-  
cient time is required for the sub-clock to stabilize, espe-  
cially immediately after poweron and at returning from stop  
mode. When switching the mode between middle/high-  
speed and low-speed, set the frequency on condition that  
f(XIN)>3f(XCIN).  
C
COUT  
CIN  
COUT  
CCIN  
Fig. 35 Ceramic resonator circuit  
XCIN  
XCOUT  
XIN  
XOUT  
Rf  
Open  
Rd  
External oscillation  
circuit  
CCOUT  
CCIN  
VCC  
VSS  
Fig. 36 External clock input circuit  
41  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
XCOUT  
XCIN  
"0"  
"1"  
Port X  
C
switch bit  
Timer 1 count  
source selection  
bit  
Timer 2 count  
source selection  
bit  
Internal system clock selection bit  
(Note 1)  
XIN  
XOUT  
"1"  
Low-speed mode  
"0"  
Timer 1  
Timer 2  
1/4  
1/2  
Middle/High-speed mode  
1/2  
"0"  
"1"  
Main clock division ratio selection bit  
Middle-speed mode  
Timing φ  
(Internal system clock)  
High-speed mode  
or Low-speed mode  
Main clock stop bit  
S
R
Q
Q
S
R
S
R
Q
WIT  
instruction  
STP instruction  
STP instruction  
Reset  
Interrupt disable flag I  
Interrupt request  
Note : When using the low-speed mode, set the port XC switch bit to "1" .  
Fig. 37 Clock generating circuit block diagram  
42  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Reset  
CM6  
"1"  
Middle-speed mode (f(φ) =1 MHz)  
High-speed mode (f(φ) =4MHz)  
CM7=0(8MHz selected)  
CM6=0(High-speed)  
CM5=0(8MHz oscillating)  
CM4=0(32kHz stopped)  
"0"  
CM7=0(8MHz selected)  
CM6=1(Middle-speed)  
CM5=0(8MHz oscillating)  
CM4=0(32kHz stopped)  
CM6  
"1"  
Middle-speed mode (f(φ) =1 MHz)  
High-speed mode (f(φ) =4MHz)  
"0"  
"0"  
"0"  
CM7=0(8MHz selected)  
CM6=1(Middle-speed)  
CM5=0(8MHz oscillating)  
CM4=1(32kHz oscillating)  
CM7=0(8MHz selected)  
CM6=0(High-speed)  
CM5=0(8MHz oscillating)  
CM4=1(32kHz oscillating)  
Low-speed mode (f(φ) =16 kHz)  
Low-speed mode (f(φ) =16 kHz)  
CM6  
"1"  
CM7=1(32kHz selected)  
CM6=1(Middle-speed)  
CM5=0(8MHz oscillating)  
CM4=1(32kHz oscillating)  
CM7=1(32kHz selected)  
CM6=0(High-speed)  
CM5=0(8MHz oscillating)  
CM4=1(32kHz oscillating)  
4
7
CPU mode register  
(CPUM : address 003B16)  
CM4 : Port Xc switch bit  
0: I/O port  
1: XCIN, XCOUT  
CM5 : Main clock (XIN–XOUT) stop bit  
0: Oscillating  
1: Stopped  
CM6: Main clock division ratio selection bit  
0: f(XIN)/2 (high-speed mode)  
1: f(XIN)/8 (middle-speed mode)  
CM7: Internal system clock selection bit  
0: XIN–XOUT selected  
Low-speed mode (f(φ) =16 kHz)  
Low-speed mode (f(φ) =16 kHz)  
CM6  
"1"  
CM7=1(32kHz selected)  
CM6=0(High-speed)  
CM5=1(8MHz stopped)  
CM4=1(32kHz oscillating)  
CM7=1(32kHz selected)  
CM6=1(Middle-speed)  
CM5=1(8MHz stopped)  
CM4=1(32kHz oscillating)  
(middle-/high-speed mode)  
1: XCIN–XCOUT selected  
(low-speed mode)  
Notes  
1: Switch the mode by the allows shown between the mode blocks. (Do not switch between the mode directly without an allow.)  
2: The all modes can be switched to the stop mode or the wait mode and returned to the source mode when the stop mode or the wati  
mode is released.  
3: Timer and LCD operate in the wait mode.  
4: In middle-/high-speed mode, when the stop mode is released, a delay of approximately 1 ms occurs automatically by timer 1 and  
timer 2.  
5: In low-speed mode, when the stop mode is released, a delay of approximately 0.25 s occurs automatically by timer 1 and timer 2.  
6: Wait until oscillation stabilizes after oscillating the main clock XIN before the switching from the low-speed mode to middle-/high-  
speed mode.  
7: The example assumes that 8 MHz is being applied to the XIN pin and 32 kHz to the XCIN pin. φ indicates the internal clock.  
Fig. 38 State transitions of internal clock φ  
43  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
NOTES ON PROGRAMMING  
Serial I/O  
Processor Status Register  
In clock synchronous serial I/O, if the receive side is using an ex-  
ternal clock and it is to output the SRDY signal, set the transmit en-  
able bit, the receive enable bit, and the SRDY output enable bit to  
“1”.  
The contents of the processor status register (PS) after a reset are  
undefined, except for the interrupt disable flag (I) which is “1”. Af-  
ter a reset, initialize flags which affect program execution.  
In particular, it is essential to initialize the index X mode (T) and  
the decimal mode (D) flags because of their effect on calculations.  
Serial I/O1 continues to output the final bit from the TXD pin after  
transmission is completed. The SOUT2 pin from serial I/O2 goes to  
high impedance after transmission is completed.  
Interrupts  
The contents of the interrupt request bits do not change immedi-  
ately after they have been written. After writing to an interrupt re-  
quest register, execute at least one instruction before performing a  
BBC or BBS instruction.  
Instruction Execution Time  
The instruction execution time is obtained by multiplying the fre-  
quency of the internal clock φ by the number of cycles needed to  
execute an instruction.  
The number of cycles required to execute an instruction is shown  
in the list of machine instructions.  
Decimal Calculations  
To calculate in decimal notation, set the decimal mode flag (D) to  
“1”, then execute an ADC or SBC instruction. Only the ADC and  
SBC instructions yield proper decimal results. After executing an  
ADC or SBC instruction, execute at least one instruction before  
executing a SEC, CLC, or CLD instruction.  
The frequency of the internal clock φ is half of the XIN frequency.  
In decimal mode, the values of the negative (N), overflow (V), and  
zero (Z) flags are invalid.  
The carry flag can be used to indicate whether a carry or borrow  
has occurred. Initialize the carry flag before each calculation.  
Clear the carry flag before an ADC and set the flag before an  
SBC.  
Timers  
If a value n (between 0 and 255) is written to a timer latch, the fre-  
quency division ratio is 1/(n + 1).  
Multiplication and Division Instructions  
The index mode (T) and the decimal mode (D) flags do not affect  
the MUL and DIV instruction.  
The execution of these instructions does not change the contents  
of the processor status register.  
Ports  
The contents of the port direction registers cannot be read.  
The following cannot be used:  
• The data transfer instruction (LDA, etc.)  
• The operation instruction when the index X mode flag (T) is “1”  
• The addressing mode which uses the value of a direction regis-  
ter as an index  
• The bit-test instruction (BBC or BBS, etc.) to a direction register  
• The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a  
direction register  
Use instructions such as LDM and STA, etc., to set the port direc-  
tion registers.  
44  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
DATA REQUIRED FOR MASK ORDERS  
The following are necessary when ordering a mask ROM produc-  
tion:  
ROM PROGRAMMING METHOD  
The built-in PROM of the blank One Time PROM version and built-  
in EPROM version can be read or programmed with a general-  
purpose PROM programmer using a special programming  
adapter. Set the address of PROM programmer in the user ROM  
area.  
(1) Mask ROM Order Confirmation Form  
(2) Mark Specification Form  
(3) Data to be written to ROM, in EPROM form (three identical  
copies)  
Package  
80P6N-A  
80P6S-A  
80P6D-A  
80D0  
Name of Programming Adapter  
PCA4738F-80A  
PCA4738G-80  
PCA4738H-80  
PCA4738L-80A  
The PROM of the blank One Time PROM version is not tested or  
screened in the assembly process and following processes. To en-  
sure proper operation after programming, the procedure shown in  
Figure 39 is recommended to verify programming.  
Programming with PROM  
programmer  
Screening (Caution)  
(150°C for 40 hours)  
Verification with  
PROM programmer  
Functional check in  
target device  
The screening temperature is far higher  
than the storage temperature. Never  
expose to 150 °C exceeding 100 hours.  
Caution :  
Fig. 39 Programming and testing of One Time PROM version  
45  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Conditions  
Ratings  
Unit  
V
VCC  
Power source voltage  
–0.3 to 7.0  
Input voltage P00–P07, P10–P17, P20–P27,  
P30–P37, P40–P47, P50–P57,  
P60, P61, P70, P71  
VI  
–0.3 to VCC +0.3  
V
All voltages are based on VSS.  
Output transistors are cut off.  
VI  
VI  
VI  
VI  
Input voltage VL1  
–0.3 to VL2  
VL1 to VL3  
V
V
V
V
V
V
V
Input voltage VL2  
Input voltage VL3  
VL2 to VCC +0.3  
–0.3 to VCC +0.3  
–0.3 to VCC +0.3  
–0.3 to VL3 +0.3  
–0.3 to VL3 +0.3  
Input voltage RESET, XIN  
At output port  
VO  
VO  
VO  
Output voltage P00–P07, P10–P17  
Output voltage P30–P37  
At segment output  
At segment output  
Output voltage P20–P27, P41–P47, P50–P57,  
P60, P61, P70, P71  
–0.3 to VCC +0.3  
V
Output voltage SEG0–SEG15  
Output voltage XOUT  
Power dissipation  
VO  
–0.3 to VL3 +0.3  
–0.3 to VCC +0.3  
300  
V
V
VO  
Ta = 25 °C  
Pd  
mW  
°C  
°C  
Operating temperature  
Storage temperature  
Topr  
Tstg  
–20 to 85  
–40 to 125  
(VCC = 2.5 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted.)  
RECOMMENDED OPERATING CONDITIONS  
Limits  
Symbol  
Parameter  
Unit  
V
Min.  
4.0  
2.5  
2.5  
Typ.  
5.0  
5.0  
5.0  
0
Max.  
5.5  
High-speed mode f(XIN)=8 MHz  
Middle-speed mode f(XIN)=8 MHz  
Low-speed mode  
VCC  
Power source voltage  
5.5  
5.5  
VSS  
VIH  
VIH  
Power source voltage  
“H” input voltage  
V
V
P00–P07, P10–P17, P30–P37, P41, P45, P47, P51,  
P53, P56, P61, P70, P71 (CM4=0)  
0.7 VCC  
0.8 VCC  
VCC  
VCC  
“H” input voltage  
P20–P27, P42–P44, P46, P50, P52, P54, P55, P57,  
P60  
V
VIH  
VIH  
“H” input voltage  
“H” input voltage  
“L” input voltage  
RESET  
XIN  
0.8 VCC  
0.8 VCC  
VCC  
VCC  
V
V
P00–P07, P10–P17, P30–P37, P40, P41, P45, P47,  
P51, P53, P56, P61, P70, P71 (CM4=0)  
VIL  
VIL  
0
0
0.3 VCC  
0.2 VCC  
V
V
“L” input voltage  
P20–P27, P42–P44, P46, P50, P52, P54, P55, P57,  
P60  
VIL  
VIL  
“L” input voltage  
“L” input voltage  
RESET  
XIN  
0
0
0.2 VCC  
0.2 VCC  
V
V
46  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
RECOMMENDED OPERATING CONDITIONS (VCC = 2.5 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
–P0 , P1 –P1  
Unit  
Min.  
Typ.  
Max.  
–40  
–40  
40  
ΣIOH(peak)  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
“H” total peak output current  
“H” total peak output current  
“L” total peak output current  
“L” total peak output current  
P0  
P41–P47,P50–P57, P60, P61, P70, P71 (Note 1)  
P0 –P0 , P1 –P1 , P2 –P2 (Note 1)  
P41–P47,P50–P57, P60, P61, P70, P71 (Note 1)  
–P0 , P1 –P1 , P2 –P2 (Note 1)  
“H” total average output current P41–P47,P50–P57, P60, P61, P70, P71 (Note 1)  
“L” total average output current P0 –P0 , P1 –P1 , P2 –P2 (Note 1)  
“L” total average output current P41–P47,P50–P57, P60, P61, P70, P71 (Note 1)  
0
7
0
7
, P2  
0
–P2  
7
(Note 1)  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
0
7
0
7
0
7
40  
“H” total average output current P0  
0
7
0
7
0
7
–20  
–20  
20  
0
7
0
7
0
7
20  
“H” peak output current  
P00–P07, P10–P17, P20–P27, P41–P47, P50–P57,  
P60, P61, P70, P71 (Note 2)  
IOH(peak)  
–5  
5
mA  
mA  
IOL(peak)  
IOL(peak)  
“L” peak output current  
“L” peak output current  
P00–P07, P10–P17 (Note 2)  
P20–P27, P41–P47, P50–P57, P60, P61, P70, P71  
(Note 2)  
10  
mA  
mA  
mA  
mA  
IOH(avg)  
IOH(avg)  
“H” average output current  
“H” average output current  
P00–P07, P10–P17 (Note 3)  
–1.0  
P20–P27, P41–P47, P50–P57, P60, P61, P70, P71  
(Note 3)  
–2.5  
2.5  
IOL(avg)  
IOL(avg)  
“L” average output current  
“L” average output current  
P00–P07, P10–P17 (Note 3)  
P20–P27, P41–P47, P50–P57, P60, P61, P70, P71  
(Note 3)  
5.0  
4.0  
mA  
Clock input frequency  
for timers X and Y  
(duty cycle 50 %)  
4.0 V VCC 5.5 V  
VCC 4.0 V  
MHz  
f(CNTR0)  
f(CNTR1)  
(2XVCC)–4  
MHz  
MHz  
High-speed mode (4.0 V VCC 5.5 V)  
High-speed mode (VCC 4.0 V)  
Middle-speed mode  
8.0  
Main clock input oscillation  
frequency (Note 4)  
(4XVCC)–8 MHz  
f(XIN)  
8.0  
50  
MHz  
kHz  
Sub-clock input oscillation frequency (Note 4, 5)  
f(XCIN)  
32.768  
Notes 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an av  
erage value measured over 100 ms. The total peak current is the peak value of all the currents.  
2: The peak output current is the peak current flowing in each port.  
3: The average output current is an average value measured over 100 ms.  
4: When the oscillation frequency has a duty cycle of 50 %.  
5: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency f(XCIN) is less than  
f(XIN)/3.  
47  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (VCC =4.0 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
V
Min.  
Typ.  
Max.  
VCC–2.0  
IOH = –0.1 mA  
VOH  
“H” output voltage P0  
0
–P0  
7
, P1  
0
–P1  
–P4  
7
, P3  
0
–P3  
7
IOH = –25 µA  
VCC = 2.5 V  
IOH = –5 mA  
IOH = –1.25 mA  
IOH = –1.25 mA  
VCC = 2.5 V  
IOL = 5 mA  
VCC–1.0  
V
VCC–2.0  
VCC–0.5  
V
V
“H” output voltage P2  
P6  
0
0
–P2  
, P6  
7
1
, P4  
1
7
1
,P50  
–P5  
7
,
VOH  
, P7  
0
, P7  
(Note 1)  
VCC–1.0  
V
V
V
2.0  
0.5  
IOL = 1.25 mA  
IOL = 1.25 mA  
VCC = 2.5 V  
IOL = 10 mA  
IOL = 2.5 mA  
IOL = 2.5 mA  
VCC = 2.5 V  
“L” output voltage P0  
0
–P0  
7
, P1  
0
–P1  
–P4  
7
, P3  
0
–P3  
–P5  
7
7
VOL  
VOL  
V
1.0  
V
V
2.0  
0.5  
“L” output voltage P2  
P6  
0
0
–P2  
, P6  
7
1
, P4  
1
7
1
, P5  
0
,
, P7  
0
, P7  
(Note 1)  
1.0  
V
Hysteresis  
Hysteresis  
Hysteresis  
CNTR  
D, SCLK1, SIN2, SCLK2  
RESET  
0
, CNTR  
1
, INT  
0
–INT3, P2  
0
–P2  
7
VT+ – VT–  
VT+ – VT–  
VT+ – VT–  
0.5  
0.5  
0.5  
V
V
V
R
X
RESET: VCC=2.5 V to 5.5 V  
VI = VCC  
µA  
µA  
5.0  
Pull-downs “off”  
VCC= 5.0 V, VI = VCC  
Pull-downs “on”  
“H” input current  
“H” input current  
P0  
0
–P0  
7
, P1  
0
–P1  
–P4  
7
, P3  
0
–P3  
–P5  
7
7
IIH  
30  
70  
25  
140  
VCC= 3.0 V, VI = VCC  
Pull-downs “on”  
µA  
µA  
6.0  
45  
5.0  
5.0  
P2  
P6  
0
0
–P2  
, P6  
7
1
, P4  
0
7
1
, P5  
0
,
IIH  
VI = VCC  
, P7  
0
, P7  
VI = VCC  
VI = VCC  
IIH  
IIH  
“H” input current  
“H” input current  
“L” input current  
RESET  
µA  
µA  
X
IN  
4.0  
P0  
P4  
0
0
–P0  
, P7  
7
0
, P1  
0
–P1  
7
7
, P3  
0
–P3  
–P5  
7
7
,
,
µA  
µA  
–5.0  
–5.0  
IIL  
VI = VSS  
Pull-ups “off”  
VCC= 5.0 V, VI = VSS  
Pull-ups “on”  
“L” input current  
P2  
P6  
0
0
–P2  
, P6  
7
1
, P4  
1
–P4  
, P5  
0
–30  
–6  
–70  
–25  
µA  
µA  
IIL  
–140  
–45  
, P7  
1
VCC= 3.0 V, VI = VSS  
Pull-ups “on”  
IIL  
VI = VSS  
“L” input current  
“L” input current  
RAM hold voltage  
RESET  
µA  
µA  
V
–5.0  
IIL  
VI = VSS  
X
IN  
–4.0  
VRAM  
When clock is stopped  
2.0  
5.5  
Note : When “1” is set to port XC switch bit (bit 4 of address 003B16) of CPU mode register, the drive ability of port P70 is different from the  
value above mentioned.  
48  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (VCC =2.5 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
mA  
Min.  
Typ.  
Max.  
13  
• High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz  
6.4  
1.6  
25  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
• High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz (in WIT state)  
f(XCIN) = 32.768 kHz  
3.2  
36  
mA  
Output transistors “off”  
• Low-speed mode, VCC = 5V, Ta 55°C  
f(XIN) = stopped  
µA  
µA  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
• Low-speed mode, VCC = 5 V, Ta = 25°C  
f(XIN) = stopped  
ICC  
Power source current  
7.0  
15  
14.0  
22  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors “off”  
• Low-speed mode, VCC = 3 V, Ta 55°C  
f(XIN) = stopped  
µA  
µA  
µA  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
• Low-speed mode, VCC = 3V, Ta = 25°C  
f(XIN) = stopped  
4.5  
0.1  
9.0  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors “off”  
All oscillation stopped  
(in STP state)  
Output transistors “off”  
1.0  
10  
Ta = 25 °C  
Ta = 85 °C  
49  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS 1(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted.)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
2
Max.  
tw(RESET)  
tc(XIN)  
Reset input “L” pulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input “H” pulse width  
Main clock input “L” pulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
CNTR0, CNTR1 input “L” pulse width  
INT0 to INT3 input “H” pulse width  
INT0 to INT3 input “L” pulse width  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
250  
105  
105  
80  
80  
tc(SCLK1)  
twH(SCLK1)  
twL(SCLK1)  
800  
370  
370  
220  
100  
1000  
400  
400  
200  
200  
t
t
su(R  
X
D–SCLK1  
D)  
)
h(SCLK1–R  
X
Serial I/O1 input hold time  
tc(SCLK2)  
Serial I/O2 clock input cycle time  
Serial I/O2 clock input “H” pulse width  
Serial I/O2 clock input “L” pulse width  
Serial I/O2 input set up time  
twH(SCLK2)  
twL(SCLK2)  
t
t
su(SIN2–SCLK2  
h(SCLK2–SIN2  
)
)
Serial I/O2 input hold time  
Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1” (clock synchronous).  
Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0” (UART).  
TIMING REQUIREMENTS 2(VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted.)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input “L” pulse width  
2
µs  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input “H” pulse width  
Main clock input “L” pulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
500/  
tc(CNTR)  
CNTR0, CNTR1 input cycle time  
ns  
ns  
(VCC–2)  
250/  
(VCC–2)–20  
twH(CNTR)  
CNTR0, CNTR1 input “H” pulse width  
250/  
(VCC–2)–20  
twL(CNTR)  
CNTR0, CNTR1 input “L” pulse width  
ns  
twH(INT)  
twL(INT)  
INT0 to INT3 input “H” pulse width  
INT0 to INT3 input “L” pulse width  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
230  
230  
2000  
950  
950  
400  
200  
2000  
950  
950  
400  
300  
tc(SCLK1)  
twH(SCLK1)  
twL(SCLK1)  
t
t
su(R  
X
D–SCLK1  
D)  
)
h(SCLK1–R  
X
Serial I/O1 input hold time  
tc(SCLK2)  
Serial I/O2 clock input cycle time  
Serial I/O2 clock input “H” pulse width  
Serial I/O2 clock input “L” pulse width  
Serial I/O2 input set up time  
twH(SCLK2)  
twL(SCLK2)  
t
t
su(SIN2–SCLK2  
h(SCLK2–SIN2  
)
)
Serial I/O2 input hold time  
Note: When f(XIN) = 2 MHz and bit 6 of address 001A16 is “1” (clock synchronous).  
Divide this value by four when f(XIN) = 2 MHz and bit 6 of address 001A16 is “0” (UART).  
50  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
SWITCHING CHARACTERISTICS 1(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Max.  
Typ.  
twH(SCLK1)  
twL(SCLK1)  
Serial I/O1 clock output “H” pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
c(SCLK1  
c(SCLK1  
)
)
/2–30  
/2–30  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O1 output valid time (Note 1)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
t
t
d(SCLK1–T  
v(SCLK1–T  
X
D)  
140  
XD)  
–30  
tr(SCLK1)  
tf(SCLK1)  
30  
30  
twH(SCLK2)  
twL(SCLK2)  
t
c(SCLK2  
)/2–160  
t
c(SCLK2  
)
/2–160  
t
t
d(SCLK2–SOUT2  
)
0.2tC(SCLK2)  
v(SCLK2–SOUT2  
)
Serial I/O2 output valid time  
0
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
40  
30  
30  
10  
10  
Notes1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: XOUT and XCOUT pins are excluded.  
SWITCHING CHARACTERISTICS 2 (VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
twH(SCLK1)  
twL(SCLK1)  
Serial I/O1 clock output “H” pulse width  
t
t
c(SCLK1  
)
)
/2–50  
/2–50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O1 output valid time (Note 1)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
c(SCLK1  
t
t
d(SCLK1–T  
v(SCLK1–T  
X
D)  
350  
XD)  
–30  
tr(SCLK1)  
tf(SCLK1)  
50  
50  
twH(SCLK2)  
twL(SCLK2)  
tc(SCLK2  
)
)
/2–240  
tc(SCLK2  
/2–240  
t
t
d(SCLK2–SOUT2  
)
0.2tC(SCLK2)  
v(SCLK2–SOUT2  
)
Serial I/O2 output valid time  
0
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
50  
50  
50  
20  
20  
Notes1:When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: XOUT and XCOUT pins are excluded.  
51  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ABSOLUTE MAXIMUM RATINGS (Extended Operating Temperature Version)  
Symbol  
Parameter  
Conditions  
Ratings  
Unit  
V
VCC  
Power source voltage  
–0.3 to 7.0  
Input voltage P00–P07, P10–P17, P20–P27,  
P30–P37, P40–P47, P50–P57,  
P60, P61, P70, P71  
VI  
–0.3 to VCC +0.3  
V
All voltages are based on VSS.  
Output transistors are cut off.  
VI  
VI  
VI  
VI  
Input voltage VL1  
–0.3 to VL2  
VL1 to VL3  
V
V
V
V
V
V
V
Input voltage VL2  
Input voltage VL3  
VL2 to VCC +0.3  
–0.3 to VCC +0.3  
–0.3 to VCC +0.3  
–0.3 to VL3 +0.3  
–0.3 to VL3 +0.3  
Input voltage RESET, XIN  
At output port  
VO  
VO  
VO  
Output voltage P00–P07, P10–P17  
Output voltage P30–P37  
At segment output  
At segment output  
Output voltage P20–P27, P41–P47, P50–P57,  
P60, P61, P70, P71  
–0.3 to VCC +0.3  
V
Output voltage SEG0–SEG15  
Output voltage XOUT  
Power dissipation  
VO  
–0.3 to VL3 +0.3  
–0.3 to VCC +0.3  
300  
V
V
VO  
Ta = 25 °C  
Pd  
mW  
°C  
°C  
Operating temperature  
Storage temperature  
Topr  
Tstg  
–40 to 85  
–65 to 150  
RECOMMENDED OPERATING CONDITIONS (Extended Operating Temperature Version)  
(VCC = 3.0 to 5.5 V, Ta = –40 to –20 °C and VCC = 2.5 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
Unit  
V
Min.  
4.0  
Typ.  
5.0  
Max.  
5.5  
High-speed mode f(XIN)=8 MHz  
Middle-speed mode  
f(XIN)=8 MHz  
Ta = –20 to 85 °C  
Ta = –40 to –20 °C  
Ta = –20 to 85 °C  
Ta = –40 to –20 °C  
2.5  
5.0  
5.5  
Power source voltage  
VCC  
3.0  
2.5  
3.0  
5.0  
5.0  
5.0  
5.5  
5.5  
5.5  
Low-speed mode  
Power source voltage  
“H” input voltage  
VSS  
VIH  
VIH  
0
V
V
P00–P07, P10–P17, P30–P37, P41, P45, P47, P51,  
P53, P56, P61, P70, P71 (CM4=0)  
VCC  
VCC  
0.7 VCC  
0.8 VCC  
“H” input voltage  
P20–P27, P42–P44, P46, P50, P52, P54, P55, P57,  
P60  
V
VIH  
VIH  
VCC  
VCC  
0.8 VCC  
0.8 VCC  
V
V
“H” input voltage  
“H” input voltage  
“L” input voltage  
RESET  
XIN  
P00–P07, P10–P17, P30–P37, P40, P41, P45, P47,  
P51, P53, P56, P61, P70, P71 (CM4=0)  
0
0
VIL  
VIL  
0.3 VCC  
0.2 VCC  
V
V
“L” input voltage  
P20–P27, P42–P44, P46, P50, P52, P54, P55, P57,  
P60  
“L” input voltage  
“L” input voltage  
RESET  
XIN  
VIL  
VIL  
0
0
0.2 VCC  
0.2 VCC  
V
V
52  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
RECOMMENDED OPERATING CONDITIONS (Extended Operating Temperature Version)  
(VCC = 3.0 to 5.5 V, Ta = –40 to –20 °C and VCC = 2.5 to 5.5 V, Ta = –20 to 85 °C unless otherwise noted.)  
Limits  
Symbol  
Parameter  
–P0 , P1 –P1  
Unit  
Min.  
Typ.  
Max.  
–40  
–40  
40  
ΣIOH(peak)  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
“H” total peak output current  
“H” total peak output current  
“L” total peak output current  
“L” total peak output current  
P0  
P41–P47,P50–P57, P60, P61, P70, P71 (Note 1)  
P0 –P0 , P1 –P1 , P2 –P2 (Note 1)  
P41–P47,P50–P57, P60, P61, P70, P71 (Note 1)  
–P0 , P1 –P1 , P2 –P2 (Note 1)  
“H” total average output current P41–P47,P50–P57, P60, P61, P70, P71 (Note 1)  
“L” total average output current P0 –P0 , P1 –P1 , P2 –P2 (Note 1)  
“L” total average output current P41–P47,P50–P57, P60, P61, P70, P71 (Note 1)  
0
7
0
7
, P2  
0
–P2  
7
(Note 1)  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
0
7
0
7
0
7
40  
“H” total average output current P0  
0
7
0
7
0
7
–20  
–20  
20  
0
7
0
7
0
7
20  
“H” peak output current  
P00–P07, P10–P17, P20–P27, P41–P47, P50–P57,  
P60, P61, P70, P71 (Note 2)  
IOH(peak)  
–5  
5
mA  
mA  
IOL(peak)  
IOL(peak)  
“L” peak output current  
“L” peak output current  
P00–P07, P10–P17 (Note 2)  
P20–P27, P41–P47, P50–P57, P60, P61, P70, P71  
(Note 2)  
10  
mA  
mA  
mA  
mA  
IOH(avg)  
IOH(avg)  
“H” average output current  
“H” average output current  
P00–P07, P10–P17 (Note 3)  
–1.0  
P20–P27, P41–P47, P50–P57, P60, P61, P70, P71  
(Note 3)  
–2.5  
2.5  
IOL(avg)  
IOL(avg)  
“L” average output current  
“L” average output current  
P00–P07, P10–P17 (Note 3)  
P20–P27, P41–P47, P50–P57, P60, P61, P70, P71  
(Note 3)  
5.0  
4.0  
mA  
Clock input frequency  
for timers X and Y  
(duty cycle 50 %)  
4.0 V VCC 5.5 V  
VCC 4.0 V  
MHz  
f(CNTR0)  
f(CNTR1)  
(2XVCC)–4  
MHz  
MHz  
High-speed mode (4.0 V VCC 5.5 V)  
High-speed mode (VCC 4.0 V)  
Middle-speed mode  
8.0  
Main clock input oscillation  
frequency (Note 4)  
(4XVCC)–8 MHz  
f(XIN)  
8.0  
50  
MHz  
kHz  
Sub-clock input oscillation frequency (Note 4, 5)  
f(XCIN)  
32.768  
Notes 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an av  
erage value measured over 100 ms. The total peak current is the peak value of all the currents.  
2: The peak output current is the peak current flowing in each port.  
3: The average output current is an average value measured over 100 ms.  
4: When the oscillation frequency has a duty cycle of 50 %.  
5: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency f(XCIN) is less than  
f(XIN)/3.  
53  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (Extended Operating Temperature Version)  
(VCC =2.5 to 5.5 V, Ta = –20 to 85 °C, and VCC =3.0 to 5.5 V, Ta = –40 to –20 °C, unless otherwise noted.)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
IOH = –2.5 mA  
Unit  
V
Min.  
Max.  
VCC–2.0  
VOH  
“H” output voltage P0  
0
–P0  
7
, P1  
0
1
–P17, P30–P37  
IOH = –0.6 mA  
VCC = 3.0 V  
IOH = –5 mA  
IOH = –1.25 mA  
IOH = –1.25 mA  
VCC = 3.0 V  
IOL = 5 mA  
VCC–0.9  
V
VCC–2.0  
VCC–0.5  
V
V
“H” output voltage P2  
P6  
0
0
–P2  
, P6  
7, P4  
–P4  
, P7  
7
1
,P5  
(Note)  
0
–P5  
7
,
VOH  
1
, P7  
0
VCC–0.9  
V
V
V
2.0  
0.5  
IOL = 1.25 mA  
IOL = 1.25 mA  
VCC = 3.0 V  
IOL = 10 mA  
IOL = 2.5 mA  
IOL = 2.5 mA  
VCC = 3.0 V  
“L” output voltage P0  
0
–P0  
7
, P1  
0
–P1  
7
, P3  
0
–P3  
–P5  
7
7
VOL  
VOL  
V
1.1  
V
V
2.0  
0.5  
“L” output voltage P2  
P6  
0
0
–P2  
, P6  
7, P4  
1
–P4  
, P7  
7
1
, P5  
(Note)  
0
,
1
, P7  
0
1.1  
V
Hysteresis  
Hysteresis  
Hysteresis  
CNTR  
0
, CNTR  
1
, INT  
0
–INT  
3
, P2  
0
–P2  
7
VT+ – VT–  
VT+ – VT–  
VT+ – VT–  
0.5  
0.5  
0.5  
V
V
V
RXD, SCLK1, SIN2, SCLK2  
RESET  
RESET: VCC=3.0 V to 5.5 V  
VI = VCC  
µA  
µA  
5.0  
Pull-downs “off”  
VCC= 5.0 V, VI = VCC  
Pull-downs “on”  
“H” input current  
“H” input current  
P0  
0
–P0  
7, P1  
0
–P1  
7, P3  
0
–P3  
7
7
IIH  
30  
70  
25  
170  
VCC= 3.0 V, VI = VCC  
Pull-downs “on”  
µA  
µA  
6.0  
55  
5.0  
5.0  
P2  
P6  
0
0
–P2  
, P6  
7, P4  
0
–P4  
, P7  
7
1
, P5  
0
–P5  
,
IIH  
VI = VCC  
1
, P7  
0
0
VI = VCC  
VI = VCC  
IIH  
IIH  
“H” input current  
“H” input current  
“L” input current  
RESET  
µA  
µA  
X
IN  
4.0  
P0  
P4  
0
0
–P0  
, P7  
7, P1  
–P1  
–P4  
7
7
, P3  
0
–P3  
–P5  
7
7
,
,
µA  
µA  
–5.0  
–5.0  
IIL  
0
VI = VSS  
Pull-ups “off”  
VCC= 5.0 V, VI = VSS  
Pull-ups “on”  
“L” input current  
P2  
P6  
0
0
–P2  
, P6  
7, P4  
1
, P50  
–30  
–6  
–70  
–25  
µA  
µA  
IIL  
–140  
1
, P7  
1
VCC= 3.0 V, VI = VSS  
Pull-ups “on”  
–45  
IIL  
VI = VSS  
“L” input current  
“L” input current  
RAM hold voltage  
RESET  
µA  
µA  
V
–5.0  
IIL  
VI = VSS  
X
IN  
–4.0  
VRAM  
When clock is stopped  
2.0  
5.5  
Note : When “1” is set to port XC switch bit (bit 4 of address 003B16) of CPU mode register, the drive ability of port P70 is different from the  
value above mentioned.  
54  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (Extended Operating Temperature Version)  
(VCC =3.0 to 5.5 V, Ta = –40 to –20 °C and VCC =2.5 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted.)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
mA  
Min.  
Max.  
13  
• High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz  
6.4  
1.6  
25  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
• High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz (in WIT state)  
f(XCIN) = 32.768 kHz  
3.2  
36  
mA  
Output transistors “off”  
• Low-speed mode, VCC = 5V, Ta 55°C  
f(XIN) = stopped  
µA  
µA  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
• Low-speed mode, VCC = 5 V, Ta = 25°C  
f(XIN) = stopped  
ICC  
Power source current  
7.0  
15  
14.0  
22  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors “off”  
• Low-speed mode, VCC = 3 V, Ta 55°C  
f(XIN) = stopped  
µA  
µA  
µA  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
• Low-speed mode, VCC = 3V, Ta = 25°C  
f(XIN) = stopped  
4.5  
0.1  
9.0  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors “off”  
All oscillation stopped  
(in STP state)  
Output transistors “off”  
Ta = 25 °C  
Ta = 85 °C  
1.0  
10  
55  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS 1 (Extended Operating Temperature Version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted.)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
2
Max.  
tw(RESET)  
tc(XIN)  
Reset input “L” pulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input “H” pulse width  
Main clock input “L” pulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
CNTR0, CNTR1 input “L” pulse width  
INT0 to INT3 input “H” pulse width  
INT0 to INT3 input “L” pulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
250  
105  
105  
80  
80  
tc(SCLK1)  
twH(SCLK1)  
twL(SCLK1)  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
800  
370  
370  
220  
100  
1000  
400  
400  
200  
200  
t
t
su(R  
XD–SCLK1  
)
h(SCLK1–RXD)  
Serial I/O1 input hold time  
tc(SCLK2)  
Serial I/O2 clock input cycle time  
Serial I/O2 clock input “H” pulse width  
Serial I/O2 clock input “L” pulse width  
Serial I/O2 input set up time  
twH(SCLK2)  
twL(SCLK2)  
t
t
su(SIN2–SCLK2  
h(SCLK2–SIN2  
)
)
Serial I/O2 input hold time  
Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1” (clock synchronous).  
Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0” (UART).  
TIMING REQUIREMENTS 2 (Extended Operating Temperature Version)  
(VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, and VCC = 3.0 to 4.0 V, VSS = 0 V, Ta = –40 to –20 °C, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input “L” pulse width  
2
µs  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input “H” pulse width  
Main clock input “L” pulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
500/  
(VCC–2)  
tc(CNTR)  
CNTR0, CNTR1 input cycle time  
ns  
ns  
250/  
(VCC–2)–20  
twH(CNTR)  
CNTR0, CNTR1 input “H” pulse width  
250/  
(VCC–2)–20  
twL(CNTR)  
CNTR0, CNTR1 input “L” pulse width  
ns  
twH(INT)  
twL(INT)  
INT0 to INT3 input “H” pulse width  
INT0 to INT3 input “L” pulse width  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
230  
230  
2000  
950  
950  
400  
200  
2000  
950  
950  
400  
300  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tc(SCLK1)  
twH(SCLK1)  
twL(SCLK1)  
t
t
su(R  
X
D–SCLK1  
)
h(SCLK1–R  
X
D)  
Serial I/O1 input hold time  
tc(SCLK2)  
Serial I/O2 clock input cycle time  
Serial I/O2 clock input “H” pulse width  
Serial I/O2 clock input “L” pulse width  
Serial I/O2 input set up time  
twH(SCLK2)  
twL(SCLK2)  
t
t
su(SIN2–SCLK2  
h(SCLK2–SIN2  
)
)
Serial I/O2 input hold time  
Note: When f(XIN) = 2 MHz and bit 6 of address 001A16 is “1” (clock synchronous).  
Divide this value by four when f(XIN) = 2 MHz and bit 6 of address 001A16 is “0” (UART).  
56  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
SWITCHING CHARACTERISTICS 1 (Extended Operating Temperature Version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted.)  
Limits  
Typ.  
Symbol  
Parameter  
Serial I/O1 clock output “H” pulse width  
Unit  
Min.  
Max.  
140  
twH(SCLK1)  
twL(SCLK1)  
t
t
c(SCLK1  
)
)
/2–30  
/2–30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O1 output valid time (Note 1)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
c(SCLK1  
t
t
d(SCLK1–T  
v(SCLK1–T  
X
D)  
X
D)  
–30  
tr(SCLK1)  
tf(SCLK1)  
30  
30  
twH(SCLK2)  
twL(SCLK2)  
t
c(SCLK2  
c(SCLK2  
)
/2–160  
t
)/2–160  
t
t
d(SCLK2–SOUT2  
v(SCLK2–SOUT2  
)
0.2tC(SCLK2)  
)
Serial I/O2 output valid time  
0
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
40  
30  
30  
10  
10  
Notes1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: XOUT and XCOUT pins are excluded.  
SWITCHING CHARACTERISTICS 2 (Extended Operating Temperature Version)  
(VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, and VCC = 3.0 to 4.0 V, Ta = –40 to –20 °C, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
350  
twH(SCLK1)  
twL(SCLK1)  
Serial I/O1 clock output “H” pulse width  
t
t
c(SCLK1  
)
)
/2–50  
/2–50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O1 output valid time (Note 1)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
c(SCLK1  
t
t
d(SCLK1–T  
v(SCLK1–T  
X
D)  
X
D)  
–30  
tr(SCLK1)  
tf(SCLK1)  
50  
50  
twH(SCLK2)  
twL(SCLK2)  
t
c(SCLK2  
c(SCLK2  
)
)
/2–240  
t
/2–240  
t
t
d(SCLK2–SOUT2  
v(SCLK2–SOUT2  
)
0.2tC(SCLK2)  
)
Serial I/O2 output valid time  
0
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
50  
50  
50  
20  
20  
Notes1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: XOUT and XCOUT pins are excluded.  
Measurement output pin  
1kΩ  
100pF  
Measurement output pin  
100pF  
CMOS output  
N-channel open-drain output (Note)  
Note:When bit 4 of the UART  
control register (address 001B16) is “1”.  
(N-channel open-drain output mode)  
Fig.40 Circuit for measuring output switching characteristics  
57  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ABSOLUTE MAXIMUM RATINGS (Low Power Source Voltage Version)  
Symbol  
Parameter  
Conditions  
Ratings  
Unit  
V
VCC  
Power source voltage  
–0.3 to 7.0  
Input voltage P00–P07, P10–P17, P20–P27,  
P30–P37, P40–P47, P50–P57,  
P60, P61, P70, P71  
VI  
–0.3 to VCC +0.3  
V
All voltages are based on VSS.  
Output transistors are cut off.  
VI  
VI  
VI  
VI  
Input voltage VL1  
–0.3 to VL2  
VL1 to VL3  
V
V
V
V
V
V
V
Input voltage VL2  
Input voltage VL3  
VL2 to VCC +0.3  
–0.3 to VCC +0.3  
–0.3 to VCC +0.3  
–0.3 to VL3 +0.3  
–0.3 to VL3 +0.3  
Input voltage RESET, XIN  
At output port  
VO  
VO  
VO  
Output voltage P00–P07, P10–P17  
Output voltage P30–P37  
At segment output  
At segment output  
Output voltage P20–P27, P41–P47, P50–P57,  
P60, P61, P70, P71  
–0.3 to VCC +0.3  
V
Output voltage SEG0–SEG15  
Output voltage XOUT  
Power dissipation  
VO  
–0.3 to VL3 +0.3  
–0.3 to VCC +0.3  
300  
V
V
VO  
Ta = 25 °C  
Pd  
mW  
°C  
°C  
Operating temperature  
Storage temperature  
Topr  
Tstg  
–20 to 85  
–40 to 150  
RECOMMENDED OPERATING CONDITIONS (Low Power Source Voltage Version)  
(VCC = 2.2 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
Unit  
V
Min.  
4.0  
2.2  
2.2  
Typ.  
5.0  
5.0  
5.0  
0
Max.  
5.5  
High-speed mode f(XIN)=8 MHz  
Middle-speed mode f(XIN)=8 MHz  
Low-speed mode  
VCC  
Power source voltage  
5.5  
5.5  
VSS  
VIH  
VIH  
Power source voltage  
“H” input voltage  
V
V
P00–P07, P10–P17, P30–P37, P41, P45, P47, P51,  
P53, P56, P61, P70, P71 (CM4=0)  
0.7 VCC  
0.8 VCC  
VCC  
VCC  
“H” input voltage  
P20–P27, P42–P44, P46, P50, P52, P54, P55, P57,  
P60  
V
VIH  
VIH  
“H” input voltage  
“H” input voltage  
“L” input voltage  
RESET  
XIN  
0.8 VCC  
0.8 VCC  
VCC  
VCC  
V
V
P00–P07, P10–P17, P30–P37, P40, P41, P45, P47,  
P51, P53, P56, P61, P70, P71 (CM4=0)  
VIL  
VIL  
0
0
0.3 VCC  
0.2 VCC  
V
V
“L” input voltage  
P20–P27, P42–P44, P46, P50, P52, P54, P55, P57,  
P60  
VIL  
VIL  
“L” input voltage  
“L” input voltage  
RESET  
XIN  
0
0
0.2 VCC  
V
V
0.2 VCC  
58  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
RECOMMENDED OPERATING CONDITIONS (Low Power Source Voltage Version)  
(VCC = 2.2 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted.)  
Limits  
Typ.  
Symbol  
Parameter  
–P0 , P1 –P1  
Unit  
Min.  
Max.  
–40  
–40  
40  
ΣIOH(peak)  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
“H” total peak output current  
“H” total peak output current  
“L” total peak output current  
“L” total peak output current  
P0  
P41–P47,P50–P57, P60, P61, P70, P71 (Note 1)  
P0 –P0 , P1 –P1 , P2 –P2 (Note 1)  
P41–P47,P50–P57, P60, P61, P70, P71 (Note 1)  
–P0 , P1 –P1 , P2 –P2 (Note 1)  
“H” total average output current P41–P47,P50–P57, P60, P61, P70, P71 (Note 1)  
“L” total average output current P0 –P0 , P1 –P1 , P2 –P2 (Note 1)  
“L” total average output current P41–P47,P50–P57, P60, P61, P70, P71 (Note 1)  
0
7
0
7
, P2  
0
–P2  
7
(Note 1)  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
0
7
0
7
0
7
40  
“H” total average output current P0  
0
7
0
7
0
7
–20  
–20  
20  
0
7
0
7
0
7
20  
“H” peak output current  
P00–P07, P10–P17, P20–P27, P41–P47, P50–P57,  
P60, P61, P70, P71 (Note 2)  
IOH(peak)  
–5  
5
mA  
mA  
IOL(peak)  
IOL(peak)  
“L” peak output current  
“L” peak output current  
P00–P07, P10–P17 (Note 2)  
P20–P27, P41–P47, P50–P57, P60, P61, P70, P71  
(Note 2)  
10  
mA  
mA  
mA  
mA  
IOH(avg)  
IOH(avg)  
“H” average output current  
“H” average output current  
P00–P07, P10–P17 (Note 3)  
–1.0  
P20–P27, P41–P47, P50–P57, P60, P61, P70, P71  
(Note 3)  
–2.5  
2.5  
IOL(avg)  
IOL(avg)  
“L” average output current  
“L” average output current  
P00–P07, P10–P17 (Note 3)  
P20–P27, P41–P47, P50–P57, P60, P61, P70, P71  
(Note 3)  
5.0  
mA  
Clock input frequency  
for timers X and Y  
(duty cycle 50 %)  
4.0 V VCC 5.5 V  
4.0  
MHz  
f(CNTR0)  
f(CNTR1)  
(10XVCC–4)  
VCC 4.0 V  
MHz  
MHz  
9
8.0  
High-speed mode (4.0 V VCC 5.5 V)  
(20XVCC–8)  
Main clock input oscillation  
frequency (Note 4)  
High-speed mode (VCC 4.0 V)  
MHz  
f(XIN)  
9
Middle-speed mode  
8.0  
50  
MHz  
kHz  
32.768  
f(XCIN)  
Sub-clock input oscillation frequency (Note 4, 5)  
Notes 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an av  
erage value measured over 100 ms. The total peak current is the peak value of all the currents.  
2: The peak output current is the peak current flowing in each port.  
3: The average output current is an average value measured over 100 ms.  
4: When the oscillation frequency has a duty cycle of 50 %.  
5: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency f(XCIN) is less than  
f(XIN)/3.  
59  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (Low Power Source Voltage Version)  
(VCC =4.0 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted.)  
Limits  
Typ.  
Symbol Parameter  
Test conditions  
IOH = –0.1 mA  
Unit  
V
Min.  
Max.  
VCC–2.0  
VOH  
“H” output voltage P0  
0
–P0  
7
, P1  
0
–P1  
7
7
, P3  
0
–P3  
7
IOH = –25 µA  
VCC = 2.2 V  
IOH = –5 mA  
IOH = –1.25 mA  
IOH = –1.25 mA  
VCC = 2.2 V  
IOL = 5 mA  
VCC–1.0  
V
VCC–2.0  
VCC–0.5  
V
V
“H” output voltage P2  
P6  
0–P2  
7
1
, P4  
, P7  
1–P4  
,P50  
–P5  
7
,
VOH  
0, P6  
0
, P7  
1
(Note)  
VCC–1.0  
V
V
V
2.0  
0.5  
IOL = 1.25 mA  
IOL = 1.25 mA  
VCC = 2.2 V  
IOL = 10 mA  
IOL = 2.5 mA  
IOL = 2.5 mA  
VCC = 2.2 V  
“L” output voltage P0  
0
–P0  
7
, P1  
0
–P1  
7
7
, P3  
, P5  
0
–P3  
7
VOL  
VOL  
V
1.1  
V
V
2.0  
0.5  
“L” output voltage P2  
P6  
0–P2  
7
1
, P4  
, P7  
1–P4  
0
–P5  
7
,
0, P6  
0
, P71 (Note)  
1.0  
V
Hysteresis  
Hysteresis  
Hysteresis  
CNTR  
0
, CNTR  
1
, INT  
0
–INT  
3
, P2  
0
–P27  
VT+ – VT–  
VT+ – VT–  
VT+ – VT–  
0.5  
0.5  
0.5  
V
V
V
R
XD, SCLK1, SIN2, SCLK2  
RESET: VCC=2.2 V to 5.5 V  
VI = VCC  
RESET  
µA  
µA  
5.0  
Pull-downs “off”  
VCC= 5.0 V, VI = VCC  
Pull-downs “on”  
“H” input current  
“H” input current  
P0  
0
–P0  
7
, P1  
0
–P1  
7
7
, P3  
, P5  
0–P37  
IIH  
30  
70  
25  
170  
VCC= 3.0 V, VI = VCC  
Pull-downs “on”  
µA  
µA  
6.0  
55  
5.0  
5.0  
P2  
P6  
0–P2  
7
1
, P4  
, P7  
0–P4  
0
–P57,  
IIH  
VI = VCC  
0, P6  
0
, P7  
1
VI = VCC  
VI = VCC  
IIH  
IIH  
“H” input current  
“H” input current  
“L” input current  
RESET  
8.0  
4.0  
µA  
µA  
XIN  
P0  
P4  
0–P0  
7
0
, P1  
0–P1  
7
, P3  
, P5  
0
0
–P3  
7
,
,
µA  
µA  
–5.0  
–5.0  
IIL  
0, P7  
VI = VSS  
Pull-ups “off”  
VCC= 5.0 V, VI = VSS  
Pull-ups “on”  
VCC= 3.0 V, VI = VSS  
Pull-ups “on”  
VI = VSS  
“L” input current  
P2  
P6  
0–P2  
7
1
, P4  
, P7  
1–P4  
7
–P57  
IIL  
–30  
–6  
–70  
–25  
µA  
µA  
–140  
0, P6  
1
–45  
IIL  
IIL  
“L” input current  
“L” input current  
RESET  
µA  
µA  
–5.0  
VI = VSS  
XIN  
–8.0  
Note : When “1” is set to port XC switch bit (bit 4 of address 003B16) of CPU mode register, the drive ability of port P70 is different from the  
value above mentioned.  
60  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (Low Power Source Voltage Version)  
(VCC =2.2 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted.)  
Limits  
Typ.  
Symbol Parameter  
Test conditions  
Unit  
V
Min.  
2.0  
Max.  
5.5  
VRAM  
RAM hold voltage  
When clock is stopped  
• High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz  
6.4  
1.6  
25  
13  
3.2  
36  
mA  
mA  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
• High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz (in WIT state)  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
• Low-speed mode, VCC = 5V, Ta 55°C  
f(XIN) = stopped  
µA  
µA  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
• Low-speed mode, VCC = 5 V, Ta = 25°C  
f(XIN) = stopped  
ICC  
Power source current  
7.0  
15  
14.0  
22  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors “off”  
• Low-speed mode, VCC = 3 V, Ta 55°C  
f(XIN) = stopped  
µA  
µA  
µA  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
• Low-speed mode, VCC = 3V, Ta = 25°C  
f(XIN) = stopped  
4.5  
0.2  
9.0  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors “off”  
All oscillation stopped  
(in STP state)  
Output transistors “off”  
Ta = 25 °C  
Ta = 85 °C  
2.0  
20  
61  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS 1 (Low Power Source Voltage Version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted.)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
2
Max.  
_____  
tw(RESET)  
Reset input “L” pulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tc(XIN)  
Main clock input cycle time (XIN input)  
Main clock input “H” pulse width  
Main clock input “L” pulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
tc(SCLK1)  
twH(SCLK1)  
twL(SCLK1)  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
CNTR0, CNTR1 input “L” pulse width  
INT0 to INT3 input “H” pulse width  
INT0 to INT3 input “L” pulse width  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
250  
105  
105  
80  
80  
800  
370  
370  
220  
100  
1000  
400  
400  
200  
200  
t
t
su(R  
X
D–SCLK1  
D)  
)
h(SCLK1–R  
X
Serial I/O1 input hold time  
tc(SCLK2)  
Serial I/O2 clock input cycle time  
Serial I/O2 clock input “H” pulse width  
Serial I/O2 clock input “L” pulse width  
Serial I/O2 input set up time  
twH(SCLK2)  
twL(SCLK2)  
t
t
su(SIN2–SCLK2  
h(SCLK2–SIN2  
)
)
Serial I/O2 input hold time  
Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1” (clock synchronous).  
Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0” (UART).  
TIMING REQUIREMENTS 2 (Low Power Source Voltage Version)  
(VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted.)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
2
Max.  
_____  
tw(RESET)  
Reset input “L” pulse width  
µs  
ns  
ns  
ns  
125  
45  
tc(XIN)  
Main clock iuput cycle time (XIN input)  
Main clock input “H” pulse width  
Main clock input “L” pulse width  
twH(XIN)  
twL(XIN)  
40  
900/  
(VCC–0.4)  
tc(CNTR)  
CNTR0, CNTR1 input cycle time  
ns  
ns  
450/  
(VCC–0.4)–20  
450/  
twH(CNTR)  
CNTR0, CNTR1 input “H” pulse width  
twL(CNTR)  
CNTR0, CNTR1 input “L” pulse width  
ns  
(VCC–0.4)–20  
230  
230  
2000  
950  
950  
400  
200  
2000  
950  
950  
400  
300  
twH(INT)  
twL(INT)  
INT0 to INT3 input “H” pulse width  
INT0 to INT3 input “L” pulse width  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tc(SCLK1)  
twH(SCLK1)  
twL(SCLK1)  
t
t
su(R  
X
D–SCLK1  
)
h(SCLK1–R  
X
D)  
Serial I/O1 input hold time  
tc(SCLK2)  
Serial I/O2 clock input cycle time  
Serial I/O2 clock input “H” pulse width  
Serial I/O2 clock input “L” pulse width  
Serial I/O2 input set up time  
twH(SCLK2)  
twL(SCLK2)  
t
t
su(SIN2–SCLK2  
h(SCLK2–SIN2  
)
)
Serial I/O2 input hold time  
Note: When f(XIN) = 2 MHz and bit 6 of address 001A16 is “1” (clock synchronous).  
Divide this value by four when f(XIN) = 2 MHz and bit 6 of address 001A16 is “0” (UART).  
62  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
SWITCHING CHARACTERISTICS 1 (Low Power Source Voltage Version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted.)  
Limits  
Typ.  
Symbol  
Parameter  
Serial I/O1 clock output “H” pulse width  
Unit  
Min.  
Max.  
140  
twH(SCLK1)  
twL(SCLK1)  
t
t
c(SCLK1  
)
)
/2–30  
/2–30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O1 output valid time (Note 1)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
c(SCLK1  
t
t
d(SCLK1–T  
v(SCLK1–T  
X
D)  
XD)  
–30  
tr(SCLK1)  
tf(SCLK1)  
30  
30  
twH(SCLK2)  
twL(SCLK2)  
t
c(SCLK2  
c(SCLK2  
)
)
/2–160  
t
/2–160  
t
t
d(SCLK2–SOUT2  
)
0.2tC(SCLK2) ns  
v(SCLK2–SOUT2  
)
Serial I/O2 output valid time  
0
ns  
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
40  
30  
30  
ns  
ns  
ns  
10  
10  
Notes 1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: XOUT and XCOUT pins are excluded.  
SWITCHING CHARACTERISTICS 2 (Low Power Source Voltage Version)  
(VCC = 2.2 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
Serial I/O1 clock output “H” pulse width  
Unit  
Min.  
Typ.  
Max.  
twH(SCLK1)  
twL(SCLK1)  
t
t
c(SCLK1  
)/2–50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(SCLK1  
)/2–50  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O1 output valid time (Note 1)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
t
t
d(SCLK1–T  
v(SCLK1–T  
X
D)  
350  
XD)  
–30  
tr(SCLK1)  
tf(SCLK1)  
50  
50  
twH(SCLK2)  
twL(SCLK2)  
t
c(SCLK2  
)/2–240  
t
c(SCLK2  
)/2–240  
t
t
d(SCLK2–SOUT2  
)
0.2tC(SCLK2)  
v(SCLK2–SOUT2  
)
0
Serial I/O2 output valid time  
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
50  
50  
50  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
20  
20  
Notes 1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: XOUT and XCOUT pins are excluded.  
Measurement output pin  
1kΩ  
100pF  
Measurement output pin  
100pF  
CMOS output  
N-channel open-drain output (Note)  
Note:When bit 4 of the UART  
control register (address 001B16) is “1”.  
(N-channel open-drain output mode)  
Fig.41 Circuit for measuring output switching characteristics  
63  
MITSUBISHI MICROCOMPUTERS  
3820 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING DIAGRAM  
tC(CNTR)  
tWL(CNTR)  
tWH(CNTR)  
CNTR  
0
,CNTR  
1
0.8VCC  
0.2VCC  
tWL(INT)  
tWH(INT)  
INT0–INT3  
0.8VCC  
0.2VCC  
tW(RESET)  
0.8VCC  
RESET  
0.2VCC  
tC(XIN)  
tWL(XIN)  
tWH(XIN)  
0.8VCC  
XIN  
0.2VCC  
tC(SCLK1),tC(SCLK2)  
tr  
tf  
t
WL(SCLK1  
)
,tWL(SCLK2  
)
tWH(SCLK1),tWH(SCLK2)  
S
CLK1  
CLK2  
0.8VCC  
0.2VCC  
S
t
t
h(SCLK1-RXD)  
t
t
su(R  
X
D-SCLK1  
)
h(SCLK2-SIN2  
)
su(SIN2-SCLK2  
)
R D  
S
X
0.8VCC  
0.2VCC  
IN2  
t
t
v(SCLK1-T  
XD),  
v(SCLK2-SOUT2  
)
t
d(SCLK1-TXD),td(SCLK2-SOUT2)  
T
X
D
SOUT2  
64  
MITSUBISHI MICROCOMPUTERS  
3820Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with  
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of  
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any  
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples  
contained in these materials.  
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi  
Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor  
product distributor for the latest product information before purchasing a product listed herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact  
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for  
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the  
approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.  
© 1996 MITSUBISHI ELECTRIC CORP.  
H-DF047-C KI-9609  
New publication, effective Sep. 1996.  
Specifications subject to change without notice.  
REVISION DESCRIPTION LIST  
3820GROUP DATA SHEET  
Rev.  
Rev.  
date  
Revision Description  
No.  
1.0 First Edition  
971128  
(1/1)